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ABSTRACT
We introduce a nonparametric graphical model whose observations on vertices are functions. Many
modern applications, such as electroencephalogram and functional magnetic resonance imaging (fMRI),
produce data are of this type. The model is based on additive conditional independence (ACI), a statistical
relation that captures the spirit of conditional independence without resorting to multi-dimensional
kernels. The random functions are assumed to reside in a Hilbert space. No distributional assumption is
imposed on the random functions: instead, their statistical relations are characterized nonparametrically
by a second Hilbert space, which is a reproducing kernel Hilbert space whose kernel is determined by the
inner product of the first Hilbert space. A precision operator is then constructed based on the second space,
which characterizes ACI, and hence also the graph. The resulting estimator is relatively easy to compute,
requiring no iterative optimization or inversion of large matrices. We establish the consistency and the
convergence rate of the estimator. Through simulation studieswe demonstrate that the estimator performs
better than the functional Gaussian graphical model when the relations among vertices are nonlinear or
heteroscedastic. The method is applied to an fMRI dataset to construct brain networks for patients with
attention-deficit/hyperactivity disorder. Supplementary materials for this article are available online

1. Introduction

Functional data emerge in almost every branch of contemporary
science and business, such as meteorology, medical research,
longitudinal data analysis, and machine learning, where the
sampling units are functions rather than numbers or vectors.
Responding to these new demands, estimation and inference
methods for functional data have been vigorously developed
over the past decade or so. See, for example, Ramsay and Sil-
verman (2002), Silverman and Ramsay (2005), Yao, Müller, and
Wang (2005), Ferraty and Vieu (2006), Horváth and Kokoszka
(2012), and Hsing and Eubank (2015). The particular type of
functional data concerned in this article are undirected graphs
where the observations on vertices are functions, giving rise to
the functional graphical model (Qiao, James, and Lv 2014).

These type of data are common in application, particularly
in modern medical applications such as electroencephalogram
(EEG) and functional magnetic resonance imaging (fMRI) data.
See, for example, Lazar et al. (2002), Cheng and Herskovits
(2007), and Li, Kim, and Altman (2010). Our motivating exam-
ple is the fMRI data, where each vertex corresponds to a subre-
gion of a brain, as represented by a collection of voxels. A formof
brain activities called brain oxygen level-dependent, or BOLD,
is recorded over a period of time at each voxel, which are then
aggregated over voxels in each subregion, resulting in a vector of
interdependent random functions. One of the interests in fMRI
data analysis is to represent the interdependence by a network
based on these random functions.
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Figure 1 shows a portion of the fMRI dataset analyzed in
Section 8, which consists of a sample of BOLD records in two
subregions of the brains from 30 adolescents with attention-
deficit/hyperactivity disorder (ADHD) patients (upper panels)
and 42 adolescents who do not have ADHD. The left and right
panels corresponding, respectively, to the left and right supe-
rior frontal gyrus, whose locations are indicated by the brain
diagrams on top of the two columns. Colors are used to dis-
tinguish among different curves, which are based on the raw,
unsmoothed data. The BOLD signals are observed at 2.5 sec
intervals, which results in 74 observations over the entire time
period. The goal of the analysis is to understand how these brain
subregions are interconnected in ADHD patients and in healthy
subjects.

Functional graphical models have been proposed and stud-
ied in several recent papers. Qiao, James, and Lv (2014) pro-
posed a functional Gaussian graphical model (FGGM) where
the random functions observed at the vertices are assumed to
be Hilbert-space-valued Gaussian random elements, and devel-
oped a group-lasso estimation procedure. This model is built
upon the classical Gaussian graphical model where the ran-
dom elements at the vertices are Gaussian random variables
(see, e.g., Meinshausen and Bühlmann 2006; Yuan and Lin 2007;
Bickel and Levia 2008; Friedman, Hastie, and Tibshirani 2008;
Peng et al. 2009). Zhu, Strawn, and Dunson (2016) developed
a Bayesian approach to functional graphical models under the
Gaussian assumption. In this article, we propose an additive
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Figure . fMRI functional data for two brain regions. Left panels: left superior frontal gyrus; right panels: right superior frontal gyrus; upper panels: ADHD group; lower
panels: control group.

nonparametric approach, which does not rely on any distribu-
tion assumption, but in some sense inherits the fundamental
simplicity of a Gaussian model when characterizing the inter-
dependence among random elements.

More specifically, let T be an interval inR, representing time,
and X = (X1, . . . ,Xp)T be a vector of random functions on T .
Let V = {1, . . . , p} denote the set of vertices, and E ⊆ {(i, j) :
i, j ∈ V, i �= j} denote the set of edges, of an undirected graph
G = (V,E). The FGGM is defined by

(i, j) /∈ E ⇔ cov[Xi(s),X j(t )|X−(i, j)] = 0 ∀ s, t ∈ T,

where X−(i, j) = {Xk : k ∈ V \ {i, j}}, and X is assumed to be
a Gaussian random element in a Hilbert space. The basic

idea of Qiao, James, and Lv (2014) is to find the first m
functional principal components for each Xi, forming an
m-dimensional random vector for that vertex, say Ai(m). Since
X is a Gaussian random element, the pm-dimensional random
vector (A1(m)T, . . . ,Ap(m)T)T itself has a multivariate Gaus-
sian distribution. The problem then boils down to identifying
the approximated graph G(m) = (V,E(m)) by
(i, j) /∈ E(m) ⇔ cov[Ai(m),Aj(m)|A−(i, j)(m)] = 0.

(1)
Intuitively, E ≈ E(m) when m is sufficiently large, which is
the theoretical basis of the method. Here, the fundamental
simplicity of the Gaussian assumption manifests itself through
the following relation. Let �(m) be the p× p blocks whose
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(i, j)th entry is the m×m matrix cov(Ai(m),Aj(m)), and let
�(m) = �(m)−1. Then

Ai(m) Aj(m)|A−(i, j)(m) ⇔ �i j(m) = 0, i, j ∈ V,
(2)

where�i j(m) is the (i, j)th block of the precisionmatrix�(m).
Thus, estimating the edge set E(m) reduces to sparse estimation
of �(m), where sparse means encouraging blocks (rather than
individual entries) of �(m) to vanish. Based on this idea Qiao,
James, and Lv (2014) developed a group-lasso algorithm to
estimate E, which they call functional glasso, or simply fglasso.

The Gaussian assumption in FGGM is restrictive in a num-
ber of ways. The first and the most obvious restriction is the
Gaussian distribution itself. The second restriction is that the
Gaussian assumption implies that the relations between vertices
must be linear: relations such as X j = (Xk)2 + ε are prohib-
ited. The third and the most subtle restriction is that the Gaus-
sian assumption precludes any dependence that is not in the
mean function: for example, relations such as X j = Xk ε where
ε is an independent random element, are prohibited. Simply
put, any relations among the vertices that are nonlinear or het-
eroscedastic are precluded by the Gaussian assumption. Never-
theless, the Gaussian model offers an important advantage: the
equivalence (2) that encodes conditional independence by the
precision matrix.

We seek to remove the Gaussian assumption along with the
restrictions it entails, but at the same time retain the fundamen-
tal simplicity of the Gaussian dependence structure manifested
in (2). This is achieved by replacing conditional independence
by additive conditional independence (ACI), which is a new sta-
tistical relation between three sets of random variables intro-
duced by Li, Chun, and Zhao (2014). The essence of a graph is
the notion of separation, that is, whether two sets of vertices can
be separated by a third set of vertices. This notion turns out to
havemuch in commonwith conditional independence: they sat-
isfy the same set of axioms (Pearl, Geiger, and Verma 1989). It is
through this similarity that we link a graph to conditional inde-
pendence, and ultimately to the data. Li, Chun, and Zhao (2014)
showed that ACI also satisfies these axioms, and proposed to use
it as an alternative criterion to construct a graph. Lee, Li, and
Zhao (2016b) further developed ACI for variable selection in a
nonparametric regression setting.

As in Qiao, James, and Lv (2014), we assume the random
functions at the vertices belong to a Hilbert space. To character-
ize ACI nonparametrically, we build up a second Hilbert space
of functions that are defined on the first space. In the second
Hilbert space, we introduce covariance operators between ver-
tices, and then use them to define a functional additive preci-
sion operator (FAPO). This is a matrix of linear operators that
inherits the relation (2) at the operator level: the (i, j)th entry
of FAPO is the 0 operator if and only if Xi and X j are addi-
tively conditionally independent given X−(i, j). The positions of
the zero entries of FAPO then determine the edges of the graph.
Our estimate is based on thresholding the small entries the esti-
mated FAPO.

The rest of the article is organized as follows. In Section 2,
we construct the additively nested Hilbert spaces, define ACI
in the functional setting, and propose the nonparametric func-
tional graphical model. In Section 3, we construct the functional

additive precision operator and establish its relation with ACI.
In Sections 4 and 5.1, we establish the consistency and conver-
gence rate of the proposed estimator. In Section 6, we develop
an algorithm for estimation and tuning. In Section 7, we con-
duct simulation studies to evaluate our estimator and compare
it with FGGM. In Section 8, we apply the new estimator to an
fMRI dataset. We conclude with some discussions in Section 9.

Due to the space limit we have put all the proofs in an online
supplementary. While some of the lemmas are used only for
the proofs in the supplementary, we retained them in the main
manuscript so as to keep a complete picture of the theory.

2. Additive Conditional Independence and Functional
Graphical Models

2.1. Additively Nested Hilbert Spaces

Let T ∈ R be an interval. For each i ∈ V, let Hi be a separable
Hilbert space of functions onT with inner product 〈·, ·〉Hi . Let κi
be a positive definite mapping fromHi ×Hi → R that is deter-
mined by the inner product. For example, for any f , g ∈ Hi,

κi( f , g) = exp
(−γ ‖ f − g‖2Hi

)
, κi( f , g) = (c+ 〈 f , g〉Hi )

k,

are the Gaussian radial basis function kernel and polynomial
kernel derived from the inner product of Hi. More generally,
κi( f , g) depends on ( f , g) only through the inner products
〈 f , f 〉Hi , 〈 f , g〉Hi , and 〈g, g〉Hi . LetMi be the reproducing kernel
Hilbert space (RKHS) generated by the kernel κi, that is,

Mi = span{κi(·, f ) : f ∈ Hi},
〈κi(·, f ), κi(·, g)〉Mi = κi( f , g),

where span {a set of functions} means the closure of the sub-
space spanned by the set of functions. We say that (Hi,Mi)

are nested Hilbert spaces, because the inner product of the for-
mer determines the kernel of the latter. Note that the former
is assumed to be any separable Hilbert space, but the latter is
assumed to be an RKHS. We denote functions in the first-level
Hilbert spacesHi by f , g, and so on, and functions in the second-
level Hilbert spacesMi by φ, ψ , and so on.

Let H = ⊕p
i=1H i be the direct sum of H1, . . . ,Hp. That is,

H is theCartesian productH1 × · · · ×Hp and its inner product
is defined by

〈 f , g〉H = 〈 f1, g1〉H1 + · · · + 〈 fp, gp〉Hp,

for any f = ( f1, . . . , fp)T ∈ H and g = (g1, . . . , gp)T ∈ H .
Let M = {φ1 + · · · + φp : φp ∈M1, . . . , φ1 ∈Mp} with inner
product defined by

〈φ,ψ〉M = 〈φ1, ψ1〉M1 + · · · + 〈φp, ψp〉Mp

for any φ = φ1 + · · · + φp ∈M and ψ = ψ1 + · · · + ψp ∈M.
We note the subtle difference between the constructions of H
andM: the former putsH1, . . . ,Hp together byCartesian prod-
uct; the latter putsM1, . . . ,Mp together by adding. We say that
(H ,M) are additively nested Hilbert spaces. Li and Song (2017)
employed a similar structure of nestedHilbert spaces for nonlin-
ear sufficient dimension reduction for functional data in a non-
additive framework.
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Having laid out the geometric groundwork we are ready
to introduce random functions. Let (	,F ,P) be a probability
space. Let B be the Borel σ -field generated by the open sets in
H . Let X : 	→ H be a random element inH that is measur-
able with respect to F/B. Let PX = P◦X−1 be the measure on
(H ,B) induced by X , that is, PX is the distribution of X . Hence
X = (X1, . . . ,Xp)T where Xi is a random element in Hi. Let
PXi = P◦(Xi)−1 be the distribution of Xi.

2.2. Functional Additive Conditional Independence

The most direct way to state additive conditional independence
is in terms of L2(P)-geometry, which is not the same as the
RKHS-geometry natural toM. However, the asymptotic results
are more easily derived under the RKHS geometry. For this rea-
son, we employ both geometries in this article. To avoid ambi-
guity, we indicate the concepts such as orthogonality and direct
difference in the L2(P)-geometry by dotted notations such as
⊥̇ and �̇. Specifically, if N1 and N2 are two subspaces of M,
we write N1 ⊥̇N2 if cov(φ(X ), ψ(X )) = 0 for all φ ∈ N1 and
ψ ∈ N2. If N1 ⊆ N2, then N2 �̇N1 denotes the set {φ ∈ N2 :
φ ⊥̇N1}. For a subvectorU of X , let supp(U ) denote index set
ofU , and letM(U ) denote the subspaceMi1 + · · · +Mis , where
(i1, . . . , is) ∈ supp(U ).

Definition 1. Let U , V , andW be subvectors of X . We say that
random functions U and V are additively conditionally inde-
pendent given random functionW iff

M(U∪W ) �̇M(W ) ⊥̇M(V∪W ) �̇M(W ), (3)

we denote this relation byU AV |W .

This is an extension of the definition of ACI in Li, Chun, and
Zhao (2014) to random functions. Li, Chun, and Zhao (2014)
showed that ACI, like conditional independence, satisfies the
same set of axioms shared by conditional independence and the
notion of separation, as developed in Pearl and Verma (1987)
and Pearl, Geiger, andVerma (1989). See alsoDawid (1979). The
same conclusion applies to the functional setting; the proof is
essentially the same and is omitted.

Replacing conditional independence by ACI, we now define
a new functional graphical model which we call the Functional
Additive Semigraphoid Model.

Definition 2. We say that X follows a functional additive sem-
igraphoid model (FASG) with respect to an undirected graph
G = (V,E) iff

Xi
A X j|X−(i, j), ∀ (i, j) /∈ E.

If this relation holds then we write X ∼ FASG(G).

2.3. Additive Conditional Independence and Conditional
Independence

In this subsection, we explore the relations between ACI and
conditional independence (CI). In the case where X1, . . . ,Xp

are random variables, Li, Chun, and Zhao (2014) demonstrated
some relations between ACI and CI under the copula Gaussian
model assumption. We now show that the similar relations hold
in our context under a functional copulaGaussianmodel recently

introduced by Solea and Li (2016). To do so, we first outline the
definition of the functional copula Gaussian model.

For each i = 1, . . . , p, let Xi = EXi +∑∞
r=1λirξirφir be the

Karhunen–Loeve expansion of Xi (Bosq 2000, p. 25). That
is, {(λir, φir) : r = 1, 2, . . .} are the eigenvalues and eigen-
functions of the linear operator E[(Xi − EXi)⊗ (Xi − EXi)],
and {ξir : r = 1, 2, . . .} are random variables with E(ξir) = 0,
var(ξir) = 1, and cov(ξir, ξis) = 0 for r �= s. We say that
Xi follows a functional copula Gaussian model if there
exists a sequence of injective transformations from R to R,
{cir : r = 1, 2, . . .}, such that cir(ξir) is distributed as N(0, 1).
This implies thatCi(Xi) =∑∞

r=1λircir(ξir)φir is a Gaussian ran-
dom element inHi. Furthermore, we say that (X1, . . . ,Xp) is a
copulaGaussian random element inH if (C1(X1), . . . ,Cp(Xp))

is a Gaussian random element inH .
In the following, for each i = 1, . . . , p, let Fi =

span{〈b,Ci(Xi)〉Hi : b ∈ Hi}. For a subset A of L2(P), let A
denote the L2(P)-closure of A. The next theorem is a general-
ization of Theorems 3 and 4 in Li, Chun, and Zhao (2014).

Theorem 1. Suppose Fi ⊆ L2(P) andMi ⊆ L2(P).
1. If F
 ⊆M
 for each 
 ∈ V, then Xi

A X j|X−(i, j) ⇒
Xi X j|X−(i, j) for each (i, j) ∈ E.

2. If F
 =M
 for each 
 ∈ V, then Xi
A X j|X−(i, j) ⇔

Xi X j|X−(i, j) for each (i, j) ∈ E.

We would also like to point out that ACI is justified as a crite-
rion for constructing graphical models regardless of its relation
with CI, because ACI satisfies the four axioms of a semigraphoid
that characterize any relation of separation, which was indeed
one of themain reasons conditional independence was used as a
criterion to construct graphical models in the first place (Dawid
1979; Pearl and Verma 1987).

3. Functional Additive Precision Operator and Its
Estimation

In this section, we introduce the FAPO, which is the extension of
the additive precision operator (APO; Li, Chun, and Zhao 2014)
to the functional case. We also introduce its sample estimator
in the operator form. Henceforth the norm of a linear opera-
tor is always taken to be the operator norm, and is denoted by
‖ · ‖. The norm of a function is denoted by ‖ · ‖H , where H is
the Hilbert space where the function resides. Since we will fre-
quently make references to relevant classical results where X is
a random vector rather than a vector of random functions, we
will refer to the former setting as themultivariate setting, and the
letter setting as the functional setting.

3.1. Population-Level Definition

For two Hilbert spaces N1,N2, let B (N1,N2) denote the class
of all bounded linear operators from N1 to N2. The class
B (N1,N1) is abbreviated by B (N1). For A ∈ B (N1,N2), let
ker(A) denote the kernel of A, that is, {φ ∈ N1 : A(φ) = 0}, let
ran(A) denote the range of A, and let ran(A) denote closure of
ran(A).

Assumption 1. E[κi(Xi,Xi)] <∞, i = 1, . . . , p.
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This is a mild assumption satisfied by most kernels.
Under this assumption, the bilinear form Mi ×M j �→ R,
(φ,ψ) �→ cov[φ(Xi), ψ(X j)] is bounded. By Riesz’s represen-
tation theorem, there is�XiX j ∈ B (M j,Mi) such that

〈φ,�XiX jψ〉Mi = cov[φ(Xi), ψ(Xi)]. (4)

This is called the covariance operator between Xi and X j (see,
e.g., Baker 1973; Fukumizu, Bach, and Jordan 2009). Note that
f ∈ ker(�XiXi ) if and only if var[ f (Xi)] = 0. Thus, ker(�XiXi )

contains only constant functions. Since constants are irrelevant
to ACI, we exclude them from Mi, which amounts to reset-
ting Mi to ran(�XiXi ) or, equivalently, making the following
assumption.

Assumption 2. ker(�XiXi ) = {0} for all i ∈ V.

We now introduce the notion of a matrix of operators, which
underpins our construction.

Definition 3. An operator A ∈ B (M) is called a matrix of
operators with respect to {M1, . . . ,Mp} if there exist Ai j ∈
B (M j,Mi) such that, for any φ = φ1 + · · · + φp ∈M, Aφ =∑p

i, j=1Ai jφ j. The collection of all such operators is written as
×p

i, j=1 B (Mi,M j).

Note that×p
i, j=1 B (Mi,M j) is a subset ofB (M). We denote

the matrix of operators by A = {Ai j}pi, j=1. We now introduce
three key operators in our theory, all of which are members of
×p

i, j=1 B (Mi,M j).

Definition 4. The operator {�XiX j }pi, j=1 is called the functional
additive variance operator (FAVO), and is written as�XX .

By this definition, for any φ = φ1 + · · · + φp, ψ = ψ1
+ · · · + ψp ∈M,

〈φ,�XXψ〉M =∑p
i=1

∑p
j=1〈φi, �XiX jψ j〉Bi

= ∑p
i=1

∑p
j=1cov[φi(X

i), ψ j(X j)] = cov[φ(X ), ψ(X )].

By Baker (1973), for every �XiX j ∈ B (M j,Mi), there is a
unique operator CXiX j ∈ B (M j,Mi) with ‖CXiX j‖ ≤ 1 such
that �XiX j = �1/2

XiXiCXiX j�
1/2
X jX j . It is easy to see that CXiXi is

simply the identity mapping in B (Mi).

Definition 5. The operator {CXiX j }pi, j=1 is called the functional
additive correlation operator (FACO), and is written as CXX .
WhenCXX is invertible, the operatorC−1XX is called the functional
additive precision operator (FAPO), and is written as�XX .

Note that the invertibility of CXX is guaranteed by Assump-
tion 2. In fact, C−1XX is a bounded operator under the following
reasonably mild assumption.

Assumption 3. For any i �= j,CXiX j is a compact operator.

This assumption ensures that CXX is the sum of an identity
and a compact operator. Such operators are bounded frombelow
by cI for some c > 0 (Bach 2008). Hence �XX ∈ B (M). Note
that we define the precision operator as the inverse ofCXX rather
than�XX , and the inverse of the latter is the direct analog of the
precisionmatrix in the classical setting.We choose to work with
C−1XX instead of �−1XX because �XX is a compact operator under

mild conditions, and its inverse is unbounded. What is interest-
ing is that a pattern resembling the Gaussian dependence struc-
ture (2) reemerges at the operator level without the Gaussian
assumption, as shown in the next theorem.

Theorem 2. Under Assumptions 1 through 3,

Xi
A X j|X−(i, j) iff �XiX j = 0. (5)

The proof is similar to the multivariate case (Li, Chun, and
Zhao 2014), and is omitted. Similar to the Gaussian relation (2),
the above relation encodes additive conditional independence
by FAPO, but without any restrictive distributional assumption.
Moreover, by the additive nature of our setting, FAPO can be
estimated by a kernel defined marginally on Mi rather than
jointly on M. For convenience, henceforth we let C denote the
complete graph {(i, j) : i, j ∈ V, i �= j}.

Note that Theorem 2 holds regardless of the geometry in
which ACI is stated. Relation (3) can be represented in terms of
the RKHS-geometry, as was done in Lee, Li, and Zhao (2016b).
The alternative representation does not affect the validity of (5).

Corollary 1. Under Assumptions 1 through 3, a vector-valued
random function X follows an FASG(G)model iff E = {(i, j) ∈
C : ‖�XiX j‖ > 0}.

3.2. Estimation

We now describe the estimator of �XX in an operator form,
which is not yet usable as an algorithm but can facilitate the
asymptotic development. The concrete algorithm for this esti-
mator in matrix form will be given in Section 6.

For two Hilbert spaces N1 and N2 and φ ∈ N1 and ψ ∈
N2, the tensor product φ ⊗ ψ is the operator φ ⊗ ψ : N1 →
N2, ω �→ φ〈ψ,ω〉N1 .Using tensor product we can define�X jXi

alternatively as E{[κ j(·,X j)− μX j ]⊗ [κi(·,Xi)− μXi]} where
μXi is the Riesz’s representation of the linear map Mi → R,
φ �→ Eφ(Xi). Thus, for any φ ∈Mi,

E{[κ j(·,X j)− μX j ]⊗ [κi(·,Xi)− μXi]}φ
= E{[κ j(·,X j)− μ j

X ][φ(X
i)− Eφ(Xi)]}.

This form is special to the RKHS setting and can be mimicked
at the sample level. In comparison, construction (4) applies to
general Hilbert spaces.

At sample level, we replace the true distribution by the empir-
ical distribution, yielding

�̂X jXi = En{[κ j(·,X j )− Enκ j(·,X j)]⊗ [κi(·,Xi)− Enκi(·,Xi)]},
(6)

where Enκi(·,Xi) = n−1
∑n

a=1κi(·,Xi
a). We then define the esti-

mator ofCX jXi as

ĈX jXi = (�̂X jX j+εnI)−1/2�̂X jXi (�̂XiXi+εnI)−1/2, i �= j; ĈXiXi = I,

where εn > 0 is a regularization constant, whose convergence
rate will be discussed in Section 5.1. The estimator ĈXX of CXX
is defined as {ĈXiX j }pi, j=1. Finally, the estimator of the precision
operator�XX is defined as �̂XX = Ĉ−1XX .

In several aspects, the construction here differs from the
direct analog of the estimator of the additive precision opera-
tor proposed by Li, Chun, and Zhao (2014) in the multivariate
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setting, which is

�̃XX = diag
(
�̂

1/2
XiXi

)
(�̂XX + εnI)−1diag

(
�̂

1/2
XiXi

)
,

where diag(�̂1/2
XiXi ) is the diagonal operator in

×p
i, j=1 B (Mi,M j) whose diagonal entries are {�̂1/2

XiXi : i =
1, . . . , p}. First, the regularization constants appear in different
places in �̂XX and �̃XX . The new arrangement is guided by
asymptotic analysis in Sections 4 and 5.1. The second difference
is due to the change of geometry: the coordinates of relevant
operators are different in the L2(P) and RKHS settings. Finally,
as can be seen in Section 6, �̂XX is easier to implement than
�̃XX because the latter involves an additional regularization
constant. Our experiences indicate that the numerical behavior
of the two versions is similar.

4. Consistency

In this and the next sections, we develop the asymptotic theory
of our method, which includes consistency, convergence rate,
and optimal regularization. This theory is based on the assump-
tion that the random functionsXi are fully observed on t ∈ T . A
more careful analysiswould take into account thatXi is observed
on a finite set of time points and preliminary smoothing is often
performed to approximateXi, whichmay affect the final asymp-
totic results. However, this is beyond the scope of the current
article and will be left to future research.

The following lemma can be proved similarly to the parallel
result in themultivariate setting in Fukumizu, Bach, andGretton
(2007, Lemma 5).

Lemma 1. If Assumption 1 holds, then, for any i, j ∈ V,
‖�̂X jXi −�X jXi‖ = OP(n−1/2).

The next three lemmas are needed for proving Theorem 3.
Lemma 3 is easily verified by computation and its proof is omit-
ted. Lemmas 2 and 4 are proved in the online supplementary.

Lemma 2. If A ∈ ×p
i, j=1 B (Mi,M j), then ‖A‖ ≤

∑p
i, j=1‖Ai j‖.

Lemma 3. SupposeA,B ∈ B (M) are self-adjoint and invertible
operators. Then

A−1 − B−1 = (A− B)A−2 + B−2(A− B)
−B−2A2(A− B)A−2 − B−2(A− B)B2A−2

−B−2A(A− B)BA−2.

As wementioned before, under Assumption 3,CXiX j ≥ cI for
some c > 0 for any i �= j. This implies C−1 and its consistent
estimators are bounded or bounded in probability.

Lemma 4. Suppose A ∈ B (M) is a self-adjoint operator such
that A ≥ cI for some c > 0, and {Â(n)} ⊆ B (M) is a sequence
of self-adjoint random operators such that Â(n) P→ A. Then

(1) ‖A−1‖ <∞;
(2) P(‖(Â(n))−1‖ ≤ (c− ε)−1)→ 1 for any c > ε > 0.

The next theorem establishes the consistency of �̂XX . To
prove the consistency of �̂XX , we first need the consistency
of ĈX jXi for each i, j ∈ V, whose proof is similar to the proof
of consistency of the correlation operator in Fukumizu, Bach,

and Gretton (2007). So our proof in the online supplementary
focuses on the passage from the consistency of ĈXiX j to the con-
sistency of �̂XX .

Theorem 3. Under Assumptions 1 through 3, ‖�̂XX −�XX‖ P→
0.

The above consistency implies the following consistency of
the estimated edge set. For a ρ > 0, let Ê(ρ, εn) = {(i, j) ∈ C :
‖�̂XiX j (εn)‖ > ρ}.
Corollary 2. If Assumptions 1 through 3 hold, then, for all suffi-
ciently small ρ > 0,

P(Ê(ρ, εn) = E)→ 1.

5. Convergence Rate and Optimal Regularization

In this section, we derive the convergence rate of �̂XX . In the
process we also derive the convergence rate of ĈXiX j . Because
the convergence rate for the correlation operator was previously
unknown even in the multivariate setting, the results here also
refine the asymptotic theory of Fukumizu, Bach, and Gretton
(2007).

5.1. Convergence Rate

For simplicity, let Xi = U and X j = V . It is easy to see that the
following results also apply to the cases whereU andV are ran-
dom vectors rather than random functions. Let

ĈUV = (�̂UU + εnI)−1/2�̂UV (�̂VV + εnI)−1/2,
C̃UV = (�UU + εnI)−1/2�UV (�VV + εnI)−1/2.

The next lemma can be verified by simple computation (one
of them was given in Fukumizu, Bach, and Gretton 2007). The
proof is omitted.

Lemma 5. If A and B are self-adjoint and invertible linear oper-
ators, then

A−1/2 − B−1/2 = A−3/2(B3/2 − A3/2)B−1/2 + A−3/2(A− B)
= A−1/2(B3/2 − A3/2)B−3/2 + (A− B)B−3/2.

If εn and δn are two sequences of positive numbers such that
εn/δn → 0, then we write εn ≺ δn or δn � εn. If the sequence
εn/δn either goes to 0 or is bounded, then we write εn � δn or
δn � εn. The next lemma reveals the role played by Tychonoff
regularization in the asymptotic order of magnitude.

Lemma 6. For any self-adjoint operator A, εn ≺ 1, and a > 0,
b > 0, we have

‖(A+ εnI)−bAa‖ = O(εmin{0,a−b}
n ).

If Ân is a sequence of self-adjoint random operator with
‖Ân‖ = OP(1), then

‖(Ân + εnI)−bÂa
n‖ = OP(ε

min{0,a−b}
n ).

The next assumption has to do with the smoothness in the
relation between U and V . Since we are, in effect, regressing a
space of functions on another space of functions, smoothness
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in our context is less intuitive than, say, in the nonparametric
regression setting.

Assumption 4. There exists a bounded operator DUV and β > 0
such that

CUV = �1/2+β
UU DUV�

1/2+β
VV .

This assumption requires, for example, that �−1/2−βUU CUV to
be a bounded operator. Since �UU is a Hilbert-Schmidt opera-
tor under mild conditions (Fukumizu, Bach, and Gretton 2007),
the sequence of its eigenvalues tends to 0. Thus, in order for
�
−1/2−β
UU CUV to be bounded, the range space ofCUV needs to be

sufficiently concentrated on the eigen-spaces of �UU with large
eigenvalues, that is, the low-frequency components of �UU .
Moreover, the degree of concentration increases as β increases.
For this reason, Assumption 4 can be interpreted as a type of
smoothness, with β characterizing the degree of smoothness.

Lemma 7. If Assumptions 1 through 4 hold and n−2/5 ≺ εn ≺ 1,
then

‖ĈUV − C̃UV‖ = OP(n−1ε−5/2n + n−1/2ε−1n ).

The next lemma gives the convergence rate of ‖C̃UV −CUV‖.
Lemma 8. If Assumptions 1 through 4 hold and εn ≺ 1, then

‖C̃UV −CUV‖ = OP
(
εmin{1,β}
n

)
.

Combining the convergence rates in Lemma 7 and Lemma 8,
we can easily derive the convergence rate of �̂XX , as given in the
next theorem. The simple proof is omitted.

Theorem 4. If Assumptions 1 through 4 hold and n−2/5 ≺ εn ≺
1, then

‖�̂XX −�XX‖ = OP
(
n−1ε−5/2n + n−1/2ε−1n + εmin{1,β}

n
)
.

Since increasing β above 1 would no longer improve the con-
vergence rate, for the rest of the article we assume 0 < β ≤ 1, in
which case εmin{1,β}

n = εβn .

5.2. Optimal Regularization

The convergence rate in Theorem4depends on both the smooth
index β and the rate of convergence of εn. The next theorem
gives the optimal choice of εn for a given β , assuming εn is of the
form n−α for some α > 0, as well as the optimal rate of ‖�̂X̂X̂ −
�XX‖ under such a choice.

Theorem 5. Suppose Assumptions 1 through 4 hold with β in
Assumption 4 satisfying 0 < β ≤ 1, and εn = n−α for some α >
0. Then the optimal convergence rate is

‖�̂X̂X̂ −�XX‖ �
{
n−

β

2+2β if 1/2 ≤ β ≤ 1
n−

2β
5+2β if 0 < β ≤ 1/2

(7)

and the optimal rate for εn that achieves the above optimal rate
is

εn ∝
{
n−

1
2+2β if 1/2 ≤ β ≤ 1

n−
2

5+2β if 0 < β ≤ 1/2.

We should mention that the rate in (7) is best that can be
achieved by our asymptotic machinery. It may be possible to
improve this rate by more complex asymptotic arguments, or
modified versions of the estimator.

Note that, when β takes its largest value 1, the optimal con-
vergence rate is n−1/4, and the optimal regularization constant
is εn = n−1/4. Also note that the optimal rate of εn ranges from
n−2/5 to n−1/4. The smoother the relation the larger the optimal
penalty. Using Theorem 5we can also refine Corollary 2 to allow
the threshold ρ to goes to 0 with n, which would increase dis-
criminating power of the estimate. The proof is omitted.

Corollary 3. Suppose Assumptions 1 through 4 hold with β
being the smooth index.

1. If 0 < β ≤ 1/2, then for any ρn � n−
2β

5+2β , P(Ê(ρn, εn) =
E)→ 1.

2. If 1/2 ≤ β ≤ 1, then for any ρn � n−
β

2+2β , P(Ê(ρn, εn) =
E)→ 1.

5.3. Incompletely Observed Random Functions

The above asymptotic results are derived under the premise that
each Xi is observed in its entirety, but in reality it can only
be observed at a finite set of time points—or a measurement
schedule—andmust be estimated from its observed values at the
sampled time points. The convergence rate of the estimator of
Xi, say X̂ i, depends on both the measurement schedule and the
smoothers employed. Wang, Chiou, and Muller (2016) classi-
fied these schedules as “dense” or “sparse” according to whether
X̂i has an n−1/2 convergence rate. Following this convention, we
refer the measurement schedules that are sufficiently frequent
so that covariance operators�XiX j can be estimated by the sam-
ple covariance operators based on X̂ i

1, . . . , X̂ i
n at the n−1/2 rate

as dense schedules. Applications involving automated measure-
ments by instruments, such as fMRI, EEG, and smart wear-
able records, may be regarded as belonging to this category. The
asymptotic results such as Theorem 3, Corollary 2, Lemma 7,
Theorem 4, Theorem 5, and Corollary 3 still hold under dense
schedules.

At the other extreme, the measurement schedules where the
number of time points does not go to infinity are referred to as
sparse schedules. For example, some longitudinal studies belong
to this category. For such schedules, consistency can still be
achieved if the number of pooled time points converges to infin-
ity in some fashion. For simplicity, we refer to measurement
schedules for which the operators �XiX j cannot be estimated
at the n−1/2 rate as nondense. Under such schedules the above
asymptotic results in Sections 5.1 and 5.2 need to be modified
accordingly.

To take into account the effect of measurement schedule, we
allow the estimation rate of the estimator of �XiX j based on
approximated sample X̂1, . . . , X̂n to be an arbitrary sequence
δn satisfying n−1/2 � δn ≺ 1, and rederive convergence rates of
�XX , εn, and ρn that reflect the rate δn. In this way, our asymp-
totic results are sufficiently flexible to adapt to specific smoothers
and measurement schedules. Let

�̂X̂ iX̂ j = En[(X̂ i − EnX̂ i)⊗ (X̂ j − EnX̂ j)],

ĈX̂ iX̂ j = (�̂X̂ iX̂ i + εnI)−1/2�̂X̂ iX̂ j (�̂X̂ j X̂ j + εnI)−1/2,
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ĈX̂X̂ = {ĈX̂ iX̂ j }pi, j=1, �̂X̂X̂ = Ĉ−1
X̂X̂
.

The next theorem extends Theorem 4. Its proof is similar that of
Theorem 4, and is omitted.

Theorem 6. Suppose
1. Assumptions 1 through 4 hold with 0 < β ≤ 1.
2. There is a sequence n−1/2 � δn ≺ 1 such that, for each
(i, j) ∈ V× V,

‖�̂X̂ iX̂ j −�XiX j‖ = OP(δn).

Then, for any tuning parameter εn satisfying δ4/5n ≺ εn ≺ 1,
we have

‖�̂X̂X̂ −�XX‖ = OP
(
δ2nε

−5/2
n + δnε−1n + εmin{1,β}

n
)
. (8)

If we take δn = n−α for some 0 < α ≤ 1/2, and εn = n−c for
some c > 0, then the rate εn that achieves optimal convergence
rate is derived as follows.
Theorem 7. If the conditions 1 and 2 in Theorem 4 hold with
δn and εn being defined in the last paragraph, then the optimal
convergence rate is

‖�̂XX −�XX‖ �
{
n−

αβ

1+β if 1/2 ≤ β ≤ 1
n−

4αβ
5+2β if 0 < β ≤ 1/2

(9)

which is achieved by

εn ∝
{
n−

α
1+β if 1/2 ≤ β ≤ 1

n−
4α

5+2β if 0 < β ≤ 1/2.

Consequently,
1. if 0 < β ≤ 1/2 and εn ∝ n−

4α
5+2β , then for any ρn �

n−
4αβ
5+2β , P(Ê(ρn, εn) = E)→ 1;

2. if 1/2 ≤ β ≤ 1 and εn ∝ n−
α

1+β , then for any ρn � n−
αβ

1+β ,
P(Ê(ρn, εn) = E)→ 1.

This theorem sums up how the convergence optimal rate
of ‖�̂X̂X̂ −�XX‖ and the corresponding tuning constant εn
are affected by the smoothness index β , and the measurement
schedule index α:

1. the optimal �̂X̂X̂ converges to�XX faster if the measure-
ment schedule is denser and the relations among Xi and
X j are smoother;

2. the optimal εn converges to 0 faster if the measurement
schedule is denser and slower if the relations among Xi

and X j are smoother.
Again, if we take α and β as their maximum values, then the

optimal convergence rate of ‖�̂X̂X̂ −�XX‖ → 0 is n−1/4, which
is achieved when εn ∝ n−1/4.

6. Implementation

6.1. CoordinateMapping

In this section, we implement the estimating procedures for
FAPO and FASG, which involves representing linear operators
asmatrices.We carry this out using the following notational sys-
tem (Horn and Johnson 1985). Let N be a finite-dimensional

Hilbert space spanned byB = {b1, . . . , bm}, which need not be
linearly independent. Any h ∈ N can be written as a linear com-
bination of b1, . . . , bm. The vector of coefficients is denoted by
[h]B and is called the coordinate of h with respect toB.

We define the power of a self-adjoint operator A ∈ B (N) as
follows. Let r be the rank ofA. Let {(λi, fi) : i = 1, . . . , r} be the
eigenvalue-eigenvector pairs ofAwith nonzero eigenvalues. For
any c ∈ R, let Ac =∑r

i=1λ
c
i ( fi ⊗ fi). Note that, when c = −1,

we only take the reciprocal of nonzero eigenvalues. Hence A−1
has a different meaning from the inverse of A. To avoid confu-
sion, when c < 0 we write Tc asA†|c|, so that we can reserveA−1
as notation for inverse. We write A†1 as A†, which is simply the
Moore–Penrose inverse of the operator A (Hsing and Eubank
2015, p. 158). The next theorem sums up six important prop-
erties of coordinate mapping, of which the first three are well
known (see, e.g., Horn and Johnson 1985, p. 31); the last three
are tailored for our use. Since these properties are very useful
for constructing estimators of linear operators in a systematic
fashion, we collect them below as a theorem.

Let Nα , α = 1, 2, 3, be finite-dimensional Hilbert spaces
spanned by Bα = {b(α)1 , . . . , b(α)mα

}. For A ∈ B (N1,N2), the
m2 ×m1 matrix ([Ab(1)1 ]B2 , . . . , [Ab

(1)
n ]B2 ) is called the coor-

dinate of A relative to B1 and B2, and is denoted by B2 [A]B1 .
We call the function B2 [·]B1 : B (N1,N2)→ R

m2×m1 the
coordinate mapping.

Theorem 8. Let (N,B) and {(Nα,Bα ) : α = 1, 2, 3} be as
defined in the last paragraph. The coordinate mapping has the
following properties.

1. (evaluation) For any h ∈ N1, [Ah]B2 =
(B2 [A]B1 )[h]B1 .

2. (linearity) If A1,A2 ∈ B (N1,N2) and c1, c2 ∈ R, then

B2 [c1A1 + c2A2]B1 = c1 (B2 [A1]B1 )+ c2 (B2 [A2]B1 ).

3. (composition) If A1 ∈ B (N1,N2) and A2 ∈
B (N2,N3), then

B3 [A2A1]B1 = (B3 [A2]B2 )(B2 [A1]B1 ).

4. (power) IfA ∈ B (N) is a self-adjoint and	 is theGram
matrix ofB:	 = {〈bi, b j〉B : i, j = 1, . . . ,m}, then, for
any c ∈ R for which (−1)c ∈ R, we have

B[Ac]B = 	†1/2(	1/2
B[A]B	†1/2)c	1/2.

5. (identity) If I ∈ B (N) is the identity mapping,
then B[I]B = QB, where QB is the projection on to
span{[b1]B, . . . , [bm]B} in the Euclidean space Rm.

6. (matrix of operators) If {Ai j}pi, j=1 ∈ ×p
i, j=1 B (Mi,M j),

Mi is spanned by Bi, and B = ∪p
i=1Bi, then

B[{Ai, j}pi, j=1]B = {Bi[Ai j]B j }pi, j=1.

6.2. Construction of Nested Hilbert Spaces

Let X1, . . . ,Xn be an iid sample of X . For clarity, we use letters
such as i, j, . . . to represent the components and letters such as
a, b, . . . to represent subjects. Thus, Xi

a is the ith component of
the ath vector Xa in the sample {Xa : a = 1, . . . , n}. In practice,
we can only observe the function Xa(t ) = (X1

a (t ), . . . ,X
p
a (t ))T



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1645

over a finite set of time points, say Sa = {ta1, . . . , tama} ⊆ T .
The functions t �→ Xa(t ) must then be estimated using the
observed data. Commonly used methods for estimating Xa(t )
are smoothing spline or RKHS, both of which can be formu-
lated as projection on to a finite-dimensional Hilbert space. In
this article, we use a positive definite kernel to generate Hi,
but, instead of using the RKHS inner product, we use the L2
inner product, which is approximated by the Simpson’s rule.
This inner product works better than the RKHS inner product
in our simulations.

Specifically, let S = ∪n
a=1Sa, and denote its members as

s1, . . . , sN where N ≤∑n
b=1ma. Let Ja be the index set of Sa, so

that Sa = {su : u ∈ Ja}. Let κT : T × T → R be a positive defi-
nite kernel. We takeH1, . . . ,Hp to be the same linear subspace
spanned by set of functions L = {κT (·, su) : u = 1, . . . ,N}
with κT as the reproducing kernel.

We use the subset La = {κT (·, su) : u ∈ Ja} to construct an
approximation of the function Xi

a. To avoid complicated nota-
tions we use the same notation Xi

a to represent the approxi-
mation. We set those components of [Xi

a]L whose indices are
not in Ja to 0. Let [Xi

a]La denote the ma-dimensional subvec-
tor of [Xi

a]L with index b ∈ Ja. Let Xa(Sa) be the observed part
of Xa, that is, Xa(Sa) = {Xa(su) : u ∈ Ja}, and let K (a,a)T be the
submatrix {κT (su, sv ) : u, v ∈ Ja}. Then, for any t ∈ T , Xi

a(t ) =∑
u∈Ja ([X

i
a]L)u κT (t, su), and consequently,

Xi
a(Sa) = K (a,a)T [Xi

a]La .

Solve this equation with Tychonoff regularization to obtain
[Xi

a]La = (K (a,a)T + ε(T ))−1Xi
a(Sa). To summarize, the coordi-

nate [Xi]L is constructed as

([Xi
a]L)u =

{
(K (a,a)T + ε(T ))−1Xi

a(Sa) if u∈ Ja
0 if u/∈ Ja.

(10)

Having obtained the entire functionXi
a, we next approximate

the inner product betweenXi
a andXi

b inHi by the Simpson’s rule,
as follows. By the above construction, we have

Xi
a = [Xi

a]
T
L κT (·, S), Xi

b = [Xi
b]

T
L κT (·, S), (11)

where κT (·, S) is the vector of functions {κT (·, s) : s ∈ S}.
Evaluate Xi

a at an equally spaced set of points in J, say
U = {u0, . . . , u
}, where 
 is even, and u0 and u
 are the left
and right ends of the interval J. Then, by the Simpson’s rule,∫ u


u0
Xi
a(t )X

i
b(t )dt ≈ Xi

a(U )
TDXi

b(U ), (12)

where D = (h/3)diag(1, 4, 2, 4, . . . , 2, 4, 1), and h = (u
 −
u0)/
. Substituting (11) into the right-hand side of (12), we have〈

Xi
a,X

i
b
〉
Hi
≈ [Xi

a]
T
L κT (S,U )DκT (U, S)[X

i
b]L,

where κT (U, S) denotes the matrix {κT (u, s) : u ∈ U, s ∈ S},
and [Xi

a]L and [Xi
b]L are determined by (10).

This estimation framework accommodates both the bal-
anced case, where S1, . . . , Sn are the same, and the unbal-
anced case, where they are not. In particular, in the balanced
case, Xi

1, . . . ,Xi
n are observed on the same set of time points

{t1, . . . , tm}, so that N = ma = m for all a. In this case, each Xi
a

is expressed as a linear combination of {κT (·, t1), . . . , κT (·, tN )},
and no change of notation is needed.

Having constructed H1, . . . ,Hp, X1, . . . ,Xn, and the inner
product inHi, we now define the second-level spacesMi as the
RKHS spanned by

Bi = {φi
a = κi(·,Xi

a)− Enκi(·,Xi) : a = 1, . . . , n},
where the kernel κi is determined by the inner product of
Hi, as described in Section 2.1. Note that Bi is not a linearly
independent set: it spans an n− 1 dimensional space. Let 1n be
the n-dimension vector with its components being identically
1, In be the n× n identity matrix, and Q = In − 1n1Tn/n. Then
it is easy to see that Q = QBi . Consequently, for any φ ∈Mi,
[φ]Bi = Q[φ]Bi . Thus, if we let Ki = {κi(Xi


,X
i
m)}n
,m=1 and

Gi = QKiQ, then the inner product in Mi can be expressed in
coordinate system as

〈φ,ψ〉Bi = [φ]TBi
Ki[ψ]Bi = [φ]TBi

Gi[ψ]Bi .

6.3. Estimation of FAPO and FASG

Our goal is to find the norms ‖�̂XiX j‖ and then threshold them
to estimate the edge set E. The coordinate of �̂XiX j with respect
toBi andB j is given by the next proposition.

Proposition 1. For any i, j = 1, . . . , p, Bi[�XiX j ]B j = n−1Gj.

This result is well known in the multivariate setting (see
Fukumizu, Bach, and Jordan 2009; Li, Chun, and Zhao 2012),
and the proof is omitted. By Proposition 1 and Theorem 8 (parts
1, 2, 3, 5), the coordinate of ĈX jXi for i �= j is

B j [ĈX jXi ]Bi = (n−1Gj + ε(X )Q)†1/2(n−1Gi)(n−1Gi + ε(X )Q)†1/2.
(13)

For i = j, ĈXiXi is defined to be I ∈ B (Mi), and hence, by
Theorem 8 (part 5),

Bi[ĈXiXi]Bi =Bi [I]Bi = QBi = Q. (14)

LetB = ∪p
i=1Bi. ByTheorem8 (part 6),B[ĈXX ]B is annp× np

matrix and its inversion, if done directly, can be computationally
expensivewhen both n and p are large. The next Lemma gives an
explicit form of B[�̂XX ]B that only involves inversion of n× n
matrices.
Lemma 9. If H ∈ R

np×n and� ∈ R
np×np satisfy

H = HQ, H = (In ⊗ Q)H, � = (In ⊗ Q)� = �(In ⊗ Q),
��† = Ip ⊗ Q,

then (HHT +�)† = �† −�†H(HT�†H + Q)†HT�†.

Wenowpresent the coordinate of �̂XX with respect toB. For
a set of matricesD1, . . . ,Dm, let diag(D1, . . . ,Dm) be the block
diagonal matrix with D1, . . . ,Dm as the diagonal blocks.

Theorem 9. Let Ai = (n−1Gi)
1/2(n−1Gi + ε(X )Q)†1/2,

�i = Q− A2
i . Let

� = diag(�1, . . . , �p), H = (A1, . . . ,Ap)
T,

	 = diag(G1, . . . ,Gp).

Then

B[�̂XX ]B = 	†1/2(�† −�†H(HT�†H + Q)†HT�†)	1/2.

(15)
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Note that, since� and 	 are block diagonal,�† and 	† can
be computed by �†

i and G†
i . Hence the largest matrices to be

inverted in (15) are n× nmatrices. The next corollary gives an
explicit form of ‖�̂XiX j‖.

Corollary 4. If i �= j, then ‖�̂XiX j‖ is the largest singular value
of the matrix

�†
i Hi(

∑p

=1H
�

†

H
 + Q)†Hj�

†
j .

Alternatively, the above matrix can be written as
G1/2
i Bi[�̂XiX j ]B jG

†1/2
i .

Having derived ‖�̂XiX j‖, we estimate the edge set E by

Ê(ε(X ), ρn) = {(i, j) ∈ C : ‖�̂XiX j‖ ≤ ρn},
where ρn is a predetermined sequence satisfying the condition
in Corollary 3.

6.4. Tuning

The tuning parameters include the kernel parameters in κT
and κ1, . . . , κp, and the regularization parameters εT and εX .
We now propose their tuning procedures. For an integer a ∈
{1, . . . , n}, we let ea denote the n-dimensional vector whose ath
component is 1 and whose other components are all 0, and let
‖ · ‖F denote the Frobenius matrix norm.

Tuning the kernel parameters. Assume that the Gaussian radial
basis functions (RBF) are used. That is,

κT : T × T → R, (t1, t2) �→ exp{−γT (t1 − t2)2},
κi : Hi ×Hi → R,

(
xi1, x

i
2
) �→ exp{−γi‖xi1 − xi2‖2Hi

}.(16)

Mimicking the criterion in Lee, Li, and Chiaromonte (2013), we
choose γT and γi as

1/
√
γT =

(
N
2

)−1 N−1∑
k=1

N∑

=k+1

|sk − s
|,

1/
√
γi =

(
n
2

)−1 n−1∑
a=1

n∑
b=a+1

∥∥∥Xi
a − Xi

b

∥∥∥
Hi
. (17)

Tuning regularization constant εT . By (10), the functionXi
a(t ) for

any t is approximated by κT (t, Sa)T (K (a,a)T + εT Ima )
−1Xi

a(Sa).
So the approximation error of Xi

a(Sa) is

‖Xi
a(Sa)− κT (t, Sa)T(K (a,a)T + εT Ima )

−1Xi
a(Sa)‖2.

The total approximation error of Xi
a(Sa) for a = 1, . . . , n is

then ∥∥∥∥Xi
a(Sa)− K (a,a)T

(
K (a,a)T + εT Ima

)−1
Xi
a(Sa)

∥∥∥∥
2

F
.

To achieve appropriate scaling, we reset εT to λmin(K (a,a)T )εT ,
where λmin(K (a,a)T ) is the largest eigenvalue of the matrix K (a,a)T .
The reset εT is the proportion of the largest eigenvalue of the
matrix to be regularized. We propose the following generalized
cross-validation criterion:

GCVT (εT )

=
p∑

i=1

n∑
a=1

‖Xi
a(Sa)− K (a,a)

T (K (a,a)
T + εTλmax(K (a,a)

T ) Ima )
−1Xi

a(Sa)‖2F
{1− trace[K (a,a)

T (K (a,a)
T + εTλmax(K (a,a)

T )Ima )
−1]/ma}2

,

wherema = card(Sa). We minimize this criterion over a grid to
determine the optimal εT .

Tuning regularization constant εX . LetRi = ran(�XiXi ), that is,

Ri = span{κ(·,Xi
a)−Enκ(·,Xi): a = 1, . . . , n}, i = 1, . . . , p.

Our strategy is to predict the functions inR j by the functions in
Ri for all i �= j. Let bia = κ(·,Xi

a)− Enκ(·,Xi). By Lee, Li, and
Zhao (2016b), the member ofRi that is stochastically closest to
bj
a is�−1XiXi�XiX j bj

a. That is, the stochastic difference

varn
{
bj
a(X j)−

(
�−1XiXi�XiX j bj

a

)
(Xi)

}
is minimum among all members of Ri. The coordinate of
�−1XiXi�XiX j bj

a is[
�−1XiXi�XiX j bj

a

]
= [

�−1XiXi

]
[�XiX j ]

[
bj
a

]
= G†

i G jea,

where [bj
a] = ea because [b

j
a] is the coordinate with respect to

{bj
1, . . . , b

j
n}.We use the regularized version�−1XiXi�XiX j bj

a—that
is,

[(Gi + εXIn)−1Gjea]T
(
bi1, . . . , b

i
n
)T ≡ b̂ j|i

a , (18)

to estimate bj
a. The next lemma gives the stochastic distance

between bj
a and b̂ j|i

a .

Lemma 10. If bj
a and b̂ j|i

a as defined the last paragraph, then

varn
{
bj
a(X j)− b̂ j|i

a (Xi)
}
= ‖Gjea − Gi(Gi + εXIn)−1Gjea‖2.

(19)

The total stochastic error for estimating bj
a for a = 1, . . . , n

is, then,
n∑

a=1
‖Gjea−Gi(Gi + εXIn)−1Gjea‖2 = ‖Gj − Gi(Gi + εXIn)−1Gj‖2F .

As before, we reset εX to εXλmax(Gi) to achieve appropriate scal-
ing, and propose the following generalized cross-validation cri-
terion for εX

GCVX (εX ) =
∑
i< j

‖Gj − Gj(Gi + εXλmax(Gi)In)−1Gi‖2
{1− trace[(Gi + εXλmax(Gi)In)−1Gi]/n}2 .

Weminimize this criterion over a grid of numbers to determine
the optimal εX .

6.5. Algorithm

We summarize the procedures developed in Sections 6.2–6.4 as
the following algorithm.

1. Choose the kernels κT for H1, . . . ,Hp. For example, if
we choose κT as the RBF in (16), then choose the tuning
constant γT according to (17); if we choose κT to be the
Brownian motion covariance kernel min(s, t ), then no
tuning parameter is needed.
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2. Choose the regularization parameter εT by minimizing
GCVT (εT ) over a grid of points.

3. Using the results of steps 1 and 2 to construct functions
X1, . . . ,Xn according to (10).

4. Using the result of step 3 to compute Ki, Gi, �i, and Hi

to form �, H , 	 and eventually B[�̂XX ]B as defined in
Theorem 9, with εX in B[�̂XX ]B chosen by minimizing
GCVX (εX ) over a grid of numbers.

5. For each (i, j) ∈ C, read off the submatricesBi[�̂XiX j ]B j

from B[�̂XX ]B, and compute the largest singular value
of σ̂i j = G1/2

i Bi[�̂XiX j ]B jG
†1/2
i .

6. For a chosen ρn > 0, let Ê = {(i, j) ∈ C : σ̂i j > ρn}. For
example, if we assume β = 1, then we can take ρn ∝
n−1/5.

7. Simulations

In this section, we compare our FAPO estimator with the FGGM
estimator proposed by Qiao, James, and Lv (2014) and a heuris-
tic copula method derived from the nonparanormal model pro-
posed by Liu, Lafferty, and Wasserman (2009) in the classical
setting.

The method of Liu, Lafferty, and Wasserman (2009) was
developed for conventional graphical models with a scalar
random variable observed on each vertex, and no extension
has yet been available to the functional setting. While Solea
and Li (2016) proposed functional copula graphical model, it
is by no means a straightforward generalization. To avoid too
much digression from the main theme, we use the following
naive adaptation of the nonparanormal method to the current
setting in the balanced case. Let {(Xi

a(t1), . . . ,Xi
a(tm)) : a =

1, . . . , n, i = 1, . . . , p} be the raw data—observation on the
random functionXi

a at time points t1, . . . , tm.We first transform
each sample {Xi

a(tr) : a = 1, . . . , n} into normal scores using
nonparametric copula Gaussian transformation based on the
Windsorized empirical distribution described in Liu, Lafferty,
and Wasserman (2009). We then apply the FGGM to the trans-
formed data to construct the network. We refer to this method
as the naive normal score method, abbreviated as NNS in the
manuscript. NNS has been incorporated in all the simulation
comparisons for the balanced cases and the fMRI data example.

As mentioned in the Introduction, nonlinearity and het-
eroscedasticity are two of the consequences of non-Gaussian
interdependence, where a Gaussian-based method such as
FGGM is expected to perform poorly. On the other hand, under
the Gaussian assumption the nonparametric nature of FAPO
estimator may incur loss of efficiency relative to FGGM. For
these reasons, we include three scenarios in our comparison:
nonlinearity dependence, heteroscedasticity dependence, and
Gaussian dependence. Because in this section superscripts and
powers will frequently appear within the same formulas, we use
X (i) to indicate Xi, and (X (i))c to indicate the power of X (i).

Comparison 1: nonlinear models. We use the following models
with p = 5 and p = 10:

Model I: X (i)(t ) = ε(i)(t ), i = 2, 5; X (1)(t ) = (1+ |X (4)(t )|)2
+ ε(1)(t ),

X (3)(t ) = sin(πX (1)(t ))+ ε(3)(t ), X (4)(t ) = 3X (2)(t )2

+ ε(4)(t ).

Figure . Graphs of models I and II.

Model II: X (i)(t ) = ε(i)(t ), i = 1, 2, 3, 5, 9;
X (4)(t ) = X (2)(t )2 + ε(4)(t ); X (6)(t ) = sin(πX (5)(t ))

+ ε(6)(t );
X (7)(t ) = X (2)(t )2 + (1+ |X (4)(t )|)3 + ε(7)(t );
X (8)(t ) = X (6)(t )3 + ε(8)(t ); X (10)(t ) = exp[X (9)(t )]

+ ε(10)(t ).
(20)

The random functions ε(i)(t ) are generated as
∑m

k=1 ξkκT (t, tk),
where ξ1, . . . , ξm are iid N(0, 1), t1, . . . tm are iid U [0, 1],
κT (t, s) = min(t, s) is the Brownian motion covariance kernel,
and m = 50 . We include both balanced and unbalanced sam-
ples. For the balanced samples, ti1, . . . , timi are equally spaced 10
points in [0, 1]. For the unbalanced samples, ti1, . . . , timi are 10
points randomly chosen without replacement from 100 equally
spaced points in [0, 1].

Each set of structural equations in (20) generates a directed
acyclic graph (DAG), which is designed so that its moral graph
coincides with its skeleton. In this case, we can simply remove
the arrows the DAG to obtain the corresponding undirected
graphs, which are used as the targets of estimation. Figure 2
shows the graphs for Models I and II.

In the simulation, the sample sizes are taken to be n = 100
and n = 200. The simulation sample size is nsim = 50. The
FAPO estimator is computed using the algorithm in Section
6.5 with κT (s, t ) = min(s, t ). To save computing time, for each
batch of nsim = 50 simulation runs, we take the average of the
GCV outcomes from the first five simulation runs and use it for
the rest of the batch. For FGGM, the number of functional PCA
components used is the smallest number that explains at least
90% of the total variation, which is typically 2.

In this and all the other simulation experiments in this sec-
tion, we use the Brownian motion covariance kernel to con-
struct the first-level space Hi, coupled with the L2-inner prod-
uct described in Section 6.2. For the second-level spaceMi, we
used the Gaussian radial basis function (second line in (16))
with γi therein defined by (17) as the kernel for the RKHS.
The regularization constants εT and εX are chosen by the GCV
criteria described in Section 6.4, with the grid for εT being
{5× 10−
 : 
 = 0, . . . , 6}, and the grid for εX being {5× 10−
 :

 = 0, . . . , 5}. Because the tuning constants are very stable from
sample to sample, for each simulation scenario we just compute
the GCV’s for the first five samples, and use their average value
for the entire simulation scenario.

Figures 3 shows the ROC curves for the combinations of
Models (I, II) and sample sizes n = (100, 200) for the balanced
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Figure . ROC curves (black for FAPO, blue for FGGM, and green for NNS) for Models I (left panels) and II (right panels), and for n = 100 (upper panels), and n = 200 (lower
panels) in balanced case.

case. Each panel contains two ROC curves, with black indicat-
ing FAPO and blue indicating FGGM, and each curve being the
average of the ROC curves across the nsim = 50 simulation runs.
We can see that the areas under curve (AUC) for the FAPO esti-
mator are substantially larger than FGGM. We then repeat the
simulation for the unbalanced samples (Figure 4), which again
exhibits the superior performance of the FAPO estimator.

The reason underlying the better performance of FAPO is the
presence of nonlinear interactions, particularly those quadratic
relations with no intercepts, such as equations for X (1) and
X (4) in Model I, and equations for X (4) and X (7) in Model
II. Essentially, Gaussian graphical models rely on mutual lin-
ear regressions among random elements on the vertices—this
is implicit in Yuan and Lin (2007) but explicit in some other
Gaussian-assumption-based approaches such as Meinshausen
and Bühlmann (2006), Friedman,Hastie, and Tibshirani (2008),
and Peng et al. (2009). The same can be said of the FGGM.
Because a linear regression model cannot pick up any informa-
tion from a relation that is symmetric about the origin, such as
X (4) = 3X (2)(t )2 + ε(4), the edges with this type of dependence
are totally missed by FGGM. The FAPO estimator can detect

this type of dependence because the kernel offers a rich family
of functions to accommodate such symmetric relations.

In Table 1, we report the AUC for the above simulation.
Entries of the table aremeans and standard deviations (in paren-
theses) of AUC over nsim = 50 simulation samples.

Comparison 2: heteroscedastic model. Another advantage of the
FAPO estimator is it regresses, in effect, the family of functions
at one vertix on the family of functions at another vertix. Thus,
implicitly, it not only regresses X (1) on X (2), but also (X (1))2

on X (2), X (1) on (X (2))2, (X (1))2 on (X (2))2, and so on, with all
the regression coefficients implicitly contained in the covariance
operator. This feature makes it possible to capture the depen-
dency that eludes any mean-based regression models such as
X (1) = f (X (2))+ ε(2), of which FGGM is a special case. We use
a simple model to demonstrate this point:

Model III: X (1)(t ) = 5 exp(X (3)(t ))ε(1)(t ),

X (2)(t ) = (1+ 0.5|X (3)(t )|)3ε(2)(t ), X (3)(t ) = ε(3)(t ).

Obviously, the edge set is E = {(1, 3), (2, 3)}. In this model,
X (2) depends on X (3) through the conditional variance
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Figure . FAPO (black) and FGGM (blue) applied to the same comparison scenarios as in Figure  for the unbalanced case.

var(X (2)|X (3)) rather than the conditional mean E(X (2)|X (3)).
The same can be said of the dependence of X (1) on X (3).

The random functions ε(1), ε(2), and ε(3) are generated in the
same way as in Comparison 1. Figure 5 shows the average ROC
curves for the two estimators, for four combinations of scenar-
ios: {balance, unbalanced} × {n = 100, n = 200}, which indi-
cate that FAPO performs much better than FGGM.

In Table 2, we report the averages and standard errors of the
AUC’s based on nsim = 50 for different comparison scenarios.

Comparison 3: Gaussian model. We now compare the perfor-
mances of FAPO and FGGM under the Gaussian assumption
to see how much information we lose as compared with a

Table . Averages and standard errors of AUC for Model III.

n=  n= 

Time FAPO FGGM NNS FAPO FGGM NNS

B . (.) . (.) . (.) . (.) . (.) . (.)
U . (.) . (.) NA . (.) . (.) NA

parametricmodel undermodel assumption. Thismodel is taken
from Qiao, James, and Lv (2014), as follows:

Model IV: Xi(t ) =
∑m

k=1ξikvik(t ), i = 1, . . . p,

Table . Averages and standard errors (in parentheses) of AUC for Models I and II. The left column indicates sample type: B for balanced and U for unbalanced.

n=  n= 

Time Model FAPO FGGM NNS FAPO FGGM NNS

B I . (.) . (.) . (.) . (.) . (.) . (.)
II . (.) . (.) . (.) . (.) . (.) . (.)

U I . (.) . (.) NA . (.) . (.) NA
II . (.) . (.) NA . (.) . (.) NA
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Figure . ROC curves (black for FAPO, blue for FGGM, and green for NNS) for Model III with n = 100 (upper panels) and n = 200 (lower panels), in the balanced case (left
panels) and unbalanced case (right panels).

where m = 5, {vik, k = 1, 2, 3, 4, 5} are the first five functions
in the Fourier basis:

1,
√
2 sin(2πt ),

√
2 cos(2πt ),

√
2 sin(4πt ),

√
2 cos(4πt ),

and ξ = (ξ11, . . . , ξ1m, . . . , ξp1, . . . , ξpm)T is multivariate Gaus-
sian with mean 0 and block precision matrix� ∈ R

pm×pm

�i j =

⎧⎪⎪⎨
⎪⎪⎩
Im i = j
0.4Im |i− j| = 1
0.2Im |i− j| = 2
0 otherwise.

(21)

The graph determined by Model IV is shown in Figure 6.
The FAPO and FGGM estimators are computed as before.

The averaged ROC curves and the averagedAUC and their stan-
dard deviations for the two estimators are shown in Figure 7 and
Table 3, which indicate that, under theGaussian assumption, the
nonparametric FAPOdoes not perform aswell as the parametric
FGGM estimator and the NNS method.

Comparison 4: higher dimensions and larger sample sizes. We
now compare FAPO with other methods for higher dimensions

Figure . Graph of model IV.

and larger sample sizes: p = 20, 30, 40 and n = 100, 200, 300.
All three models, the nonlinear model, the heteroscedastic
model, and the Gaussian model are included in this compari-
son. Increasing the size of the network p requires us to create

Table . Averages and standard errors for AUC for model IV.

n=  n= 

FAPO FGGM NNS FAPO FGGM NNS

. (.) . (.) . (.) . (.) . (.) . (.)
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Figure . ROC curves (black for FAPO, blue for FGGM, and green for NNS) for Model IV with n = 100 (left) and n = 200 (right) in the balanced case.

new edges in the graph, which we do by augmenting Model II
(nonlinear), III (heteroscedastic), and IV (Gaussian).

For the nonlinear model with p = 20, we augment model II
by adding the nodes 11, . . . , 20 and the following edges:

Model II′ :

X (14)(t ) = (1+ |X (17)(t )|)3 + ε(14)(t );
X (15)(t ) = (1+ |X (14)(t )|)2 + ε(15)(t );
X (18)(t ) = 3X (14)(t )2 + ε(18)(t );
X (20)(t ) = exp[X (19)(t )]+ ε(20)(t ).

For p = 30, we augment Model II′ by adding nodes 21, . . . , 30
and the edges:

Model II′′ :
X (22)(t ) = (1+ |X (23)(t )|)2 + ε(22)(t );
X (26)(t ) = 3X (22)(t )2 + ε(26)(t );
X (27)(t ) = sin(πX (29)(t ))+ ε(27)(t ).

For p = 40, we further augment Model II′′ by adding nodes
31, . . . , 40 and the edges:

Model II′′′ : X
(32)(t ) = 3X (30)(t )2 + ε(32)(t );

X (39)(t ) = (1+ |X (32)(t )|)2 + ε(39)(t ).
We create the heteroscedastic model with p = 20 as follows:

Model III′ :

X (i)(t ) = ε(i)(t ), i ∈ M; X (4)(t ) = X (2)(t )2ε(4)(t );
X (6)(t ) = sin(πX (5)(t ))ε(6)(t ); X (7)(t ) = (X (2)(t )2 + (1+ |X (4)(t )|)3)ε(7)(t );
X (8)(t ) = X (6)(t )3ε(8)(t ); X (10)(t ) = exp[X (9)(t )]ε(10)(t );
X (14)(t ) = (1+ |X (17)(t )|)3ε(14)(t ); X (15)(t ) = (1+ |X (14)(t )|)2ε(15)(t );
X (18)(t ) = 3X (14)(t )2ε(18)(t ); X (20)(t ) = exp[X (19)(t )]ε(20)(t ),

where M = {1, 2, 3, 5, 9, 11, 12, 13, 17, 19}. For p = 30, we
augment Model III′ by adding the nodes 21, . . . , 30 and the
edges

Model III′′ :
X (22)(t ) = (1+ |X (23)(t )|)2ε(22)(t );
X (26)(t ) = 3X (22)(t )2ε(26)(t );
X (27)(t ) = sin(πX (29)(t ))ε(27)(t ).

For p = 40, we augment Model III′′ by adding the nodes
31, . . . , 40 and the edges

Model III′′′ :X
(32)(t ) = 3X (30)(t )2ε(32)(t );

X (39)(t ) = (1+ |X (32)(t )|)2ε(39)(t ).

For theGaussianwith p = 20, 30, 40,we simply augment the
block precision matrix (21) for i, j = 1, . . . , p. We label these
augmentedmodels as IV′, IV′′, and IV′′′. Table 4 shows the AUC
values of the estimates for these models for balanced cases. We
can see the advantage of FAPO holds up very well against the
increase in the network size.

8. Application to fMRI Data

Wenow apply FAPO and FGGM to the fMRI dataset mentioned
in the Introduction, which is taken from Consortium (2012).
The goal is to infer the brain network structures for healthy
children and for children with ADHD. The data consist of 79
subjects, with 42 healthy subjects and 37 ADHD subjects. The
ADHDgroup is further divided into 23 in theADHDCombined
group, 12 in the ADHD Inattentive group, and 2 in the ADHD
Hyperactive group. In our analysis, we used the 42 healthy sub-
jects and the 22 subjects in the ADHD Combined group (one
subject in the ADHD group is removed because it contains a
significant amount of missing observations). Technical details
regarding the sample and the scanning parameters can be found
at the ADHD-200 Consortium.

The dataset was preprocessed by the NeuroBureau com-
munity using the Athena pipeline. One hundred sixteen brain
regions-of-interest were constructed for the preprocessed
resting-state fMRI using the anatomical labeling atlas (AAL)
developed by Craddock et al. (2012). fMRI time series were
extracted for each of the 116 regions by averaging all voxels
time series within each region at each time point, resulting in 74
time points for each of the 116 regions for each subject. Hence,
for each subject we have 116 different regional fMRI time series,
observed at 74 time points. The AAL atlas and the regional
fMRI time series are publicly available at NITRC
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Table . Averages and standard errors of AUC for higher p and n.

Sample size n

p Model Method   

 I′ FAPO . (.) . (.) . (.)
FGGM . (.) . (.) . (.)
NNS . (.) . (.) . (.)

III′ FAPO . (.) . (.) . (.)
FGGM . (.) . (.) . (.)
NNS . (.) . (.) . (.)

IV′ FAPO . (.) . (.) . (.)
FGGM . (.) . (.) . (.)
NNS . (.) . (.) . (.)

 I′′ FAPO . (.) . (.) . (.)
FGGM . (.) . (.) . (.)
NNS . (.) . (.) . (.)

III′′ FAPO . (.) . (.) . (.)
FGGM . (.) . (.) . (.)
NNS . (.) . (.) . (.)

IV′′ FAPO . (.) . (.) . (.)
FGGM . (.) . (.) . (.)
NNS . (.) . (.) . (.)

 I′′′ FAPO . (.) . (.) . (.)
FGGM . (.) . (.) . (.)
NNS . (.) . (.) . (.)

III′′′ FAPO . (.) . (.) . (.)
FGGM . (.) . (.) . (.)
NNS . (.) . (.) . (.)

IV′′′ FAPO . (.) . (.) . (.)
FGGM . (.) . (.) . (.)
NNS . (.) . (.) . (.)

Because of the size of the data, it takes considerable amount
time to apply FGGM in its original form. We therefore use a
thresholding version of FGGM, that is, if the operator norm
of the (i, j)th block of the precision matrix of the functional
principal components is smaller than a threshold, then declare
there is no edge between vertices i and j. We applied FAPO
and the threshold-FGGM to the data to estimate the network
for the control and the ADHD Combined group. For each
group, we computed brain networks by taking the thresholds
for both estimators to be such that 5% of the pairs of vertices are
edges. This is a somewhat arbitrary threshold which we chose
so that the edges do not look too crowded. Ideally chosen by
a significance test of ACI, but this is beyond the scope of the
present article and we leave it to future research.

Again, we used the Brownian motion covariance kernel for
the first-level spaces, and the Gaussian radial basis kernel for the
second-level spaces. The tuning constants εT and εT are selected
in the same way as in the simulation experiments. We also used
the Gaussian radial basis kernel for the first-level space, with
similar result (not reported here).

Figure 8 shows the constructed networks for scenarios in the
combinations

{FAPO, FGGM} × {control,ADHD}.

Red vertices correspond to those with more than 20 edges. We
observe that the brain networks have different patterns for the
two groups. For example, from the FAPO network, we observe
dense connectivity in the inferior occipital gyrus regions (nodes
53 and 54) for the ADHD group relative to the control group.
Moreover, compared to the ADHD group, we see increased
functional connectivity for the control group in the middle

frontal gyri nodes (nodes 9 and 10), in the gyrus rectus node
(node 27), and in the vermis nodes (nodes 110, 113, and 114).

From Figure 8, we see that the graphs for the ADHD and
the control groups are quite different. It is then natural to ask
whether this difference is due to group variation or random
variation among individuals. We now investigate this question
for the FAPO networks. Since we are unaware of any formal test
that can determine this in our nonparametric and functional
data setting, we use the following heuristic approach. Since the
graphs are determined by the covariance operator �XX , the
question boils down to whether the difference in the covariance
operators is due to group variation or the variation among
individuals. More formally, letting �(1)

XX and �(0)
XX represent the

covariance operators for the ADHD and the control group,
respectively, we would like to see whether there is a significant
difference between them. To do so, we randomly split the
sample into two parts, of sample sizes 23 and 42, respectively,
which correspond to the actual sample sizes for the ADHD and
the control groups. We perform the random splitting 100 times.
For the sth split sample, we apply (6) to each group to estimate
�
(0)
XX and �(1)

XX , and denote them by �̂(0)
XX (s) and �̂

(1)
XX (s). We

then compute the operator norms

Rs =
∥∥∥�̂(1)

XX (s)− �̂(0)
XX (s)

∥∥∥ , s = 1, . . . , 100.

Let s = 0 represent the true the sample, and letR0 = ‖�̂(1)
XX (0)−

�̂
(0)
XX (0)‖. Figure 9 shows the histogram ofR1, . . . ,R100 with the

position of R0 marked by a red vertical line. It shows that the R0
is significantly larger than those produced by random splitting.

9. Discussion

In this article, we introduce a nonparametric functional graphi-
calmodel based on additive conditional independence. The gen-
eralization hinges on the additively nested Hilbert spaces, where
the first space contains functions of time, which is used to rep-
resent functional data, and the second space consists of func-
tions defined on the first space, which is used to characterize
the potentially nonlinear and heteroscedastic relations among
the random functions. The two spaces are additively nested—
additive in the sense that functions from different vertices are
put together by linear combination; nested in the sense that the
inner product of the first space determines the kernel of the sec-
ond space. The additive nature of this approach allows us to
avoid high-dimensional kernels, which is a source of the curse
of dimensionality.

Our simulation studies indicate that the new method works
better than the FGGM when the interdependencies among ver-
tices are nonlinear or heteroscedastic. We have developed an
efficient algorithms to implement the estimation and tuning
for FAPO. The method is very easy to use: the largest inverses
involved in the algorithm are n× n matrices regardless of the
size of the network; so it can be applied relative large networks.

In several ways, this article goes far beyond a formal gen-
eralization of the ASG model to the functional case. First, we
developed the consistency of the estimator, which was not
developed in Li, Chun, and Zhao (2014) in the multivariate
setting. Second, we derived the convergence rate for FAPO. This
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Figure . Brain networks by FGGM (upper panels), NNS (middle panels), and FAPO (lower panels) from the fMRI data for the ADHDCombined group (left panels) and control
group (right panels).

is significant because such convergence rates are completely
novel. In particular, our FAPO estimator is derived from an
extension of the correlation operator of Fukumizu, Bach, and
Gretton (2007), and to this point no convergence rates were
available for this operator. Since our convergence rate is easily
modified to cover the multivariate setting, our work also fills
a gap in that theory. Third, our asymptotic derivation leads
us to construct an FAPO estimator that is different from what
a straightforward extension of the estimator of Li, Chun, and
Zhao (2014) would be, in that the Tychonoff regularization
is placed on different operators. This modification assists us
to prove consistency and derive the convergence rates. It also

simplifies computation because it only requires one Tychonoff
regularization parameter; whereas the procedure in Li, Chun,
and Zhao (2014) requires an additional regularization parame-
ter. Fourth, in developing the asymptotic theory for the FAPO
estimator, we gather together a list of six important properties
of the coordinate mapping, which is conducive to systemati-
cally developing operator-based estimation procedures. Such
procedures are increasingly important for big and complex
data. Finally, our application to the fMRI network data reveals
the great potentials for nonparametric functional graphical
models, and the need for further developing related theories
and methodologies. Our results indicate that ADHD and
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Figure . Histograms for Rs and position of R0 (red line).

non-ADHD subjects do exhibit rather different brain network
patterns—at least based on the fMRI data we have analyzed.

Kernel representation of conditional independence has been
used previously in a variety of contexts. For example, Fukumizu,
Bach, and Gretton (2007) used it in canonical correlation anal-
ysis, Fukumizu, Bach, and Jordan (2009) used it in sufficient
dimension reduction, and Song, Fukumizu, and Gretton (2013)
used it in kernel belief propagation and kernel Bayesian filtering.
The difference between our approach and theirs is our use of
ACI, which need not be driven by any conditional distribution,
but nevertheless possesses the semigraphoid properties that are
key to constructing a graphical model. Since ACI only relies on
inner product, it ismore flexible than conditional independence.
Moreover, it allows us to avoid multi-dimensional kernels and
mitigate the curse of dimensionality. Another manifestation of
ACI is the Gaussian-like equivalence (5), which does not hold
generally for conditional independence. Since its introduction
by Li, Chun, and Zhao (2014), ACI has also been used and
further developed in other contexts. For example, Lee, Li, and
Zhao (2016b) used it in for variable selection; Lee, Li, and Zhao
(2016a) introduced an additive partial correlation operator for
evaluating ACI, and Liu, Lee, and Zhao (2016) used ACI for
variable screening in the high-dimensional setting. The current
article carries this idea further to construct nonparametric
graphical models for functional observations.

The idea advanced in this article opens up a number of pos-
sibilities for further development. For example, one could apply,
at the operator level, more sophisticated sparse estimation tech-
niques than thresholding, such as LASSO (Tibshirani 1996),
SCAD (Fan and Li 2001), and adaptive LASSO (Hui 2006). In
this connection, Lee, Li, and Zhao (2016b) developed LASSO-
based nonparametric variable selection procedure using theACI
principal in the nonparametric regression setting, by imposing
sparsity at the operator level, which may be adopted to further
refine our thresholding estimator for the FASG.

SupplementaryMaterials

The online supplementarymaterials contain the proofs of all the
Theorems, Lemmas, and Corollaries in the main article.
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