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ABSTRACT

Differential hydrogen exchange-mass spectrometry (HX-MS) measurements are valuable
for identification of differences in the higher order structures of proteins. Typically, the data sets
are large with many differential HX values corresponding to many peptides monitored at several
labeling times. To eliminate subjectivity and reliably identify significant differences in HX-MS
measurements, a statistical analysis approach is needed. In this work, we performed null HX-MS
measurements (i.e., no meaningful differences) on maltose binding protein and infliximab, a
monoclonal antibody, to evaluate the reliability of different statistical analysis approaches. Null
measurements are useful for directly evaluating the risk (i.e., falsely classifying a difference as
significant) and power (i.e., failing to classify a true difference as significant) associated with
different statistical analysis approaches. With null measurements, we identified weaknesses in
the approaches commonly used. Individual tests of significance were prone to false positives due
to the problem of multiple comparisons. Incorporation of Bonferroni correction led to unacceptably
large limits of detection, severely decreasing the power. Analysis methods using a globally
estimated significance limit also led to an over-estimation of the limit of detection, leading to a
loss of power. Here, we demonstrate a hybrid statistical analysis, based on volcano plots, that
combines individual significance testing with an estimated global significance limit, simultaneously
decreased the risk of false positives and retained superior power. Furthermore, we highlight the
utility of null HX-MS measurements to explicitly evaluate the criteria used to classify a difference
in HX as significant.
INTRODUCTION

Hydrogen exchange-mass spectrometry (HX-MS) has emerged as a routine method for
evaluating protein higher order structure.” The success of HX-MS is largely derived from its ability
to overcome limitations of protein size, sample conditions, experiment time, or resolution that limit
alternative methods.?® HX-MS measurements have revealed localized structural changes

associated with protein-protein interactions,?46 protein-ligand interactions,”'" environmental



stresses,'>'* and primary sequence modifications.'®'® In addition, HX-MS has been used for
comparability studies of protein therapeutics.%-2?

Traditional HX-MS experiments are performed in a differential manner using a bottom-up
workflow in which peptide-level HX measurements of two samples are compared.?® The objective
of a differential HX-MS experiment is to determine if meaningful HX differences between the two
samples are present. In many cases, meaningful differences are identified by subjective
classification of peptide deuterium uptake plots. Depending on the application and protein studied,
there could be few or many differences observed and those differences could be small or large.
For example, HX differences observed in an epitope mapping study might be large and localized
to the epitope.?* In contrast, HX differences observed in a conformational study of varying protein
drug product formulations might be small and globally distributed.?® To probe for structural
differences between two samples with HX-MS, multiple HX labeling time measurements, with
technical replicates, are obtained to sample a range of protein dynamics. After proteolytic
digestion, mean peptide HX values at each HX labeling time from each sample are compared to
identify HX differences. With many peptides and multiple HX labeling times, differential HX-MS
data sets are large, resulting in many HX comparisons. To reveal meaningful differences in large
HX-MS data sets and to eliminate subjectivity, statistical analysis is necessary.

Significance testing is a suitable approach for comparing two independent sample means
to determine if a significant difference is present between two populations. For significance
testing, a null hypothesis (H,) is defined as the population means (u,4, i) do not differ (i.e.,
Hy: u, — 4p = 0) and an alternative hypothesis (H;) as the population means differ (i.e., Hy: u, —
up # 0). Hypothesis testing is subject to type | error and type Il error. In the context of HX
differences, a type | error is any differential HX measurement in which the null hypothesis is falsely
rejected (i.e., false positive), in other words, classifying an observed HX difference as significant
when there is not a true difference. Type |l error is any event in which the null hypothesis is false,

but not rejected (i.e., false negative), which would be failing to classify a true HX difference as



significant. The probability of committing type | error (i.e., risk) and the probability of not
committing type Il error (i.e., power) will vary depending on the test and criteria used to determine
significance. A simple hypothesis test for differential HX-MS data can be performed, under the
assumption that the HX measurement errors follow a normal distribution, by calculating a
confidence interval for the difference between observed mean peptide masses (AHX = m, — m,)
for each peptide at each label time where the subscripts, a and b, denote each protein sample
state measured. The standard deviations (s, , s;) and number of replicates (n, , n,) for each mean
peptide mass can be used with a critical value (t) from the Student’s t-distribution to calculate a

confidence interval for hypothesis testing:

H, :‘AHX‘>t4/n—z+i (1)

Rearranging equation (1) yields a confidence interval:

— 2 8'2
AHX ¢, +2
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If zero is contained in the confidence interval, then the null hypothesis cannot be rejected (i.e.,
the difference is not considered statistically significant). Conversely, if the confidence interval
does not include zero, then the null hypothesis is rejected (i.e., the difference is considered
statistically significant). The statistical confidence for rejecting the null hypothesis is defined by
the significance level (a) at which the critical t-value is selected.

For significance testing of differential HX-MS data, both individual and global confidence
intervals have been used.?6-3" With individual confidence intervals, significance is tested by
calculating a confidence interval for each AHX value by using associated sample standard
deviations (s, ,s,) for each mean difference. Any AHX confidence interval not including zero is
classified as significant. Alternatively, with global confidence intervals, significance is tested by
calculating a global confidence interval for all AHX values. Following the global confidence interval

approach, significance testing results are easily illustrated in a difference plot of AHX values,



generally with significance limit lines representing the global confidence intervals. Any AHX value
exceeding the significance limit lines, in either direction, is classified as significant (i.e., reject the
null hypothesis), while any value that does not exceed limit is classified as insignificant (i.e., fail
to reject the null hypothesis). Unlike the individual confidence interval approach, where equal
sample standard deviations are not assumed, the global confidence interval approach assumes
equal sample standard deviations. Although most of the work involving significance testing of HX-
MS data has focused on differences at individual HX times, significance testing has also been
employed when HX data is averaged or integrated across the entire HX time range.3>3* Both
global and individual confidence interval approaches have been applied for classifying significant
results in differential HX-MS measurements.?”-3'.35 However, the rates of type | and type Il error
when applying these approaches to determine significance in differential HX-MS measurements
have not been evaluated. A null experiment, with an expected outcome, would be useful to
evaluate the error rates from these significance-determining approaches for differential HX-MS
data. In this work, we designed such null experiments to explicitly evaluate the relationship of risk
and power associated with individual and global significance testing. We demonstrate that a
hybrid approach for significance testing overcomes weaknesses we identified for individual and
global significance testing. We validate the hybrid approach with our experimental null results.
Furthermore, in a companion paper, we demonstrate an application of this hybrid significance
testing approach to reliably identify subtle differences in differential HX-MS measurements.
EXPERIMENTAL

Details for preparation of maltose-binding protein (MBP) and IgG1 monoclonal antibody
(mADb), infliximab, are described in the Supporting Information.
Hydrogen exchange-mass spectrometry

Labeling was performed on a LEAP Technologies HDX PAL robot. MBP deuterated
samples were prepared by diluting 3 uL of 8 uM MBP in 57 pL of labeling buffer (20 mM sodium

phosphate, 100 mM sodium chloride, pD 7.0 in D20, pH was corrected for isotope effect®).



Samples were labeled seven times for each label time (30, 240, 1800, and 14400 s) at 25 °C.
After labeling, 50 uL of each labeled sample was quenched with 50 pL of precooled quench buffer
(200 mM sodium phosphate, pH 2.5 in water) at 1 °C. To minimize the influence of inter-day
variations, all replicates of each individual HX labeling time were completed within a single day.
Non-deuterated controls were prepared in a similar manner except with MBP buffer (20 mM
sodium phosphate, 100 mM sodium chloride, pH 7.0 in water) substituted for labeling buffer.
Following quenching, 75 uL of sample was injected into a temperature-controlled chromatography
cabinet connected to an Agilent 1260 Infinity series LC. Cabinet temperature and equipped LC
solvent pre-cooler were maintained at 0 °C for all experiments. Injected sample was passed over
an immobilized pepsin column, prepared in house,* at 200 yL min~" for 120 s with 0.1% formic
acid in water. The resulting peptic peptides were captured on a C8 trap (Poroshell 120EC-C8 trap
2.1 x5 mm, 2.7 um particles) and washed at 200 uL/min for 60 s with 0.1% formic acid in water.
Desalted peptic peptides were separated on a C18 column (ZORBAX RRHD 300SB-C18, 2.1 x
50 mm, 1.8 ym particles) with an 8-minute linear gradient of 0.1% formic acid in acetonitrile
increasing from 15% to 45% acetonitrile. Peptide masses were subsequently measured with an
Agilent 6530 Q-TOF mass spectrometer running in ESI-positive mode.

Deuterated mAb samples were prepared in a manner similar to MBP samples except for
the following differences. MAb samples were labeled six times with labeling buffer (150 mM
sucrose, 5 mM sodium phosphate, pD 7.2 in D2O (pH corrected for isotope effect)®”) for each label
time (20, 100, 500, 2500, 12500, and 62500 s) at 20 °C. Samples were quenched with quench
buffer (2000 mM sodium phosphate, 3 M guanidine hydrochloride, 500 mM tris(2-
carboxyethyl)phosphine hydrochloride, pH 2.4 in water). 80 uL of sample was injected and passed
over the immobilized pepsin column for 180 s. Peptic peptides were captured on the C8 trap and
washed for 90 s, then separated on the C18 column with a 12-minute linear gradient of 0.1%
formic acid in acetonitrile increasing from 15% to 35% acetonitrile.

Hydrogen exchange-mass spectrometry data analysis



Peptic peptide databases were generated prior to HX-MS experiments with separate
tandem mass spectrometry measurements of non-deuterated MBP and non-deuterated mAb
samples. 115 peptic peptide (94% sequence coverage) assignments were confirmed for MBP.
112 heavy chain (88% sequence coverage) and 75 light chain (97% sequence coverage) peptic
peptide assignments were confirmed for mAb. After automated HX-MS analysis in Sierra
Analytics HDExaminer (versions 2.3 and 2.4), a single charge state that contained high quality
spectra for all replicates across all HX labeling times was selected to represent HX for each
peptide. Replicates with abnormally large deviations in HX values were individually evaluated;
chromatographic peak integration limits were applied where necessary. The extent of HX based
on the peptide centroid mass (m) for each peptide at each HX label time was exported to Microsoft
Excel and Systat SigmaPIlot for post-processing. For each peptide at each HX label time, mean
centroid masses (m) were calculated for sample sizes (n) corresponding to ftriplicate
measurements. All sample standard deviations (s,,) presented within this work were calculated

using equation (2).

RESULTS AND DISCUSSION
Null measurements to evaluate significance testing approaches

During the HX-MS workflow, many sources can contribute to error including the sample,
sample handling, mass measurement, and data processing.®63 Careful sample preparation
complimented with comprehensive orthogonal characterization, automated sample handling,
reliable mass spectrometers, and robust data processing software minimizes these sources of
error. However, error still exists as a sum of all sources, some sources contributing more than
others. Accurately estimated measurement error is essential for determining significance of
observed HX differences by statistical testing. Inaccurate estimates of measurement error can

impact type | or type Il error rates. In this work, we designed null experiments to explicitly evaluate



type | error rates from significance testing approaches used for determining significance in
differential HX-MS data.

To generate a pool of experimental null data, seven intra-day HX-MS replicate
measurements of MBP were acquired at four HX labeling times (see Supporting Figure S1 for an
outline of the workflow used to generate differential HX-MS data from our null measurements).
The extent of HX (m), in Daltons (Da), was monitored for 115 MBP peptic peptides. Two unique
triplicate data sets (a,b) were drawn at random from the pool of experimental null data,
independent means were calculated (m,, m,), and compared for HX differences (AHX = m, —
mp). In total, five comparisons were performed following this workflow. Each null experiment
produced 460 AHX values with 920 standard deviations (s, s, ) for the peptic peptides monitored
at four HX labeling times. All experiments combined produced 2,300 AHX values with 4,600
standard deviations. By design of the experiment, the theoretical value of AHX is zero (i.e., the
null hypothesis is true); thus, the distribution of AHX values, from all comparisons, ranging from —
0.091 to +0.084 Da, represents measurement error between the expected value and observed

values (Figure 1A). Meanwhile the distribution of standard deviations, ranging from 0.000 to
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Figure 1. MBP null comparison distribution of 2,300 AHX values (A) and 4,600 standard
deviations (B).



0.080 Da, illustrates the variance in m values used to calculate AHX values (Figure 1B). With
our null comparison data, we scrutinized commonly used approaches for identifying meaningful
differences in differential HX-MS data.
False positives using individual significance tests

One approach to identify meaningful differences in differential HX-MS data is significance
testing of individual differences. Individual confidence intervals can be calculated for each AHX
value by using corresponding standard deviation values and a critical t-value, from a Student’s ¢-
distribution, at a defined significance level (a) (see equation (1)). However, for large HX-MS data
sets it is more convenient to interpret individual significance testing results with a probability value
(p) that is related to the spread and location of the confidence interval. The probability can be
determined using a two-sample Student’s t-test. Welch’s t-test®® is a variation that does not require
equal standard deviations in the two samples. It is suitable in cases where the standard deviations
might differ substantially. To examine the rate of type | error for individual significance testing, we
applied Welch’s t-tests (two-tail) to our null comparison data. Any p-value, from the t-tests, less

than the defined a is a type | error because the alternative hypothesis is false: there are no true

Table 1. Type | errors from MBP null comparisons with various approaches for determining
significance at a = 0.05 and a = 0.01.

Welch’s t-test Bonferroni corrected Global AHX threshold Hybrid significance test
@=005 =001 =005 a=001 $0067Da $0.110Da 0-067Da  20.110Da
a=0.05 a=0.01
Null 1 24 4 0 0 5 0 1 0
Null 2 40 9 0 0 17 0 9 0
Null 3 6 0 0 0 1 0 0 0
Null 4 10 0 0 0 2 0 1 0
Null 5 49 12 1 0 22 0 7 0
Combined 129 (5.6%) 25(1.1%) 1(0.04%) 0(0.0%) 47 (2.0%) 0 (0.0%) 18 (0.8%)  0(0.0%)

differences between the samples. With a = 0.05, we observed many type | errors, shown in Table
1, with a mean false positive rate of 5.6% (126 type | errors from 2,300 t-tests). Upon increasing
the stringency to a = 0.01, fewer type | errors were observed, as expected, with a mean false
positive rate of 1.1% (25 type | errors from 2,300 t-tests). The Welch’s t-test performed as

expected based on the similarity between observed false positive rates and the probability of false



positives from the a applied. However, in an actual differential HX-MS experiment, where many
true differences might be present, it is doubtful that the probability of false positives, a, could be
used to differentiate between a false positive from a true positive.

Upon detailed inspection of the type | errors observed, we found that many result from
abnormally tight clustering of the data arising from the random nature of the measurements. For
example, one specific type | error at a = 0.01 from our null experiments has a seemingly negligible
HX difference, AHX = —0.009 Da but also even smaller standard deviations, +0.002 Da, for both
m values, that results in the classification of this miniscule HX difference as significant, a type |
error. This event highlights a vulnerability of significance testing of individual differences: a small
difference in means can be classified as significant if the estimate of the experimental error from
replicate uncertainties is unreliable due to sampling statistics.

The overall frequency of type | errors depends on the number of significance tests
performed, a problem known as the multiple comparisons problem.*? For w = 460 (i.e., the number
of t-tests performed in a single null experiment), the probability of having zero type | errors (i.e.,
one minus the family-wise error rate, (1-a)¥) is 6E-11 when using a = 0.05 and 0.0098 when
using a = 0.01. The median number of false positives can be estimated from the binomial
distribution as aw (see Supporting Figure S2). On this basis, we would expect 23 type | errors at
a = 0.05 and 4 type | errors at a = 0.01 for 460 comparisons, which is consistent with the mean
number of type | errors observed across our five null experiments (see Table 1). Correction
approaches, such as the Bonferroni correction,*' are commonly used in statistical analyses to
compensate for multiple comparisons and reduce probability of type | error. Implementing the
Bonferroni correction (aw') for a single null experiment, w = 460, results in corrected values for
significance of 1.1E-4 and 2.2E-5 for desired a = 0.05 and a = 0.01, respectively. When
Bonferroni-corrected significance limits are applied to all null comparisons, the number of
observed type | errors is 1 for corrected a = 0.05 and 0 for corrected a = 0.01 (Table 1). To explore

the impact of these corrections, we calculated theoretical |AHX| values that would be required for



a significant discovery when using Bonferroni-corrected significance values (see detailed
calculation in caption of Supporting Figure S3). The resulting |AHX| values required for a
significant discovery are 10- to 100-fold larger than the distribution of actual |AHX| values from
null comparisons (see Supporting Figure S3). With a Bonferroni-corrected significance for a =
0.05, the mean of |AHX| values required for a significant HX difference is 1.2 Da and it becomes
2.4 Da for a corrected significance for a = 0.01. In some cases, the differences would only be
considered significant if they exceeded 4.0 Da for a = 0.05 or 10.0 Da for a = 0.01. The AHX
values required to achieve significance after applying a multiple comparisons correction are
outrageous for individual HX times in differential HX-MS data, and in some cases might actually
exceed the theoretical maximum deuteration. In a non-null experiment, applying Bonferroni
correction for multiple comparisons will drastically increase the probability of type Il error, i.e.,
false negatives. Thus, Bonferroni correction to reduce the probability of type | error at the expense
of type Il error is not suitable for typical differential HX-MS data where a large number of
comparisons (>10°%) are often analyzed.

With our null experiment, we have demonstrated a major limitation for using individual
significance tests to identify meaningful differences in differential HX-MS data: there will be false
positives at a rate of approximately a. Although significance testing is a valuable approach to
identify significant differences when comparing individual experimental means, the limitations for
application to differential HX-MS data outweigh the value. The problem of multiple comparisons
is inevitable for applications of individual significance tests to differential HX-MS data. Multiple
comparison corrections can reduce the probability of type | error, but at the expense of losing
power. Loss of power decreases the probability of finding small but significant differences.

A delicate balance of risk and power with a global AHX significance threshold
A widely accepted approach to identify meaningful differences in differential HX-MS data

is to apply a global AHX threshold for significance that is based on an estimate of experimental



error. With this threshold approach, the AHX values from differential HX-MS data are compared
to a defined AHX threshold to determine significance. Defined thresholds are typically derived by
taking the product of a probability distribution value (e.g., Student’s t-distribution) and a globally
estimated value to represent all experimental error. This approach relies on a global estimate of
measurement error to determine significance that is intended to be representative of all of the
data. A widely-reported, but perhaps not well-substantiated, figure-of-merit for a global AHX
threshold to determine significance is £0.5 Da for analyses of single time point differential HX-MS
data from triplicate measurements.*2 Applying the threshold H;: |AHX| > 0.5 Da to our distribution
of AHX values from null comparisons, we would not observe any type | errors, recalling that the
range is —0.091 to +0.084 Da in Figure 1A. However, this AHX threshold range is clearly a large
overestimation of measurement error of our null data. Overestimating will certainly decrease the
probability of type | error but at the expense of losing power, similar to a multiple comparisons
correction. Alternatively, a AHX threshold could be defined empirically from the largest difference
observed in a null distribution, here £0.091 Da, however, running a null experiment is not desirable
for routine HX-MS experiments.

An approach to derive a global significance threshold, without the use of a null
experiment, based on standard deviations from experimental data was proposed by Houde et
al.® Following this approach and implementing some recently-proposed corrections,?® we used
our experimental standard deviations to calculate a AHX significance threshold as detailed in the
Supporting Information. We used a pooled standard deviation from our 4,600 standard deviations
to estimate a global uncertainty of +0.030 Da (s,) in any m value. Using the pooled standard
deviation for triplicate measurements (n,, n;,) a propagated standard error of the mean (SEM) of
+0.024 Da for any AHX value was calculated by equation (3).

2 2
S

SEM = |22 40 (3)
AHX n nb
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By selecting a suitable value of k, a confidence interval for any AHX value can be calculated by

equation (4).

Hl:

AEY‘ > kex SEM — 4)
AHX

Here we define k by a Student’s t-distribution value (t,/,), for one-tail, with four degrees of
freedom (n, + n, — 2). Using Student’s t-distribution values of 2.7764 and 4.6041, corresponding
to a = 0.05 and a = 0.01, resulted in AHX threshold values for significance of +0.067 Da and
10.110 Da, respectively. These values are much smaller than the commonly reported +0.5 Da
threshold. This difference can be explained both by the narrow distribution of standard deviations
in our null experiments and by recently-proposed corrections*® to the method used to estimate
the +0.5 Da threshold.

The AHX threshold of +0.067 Da (corresponding to a = 0.05) underestimates the error in
our null comparison data as is evident in a dot density plot of AHX values from all null comparisons
(Figure 2 red dashed lines). Using a = 0.05, 47 AHX values exceed the AHX significance
threshold of +0.067 Da, resulting in a false positive rate of 2.0% (Table 1). In contrast, with a
significance threshold of £0.110 Da, corresponding to a = 0.01, the significance limits closely
bracket our distribution of AHX values from null comparisons (Figure 2 grey wide dashed lines).
No AHX values exceed the AHX significance threshold value of #0.110 Da, indicating a
reasonable estimate for significance (Table 1). The false positive rates for a = 0.05 and a = 0.01
are much lower using the global AHX thresholds for significance compared to the respective
Welch’s t-test false positive rates of 5.6% (a = 0.05) and 1.1% (a = 0.01). Furthermore, our
estimated error at a = 0.01 yields an estimate that is reasonably close to the +0.091 Da
significance value we would obtain if we empirically determined a AHX significance threshold from
our maximum observed |AHX| value in null comparisons. Importantly, the threshold estimated
from equation (4) can be estimated by pooling the standard deviations for any differential HX-MS

experiment, without using a null experiment.



Pooling the standard deviations to define a global significance threshold carries the
assumption of equal experimental error for all measurements. To justify this assumption,

experimental error must be independent of peptide and other experimental parameters. To
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Figure 2. Dot density plot of AHX values for each MBP null comparison (460 AHX values
each), with significance limits at a = 0.05 (red dashed lines) and a = 0.01 (grey wide dashed
lines), calculated from the pooled standard deviation (s, ) of all 4,600 null standard deviations

based on equation (4) with k= 2.7764 and 4.6041, as described in the text.

determine if there was any correlation of experimental error with peptide and experimental
parameters in our data, we determined the standard deviation using all seven replicates at each
HX labeling time for each peptide, which produced 460 standard deviations. We did not observe
strong evidence that supports the proposition that standard deviation is correlated to HX labeling
time, retention time, and mass-to-charge ratio (see Supporting Figure S4). However, there is a
weak positive correlation between standard deviation and charge, mass, theoretical maximum
HX, percent HX, and magnitude HX (see Supporting Figure S4), which are all parameters related
to the measured mass increase. From this, we can conclude that peptide size and isotopic
distribution width are slightly correlated to standard deviation. However, the observed correlation
is mostly driven by a tight cluster of data from small peptides. The deuterated isotopic distributions
of the small peptides does not shift along the m/z axis. Instead, the distribution of peak intensities
changes with increasing isotopic peak intensity and decreasing monoisotopic peak intensity. This

observation of decreased experimental error in this scenario is consistent with previously reported



correlations by Houde et al.*® and Schriemer et al.?® Considering minimal correlation, our results
indicate that the assumption of equal experimental error for all measurements is justified. Thus,
our calculation to derive a global threshold based on pooled standard deviation is reasonable. A
null experiment is not necessary to determine significance by reducing probability of type | error.
Meanwhile, the estimated AHX threshold potentially conserves power by not substantially
overestimating the significance limits.

From our results, it is clear that a reliable AHX threshold can be estimated from
experimental data without using a null experiment and that this threshold, by itself, was sufficient
to eliminate type | errors in our null MBP data. However, it is important to consider the good
precision observed in our MBP null experiment. A more complex protein may show a broader
distribution of precision that will challenge reliably estimating a AHX threshold to determine
significance. To investigate this possibility, we also performed a null experiment with a well-
characterized, marketed IgG1 mAb therapeutic to evaluate the rate of type | error for a more
complex protein sample. Following a workflow similar to the MBP null experiments, we compared
two unique triplicate data sets consisting of 187 mAb peptic peptides in which HX was monitored
at six HX labeling times. Unlike MBP, only a single null comparison was performed rather than
five comparisons used with MBP. The null comparison produced 1122 AHX values with 2244
standard deviations. The distribution of mAb standard deviations ranges from 0.000 to 0.307 Da
(Figure 3A). The distribution of mAb standard deviations is noticeably wider than the distribution
of null MBP standard deviations, that was 0.000 to 0.080 Da, in Figure 1B. The range of mAb
AHX values, —0.315 to +0.333 Da, in Figure 3B is also wider than the range of MBP AHX values,
—0.091 to +0.084 Da, in Figure 1A.

The pooled standard deviation, 0.063 Da, for the 2244 mAb standard deviations is greater
than the MBP pooled standard deviation (0.030 Da). Therefore, the resulting mAb AHX

significance thresholds were greater as well with £0.145 Da for a = 0.05 and +0.240 Da for a =



0.01. We observe a slightly underestimated AHX threshold when applying the +0.145 Da
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Figure 3. Distribution of 2244 standard deviations (A) and dot density plot of 1122 AHX values
(B) from all mAb null comparisons. Significance limits at a = 0.01 (grey wide dashed lines) and
a = 0.05 (red dashed lines) calculated from the pooled standard deviation (s,,) of all mAb null

standard deviations.

significance value (corresponding to a = 0.05) to our mAb null comparison data the dot density
plot of AHX values (Figure 3B red dashed lines). At a = 0.05, 42 AHX values exceed the AHX
significance threshold value of £0.145 Da resulting in a false positive rate of 3.7% (see Supporting
Table S1). Increasing stringency by applying the £0.240 Da significance value (corresponding to
a =0.01), shown as grey wide dashed lines in Figure 3B, we observe 8 AHX values that exceed
the threshold resulting in a false positive rate of 0.7% (see Supporting Table $1). Unlike the MBP
null results with no false positives for a AHX significance threshold value corresponding to a =
0.01 (Table 1), the mAb null results do return false positives. False positives in the mAb data are

not surprising since the calculated AHX significance threshold value was less than the largest



|AHX | values observed in mAb results. Thus, our mAb results highlight the challenge of estimating
a global significance threshold for data with a wider distribution of uncertainty. In the case of the
mAb results, with a wider distribution of standard deviations, the assumption of equal
experimental error can increase the risk if the significance threshold is underestimated.
Conversely, the assumption will potentially decrease power if the significance threshold is
overestimated.
Hybrid significance testing minimizes type | and type Il errors

To decrease probability of type | errors, an overestimated AHX threshold for significance
could be applied but at the cost of losing power by increasing probability of type Il errors (i.e.,
false negatives). Alternatively, Welch'’s t-tests can be applied to gain power by reducing probability
of type Il error, but as we have shown, this increases risk of type | errors (i.e., false positives). A
solution to manage both type | and type Il error is significance testing using a hybrid approach.
The significance testing results are easily visualized with a volcano plot, a scatter-plot of
unstandardized signal (magnitude of change, AHX) versus noise-adjusted standardized signal
(represented using the p-value from Welch'’s t-test), as shown in Figure 4. The fields of differential
gene expression and metabolomics have widely adopted volcano plots to determine significance
and visualize results.** Significance is tested using the relationship of the signals which
determines significance based on AHX versus individual replicate variance and an estimate of
measurement error. Thus for the hybrid significance testing approach of HX-MS data, the first-
pass significance test is whether the difference observed is greater than the globally-estimated
measurement error (i.e., equation (4)). If the difference is greater than measurement error, then
a Welch’s t-test is performed to confirm significance based on individual standard deviations. By
using these double-filtering criteria, large differences that are greater than measurement error but
that have large standard deviations, are penalized by the Welch'’s t-test for the large error.

Negligibly small HX differences that appear significant based on the t-test are penalized by the



magnitude of the HX difference. Although volcano plot representations of HX-MS data have not
been widely reported, Mass Spec Studio software*> implements similar statistical significance
testing using a Woods plot. Recently, a volcano plot feature, using calculations similar to those
presented within this work, was implemented in HDExaminer (Sierra Analytics, Modesto, CA).
However, to the best of our knowledge no reports in the HX-MS field have validated this type of
approach against a true null data set.

A volcano plot representation of the MBP null comparison hybrid significance testing

results is shown in Figure 4A. Observed AHX values are plotted on the horizontal axis and p-

-0.2 -0.1 0.0 0.1 0.2
AHX (Da)

-0.4 -0.2 0.0 0.2 0.4
AHX (Da)

Figure 4. Volcano plot of MBP (A) and mAb (B) null comparisons. Observed AHX values
(horizontal axis) and Welch’s t-test p-values (vertical axis). Horizontal p-value significance
limits are defined at a = 0.01 and vertical significance limits are defined at £0.110 Da (MBP)
and +0.240 (mAb) from s, calculated AHX significance threshold representative of a = 0.01.

values from Welch'’s t-tests are plotted on the vertical axis. The horizontal significance limit line at
102 represents a = 0.01 for the p-values from the Welch'’s t-tests. The AHX significance limit, the

vertical lines, represent an estimate of global uncertainty at a = 0.01. In Figure 4A, we have



defined this limit as +0.110 Da which is the global AHX significance threshold we calculated
corresponding to a = 0.01 (vide supra). Any AHX value and p-value exceeding significance limits
in both dimensions (within the red shaded regions) is classified as significant. Any significant
result from our null data would be a type | error, but we do not observe any type | errors for MBP
results with the hybrid significance criteria defined at a = 0.01 (Table 1). This was expected
because all null comparison results are less than the defined +0.110 Da significance threshold.
To compare the type | error rate of the hybrid significance test versus individual testing
approaches, we decreased the stringency by applying significance limits corresponding to a =
0.05 for MBP null comparisons. By lowering the stringency, we decrease the AHX significance
limit to +0.067 Da in which 47 type | errors were observed (Table 1). By applying this AHX
threshold and a p-value significance limit of a = 0.05 for hybrid significance testing, we observe
18 type | errors (Table 1). The type | error rate for a = 0.05 hybrid significance testing (18 type |
errors) is less than the type | error rates observed for both the approach using individual Welch’s
t-tests (129 type | errors) and the approach using a global AHX threshold (47 type | errors). These
results indicate that for our MBP null results, the probability of type | error with the hybrid
significance test is lower than with either individual significance tests and global significance tests.

We observe a similar outcome, reduced type | error, when applying hybrid significance
testing to mADb null data. MAb null comparison hybrid significance testing results are illustrated in
Figure 4B with a volcano plot. The horizontal significance limit line at 10-2 represents a = 0.01 for
the p-values from the Welch's t-tests. The vertical AHX significance limit lines are defined at
10.240 Da corresponding to a = 0.01 (vide supra). There are not any type | errors for mAb results
with the double-filtering criteria defined at a = 0.01 (see Supporting Table S1). In contrast to MBP,
there are 8 |AHX| values from mAb null comparisons that are greater than the +0.240 Da (a =
0.01) significance threshold. The type | error rate for a = 0.01 hybrid significance testing (0 type |

errors) is less than the type | error rates observed for global AHX threshold (8 type | errors) (see



Supporting Table S1). In addition, the type | error rate for a = 0.05 hybrid significance testing (2
type | errors) is less than the type | error rates observed for global AHX threshold (42 type | errors).
The larger |AHX| values that appear to be significant based on the global AHX significance
threshold are penalized by the Welch’s t-test because of their large standard deviations. For both
MBP and mAb null experiments, the hybrid significance test returned lower type | error rates than
individual significance tests.

The advantage of this hybrid significance testing approach, compared to individual and
global significance testing approaches, is that individual replicate error is considered for
measurement reliability while simultaneously considering the magnitude of HX difference for
measurement plausibility. In addition, statistical testing results are easily visualized in the volcano
plot to determine if statistically significant differences are present. In a companion paper we
demonstrate that this hybrid approach can reliably identify subtle differences that challenge the
detection limit of HX-MS. It is important to stress that significant HX differences identified using
this approach should be scrutinized by the HX-MS analyst. Validation of significant differences
should consist of confirming similar trends in overlapping peptides, identifying differences at
multiple HX labeling times, reviewing the quality of raw spectra, and inspecting chromatographic
peak integration limits for discrepancies. (We have found that peak integration errors are a large
source of variance, results not shown.) Expert review is also needed for results with missing
technical replicate data or abnormally large standard deviations. The reliability of peptides with
missing replicate HX data or missing data at specific HX labeling times should be carefully
considered. Missing replicate data (e.g., n = 2) will substantially increase the critical t-values in
the Welch’s t-test making it more difficult for large differences to be classified as significant in the
p-value dimension. Also, a key component of the |AHX| threshold calculation for the hybrid
significance testing approach, detailed within this work, is the number of technical replicates is

equal for all sample means. It is also important to emphasize that the |AHX| threshold for this



approach should be calculated from experimental standard deviations for each experiment. As

our mAb results compared to MBP showed, HX-MS measurements of more complex proteins can

result in larger measurement error that will alter the calculated |AHX| threshold. Another important

consideration is the experimental timeframe. In inter-day experiments slight deviations in

experimental conditions could affect the observed measurement error.4® Although a pooled

standard deviation can be calculated to estimate a global |AHX| threshold for any experiment

without the use of a null experiment, a null experiment is valuable to evaluate measurement error

and criteria used for classifying significant differences. The null experiment approach,

demonstrated here, to evaluate statistical significance should be extended to the use of differential

HX-MS measurements for higher order structural comparability applications. The present work

has focused exclusively on treating HX labeling times as discrete experiments. Significance

testing using HX-MS data that has been integrated®? or averaged?®*34 across all HX times might

also be useful, though we note that those differences could become diluted by averaging them

into a set of data where other HX times exhibit no measurable differences.

ACKNOLEDGEMENTS

We thank Agilent Technologies for an instrument loan, Jeff Morrow for HDExaminer software

support, Anna Schwendeman for gifting the mAb protein, and the National Institutes of Health

NIGMS Biotechnology Predoctoral Training Program (T32-GM008359) and the National Science

Foundation (CHE-1709176) for financial support.

REFERENCES

(1) Pirrone, G. F.; lacob, R. E.; Engen, J. R. Anal Chem 2015, 87, 99-118. DOI:
10.1021/ac5040242.

(2) Houde, D.; Arndt, J.; Domeier, W.; Berkowitz, S.; Engen, J. R. Anal Chem 2009, 81,
2644-2651. DOI: 10.1021/ac802575y.

(3) Engen, J. R. Anal Chem 2009, 81, 7870-7875.

(4) D'Arcy, S.; Martin, K. W.; Panchenko, T.; Chen, X.; Bergeron, S.; Stargell, L. A.; Black,
B. E.; Luger, K. Mol Cell 2013, 51, 662-677. DOI: 10.1016/j.molcel.2013.07.015.

(5) Smith, B. C.; Underbakke, E. S.; Kulp, D. W.; Schief, W. R.; Marletta, M. A. Proc Nat
Acad Sci USA 2013, 110, E3577-E3586. DOI: 10.1073/pnas.1313331110.

(6) Burke, J. E.; Williams, R. L. Advances in Biological Regulation 2013, 53, 97-110. DOI:
10.1016/j.jbior.2012.09.005.



(10)

(11)

(12)

(13)

(14)
(19)

(16)
(17)

(18)

(26)

(27)

lacob, R. E.; Krystek, S. R.; Huang, R. Y. C.; Wei, H.; Tao, L.; Lin, Z.; Morin, P. E.;
Doyle, M. L.; Tymiak, A. A.; Engen, J. R.; Chen, G. Expert Rev Proteom 2015, 12, 159-
169. DOI: 10.1586/14789450.2015.1018897.

Hamuro, Y.; Coales, S. J.; Morrow, J. A.; Molnar, K. S.; Tuske, S. J.; Southern, M. R;
Griffin, P. R. Protein Sci 2006, 15, 1883-1892. DOI: 10.1110/ps.062103006.

Dai, S. Y.; Burris, T. P.; Dodge, J. A.; Montrose-Rafizadeh, C.; Wang, Y.; Pascal, B. D;
Chalmers, M. J.; Griffin, P. R. Biochemistry 2009, 48, 9668-9676. DOI:
10.1021/bi901140t.

Bennett, M. J.; Barakat, K.; Huzil, J. T.; Tuszynski, J.; Schriemer, D. C. Chem Biol 2010,
17, 725-734. DOI: 10.1016/j.chembiol.2010.05.019.

Chalmers, M. J.; Wang, Y.; Novick, S.; Sato, M.; Bryant, H. U.; Montrose-Rafizdeh, C.;
Griffin, P. R.; Dodge, J. A. ACS Med Chem Lett 2012, 3, 207-210. DOI:
10.1021/ml2002532.

Landgraf, R. R.; Goswami, D.; Rajamohan, F.; Harris, M. S.; Calabrese, M. F.; Hoth, L.
R.; Magyar, R.; Pascal, B. D.; Chalmers, M. J.; Busby, S. A.; Kurumbail, R. G.; Griffin, P.
R. Structure 2013, 21, 1942-1953. DOI: 10.1016/j.str.2013.08.023.

Zhang, A.; Singh, S. K.; Shirts, M. R.; Kumar, S.; Fernandez, E. J. Pharm Res 2012, 29,
236-250. DOI: 10.1007/s11095-011-0538-y.

Xiao, Y.; Konermann, L. Protein Sci 2015, 24, 1247-1256. DOI: 10.1002/pro.2680.
Bommana, R.; Chai, Q.; Schoneich, C.; Weiss, W. F., IV; Majumdar, R. J Pharm Sci
2018, 107, 1498-1511. DOI: 10.1016/j.xphs.2018.01.017.

Houde, D.; Peng, Y.; Berkowitz, S. A.; Engen, J. R. Mol Cell Proteomics 2010, 9, 1716-
1728. DOI: 10.1074/mcp.M900540-MCP200.

Zhang, A.; Hu, P.; MacGregor, P.; Xue, Y.; Fan, H.; Suchecki, P.; Olszewski, L.; Liu, A.
Anal Chem 2014, 86, 3468-3475. DOI: 10.1021/ac404130a.

Yan, Y.; Wei, H.; Fu, Y.; Jusuf, S.; Zeng, M.; Ludwig, R.; Krystek, S. R., Jr.; Chen, G;
Tao, L.; Das, T. K. Anal Chem 2016, 88, 2041-2050. DOI:
10.1021/acs.analchem.5b02800.

More, A. S.; Toth, R. T.; Okbazghi, S. Z.; Middaugh, C. R.; Joshi, S. B.; Tolbert, T. J.;
Volkin, D. B.; Weis, D. D. J Pharm Sci 2018, 107, 2315-2324. DOI:
10.1016/j.xphs.2018.04.026.

Houde, D.; Berkowitz, S. A. J Pharm Sci 2012, 101, 1688-1700. DOI: 10.1002/jps.23064.
Visser, J.; Feuerstein, |.; Stangler, T.; Schmiederer, T.; Fritsch, C.; Schiestl, M. Biodrugs
2013, 27, 495-507. DOI: 10.1007/s40259-013-0036-3.

Fang, J.; Doneanu, C.; Alley, W. R., Jr.; Yu, Y. Q.; Beck, A.; Chen, W. MAbs 2016, 8,
1021-1034. DOI: 10.1080/19420862.2016.1193661.

Hong, J.; Lee, Y.; Lee, C.; Eo, S.; Kim, S.; Lee, N.; Park, J.; Park, S.; Seo, D.; Jeong, M.;
Lee, Y.; Yeon, S.; Bou-Assaf, G.; Sosic, Z.; Zhang, W.; Jaquez, O. MAbs 2017, 9, 364-
382. DOI: 10.1080/19420862.2016.1264550.

Wales, T. E.; Engen, J. R. Mass Spectrom Rev 2005, 25, 158-170. DOI:
10.1002/mas.20064.

Malito, E.; Faleri, A.; Lo Surdo, P.; Veggqi, D.; Maruggi, G.; Grassi, E.; Cartocci, E.;
Bertoldi, |.; Genovese, A.; Santini, L.; Romagnoli, G.; Borgogni, E.; Brier, S.; Lo Passo,
C.; Domina, M.; Castellino, F.; Felici, F.; van der Veen, S.; Johnson, S.; Lea, S. M., et al.
Proc Nat Acad Sci USA 2013, 110, 3304-3309. DOI: 10.1073/pnas.1222845110.
Majumdar, R.; Manikwar, P.; Hickey, J. M.; Samra, H. S.; Sathish, H. A_; Bishop, S. M,;
Middaugh, C. R.; Volkin, D. B.; Weis, D. D. Biochemistry 2013, 52, 3376-3389. DOI:
10.1021/bi400232p.

Chalmers, M. J.; Busby, S. A.; Pascal, B. D.; Southern, M. R.; Griffin, P. R. J Biomolec
Techniques 2007, 18, 194-204.



(28) Houde, D.; Berkowitz, S. A.; Engen, J. R. J Pharm Sci 2011, 100, 2071-2086. DOI:
10.1002/jps.22432.

(29) Wei, H.; Ahn, J.; Yu, Y. Q.; Tymiak, A.; Engen, J. R.; Chen, G. J Am Soc Mass Spectrom
2012, 23, 498-504. DOI: 10.1007/s13361-011-0310-x.

(30) lacob, R. E.; Bou-Assaf, G. M.; Makowski, L.; Engen, J. R.; Berkowitz, S. A.; Houde, D. J
Pharm Sci 2013, 102, 4315-4329. DOI: 10.1002/jps.23754.

(31) Leurs, U.; Lohse, B.; Ming, S.; Cole, P. A.; Clausen, R. P.; Kristensen, J. L.; Rand, K. D.
Anal Chem 2014, 86, 11734-11741. DOI: 10.1021/ac503137u.

(32) Mazur, S. J.; Weber, D. P. J Am Soc Mass Spectrom 2017, 28, 978-981. DOI:
10.1007/s13361-017-1615-1.

(33) Chalmers, M.; Pascal, B.; Willis, S.; Zhang, J.; lturria, S.; Dodge, J.; Griffin, P. Int J Mass
spectrom 2011, 302, 59-68.

(34) Chalmers, M. J.; Busby, S. A.; Pascal, B. D.; West, G. M.; Griffin, P. R. Expert Review of
Proteomics 2011, 8, 43-59. DOI: 10.1586/epr.10.109.

(35) Eisinger, M. L.; Dérrbaum, A. R.; Michel, H.; Padan, E.; Langer, J. D. Proc Nat Acad Sci
USA 2017, 114, 11691.

(36) Glasoe, P. K.; Long, F. A. J Phys Chem 1960, 64, 188-190. DOI: 10.1021/j100830a521.

(37) Busby, S. A.; Chalmers, M. J.; Griffin, P. R. Int J Mass spectrom 2007, 259, 130-139.
DOI: 10.1016/j.ijms.2006.08.006.

(38) lacob, R. E.; Engen, J. R. J Am Soc Mass Spectrom 2012, 23, 1003-1010. DOI:
10.1007/s13361-012-0377-z.

(39) Engen, J.R.; Wales, T. E. Annu Rev Anal Chem 2015, 8, 127-148. DOI:
10.1146/annurev-anchem-062011-143113.

(40) Welch, B. L. Biometrika 1947, 34, 28-35. DOI: 10.1093/biomet/34.1-2.28.

(41) Tamhane, A. C. In Handbook of statistics; Elsevier, 1996, pp 587-630.

(42) Dudoit, S.; Shaffer, J. P.; Boldrick, J. C. Stat Sci 2003, 18, 71-103. DOI:
10.1214/ss/1056397487.

(43) Weis, D. D. J Pharm Sci 2019, 108, 807-810. DOI: 10.1016/j.xphs.2018.10.010.

(44) Slysz, G. W.; Percy, A. J.; Schriemer, D. C. Anal Chem 2008, 80, 7004-7011. DOI:
10.1021/ac800897q.

(45) Li, W. J Bioinf Comp Biol 2012, 10, 1231003. DOI: 10.1142/S0219720012310038.

(46) Rey, M.; Sarpe, V.; Burns, K. M.; Buse, J.; Baker, C. A. H.; van Dijk, M.; Wordeman, L.;
Bonvin, A. M. J. J.; Schriemer, D. C. Structure 2014, 22, 1538-1548. DOI:
10.1016/j.str.2014.08.013.

TOC FIGURE

356

358 Significant HX

Differential HX-MS  Volcano Plot Analysis Differences



