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Introduction

Conventional laminated composite materials exhibit a discontinuity
of material properties at the interface, which often results in stress
concentration and various damage such as delamination, matrix
cracking, and adhesive bond separation when subjected to environ-
mental and mechanical loadings. However, as characterized by
spatially graded reinforcement phases within the matrix phase in
a continuous manner (Kumar and Dutta 1998), functionally graded
materials (FGMs) possess continuously graded material properties
and thus have many advantages over conventional laminated
composite materials. For example, FGMs have potentially reduced
in-plane and transverse through-the-thickness stresses (Birman and
Byrd 2007), improved residual stress distribution (Miyamoto et al.
2013), enhanced thermal properties (Shen 2013), higher fracture
toughness (Park et al. 2010), reduced stress intensity (Ayhan 2007,
2009), and so on. Because of these unique features, FGMs have
gained much attention and have been widely used in many structural
applications such as aerospace (Ganapathi et al. 2006), electrical
engineering (Kargarnovin et al. 2007), biomedical engineering

(Pompe et al. 2003), and nuclear and civil engineering (Yiatros
et al. 2012). As examples, Yin et al. (2013) and Chen et al. (2016)
showed that by developing FGMs constructed of coarse aluminum
powder and high-density polyethylene (Al/HDPE) in a building-
integrated photovoltaic thermal roofing panel, considerable effi-
ciency in solar energy harvesting is achieved.

Due to the spatial variations in volume fractions of different
phases, FGMs are essentially heterogeneous, which leads to limited
analytical schemes to tackle the spatial variation in each phase.
In past decades, micromechanics-based homogenization was con-
sidered an effective approach to analyze FGMs (Birman and Byrd
2007), where the materials were homogenized locally at the rep-
resentative volume element (RVE) scale to achieve globally hetero-
geneous behavior at the macroscopic scale.

The equivalent inclusion method (EIM) (Eshelby 1957, 1959)
was developed by Eshelby to account for inhomogeneity within an
infinite matrix domain, such that the stiffness mismatch between
particle and matrix could be represented by a so-called eigenstrain.
With the introduction of eigenstrain, Eshelby (1957) developed the
EIM to solve the elastic field of a single inhomogeneity within an
infinite domain, in which the difference in material properties be-
tween particles and matrix was accommodated. This method was
further modified and extended by Moschovidis and Mura (1975) to
address the multiparticle problem and ellipsoidal shape. The EIM is
a powerful tool because it gives detailed stress and strain fields for
both particles and matrix. Thanks to the development of the ellip-
soidal particle, it is capable of solving composites with different
particle shapes. Ju and Chen (1994a, b) further developed the
EIM and applied it to the elastic prediction of particle-reinforced
metal matrix composites (PRMMCs) with spherical and spheroidal
particles. As for the elastoplastic behavior of composites, based on
previous work (Ju and Chen 1994a, b), effective PRMMC elasto-
plastic deformations and responses were estimated by virtue of the
“effective yield criterion” (Ju and Chen 1994c), derived microme-
chanically by considering the effects of elastic spherical particles
embedded in the elastoplastic matrix. Ju and Tseng (1996, 1997)
extended this theory to particle-reinforced ductile matrix composites,
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and presented an analytical expression of bulk and shear moduli for
two-phase composites that accounted for pairwise spherical particle
interaction. The overall elastoplastic stress-strain response of ran-
domly located, aligned/random-oriented particles merged into metal
matrix composites was studied by virtue of previous work (Sun and
Ju 2001, 2004).

Other inelastic problems have been widely studied for different
types of composites. A novel self-consistent modeling based on the
translated field method was developed by Mareau and Berbenni
(2015) to solve the elastoviscoplastic problems of fiber-reinforced
composites and polycrystalline materials. Misra and Poorsolhjouy
(2015) proposed a granular micromechanics model using grain-scale
force-displacement relationships to deal with the damage-plasticity
problems of cementitious materials with thermal effect. Misra and
Yang (2010) extended this approach for cohesive materials as well
as rate-dependent materials (Misra and Singh 2013). Marfia and
Sacco (2018) presented a multiscale technique for studying the non-
linear behavior of metal matrix composites, where piecewise uniform
transformation field analysis homogenization for the microscale and
a unit cell containing all properties of the heterogeneous materials for
the macroscale were considered separated.

The majority of studies just mentioned focused mainly on
homogeneous composites with uniform particle distribution
(i.e. material gradation being zero). When FGMs with polymeric
matrices are subjected to externally applied mechanical or thermal
loadings, plastic deformation commonly develops. In this respect,
elastoplastic analysis of FGMs is needed.

By comparison with the micromechanical model of FGMs,
Gasik (1998) provided the Gasik-Ueda model to characterize the
elastoplastic properties of FGM which worked for dilute distribu-
tion of particles in a uniform matrix without considering the inter-
action of particles. Following the micromechanics scheme, Yin
et al. (2004) proposed an elastic algorithm that contained the cou-
pling effect of neighboring layers and the pairwise interaction effect
between particles to accommodate the grading nature of FGMs,
which was extended to the thermomechanical (Yin et al. 2008)
and interfacial debonding (Paulino et al. 2006) behavior of FGMs.
However, to the best of the authors’ knowledge, an elastoplastic
algorithm that micromechanically considers particle interaction
for FGMs has yet to be found in the literature.

In this study, a micromechanics-based elastoplastic model that
considers pairwise particle interaction in FGMs was developed. A
two-phase FGM was studied, with the assumption that plastic de-
formation occurs only in the matrix phase. In this paper, a brief
introduction of micromechanical formulation is given, with its ap-
plication to the elastic analysis of FGMs. The corresponding plastic
algorithm is then discussed, where the ensemble average yield
function is introduced with the corresponding stress norm. Next,
validation of the proposed method through uniaxial compression
testing of a specific FGM, where good agreement was reached,
is taken up, followed by an explanation of the parametric studies
conducted, focusing on the effects of various particle distribution
functions and varying relative material stiffness. Finally, some
conclusions are provided.

Micromechanical Formulation

Micromechanics-Based Model with Equivalent
Inclusion Method

The elastic behavior of FGMs is discussed in detail by Yin
et al (2004), through the equivalent inclusion method (EIM) origi-
nated by Eshelby (1957). A brief review is given in this section to

introduce background and to formulate a complete elastoplastic
algorithm. In the EIM, the strain field of one particle embedded
in an infinite domain is decomposed into a far-field strain ε0 and
a disturbed strain ε 0 (Yin and Zhao 2016)

ε ¼ ε0 þ ε 0 ð1Þ

where the disturbed strain of ε 0 due to elastic mismatch between the
particles and the matrix is computed through the modified Green’s
function Gðx; x 0Þ

ε 0 ¼ −
Z
Ω
Gðx; x 0Þ · C0∶ε�ðx 0Þdx 0 ð2Þ

where Ω = particle domain; C0 = matrix elastic stiffness tensor
(C1 = particle elastic stiffness tensor); and ε� = eigenstrain to
simulate the material mismatch under the far-field load.

For a single particle embedded in the infinite domain, the stress
equivalent condition in the spherical particle domain is used to
compute the eigenstrain under the stiffness mismatch

C1∶ðε0 þ ε 0Þ ¼ C0∶ðε0 þ ε 0 − ε�Þ ð3Þ

after which the eigenstrain is related through the disturbed strain
ε 0 and computed as

ε� ¼ C−1
0 · ðDΩ − ΔC−1Þ−1∶ε0 ð4Þ

where ΔC ¼ C1 − C0; and DΩ = integration of the modified
Green’s function within the particle domain and can be found in
(Yin and Zhao 2016).

Combining Eqs. (1), (2), and (4), the strain field within the
spherical particle domain is computed as

ε̄ ¼ ðI − DΩ · ΔCÞ−1∶ε0 ð5Þ

The EIM scheme is extended to two spherical particles, and the
averaged strain field within one of the two particles’ domains is
derived as

¯̄ε ¼ 1

VΩ

Z
Ω
εdΩ ¼ ðI − DΩ · ΔC − D · ΔCÞ−1∶ε0 þOð ~ρ8Þ ð6Þ

where ~ρ ¼ a=b and VΩ ¼ 4πa3=3; a = particle radius; b = center-
to-center distance between the two particles centered at x1 and x2;
D = integration of the modified Green’s function inside the matrix
domain, where the other particle is located. Precision can reach the
order of Oð ~ρ8Þ, where ~ρ is not higher than 0.5.

Eq. (6) represents the volume average strain inside one of the
two particles, under the influence of the other. Subtracting
Eq. (5) from Eq. (6), the average influence of the second particle
on first particle’s domain is given as

dðx1; x2Þ ¼ ¯̄ε − ε̄ ¼ ΔC−1 · Lðx1; x2Þ∶ε0 ð7Þ

where the pairwise interaction tensor Lðx1; x2Þ is

Lðx1; x2Þ ¼ ð½ΔC−1 − DΩ − D�−1 − ½ΔC−1 − DΩ�−1Þ þOð ~ρ8Þ
ð8Þ

Eq. (7) can be extended to represent the influence of multiple
particles Piði ¼ 2; 3; : : : Þ on a particle P1ðx1Þ to the pairwise level,
such that for a given particle configuration G with N particles,
the average strain inside the first particle domain is given with
the pairwise particle influence as

© ASCE 04019033-2 J. Eng. Mech.
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¯̄εðx1Þ ¼ ðI − DΩ · ΔCÞ−1∶ε0 þXN
i¼2

dðx1; xiÞ ð9Þ

Elastic Analysis of Functionally Graded Materials

The microstructure of a typical FGM is shown in Fig. 1. The gra-
dation direction is assumed to be along the X3ðx3Þ axis. A micro-
scopic RVE with coordinate x is centered at a macroscopic point X.
Without loss of generality, it is assumed that a particle P1 exists at
the center x ¼ 0 of the microscopic RVE. With the help of Eq. (9),
the averaged strain inside the domain of particle P1 is given as

hεiP1 ¼ ðI − DΩ · ΔCÞ−1∶ε0ðP1Þ þ
X∞
i¼2

ΔC−1 · LðP1;PiÞ∶ε0ðPiÞ

ð10Þ
where ε0ðPiÞ = prescribed far-field strain at the same height as that
of the corresponding particle, which varies along the microscopic
field with particle volume fraction, such that Eq. (10) can be further
written as

hεið0Þ ¼ ðI − DΩ · ΔCÞ−1∶ε0ð0Þ þX∞
i¼1

ΔC−1 · Lð0; xiÞ∶ε0ðxi3Þ

ð11Þ
where the prescribed far-field strain ε0ðxi3Þ is related to the far-field
strain at the center of the RVE ε0ð0Þ by the Taylor expansion to the
first order,

ε0ðxi3Þ ≅ ε0ð0Þ þ ε0;3ð0Þðxi − 0Þ ¼ ε0ð0Þ þ ε0;3ð0Þx3 ð12Þ
Since all particles are statistically distributed microscopically in

a random way, a probability function Pðxj0Þ is introduced to stat-
istically represent the probability of a particle centered at x when
another particle is centered at 0, which converts the summation of
Eq. (11) into integration

hdið0Þ ¼
X∞
i¼1

ΔC−1 · Lð0; xiÞ∶ε0xi3

¼
Z
D
Pðxj0ÞΔC−1 · Lð0; xiÞ∶ε0ðxi3Þdx ð13Þ

The particle density function Pðxj0Þ is also expanded with
Taylor expansion to the first order to accommodate the gradation
of particle distribution

Pðxj0Þ ¼ 3

4πa3
½ϕðX3Þ þ e−x

δϕ;3ðX3Þ · x3� ð14Þ

where δ = parameter to control the attenuation rate such that the
probability density function remains within a reasonable range
inside the RVE.

Eqs. (12)–(14) are plugged into Eq. (11) for the explicit relation
between particle strain and prescribed far-field strain as

hεiðX3Þ ¼ ðI − DΩ · ΔCÞ−1∶ε0ðX3Þ þ ϕΔC−1 · D∶ε0ðX3Þ
þ ϕ;3ΔC−1 · F ∶ε0;3ðX3Þ ð15Þ

Tensor D addresses the pairwise interaction between particles,
while tensor F accounts for the coupling of layers along the
gradation direction. Eq. (15) relates the ensemble average particle
strain hεiðX3Þ to its corresponding prescribed far-field strain
ε0ðX3Þ, which is macroscopically equivalent to the matrix strain.
The overall macroscopic stress σ̄ can be derived as the volume aver-
age of the particle and matrix stress, so

σ̄ ¼ ϕðX3ÞC1∶hεiðX3Þ þ ½1 − ϕðX3Þ�C0∶hεi0ðX3Þ ð16Þ

Given σ̄, Eqs. (15) and (16) formulate an ordinary differential
equation that can be solved by the backward Euler’s method, such
that the elastic behavior of FGMs considering pairwise particle
interaction is well defined.

Effective Plastic Behavior of FGMs

In the plastic analysis of two-phase FGMs, it is assumed that plas-
ticity only occurs in the matrix phase while the particles stay in the
elastic phase. The von Mises associated yield rule with isotropic
hardening is considered (Simo and Hughes 2006) as

Fðσ; epÞ ¼
ffiffiffiffi
H

p −
ffiffiffi
2

3

r
KðepÞ ð17Þ

For an isotropic homogeneous material, the stress norm takes
the form H ¼ σ∶Id∶σ, and the isotropic hardening function takes
the form KðepÞ ¼ σY þ hðepÞq, where σY is the yield stress, h
and q are the hardening parameters, and ep is the effective plastic
strain. However, such stress norm definition is suitable for isotropic
homogeneous material and can only be applied at the microscopic
scale. An ensemble average stress norm and the corresponding
effective yield function that defines the macroscopic behavior is
needed. Following Ju and Chen’s framework (Ju and Chen 1994c),
the volume average stress norm is defined as:

ffiffiffiffiffiffiffiffi
hHi

p
¼ ð1 − ϕÞ

ffiffiffiffiffiffiffiffiffiffiffi
hHim

p
ð18Þ

where hHim stands for the ensemble average stress norm of matrix
phase. Hardening occurs only in matrix phase, with no contribution
from the particle phase. Therefore, ep in Eq. (18) is replaced by the
matrix effective plastic strain epm. The ensemble average yield
function for two-phase FGM is written as

F̄ðσ; epmÞ ¼ ð1 − ϕÞ
ffiffiffiffiffiffiffiffiffiffiffi
hHim

p −
ffiffiffi
2

3

r
KðepmÞ ð19Þ

Given a particle configuration G, the ensemble average stress
norm of matrix is defined as

hHimðxÞ ¼ H0 þ
Z
G
fHðxjGÞ −H0gPðGÞdG ð20Þ

whereH0 ¼ σ0∶Id∶σ0 = stress norm of the prescribed far-field stress
σ0. Since the evaluation based on the real particle configuration G is
impossible, the higher-order effect of particle influence in Eq. (20)
is neglected, leaving only the first-order influence of the particle on

Fig. 1. Micromechanics-based model of an FGM cross the macro-
scopic and microscopic scales.

© ASCE 04019033-3 J. Eng. Mech.
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the matrix, creating a simplified ensemble average stress norm of
the matrix phase

hHimðxÞ ¼ H0 þ
Z
jx−x1j>a

fHðxjx1Þ −H0gPðx1Þdx1 ð21Þ

where Pðx1Þ = probability density function and has the form
of Eq. (14).

With the aid of Eqs. (1), (2), and (4), the matrix stress is evalu-
ated as

σ ¼ σ0 þ σ 0 ¼ ðI þ AÞ∶σ0 ð22Þ
where A ¼ −D∶ðDΩ −ΔC−1Þ−1.

Substituting Eq. (22) into Eq. (21) yields the explicit form of the
ensemble average stress norm of the matrix as follows:

hHimðxÞ ¼ H0 þ
Z
jx−x1j>a

fAT∶Id∶Aþ AT∶Id þ Id∶AgPðx1Þdx1
¼ σ0∶T0∶σ0 ð23Þ

where AT is the transpose of A.
Here, the components of the fourth-rank tensor T0 are given by

T0
ijkl ¼ T0

1δijδkl þ T0
2ðδikδjl þ δilδjkÞ ð24Þ

with

3T0
1 þ 2T0

2 ¼
ð3αþ 2βÞ2ð1 − 2v0Þ2ϕ

18ð1 − v0Þ2μ2
0

ð25Þ

T0
2 ¼

1

2
þ ϕð23 − 50v0 þ 35v20Þβ2

225ð1 − v0Þ2μ2
0

ð26Þ

where μ0 and ν0 are the shear modulus and Poisson ratio of matrix
phase, correspondingly, and the α and β are defined as: α ¼ −γ

3γþ2η ;

β ¼ 1
4η with γ ¼ 1

30μ0ð1−ν0Þ − ð 1
9Δk − 1

6ΔμÞ; η ¼ 5ν0−4
30μ0ð1−ν0Þ − 1

4Δμ.

Eq. (24) gives the stress norm that accounts for the first-order
particle–matrix influence. It assumes dilute particle configuration
so that the disturbed strain field from each particle can be linearly
superposed. Pairwise particle interaction is considered when the
volume fraction is high. Eqs. (15) and (16) give the relation be-
tween the ensemble average stress and the far-field stress σ0 as

σ0 ¼ P∶σ̄ ð27Þ

Eq. (27) holds for each individual layer ðσ0Þi ¼ Pi∶ðσ̄Þi; how-
ever, the derivative of the far-field strain ε0;3 makes the fourth-rank
tensor P implicit, to be solved numerically by the backward Euler’s
method in each layer in the gradation direction as follows:

ðσ̄Þi ¼ H∶ðσ0Þi þ Q∶ðσ0Þi−1 ð28Þ
where ð·Þi = quantity in the ith layer along the thickness; and

H ¼ fϕC1 · ½ðI − DΩ · ΔCÞ−1 þ ϕΔC−1 · D� · C−1
0

þ ð1 − ϕÞIg − Q ð29Þ

Q ¼ −N
t
ϕ;3ϕC1 · ΔC−1 · F · C−1

0 ð30Þ

where t = thickness; and N = number of layers along the gradation.
Based on the equilibrium, the ensemble average stresses are the
same in each layer ðσ̄Þi ¼ ðσ̄Þj. Plugging Eq. (27) into Eq. (28)
gives

I ¼ H∶Pi þ Q∶Pi−1 ð31Þ
The boundary at i ¼ 1 corresponds to the 100% matrix mate-

rial, such that an explicit equation can be formulated by Eqs. (16)
and (17) to calculate P0. For FGMs where the particle volume frac-
tion does not start from 0%, the boundary condition can be formu-
lated by dropping the Q term in Eq. (29). With the help of Eq. (27),
the stress norm is written in terms of ensemble average stress as

hHiimðxÞ ¼ σ̄∶T̄i∶σ̄ ð32Þ
where the fourth-order tensor T̄i is defined as

T̄i ¼ Pi∶T0∶Pi ð33Þ
Therefore, the yield function for FGMs becomes

F̄iðσ̄; epmÞ ¼ ð1 − ϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̄∶T̄i∶σ̄

p
− ½σY þ hðepim Þq� ð34Þ

Following the associative flow rule, the macroscopic plastic
strain in each layer is determined by

˙̄εp ¼ λ̇
∂F̄
∂σ̄

¼ λ̇ð1 − ϕÞ T̄∶σ̄ffiffiffiffiffiffiffiffiffiffiffi
σ̄∶T̄∶σ̄p ð35Þ

Accordingly, the effective plastic strain for the matrix is

ėpm ¼ ėp

1 − ϕ
¼ 1

1 − ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
˙̄εp∶ ˙̄εp

r
ð36Þ

The macroscopic total strain is the volumetric average of the
particle and the matrix

hεi ¼ ð1 − ϕÞεm þ ϕεp ð37Þ
where the matrix strain is the combination of its elastic and plastic
part εm ¼ εem þ εpm, while the particle total strain contains only the
elastic part εp ¼ εep. The elastic part, εem and εep, is determined
through the elastic algorithm described by Eqs. (15) and (16)while
the plastic part, εpm, is defined by Eqs. (34)–(36). If the macroscopic
ensemble average stress σ̄ is known, the consistency condition re-
quires the yield function [Eq. (28)] to be smaller than or equal to
zero, which determines the effective plastic strain directly. In case
of strain-driven plasticity, the return mapping algorithm is applied
to determine λ̇ from the consistency condition and perform the
stress update.

Experimental Validation

Although experimental data for plastic loading of FGMs are not
found in the literature, the plastic behavior of particle-reinforced
metal matrix composites (PRMMCs) is well documented, where the
reinforcing particles are assumed to be uniformly distributed in the
metal matrix to exhibit overall homogeneous mechanical behavior.
The proposed model is downgraded for the elastoplastic behavior
prediction of PRMMC for comparison with Ju and Chen’s (1994c)
model as well as experiments conducted by Yang et al. (1991). Good
agreement has been achieved, and the detailed discussion can be
found in Zhang et al. (submitted, Int. J. Plast, Elsevier, Amsterdam,
Netherlands).

Elastoplastic tests of a specific FGM developed from the au-
thors’ recent research were conducted and compared with theoreti-
cal predictions. The FGMwas made from coarse aluminum powder
(Al-111) and high-density polyethylene (HDPE) via the vibration
method. Al-111 was chosen to mix with the finer HDPE powder.
The desired gradation of the Al/HDPE FGM in terms of volume

© ASCE 04019033-4 J. Eng. Mech.
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fraction of aluminum to the FGM was 0%–50% across its thick-
ness. Aiming at this gradation, a mixing design with an appropriate
Al-to-HDPE volume ratio of 1:3 was applied and the ethanol added
was determined by an ethanol–to–mixed powder weight ratio of
28%. Details on the mix design and fabrication processes are pro-
vided in Yang et al. (1991).

The uniaxial elastoplastic compression test was conducted with
pure HDPE samples to obtain the elastoplastic material properties
from the loading curve such that E ¼ 550 MPa, v ¼ 0.3, σY ¼
17.6 MPa, h ¼ 67.5 MPa, and q ¼ 0.5444. Four cubic FGM sam-
ples were cut from an FGM plate for the uniaxial compression test
(dimension and weight information is provided in Table 1). The
samples were uniaxially compressed with the Instron 5984 34-k
Universal Testing Machine at the Carleton Laboratory of Columbia
University. The samples were loaded at 0.51 mm/min (0.02 in./min)
until 1.52-mm (0.06-in.) total deformation was reached, where the
approximate total deformation was about 10%.

Since authentic particle distribution along thickness is hard to
obtain through direct measurement, an innovative image-based
method was proposed to statistically retrieve it so that an accurate
elastoplastic prediction could be achieved to compare with the
experiment. The authors’ particle distribution along the FGM thick-
ness is determined through image analysis as ϕðxÞ ¼ −0.5169x2þ
0.8130x, where x is the relative location along the gradation direc-
tion. The elastoplastic loading curves for all four FGM samples
were recorded and plotted in Fig. 2, where the error bar represents
the maximum deviation of all four samples. Predicted elastoplastic
behavior under authentic particle volume fraction distribution is
plotted with solid line.

Fig. 2 shows that experimental data from the four FGM samples
exhibited similar elastoplastic behavior with a narrow deviation

over the entire loading process. The theoretical elastoplastic pre-
diction based on authentic particle volume fraction distribution
slightly underestimated overall deformation, but captured the trend
of behavior very well. The prediction mismatch was mostly in the
elastic stage and became less obvious during the plastic stage.
The underestimation of deformation may have resulted from the
effect of debonding and the imperfect interface between the alumi-
num particles and the HDPE matrix and from the potential air
voids inside the samples, which were neglected in the theoretical
derivation. The proposed algorithm was developed based on the
assumption of spherical particles, which may also have contrib-
uted to the imperfect match. Overall, the proposed elastoplastic
algorithm captured the real elastoplastic behavior of FGMs very
well and can be used for further investigation and industry
prediction.

It is also worthwhile to point out that HDPE is a highly viscous
and thermoplastic material, such that time and temperature have a
significant influence on its overall mechanical behavior. Rate-
dependent plasticity can happen if loads are applied over long time
periods. In the current study, thermo and viscous effects were ne-
glected thanks to short loading times in the uniaxial loading test. To
fully understand the elastoplastic behavior of HDPE-based FGMs,
more investigation on thermal and viscous effects will be carried
out in the future.

Parametric Studies

From our previous preliminary studies, it was concluded that
when the overall particle volume fraction is fixed, the effective
Young’s modulus is slightly dependent on the distribution function;
plastic behavior is strongly affected by both overall particle volume
fraction and the type of particle distribution. However, relevant
studies have been limited to quadratic and linear distribution with
similar trends, and their conclusions no longer hold for extreme
particle configurations, such as overly sedimented (delaminated)
composites and insufficiently sedimented homogeneous FGMs,
which are common in the both laboratory testing and industry
manufacturing.

Besides volume fraction and particle distribution, the relative
mechanical properties of particles over matrix significantly influ-
ence the elastoplastic behavior of FGMs. In this section, these are
further investigated to clarify the effective elastoplastic behaviors
of FGMs. The mechanical parameters used in this study were set
as E0 ¼ 550 MPa, v0 ¼ 0.3, σY ¼ 17.6 MPa, h ¼ 67.5 MPa, q ¼
0.5444 for the HDPE matrix and E1 ¼ 70 GPa, v1 ¼ 0.33 for the
Al particles. The effective Young’s modulus Ee, the overall offset
yield stress σ0.2, and the corresponding total strain ε0.2 were used
for comparison.

Effect of Different Volume Fractions

Fig. 3 shows the elastoplastic predictions for FGMs under different
particle distributions, which include uniform, root, quadratic, lin-
ear, and sigmoid. The overall particle volume fractions are the same
as those of the samples in the experiment: 23.42%. The effective
Young’s modulus Ee, the offset yield stress σ0.2, and the corre-
sponding total strain ε0.2 are provided in Table 2 for comparison.
The particle distributions in this study were versatile, where ex-
treme cases such as homogeneously mixed and overly sedimented
FGMs were considered. The overall composite stiffness reached its
strongest under uniform particle distribution and gradually weak-
ened with increasing particle distribution order. The overly sedi-
mented FGM, represented by the sigmoid function, showed the
weakest material stiffness (Fig. 3). The effective Young’s modulus

Table 1. FGM sample dimensions and weights

Sample H [mm (in.)] W [mm (in.)] D [mm (in.)] Weight (g)

1 13.39 (0.5273) 13.27 (0.5223) 14.24 (0.5605) 3.40
2 13.52 (0.5324) 13.62 (0.5361) 13.27 (0.5223) 3.30
3 13.20 (0.5198) 13.18 (0.5188) 13.35 (0.5254) 3.16
4 13.63 (0.5366) 13.75 (0.5414) 13.61 (0.5359) 3.43
Average 13.44 (0.5290) 13.45 (0.5296) 13.61 (0.5360) 3.32

Fig. 2. FGM elastoplastic behavior: experimental and predicted.
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Ee remained almost the same, with a variation smaller than 6%.
However, the offset yield stress σ0.2 showed much greater variation,
up to around 37%. It was concluded that particle gradation has
a small effect on elastic behavior but a large influence on plastic
behavior.

Significantly, although the homogeneous mixture provided bet-
ter plastic behavior, the special advantage of material gradation was
jeopardized. One of the greatest advantages of FGMs is their ability
to tailor particle distribution for optimal design considering both
the thermal and the elastoplastic behavior of FGM panels.

Effect of Elastic Constant Variation

Apart from overall volume fraction and particle distribution, par-
ticle and matrix relative stiffness has an important effect on the
overall elastoplastic behavior of FGMs. Fig. 4 shows the effect
of Young’s modulus ratio on the dimensionless mechanical proper-
ties based on the particle volume fraction as ϕðxÞ ¼ −0.5169x2þ
0.8130x. Each mechanical property is divided by its corresponding
value in the pure matrix stage to reach its dimensionless phases.
Fig. 4 shows that the monotonically increase in particle stiffness
makes a gradually weakening contribution to overall stiffness. It
is seen from the plot in Fig. 4 that all of the overall effective
mechanical properties grow almost linearly with the Young’s
modulus ratio when the ratio is smaller than 8, and gradually sta-
bilize when the ratio is larger than 15, which means that particles
with a stiffness 100 times stronger than the matrix stiffness make a
similar contribution to overall stiffness, such that the particles 15

times stronger. It is interesting that the increase in particle stiffness
does not guarantee a linear increase in overall effective stiffness and
that its strengthening effect quickly fades when the stiffness ratio is
higher than about 20. It is also straightforward to conclude that an
optimal particle stiffness exists, from the elastoplastic point of view,
that avoids its potential waste. Also, matrix stiffness plays an im-
portant role in overall effective stiffness and should not be ne-
glected in elastoplastic design.

Summary and Conclusions

A micromechanics-based algorithm to predict the elastoplastic
behavior of FGM was presented. The pairwise interaction between
particles was determined to account for the higher-order effect of
particles on the matrix. The microscopic stress norm was trans-
formed into the macroscopic stress norm for the yield function with
ensemble average stress components. The coupling effect of neigh-
boring layers was considered numerically, through the backward
Euler’s method, in calculating the relationship between ensemble
average stress and far-field stress. It was determined that, when
material gradation was zero, the proposed algorithm could be ap-
plied to homogeneous composites. The uniaxial elastoplastic com-
pression tests on FGMs were conducted to validate the proposed
algorithm. The elastoplastic behavior prediction based on authentic
particle distribution was discussed and compared with experimen-
tal results. Despite a slight overestimation of stiffness, which may
have been caused by potential defects in the samples, such as in-
terfacial debonding and microcracking, the model well predicted

Fig. 3. Stress-strain curve for Al/HDPE composites with different
distributed functions at the same overall particle volume fraction of
23.42%.

Table 2. Comparison of Ee, σ0.2, and ε0.2 under different distribution functions

Distribution function Ee (MPa) Comparison (%) σ0.2 (MPa) Comparison (%) ε0.2(%) Comparison (%)

Uniform 907.14 0.00 29.34 0.00 3.434 0.00
Root 895.48 −1.28 21.03 −28.32 2.548 −25.80
Quadratic 892.16 −1.65 20.89 −28.78 2.542 −25.98
Linear 877.54 −3.26 20.34 −30.66 2.518 −26.67
Sigmoid 854.65 −5.79 18.67 −36.37 2.384 −30.58

Fig. 4. Dimensionless overall effective elastoplastic properties shown
varying with E1=E0, where E1 and E0 are Young’s moduli of particle
and matrix, respectively.
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the elastoplastic behavior of FGMs and, it is concluded, can be used
for material design and analysis.

To further study the elastoplastic behavior of FGMs, parametric
studies of different particle distribution functions and relative
material stiffnesses were carried out. It was observed that the par-
ticle distribution function had a small effect on FGM overall elastic
behavior but a large influence on plastic behavior, and that increas-
ing particle stiffness had a very minor strengthening effect on over-
all stiffness when the stiffness ratio was higher than about 20. These
observations are important for laboratory research and industry
manufacturing.
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