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ABSTRACT 

Differential hydrogen exchange-mass spectrometry (HX-MS) measurements are valuable 

for identification of differences in the higher order structures of proteins. Typically, the data sets 

are large with many differential HX values corresponding to many peptides monitored at several 

labeling times. To eliminate subjectivity and reliably identify significant differences in HX-MS 

measurements, a statistical analysis approach is needed. In this work, we performed null HX-MS 

measurements (i.e., no meaningful differences) on maltose binding protein and infliximab, a 

monoclonal antibody, to evaluate the reliability of different statistical analysis approaches. Null 

measurements are useful for directly evaluating the risk (i.e., falsely classifying a difference as 

significant) and power (i.e., failing to classify a true difference as significant) associated with 

different statistical analysis approaches. With null measurements, we identified weaknesses in 

the approaches commonly used. Individual tests of significance were prone to false positives due 

to the problem of multiple comparisons. Incorporation of Bonferroni correction led to unacceptably 

large limits of detection, severely decreasing the power. Analysis methods using a globally 

estimated significance limit also led to an over-estimation of the limit of detection, leading to a 

loss of power. Here, we demonstrate a hybrid statistical analysis, based on volcano plots, that 

combines individual significance testing with an estimated global significance limit, simultaneously 

decreased the risk of false positives and retained superior power. Furthermore, we highlight the 

utility of null HX-MS measurements to explicitly evaluate the criteria used to classify a difference 

in HX as significant. 

INTRODUCTION 

Hydrogen exchange-mass spectrometry (HX-MS) has emerged as a routine method for 

evaluating protein higher order structure.1 The success of HX-MS is largely derived from its ability 

to overcome limitations of protein size, sample conditions, experiment time, or resolution that limit 

alternative methods.2,3 HX-MS measurements have revealed localized structural changes 

associated with protein-protein interactions,2,4-6 protein-ligand interactions,7-11 environmental 



 
 

stresses,12-14 and primary sequence modifications.15-18 In addition, HX-MS has been used for 

comparability studies of protein therapeutics.19-22  

Traditional HX-MS experiments are performed in a differential manner using a bottom-up 

workflow in which peptide-level HX measurements of two samples are compared.23 The objective 

of a differential HX-MS experiment is to determine if meaningful HX differences between the two 

samples are present. In many cases, meaningful differences are identified by subjective 

classification of peptide deuterium uptake plots. Depending on the application and protein studied, 

there could be few or many differences observed and those differences could be small or large.  

For example, HX differences observed in an epitope mapping study might be large and localized 

to the epitope.24 In contrast, HX differences observed in a conformational study of varying protein 

drug product formulations might be small and globally distributed.25 To probe for structural 

differences between two samples with HX-MS, multiple HX labeling time measurements, with 

technical replicates, are obtained to sample a range of protein dynamics. After proteolytic 

digestion, mean peptide HX values at each HX labeling time from each sample are compared to 

identify HX differences. With many peptides and multiple HX labeling times, differential HX-MS 

data sets are large, resulting in many HX comparisons. To reveal meaningful differences in large 

HX-MS data sets and to eliminate subjectivity, statistical analysis is necessary.  

Significance testing is a suitable approach for comparing two independent sample means 

to determine if a significant difference is present between two populations. For significance 

testing, a null hypothesis (ܪ଴) is defined as the population means (ߤ௔,  ,.௕) do not differ (i.eߤ

:଴ܪ ௔ߤ െ ௕ߤ ൌ 0) and an alternative hypothesis (ܪଵ) as the population means differ (i.e., ܪଵ: ௔ߤ െ

௕ߤ ് 0). Hypothesis testing is subject to type I error and type II error. In the context of HX 

differences, a type I error is any differential HX measurement in which the null hypothesis is falsely 

rejected (i.e., false positive), in other words, classifying an observed HX difference as significant 

when there is not a true difference. Type II error is any event in which the null hypothesis is false, 

but not rejected (i.e., false negative), which would be failing to classify a true HX difference as 



 
 

significant. The probability of committing type I error (i.e., risk) and the probability of not 

committing type II error (i.e., power) will vary depending on the test and criteria used to determine 

significance. A simple hypothesis test for differential HX-MS data can be performed, under the 

assumption that the HX measurement errors follow a normal distribution, by calculating a 

confidence interval for the difference between observed mean peptide masses (∆ܺܪതതതത ൌ ഥ݉௔ െ ഥ݉௕) 

for each peptide at each label time where the subscripts, ܽ and ܾ, denote each protein sample 

state measured. The standard deviations (ݏ௔	, ,	௕) and number of replicates (݊௔ݏ ݊௕) for each mean 

peptide mass can be used with a critical value (ݐ) from the Student’s t-distribution to calculate a 

confidence interval for hypothesis testing:  
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Rearranging equation (1) yields a confidence interval: 
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If zero is contained in the confidence interval, then the null hypothesis cannot be rejected (i.e., 

the difference is not considered statistically significant). Conversely, if the confidence interval 

does not include zero, then the null hypothesis is rejected (i.e., the difference is considered 

statistically significant). The statistical confidence for rejecting the null hypothesis is defined by 

the significance level (α) at which the critical t-value is selected.  

For significance testing of differential HX-MS data, both individual and global confidence 

intervals have been used.26-31 With individual confidence intervals, significance is tested by 

calculating a confidence interval for each ∆ܺܪതതതത value by using associated sample standard 

deviations (ݏ௔	,  തതതത confidence interval not including zero isܺܪ∆ ௕) for each mean difference. Anyݏ

classified as significant. Alternatively, with global confidence intervals, significance is tested by 

calculating a global confidence interval for all ∆ܺܪതതതത values. Following the global confidence interval 

approach, significance testing results are easily illustrated in a difference plot of ∆ܺܪതതതത values, 



 
 

generally with significance limit lines representing the global confidence intervals. Any ∆ܺܪതതതത value 

exceeding the significance limit lines, in either direction, is classified as significant (i.e., reject the 

null hypothesis), while any value that does not exceed limit is classified as insignificant (i.e., fail 

to reject the null hypothesis). Unlike the individual confidence interval approach, where equal 

sample standard deviations are not assumed, the global confidence interval approach assumes 

equal sample standard deviations. Although most of the work involving significance testing of HX-

MS data has focused on differences at individual HX times, significance testing has also been 

employed when HX data is averaged or integrated across the entire HX time range.32-34 Both 

global and individual confidence interval approaches have been applied for classifying significant 

results in differential HX-MS measurements.27-31,35 However, the rates of type I and type II error 

when applying these approaches to determine significance in differential HX-MS measurements 

have not been evaluated. A null experiment, with an expected outcome, would be useful to 

evaluate the error rates from these significance-determining approaches for differential HX-MS 

data. In this work, we designed such null experiments to explicitly evaluate the relationship of risk 

and power associated with individual and global significance testing. We demonstrate that a 

hybrid approach for significance testing overcomes weaknesses we identified for individual and 

global significance testing. We validate the hybrid approach with our experimental null results. 

Furthermore, in a companion paper, we demonstrate an application of this hybrid significance 

testing approach to reliably identify subtle differences in differential HX-MS measurements. 

EXPERIMENTAL  

Details for preparation of maltose-binding protein (MBP) and IgG1 monoclonal antibody 

(mAb), infliximab, are described in the Supporting Information.  

Hydrogen exchange-mass spectrometry 

Labeling was performed on a LEAP Technologies HDX PAL robot. MBP deuterated 

samples were prepared by diluting 3 µL of 8 µM MBP in 57 µL of labeling buffer (20 mM sodium 

phosphate, 100 mM sodium chloride, pD 7.0 in D2O, pH was corrected for isotope effect35). 



 
 

Samples were labeled seven times for each label time (30, 240, 1800, and 14400 s) at 25 °C. 

After labeling, 50 µL of each labeled sample was quenched with 50 µL of precooled quench buffer 

(200 mM sodium phosphate, pH 2.5 in water) at 1 °C. To minimize the influence of inter-day 

variations, all replicates of each individual HX labeling time were completed within a single day. 

Non-deuterated controls were prepared in a similar manner except with MBP buffer (20 mM 

sodium phosphate, 100 mM sodium chloride, pH 7.0 in water) substituted for labeling buffer. 

Following quenching, 75 µL of sample was injected into a temperature-controlled chromatography 

cabinet connected to an Agilent 1260 Infinity series LC. Cabinet temperature and equipped LC 

solvent pre-cooler were maintained at 0 °C for all experiments. Injected sample was passed over 

an immobilized pepsin column, prepared in house,36 at 200 µL min–1 for 120 s with 0.1% formic 

acid in water. The resulting peptic peptides were captured on a C8 trap (Poroshell 120EC-C8 trap 

2.1 x 5 mm, 2.7 µm particles) and washed at 200 µL/min for 60 s with 0.1% formic acid in water. 

Desalted peptic peptides were separated on a C18 column (ZORBAX RRHD 300SB-C18, 2.1 x 

50 mm, 1.8 µm particles) with an 8-minute linear gradient of 0.1% formic acid in acetonitrile 

increasing from 15% to 45% acetonitrile. Peptide masses were subsequently measured with an 

Agilent 6530 Q-TOF mass spectrometer running in ESI-positive mode. 

Deuterated mAb samples were prepared in a manner similar to MBP samples except for 

the following differences. MAb samples were labeled six times with labeling buffer (150 mM 

sucrose, 5 mM sodium phosphate, pD 7.2 in D2O (pH corrected for isotope effect)37) for each label 

time (20, 100, 500, 2500, 12500, and 62500 s) at 20 °C. Samples were quenched with quench 

buffer (200 mM sodium phosphate, 3 M guanidine hydrochloride, 500 mM tris(2-

carboxyethyl)phosphine hydrochloride, pH 2.4 in water). 80 µL of sample was injected and passed 

over the immobilized pepsin column for 180 s. Peptic peptides were captured on the C8 trap and 

washed for 90 s, then separated on the C18 column with a 12-minute linear gradient of 0.1% 

formic acid in acetonitrile increasing from 15% to 35% acetonitrile. 

Hydrogen exchange-mass spectrometry data analysis 



 
 

Peptic peptide databases were generated prior to HX-MS experiments with separate 

tandem mass spectrometry measurements of non-deuterated MBP and non-deuterated mAb 

samples. 115 peptic peptide (94% sequence coverage) assignments were confirmed for MBP. 

112 heavy chain (88% sequence coverage) and 75 light chain (97% sequence coverage) peptic 

peptide assignments were confirmed for mAb. After automated HX-MS analysis in Sierra 

Analytics HDExaminer (versions 2.3 and 2.4), a single charge state that contained high quality 

spectra for all replicates across all HX labeling times was selected to represent HX for each 

peptide. Replicates with abnormally large deviations in HX values were individually evaluated; 

chromatographic peak integration limits were applied where necessary. The extent of HX based 

on the peptide centroid mass ሺ݉ሻ for each peptide at each HX label time was exported to Microsoft 

Excel and Systat SigmaPlot for post-processing. For each peptide at each HX label time, mean 

centroid masses ሺ ഥ݉ሻ were calculated for sample sizes ሺ݊ሻ corresponding to triplicate 

measurements. All sample standard deviations ሺݏ௠ሻ presented within this work were calculated 

using equation (2).  
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RESULTS AND DISCUSSION 

Null measurements to evaluate significance testing approaches  

During the HX-MS workflow, many sources can contribute to error including the sample, 

sample handling, mass measurement, and data processing.36,38 Careful sample preparation 

complimented with comprehensive orthogonal characterization, automated sample handling, 

reliable mass spectrometers, and robust data processing software minimizes these sources of 

error. However, error still exists as a sum of all sources, some sources contributing more than 

others. Accurately estimated measurement error is essential for determining significance of 

observed HX differences by statistical testing. Inaccurate estimates of measurement error can 

impact type I or type II error rates. In this work, we designed null experiments to explicitly evaluate 



 
 

type I error rates from significance testing approaches used for determining significance in 

differential HX-MS data.  

To generate a pool of experimental null data, seven intra-day HX-MS replicate 

measurements of MBP were acquired at four HX labeling times (see Supporting Figure S1 for an 

outline of the workflow used to generate differential HX-MS data from our null measurements). 

The extent of HX (݉), in Daltons (Da), was monitored for 115 MBP peptic peptides. Two unique 

triplicate data sets (ܽ, ܾ) were drawn at random from the pool of experimental null data, 

independent means were calculated ( ഥ݉௔, ഥ݉௕), and compared for HX differences (∆ܺܪതതതത ൌ ഥ݉௔ െ

ഥ݉௕). In total, five comparisons were performed following this workflow. Each null experiment 

produced 460 ∆ܺܪതതതത values with 920 standard deviations (ݏ௔,  ௕) for the peptic peptides monitoredݏ

at four HX labeling times. All experiments combined produced 2,300 ∆ܺܪതതതത	  values with 4,600 

standard deviations. By design of the experiment, the theoretical value of ∆ܺܪതതതത	 is zero (i.e., the 

null hypothesis is true); thus, the distribution of ∆ܺܪതതതത	values, from all comparisons, ranging from –

0.091 to +0.084 Da, represents measurement error between the expected value and observed 

values (Figure 1A). Meanwhile the distribution of standard deviations, ranging from 0.000 to 

 

Figure 1. MBP null comparison distribution of 2,300 ∆ܺܪതതതത values (A) and 4,600 standard 
deviations (B). 



 
 

0.080 Da, illustrates the variance in ഥ݉  values used to calculate ∆ܺܪതതതത	 values (Figure 1B). With 

our null comparison data, we scrutinized commonly used approaches for identifying meaningful 

differences in differential HX-MS data.  

False positives using individual significance tests 

One approach to identify meaningful differences in differential HX-MS data is significance 

testing of individual differences. Individual confidence intervals can be calculated for each ∆HXതതതത 

value by using corresponding standard deviation values and a critical ݐ-value, from a Student’s t-

distribution, at a defined significance level (α) (see equation (1)). However, for large HX-MS data 

sets it is more convenient to interpret individual significance testing results with a probability value 

 that is related to the spread and location of the confidence interval. The probability can be (݌)

determined using a two-sample Student’s t-test. Welch’s t-test39 is a variation that does not require 

equal standard deviations in the two samples. It is suitable  in cases where the standard deviations 

might differ substantially. To examine the rate of type I error for individual significance testing, we 

applied Welch’s t-tests (two-tail) to our null comparison data. Any p-value, from the t-tests, less 

than the defined α is a type I error because the alternative hypothesis is false: there are no true 

differences between the samples. With α = 0.05, we observed many type I errors, shown in Table 

1, with a mean false positive rate of 5.6% (126 type I errors from 2,300 t-tests). Upon increasing 

the stringency to α = 0.01, fewer type I errors were observed, as expected, with a mean false 

positive rate of 1.1% (25 type I errors from 2,300 t-tests). The Welch’s t-test performed as 

expected based on the similarity between observed false positive rates and the probability of false 

Table 1. Type I errors from MBP null comparisons with various approaches for determining 
significance at α = 0.05 and α = 0.01. 

 Welch’s t-test Bonferroni corrected Global ∆ࢄࡴതതതതത threshold Hybrid significance test 
 

α = 0.05 α = 0.01 α = 0.05 α = 0.01 ±0.067 Da ±0.110 Da 
±0.067 Da 
α = 0.05 

±0.110 Da 
α = 0.01 

Null 1 24 4 0 0 5 0 1 0 
Null 2 40 9 0 0 17 0 9 0 
Null 3 6 0 0 0 1 0 0 0 
Null 4 10 0 0 0 2 0 1 0 
Null 5 49 12 1 0 22 0 7 0 
Combined 129 (5.6%) 25 (1.1%) 1 (0.04%) 0 (0.0%) 47 (2.0%) 0 (0.0%) 18 (0.8%) 0 (0.0%) 



 
 

positives from the α applied. However, in an actual differential HX-MS experiment, where many 

true differences might be present, it is doubtful that the probability of false positives, α, could be 

used to differentiate between a false positive from a true positive.  

Upon detailed inspection of the type I errors observed, we found that many result from 

abnormally tight clustering of the data arising from the random nature of the measurements. For 

example, one specific type I error at α = 0.01 from our null experiments has a seemingly negligible 

HX difference, ∆ܺܪതതതത = –0.009 Da but also even smaller standard deviations, ±0.002 Da, for both 

ഥ݉  values, that results in the classification of this miniscule HX difference as significant, a type I 

error. This event highlights a vulnerability of significance testing of individual differences: a small 

difference in means can be classified as significant if the estimate of the experimental error from 

replicate uncertainties is unreliable due to sampling statistics. 

The overall frequency of type I errors depends on the number of significance tests 

performed, a problem known as the multiple comparisons problem.40 For w = 460 (i.e., the number 

of t-tests performed in a single null experiment), the probability of having zero type I errors (i.e., 

one minus the family-wise error rate, (1–α)w) is 6E–11 when using α = 0.05 and 0.0098 when 

using α = 0.01. The median number of false positives can be estimated from the binomial 

distribution as αw (see Supporting Figure S2). On this basis, we would expect 23 type I errors at 

α = 0.05 and 4 type I errors at α = 0.01 for 460 comparisons, which is consistent with the mean 

number of type I errors observed across our five null experiments (see Table 1). Correction 

approaches, such as the Bonferroni correction,41 are commonly used in statistical analyses to 

compensate for multiple comparisons and reduce probability of type I error. Implementing the 

Bonferroni correction (αw–1) for a single null experiment, w = 460, results in corrected values for 

significance of 1.1E–4 and 2.2E–5 for desired α = 0.05 and α = 0.01, respectively. When 

Bonferroni-corrected significance limits are applied to all null comparisons, the number of 

observed type I errors is 1 for corrected α = 0.05 and 0 for corrected α = 0.01 (Table 1). To explore 

the impact of these corrections, we calculated theoretical |∆ܺܪതതതത| values that would be required for 



 
 

a significant discovery when using Bonferroni-corrected significance values (see detailed 

calculation in caption of Supporting Figure S3). The resulting |∆ܺܪതതതത|	 values required for a 

significant discovery are 10- to 100-fold larger than the distribution of actual |∆ܺܪതതതത|	values from 

null comparisons (see Supporting Figure S3). With a Bonferroni-corrected significance for α = 

0.05, the mean of |∆ܺܪതതതത|	values required for a significant HX difference is 1.2 Da and it becomes 

2.4 Da for a corrected significance for α = 0.01. In some cases, the differences would only be 

considered significant if they exceeded 4.0 Da for α = 0.05 or 10.0 Da for α = 0.01. The ∆ܺܪതതതത 

values required to achieve significance after applying a multiple comparisons correction are 

outrageous for individual HX times in differential HX-MS data, and in some cases might actually 

exceed the theoretical maximum deuteration. In a non-null experiment, applying Bonferroni 

correction for multiple comparisons will drastically increase the probability of type II error, i.e., 

false negatives. Thus, Bonferroni correction to reduce the probability of type I error at the expense 

of type II error is not suitable for typical differential HX-MS data where a large number of 

comparisons (>103) are often analyzed.  

With our null experiment, we have demonstrated a major limitation for using individual 

significance tests to identify meaningful differences in differential HX-MS data: there will be false 

positives at a rate of approximately α. Although significance testing is a valuable approach to 

identify significant differences when comparing individual experimental means, the limitations for 

application to differential HX-MS data outweigh the value. The problem of multiple comparisons 

is inevitable for applications of individual significance tests to differential HX-MS data. Multiple 

comparison corrections can reduce the probability of type I error, but at the expense of losing 

power. Loss of power decreases the probability of finding small but significant differences.  

A delicate balance of risk and power with a global ∆ࢄࡴതതതതത significance threshold 

A widely accepted approach to identify meaningful differences in differential HX-MS data 

is to apply a global ∆ܺܪതതതത threshold for significance that is based on an estimate of experimental 



 
 

error. With this threshold approach, the ∆ܺܪതതതത values from differential HX-MS data are compared 

to a defined ∆ܺܪതതതത threshold to determine significance. Defined thresholds are typically derived by 

taking the product of a probability distribution value (e.g., Student’s t-distribution) and a globally 

estimated value to represent all experimental error. This approach relies on a global estimate of 

measurement error to determine significance that is intended to be representative of all of the 

data. A widely-reported, but perhaps not well-substantiated, figure-of-merit for a global ∆ܺܪതതതത 

threshold to determine significance is ±0.5 Da for analyses of single time point differential HX-MS 

data from triplicate measurements.42 Applying the threshold ܪଵ:	|∆ܺܪതതതത| > 0.5 Da to our distribution 

of ∆ܺܪതതതത values from null comparisons, we would not observe any type I errors, recalling that the 

range is –0.091 to +0.084 Da in Figure 1A. However, this ∆ܺܪതതതത threshold range is clearly a large 

overestimation of measurement error of our null data. Overestimating will certainly decrease the 

probability of type I error but at the expense of losing power, similar to a multiple comparisons 

correction. Alternatively, a ∆ܺܪതതതത threshold could be defined empirically from the largest difference 

observed in a null distribution, here ±0.091 Da, however, running a null experiment is not desirable 

for routine HX-MS experiments. 

 An approach to derive a global significance threshold, without the use of a null 

experiment, based on standard deviations from experimental data was proposed by Houde et 

al.28 Following this approach and implementing some recently-proposed corrections,28 we used 

our experimental standard deviations to calculate a ∆ܺܪതതതത significance threshold as detailed in the 

Supporting Information. We used a pooled standard deviation from our 4,600 standard deviations 

to estimate a global uncertainty of ±0.030 Da (ݏ௣) in any ഥ݉  value. Using the pooled standard 

deviation for triplicate measurements (݊௔, ݊௕) a propagated standard error of the mean (ܵܯܧ) of 

±0.024 Da for any ∆ܺܪതതതത value was calculated by equation (3). 
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By selecting a suitable value of k, a confidence interval for any ∆ܺܪതതതത value can be calculated by 

equation (4). 

 

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Here we define k by a Student’s t-distribution value (ݐఈ ଶ⁄ ), for one-tail, with four degrees of 

freedom (݊௔ ൅ ݊௕ െ 2). Using Student’s t-distribution values of 2.7764 and 4.6041, corresponding 

to α = 0.05 and α = 0.01, resulted in ∆ܺܪതതതത threshold values for significance of ±0.067 Da and 

±0.110 Da, respectively. These values are much smaller than the commonly reported ±0.5 Da 

threshold. This difference can be explained both by the narrow distribution of standard deviations 

in our null experiments and by recently-proposed corrections43 to the method used to estimate 

the ±0.5 Da threshold.  

The ∆ܺܪതതതത threshold of ±0.067 Da (corresponding to α = 0.05) underestimates the error in 

our null comparison data as is evident in a dot density plot of ∆ܺܪതതതത values from all null comparisons 

(Figure 2 red dashed lines). Using α = 0.05, 47 ∆ܺܪതതതത values exceed the ∆ܺܪതതതത significance 

threshold of ±0.067 Da, resulting in a false positive rate of 2.0% (Table 1). In contrast, with a 

significance threshold of ±0.110 Da, corresponding to α = 0.01, the significance limits closely 

bracket our distribution of ∆ܺܪതതതത values from null comparisons (Figure 2 grey wide dashed lines). 

No ∆ܺܪതതതത values exceed the ∆ܺܪതതതത significance threshold value of ±0.110 Da, indicating a 

reasonable estimate for significance (Table 1). The false positive rates for α = 0.05 and α = 0.01 

are much lower using the global ∆ܺܪതതതത thresholds for significance compared to the respective 

Welch’s t-test false positive rates of 5.6% (α = 0.05) and 1.1% (α = 0.01). Furthermore, our 

estimated error at α = 0.01 yields an estimate that is reasonably close to the ±0.091 Da 

significance value we would obtain if we empirically determined a ∆ܺܪതതതത significance threshold from 

our maximum observed |∆ܺܪതതതത| value in null comparisons. Importantly, the threshold estimated 

from equation (4) can be estimated by pooling the standard deviations for any differential HX-MS 

experiment, without using a null experiment. 



 
 

Pooling the standard deviations to define a global significance threshold carries the 

assumption of equal experimental error for all measurements. To justify this assumption, 

experimental error must be independent of peptide and other experimental parameters. To 

determine if there was any correlation of experimental error with peptide and experimental 

parameters in our data, we determined the standard deviation using all seven replicates at each 

HX labeling time for each peptide, which produced 460 standard deviations. We did not observe 

strong evidence that supports the proposition that standard deviation is correlated to HX labeling 

time, retention time, and mass-to-charge ratio (see Supporting Figure S4). However, there is a 

weak positive correlation between standard deviation and charge, mass, theoretical maximum 

HX, percent HX, and magnitude HX (see Supporting Figure S4), which are all parameters related 

to the measured mass increase. From this, we can conclude that peptide size and isotopic 

distribution width are slightly correlated to standard deviation. However, the observed correlation 

is mostly driven by a tight cluster of data from small peptides. The deuterated isotopic distributions 

of the small peptides does not shift along the m/z axis. Instead, the distribution of peak intensities 

changes with increasing isotopic peak intensity and decreasing monoisotopic peak intensity. This 

observation of decreased experimental error in this scenario is consistent with previously reported 

 

Figure 2. Dot density plot of ∆ܺܪതതതത values for each MBP null comparison (460 ∆ܺܪതതതത values 
each), with significance limits at α = 0.05 (red dashed lines) and α = 0.01 (grey wide dashed 
lines), calculated from the pooled standard deviation (ݏ௣) of all 4,600 null standard deviations 
based on equation (4) with k = 2.7764 and 4.6041, as described in the text.  



 
 

correlations by Houde et al.43 and Schriemer et al.28 Considering minimal correlation, our results 

indicate that the assumption of equal experimental error for all measurements is justified. Thus, 

our calculation to derive a global threshold based on pooled standard deviation is reasonable. A 

null experiment is not necessary to determine significance by reducing probability of type I error. 

Meanwhile, the estimated ∆ܺܪതതതത threshold potentially conserves power by not substantially 

overestimating the significance limits.  

From our results, it is clear that a reliable ∆ܺܪതതതത threshold can be estimated from 

experimental data without using a null experiment and that this threshold, by itself, was sufficient 

to eliminate type I errors in our null MBP data. However, it is important to consider the good 

precision observed in our MBP null experiment. A more complex protein may show a broader 

distribution of precision that will challenge reliably estimating a ∆ܺܪതതതത threshold to determine 

significance. To investigate this possibility, we also performed a null experiment with a well-

characterized, marketed IgG1 mAb therapeutic to evaluate the rate of type I error for a more 

complex protein sample. Following a workflow similar to the MBP null experiments, we compared 

two unique triplicate data sets consisting of 187 mAb peptic peptides in which HX was monitored 

at six HX labeling times. Unlike MBP, only a single null comparison was performed rather than 

five comparisons used with MBP. The null comparison produced 1122 ∆ܺܪതതതത values with 2244 

standard deviations. The distribution of mAb standard deviations ranges from 0.000 to 0.307 Da 

(Figure 3A). The distribution of mAb standard deviations is noticeably wider than the distribution 

of null MBP standard deviations, that was 0.000 to 0.080 Da, in Figure 1B. The range of mAb 

 ,തതതത valuesܺܪ∆ തതതത values, –0.315 to +0.333 Da, in Figure 3B is also wider than the range of MBPܺܪ∆

–0.091 to +0.084 Da, in Figure 1A.  

The pooled standard deviation, 0.063 Da, for the 2244 mAb standard deviations is greater 

than the MBP pooled standard deviation (0.030 Da). Therefore, the resulting mAb ∆ܺܪതതതത 

significance thresholds were greater as well with ±0.145 Da for α = 0.05 and ±0.240 Da for α = 



 
 

0.01. We observe a slightly underestimated ∆ܺܪതതതത threshold when applying the ±0.145 Da 

significance value (corresponding to α = 0.05) to our mAb null comparison data the dot density 

plot of ∆ܺܪതതതത values (Figure 3B red dashed lines). At α = 0.05, 42 ∆ܺܪതതതത values exceed the ∆ܺܪതതതത 

significance threshold value of ±0.145 Da resulting in a false positive rate of 3.7% (see Supporting 

Table S1). Increasing stringency by applying the ±0.240 Da significance value (corresponding to 

α = 0.01), shown as grey wide dashed lines in Figure 3B, we observe 8 ∆ܺܪതതതത values that exceed 

the threshold resulting in a false positive rate of 0.7% (see Supporting Table S1). Unlike the MBP 

null results with no false positives for a ∆ܺܪതതതത significance threshold value corresponding to α = 

0.01 (Table 1), the mAb null results do return false positives. False positives in the mAb data are 

not surprising since the calculated ∆ܺܪതതതത significance threshold value was less than the largest 

 

Figure 3. Distribution of 2244 standard deviations (A) and dot density plot of 1122 ∆ܺܪതതതത values 
(B) from all mAb null comparisons. Significance limits at α = 0.01 (grey wide dashed lines) and 
α = 0.05 (red dashed lines) calculated from the pooled standard deviation ሺݏ௣ሻ of all mAb null 
standard deviations.   



 
 

 തതതത| values observed in mAb results. Thus, our mAb results highlight the challenge of estimatingܺܪ∆|

a global significance threshold for data with a wider distribution of uncertainty. In the case of the 

mAb results, with a wider distribution of standard deviations, the assumption of equal 

experimental error can increase the risk if the significance threshold is underestimated. 

Conversely, the assumption will potentially decrease power if the significance threshold is 

overestimated.  

Hybrid significance testing minimizes type I and type II errors 

 To decrease probability of type I errors, an overestimated ∆ܺܪതതതത threshold for significance 

could be applied but at the cost of losing power by increasing probability of type II errors (i.e., 

false negatives). Alternatively, Welch’s t-tests can be applied to gain power by reducing probability 

of type II error, but as we have shown, this increases risk of type I errors (i.e., false positives). A 

solution to manage both type I and type II error is significance testing using a hybrid approach. 

The significance testing results are easily visualized with a volcano plot, a scatter-plot of 

unstandardized signal (magnitude of change, ∆ܺܪതതതത) versus noise-adjusted standardized signal 

(represented using the p-value from Welch’s t-test), as shown in Figure 4. The fields of differential 

gene expression and metabolomics have widely adopted volcano plots to determine significance 

and visualize results.44  Significance is tested using the relationship of the signals which 

determines significance based on ∆ܺܪതതതത versus individual replicate variance and an estimate of 

measurement error. Thus for the hybrid significance testing approach of HX-MS data, the first-

pass significance test is whether the difference observed is greater than the globally-estimated 

measurement error (i.e., equation (4)). If the difference is greater than measurement error, then 

a Welch’s t-test is performed to confirm significance based on individual standard deviations. By 

using these double-filtering criteria, large differences that are greater than measurement error but 

that have large standard deviations, are penalized by the Welch’s t-test for the large error. 

Negligibly small HX differences that appear significant based on the t-test are penalized by the 



 
 

magnitude of the HX difference. Although volcano plot representations of HX-MS data have not 

been widely reported, Mass Spec Studio software45 implements similar statistical significance 

testing using a Woods plot. Recently, a volcano plot feature, using calculations similar to those 

presented within this work, was implemented in HDExaminer (Sierra Analytics, Modesto, CA). 

However, to the best of our knowledge no reports in the HX-MS field have validated this type of 

approach against a true null data set. 

 A volcano plot representation of the MBP null comparison hybrid significance testing 

results is shown in Figure 4A. Observed ∆ܺܪതതതത values are plotted on the horizontal axis and p-

values from Welch’s t-tests are plotted on the vertical axis. The horizontal significance limit line at 

10–2 represents α = 0.01 for the p-values from the Welch’s t-tests. The ∆ܺܪതതതത significance limit, the  

vertical lines, represent an estimate of global uncertainty at α = 0.01. In Figure 4A, we have 

 

Figure 4. Volcano plot of MBP (A) and mAb (B) null comparisons. Observed ∆ܺܪതതതത values 
(horizontal axis) and Welch’s t-test p-values (vertical axis). Horizontal p-value significance 
limits are defined at α = 0.01 and vertical significance limits are defined at ±0.110 Da (MBP) 
and ±0.240 (mAb) from ݏ௣ calculated ∆ܺܪതതതത significance threshold representative of α = 0.01. 



 
 

defined this limit as ±0.110 Da which is the global ∆ܺܪതതതത significance threshold we calculated 

corresponding to α = 0.01 (vide supra). Any ∆ܺܪതതതത value and p-value exceeding significance limits 

in both dimensions (within the red shaded regions) is classified as significant. Any significant 

result from our null data would be a type I error, but we do not observe any type I errors for MBP 

results with the hybrid significance criteria defined at α = 0.01 (Table 1). This was expected 

because all null comparison results are less than the defined ±0.110 Da significance threshold. 

To compare the type I error rate of the hybrid significance test versus individual testing 

approaches, we decreased the stringency by applying significance limits corresponding to α = 

0.05 for MBP null comparisons. By lowering the stringency, we decrease the ∆ܺܪതതതത significance 

limit to ±0.067 Da in which 47 type I errors were observed (Table 1). By applying this ∆ܺܪതതതത 

threshold and a p-value significance limit of α = 0.05 for hybrid significance testing, we observe 

18 type I errors (Table 1). The type I error rate for α = 0.05 hybrid significance testing (18 type I 

errors) is less than the type I error rates observed for both the approach using individual Welch’s 

t-tests (129 type I errors) and the approach using a global ∆ܺܪതതതത threshold (47 type I errors). These 

results indicate that for our MBP null results, the probability of type I error with the hybrid 

significance test is lower than with either individual significance tests and global significance tests.  

 We observe a similar outcome, reduced type I error, when applying hybrid significance 

testing to mAb null data. MAb null comparison hybrid significance testing results are illustrated in 

Figure 4B with a volcano plot. The horizontal significance limit line at 10–2 represents α = 0.01 for 

the p-values from the Welch’s t-tests. The vertical ∆ܺܪതതതത significance limit lines are defined at 

±0.240 Da corresponding to α = 0.01 (vide supra). There are not any type I errors for mAb results 

with the double-filtering criteria defined at α = 0.01 (see Supporting Table S1). In contrast to MBP, 

there are 8 |∆ܺܪതതതത| values from mAb null comparisons that are greater than the ±0.240 Da (α = 

0.01) significance threshold. The type I error rate for α = 0.01 hybrid significance testing (0 type I 

errors) is less than the type I error rates observed for global ∆ܺܪതതതത threshold (8 type I errors) (see 



 
 

Supporting Table S1). In addition, the type I error rate for α = 0.05 hybrid significance testing (2 

type I errors) is less than the type I error rates observed for global ∆ܺܪതതതത threshold (42 type I errors). 

The larger |∆ܺܪതതതത| values that appear to be significant based on the global ∆ܺܪതതതത significance 

threshold are penalized by the Welch’s t-test because of their large standard deviations. For both 

MBP and mAb null experiments, the hybrid significance test returned lower type I error rates than 

individual significance tests. 

The advantage of this hybrid significance testing approach, compared to individual and 

global significance testing approaches, is that individual replicate error is considered for 

measurement reliability while simultaneously considering the magnitude of HX difference for 

measurement plausibility. In addition, statistical testing results are easily visualized in the volcano 

plot to determine if statistically significant differences are present. In a companion paper we 

demonstrate that this hybrid approach can reliably identify subtle differences that challenge the 

detection limit of HX-MS. It is important to stress that significant HX differences identified using 

this approach should be scrutinized by the HX-MS analyst. Validation of significant differences 

should consist of confirming similar trends in overlapping peptides, identifying differences at 

multiple HX labeling times, reviewing the quality of raw spectra, and inspecting chromatographic 

peak integration limits for discrepancies. (We have found that peak integration errors are a large 

source of variance, results not shown.) Expert review is also needed for results with missing 

technical replicate data or abnormally large standard deviations. The reliability of peptides with 

missing replicate HX data or missing data at specific HX labeling times should be carefully 

considered. Missing replicate data (e.g., n = 2) will substantially increase the critical t-values in 

the Welch’s t-test making it more difficult for large differences to be classified as significant in the 

p-value dimension. Also, a key component of the |∆ܺܪതതതത| threshold calculation for the hybrid 

significance testing approach, detailed within this work,  is the number of technical replicates is 

equal for all sample means. It is also important to emphasize that the |∆ܺܪതതതത| threshold for this 



 
 

approach should be calculated from experimental standard deviations for each experiment. As 

our mAb results compared to MBP showed, HX-MS measurements of more complex proteins can 

result in larger measurement error that will alter the calculated |∆ܺܪതതതത| threshold. Another important 

consideration is the experimental timeframe. In inter-day experiments slight deviations in 

experimental conditions could affect the observed measurement error.46 Although a pooled 

standard deviation can be calculated to estimate a global |∆ܺܪതതതത| threshold for any experiment 

without the use of a null experiment, a null experiment is valuable to evaluate measurement error 

and criteria used for classifying significant differences. The null experiment approach, 

demonstrated here, to evaluate statistical significance should be extended to the use of differential 

HX-MS measurements for higher order structural comparability applications. The present work 

has focused exclusively on treating HX labeling times as discrete experiments. Significance 

testing using HX-MS data that has been integrated32 or averaged33,34 across all HX times might 

also be useful, though we note that those differences could become diluted by averaging them 

into a set of data where other HX times exhibit no measurable differences.  
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