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Hodge theory for combinatorial geometries

By KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

Abstract

We prove the hard Lefschetz theorem and the Hodge-Riemann rela-
tions for a commutative ring associated to an arbitrary matroid M. We use
the Hodge-Riemann relations to resolve a conjecture of Heron, Rota, and
Welsh that postulates the log-concavity of the coefficients of the character-
istic polynomial of M. We furthermore conclude that the f-vector of the
independence complex of a matroid forms a log-concave sequence, proving
a conjecture of Mason and Welsh for general matroids.

1. Introduction

The combinatorial theory of matroids starts with Whitney [Whi35], who
introduced matroids as models for independence in vector spaces and graphs.
See [Kun86, Ch. I] for an excellent historical overview. By definition, a matroid
M is given by a closure operator defined on all subsets of a finite set E satisfying
the Steinitz-Mac Lane exchange property:

For every subset I of E and every element a not in the closure of I, if
a is in the closure of I U {b}, then b is in the closure of I U {a}.

The matroid is called loopless if the empty subset of E is closed, and it is
called a combinatorial geometry if, in addition, all single element subsets of
E are closed. A closed subset of E is called a flat of M, and every subset
of E has a well-defined rank and corank in the poset of all flats of M. The
notion of matroid played a fundamental role in graph theory, coding theory,
combinatorial optimization, and mathematical logic; we refer to [Wel71] and
[0x192] for a general introduction.

As a generalization of the chromatic polynomial of a graph [Bir13], [Whi32],
Rota defined for an arbitrary matroid M the characteristic polynomial

() = 3~ Ak,
ICE
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where the sum is over all subsets I C E and crk([) is the corank of I in M
[Rot64]. Equivalently, the characteristic polynomial of M is

x(d) = > p(@, F) A,
F

where the sum is over all flats F' of M and g is the Mdbius function of the
poset of flats of M; see Chapters 7 and 8 of [Whi87]. Among the problems that
withstood many advances in matroid theory are the following log-concavity
conjectures formulated in the 1970s.

Write r + 1 for the rank of M, that is, the rank of E in the poset of flats
of M.

CONJECTURE 1.1. Let wi(M) be the absolute value of the coefficient of
N'=k+1 i the characteristic polynomial of M. Then the sequence wi(M) is
log-concave:

wi—1 (M)wpp1 (M) < wp(M)? forall1 <k <r.
In particular, the sequence wi(M) is unimodal:
wo(M) <wi (M) < - <wy(M) > -+ > w,(M) > w,y1 (M) for some index .

We remark that the positivity of the numbers wg(M) is used to deduce
the unimodality from the log-concavity [Wel76, Ch. 15].

For chromatic polynomials, the unimodality was conjectured by Read, and
the log-concavity was conjectured by Hoggar [Rea68], [Hog74]. The prediction
of Read was then extended to arbitrary matroids by Rota and Heron, and the
conjecture in its full generality was given by Welsh [Rot71], [Her72], [Wel76].
We refer to [Whi87, Ch. 8] and [Ox192, Ch. 15] for overviews and historical
accounts.

A subset I C FE is said to be independent in M if no element ¢ in [ is in
the closure of I\ {i}. A related conjecture of Welsh and Mason concerns the
number of independent subsets of E of given cardinality [Wel71], [Mas72].

CONJECTURE 1.2. Let fr,(M) be the number of independent subsets of E
with cardinality k. Then the sequence fi(M) is log-concave:

Fee1 (M) fap1 (M) < fro(M)? for all 1 < k <.
In particular, the sequence fi,(M) is unimodal:
foM) < fi(M) < - < fiM) = -+ > fr(M) > fr41(M)  for some index L.

We prove Conjectures 1.1 and 1.2 by constructing a “cohomology ring” of
M that satisfies the hard Lefschetz theorem and the Hodge-Riemann relations;
see Theorem 1.4.
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HODGE THEORY FOR COMBINATORIAL GEOMETRIES 383

1.1. Matroid theory has experienced a remarkable development in the
past century and has been connected to diverse areas such as topology [GM92],
geometric model theory [Pil96], and noncommutative geometry [vN98]. The
study of hyperplane arrangements provided a particularly strong connection;
see, for example, [OT92], [Sta07]. Most important for our purposes is the
work of de Concini and Procesi on certain “wonderful” compactifications of
hyperplane arrangement complements [DCP95]. The original work focused
only on realizable matroids, but Feichtner and Yuzvinsky [FY04] defined a
commutative ring associated to an arbitrary matroid that specializes to the
cohomology ring of a wonderful compactification in the realizable case.

Definition 1.3. Let Sy be the polynomial ring
Sym o= R[:UF]F is a nonempty proper flat of M}
The Chow ring of M is defined to be the quotient
A*(M)r := Sm/(Im + JIm)s

where Iy is the ideal generated by the quadratic monomials
Tp TR, F1 and Fy are two incomparable nonempty proper flats of M,

and Jy is the ideal generated by the linear forms

Z Tp — Z xp, 41 and i9 are distinct elements of the ground set F.
ner o€l

Conjecture 1.1 was proved for matroids realizable over C in [Huh12] by
relating wy(M) to the Milnor numbers of a hyperplane arrangement realizing
M over C. Subsequently in [HK12], using the intersection theory of wonder-
ful compactifications and the Khovanskii-Teissier inequality [Laz04, §1.6], the
conjecture was verified for matroids that are realizable over some field. Lenz
used this result to deduce Conjecture 1.2 for matroids realizable over some
field [Len13].

After the completion of [HK12], it was gradually realized that the validity
of the Hodge-Riemann relations for the Chow ring of M is a vital ingredient
for the proof of the log-concavity conjectures; see Theorem 1.4 below. While
the Chow ring of M could be defined for arbitrary M, it was unclear how to
formulate and prove the Hodge-Riemann relations. From the point of view of
[FY04], the ring A*(M)g is the Chow ring of a smooth, but noncompact toric
variety X (Xn), and there is no obvious way to reduce to the classical case of
projective varieties. In fact, we will see that X (Xyr) is “Chow equivalent” to a
smooth or mildly singular projective variety over K if and only if the matroid
M is realizable over K; see Theorem 5.12.

1.2.  We are nearing a difficult chasm, as there is no reason to expect a
working Hodge theory beyond the case of realizable matroids. Nevertheless,
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384 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

there was some evidence on the existence of such a theory for arbitrary ma-
troids. For example, it was proved in [AS16], using the method of concentration
of measure, that the log-concavity conjectures hold for a class of non-realizable
matroids introduced by Goresky and MacPherson in [GMS8S, II1.4.1].

We now state the main theorem of this paper. A real-valued function ¢
on the set of nonempty proper subsets of E is said to be strictly submodular if

cr, +c1, > cnnn, + crur, for any two incomparable subsets I1, Io C E,

where we replace ¢y and cg by zero whenever they appear in the above in-
equality. We note that strictly submodular functions exist. For example,

I—|I||E\ ]

is a strictly submodular function. A strictly submodular function ¢ defines an
element

l(c) =" cpzp € A'(M)g,
F

where the sum is over all nonempty proper flats of M. Note that the rank
function of any matroid on F can, when restricted to the set of nonempty
proper subsets of E, be obtained as a limit of strictly submodular functions.
We write “deg” for the isomorphism A" (M)g ~ R determined by the property
that

deg(zpzp, ---xp,.) = 1 for any flag of nonempty proper flats
FLCFC---CF,.

We refer to Section 5.3 for the existence and the uniqueness of the linear map
“deg.”
THEOREM 1.4. Let ¢ be an element of AY(M)r associated to a strictly
submodular function.
(1) (Hard Lefschetz theorem). For every nonnegative integer ¢ < &, the mul-
tiplication by £ defines an isomorphism
LI AYM)g — A" (Mg, a— "% g,

(2) (Hodge-Riemann relations). For every nonnegative integer q < &, the
multiplication by ¢ defines a symmetric bilinear form

Q7+ AYM)g x AY(M)r — R, (a1,a2) — (=1)7 deg(a1 - L a2)
that is positive definite on the kernel of £ - L.

In fact, we will prove that the Chow ring of M satisfies the hard Lefschetz
theorem and the Hodge-Riemann relations with respect to any strictly convex
piecewise linear function on the tropical linear space ¥y associated to M; see
Theorem 8.8. This implies Theorem 1.4. Our proof of the hard Lefschetz
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HODGE THEORY FOR COMBINATORIAL GEOMETRIES 385

theorem and the Hodge-Riemann relations for general matroids is inspired by
an ingenious inductive proof of the analogous facts for simple polytopes given
by McMullen [McM93]; compare also [dCMO02] for related ideas in a different
context. To show that this program, with a considerable amount of work,
extends beyond polytopes, is our main purpose here.

In Section 9, we show that the Hodge-Riemann relations, which are in
fact stronger than the hard Lefschetz theorem, imply Conjectures 1.1 and 1.2.
We remark that, in the context of projective toric varieties, a similar reasoning
leads to the Alexandrov-Fenchel inequality on mixed volumes of convex bodies.
In this respect, broadly speaking the approach of the present paper can be
viewed as following Rota’s idea that log-concavity conjectures should follow
from their relation with the theory of mixed volumes of convex bodies; see
[Kun95].

1.3. There are other combinatorial approaches to intersection theory for
matroids. Mikhalkin et al. introduced an integral Hodge structure for arbitrary
matroids modeled on the cohomology of hyperplane arrangement complements
[IKMZ16]. Adiprasito and Bjorner showed that an analogue of the Lefschetz
hyperplane section theorem holds for all smooth (i.e., locally matroidal) pro-
jective tropical varieties [AB14].

Theorem 1.4 should be compared with the counterexample to a version of
Hodge conjecture for positive currents in [BH17]: The example used in [BH17]
gives a tropical variety that satisfies Poincaré duality, the hard Lefschetz the-
orem, but not the Hodge-Riemann relations.

Finally, we remark that Zilber and Hrushovski have worked on subjects
related to intersection theory for finitary combinatorial geometries; see [Hru92].
At present the relationship between their approach and ours is unclear.

1.4. Owverview over the paper. Sections 2 and 3 develop basic combina-
torics and geometry of order filters in the poset of nonempty proper flats of a
matroid M. The order filters and the corresponding geometric objects Yy 2,
which are related to each other by “matroidal flips,” play a central role in our
inductive approach to the Main Theorem 1.4.

Sections 4 and 5 discuss piecewise linear and polynomial functions on sim-
plicial fans and, in particular, those on the Bergman fan 3j;. These sections are
more conceptual than the previous sections and, with the exception of the im-
portant technical Section 4.3, can be read immediately after the introduction.

In Section 6 we prove that the Chow ring A*(M) satisfies Poincaré duality.
The result and the inductive scheme in its proof will be used in the proof of the
Main Theorem 1.4. After some general algebraic preparation in Section 7, the
Hard Lefschetz theorem and the Hodge-Riemann relations for matroids will be
proved in Section 8.
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386 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

In Section 9, we identify the coefficients of the reduced characteristic poly-
nomial of a matroid as “intersection numbers” in the Chow ring of the ma-
troid. The identification is used to deduce the log-concavity conjectures from
the Hodge-Riemann relations.

Acknowledgements. The authors thank Patrick Brosnan, Eduardo Cat-
tani, Ben Elias, Ehud Hrushovski, Gil Kalai, and Sam Payne for valuable con-
versations. We thank Antoine Chambert-Loir, Chi Ho Yuen, and the anony-
mous referees for meticulous reading. Their valuable suggestions significantly
improved the quality of the paper. Karim Adiprasito was supported by a Min-
erva Fellowship form the Max Planck Society, NSF Grant DMS-1128155, and
ERC StG 716424 - CASe and ISF Grant 1050/16. June Huh was supported
by a Clay Research Fellowship and NSF Grant DMS-1128155. Eric Katz was
supported by an NSERC Discovery grant.

2. Finite sets and their subsets

2.1. Let E be a nonempty finite set of cardinality n+1, say {0, 1,...,n}.
We write ZF for the free abelian group generated by the standard basis vectors
e; corresponding to the elements ¢ € E. For an arbitrary subset I C F, we set

ey = Zei.

i€l
We associate to the set F a dual pair of rank n free abelian groups
Np:=7Z%/leg), Mp :=ep CZF, (=, =) :Ng x Mg — Z.
The corresponding real vector spaces will be denoted
Ngr:=Ngp®zR, Mggr := Mg @z R.

We use the same symbols e; and e; to denote their images in Ng and Ng g.

The groups N and M associated to nonempty finite sets are related to
each other in a natural way. For example, if F' is a nonempty subset of E, then
we have a surjective homomorphism

Nr — Np, ey — eing
and an injective homomorphism
Mr — Mg, e —ej—re; —e;.
If F'is a nonempty proper subset of E, we have a decomposition
(e C Mp) = (e p C Mg) = Mp & Mp, .
Dually, we have an isomorphism from the quotient space
Ng/{er) = Ng/(ep\r) — Nrp @ Np\p, er — enr @ ep p.

This isomorphism will be used later to analyze local structure of Bergman fans.
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HODGE THEORY FOR COMBINATORIAL GEOMETRIES 387

More generally, for any map between nonempty finite sets 7 : £1 — FEs,
there are an associated homomorphism

™ :I\IE2 —>NE1a e]»—>e7r71(1)
and the dual homomorphism
™ 2ME1 —)MEQ, €, — €5 —— €x(;) — €x(j)-
When 7 is surjective, mn is injective and 7 is surjective.

2.2. Let Z(F) be the poset of nonempty proper subsets of E. Through-
out this section the symbol .# will stand for a totally ordered subset of Z(FE),
that is, a flag of nonempty proper subsets of E:

F={RCRhC - CR|CPE)
We write min % for the intersection of all subsets in .%. In other words, we set

F1 if % is nonempty,
E if ¥ is empty.

min . :=
Definition 2.1. When [ is a proper subset of min %, we say that [ is
compatible with % in E, and we write I < %.
The set of all compatible pairs in E form a poset under the relation
(I1 < 71) 2 (Ia < Fa) < I, C Iy and F C F,.
We note that any maximal compatible pair I <.# gives a basis of the group N g:
{ei and ep forie]andFeﬁ} C Ng.

If 0 is the unique element of E not in I and not in any member of %, then
the above basis of N is related to the basis {ej,eq,...,e,} by an invertible
upper triangular matrix.

Definition 2.2. For each compatible pair I < % in E, we define two
polyhedra

Nicg = conv{ei and ep fori € [ and F' € ff} C Ngg,
Olcg i= cone{ei and ep fori € [ and F € ﬁ} C NgR.

Here “conv S” stands for the set of convex combinations of a set of vectors .5,
and “cone S” stands for the set of nonnegative linear combinations of a set of
vectors S.

This content downloaded from
128.146.226.111 on Mon, 17 Jun 2019 22:45:15 UTC
All use subject to https://about.jstor.org/terms



388 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

Since maximal compatible pairs give bases of Nz, the polytope Aj.# is
a simplex, and the cone ;. is unimodular with respect to the lattice Ng.
When {i} is compatible with .Z#,
Miyeg=bo<{{ipyur and ooz = Og({i}juz-

Any proper subset of E is compatible with the empty flag in Z(FE), and the
empty subset of E is compatible with any flag in &(FE). Thus we may write
the simplex Aj.# as the simplicial join

Ajcg = Aj<p * Dgeg

and the cone o;. ¢ as the vector sum

Oi<F = Ol<g T Og< 7.

The set of all simplices of the form Aj. & is in fact a simplicial complex. More
precisely, we have
A11<,9\1 N A12<§[2:A1—1012<,?1ﬂ§[2 if |[l‘ 7& 1 and |I2‘ 7é 1.
2.3.  An order filter & of Z(F) is a collection of nonempty proper subsets
of E with the following property:
If F1 C F5 are nonempty proper subsets of F, then F} € & implies F, € Z.

We do not require that &2 is closed under intersection of subsets. We will see
in Proposition 2.4 that any such order filter cuts out a simplicial sphere in the
simplicial complex of compatible pairs.

Definition 2.3. The Bergman complex of an order filter &2 C Z(E) is the
collection of simplices

Ay = {A]<gz for I ¢ & and & C @}

The Bergman fan of an order filter & C Z(F) is the collection of simplicial
cones

Ey = {0’[<y for I Qé P and F - 32}
The Bergman complex A 4 is a simplicial complex because & is an order filter.

The extreme cases & = & and & = Z(E) correspond to familiar geo-
metric objects. When & is empty, the collection ¥ 4 is the normal fan of the
standard n-dimensional simplex

A, = conv{eo,el, e ,en} C R”.
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HODGE THEORY FOR COMBINATORIAL GEOMETRIES 389

When & contains all nonempty proper subsets of E, the collection ¥ 4 is the
normal fan of the n-dimensional permutohedron

I, := conv{(xo,xl, ce ) | 0, T1, ., Ty

is a permutation of 0,1, ... ,n} C R%.

Proposition 2.4 below shows that, in general, the Bergman complex A is a
simplicial sphere and ¥ & is a complete unimodular fan.

PROPOSITION 2.4. For any order filter &2 C P (E), the collection ¥ 5 is
the normal fan of a polytope.

Proof. We show that ¥ can be obtained from ¥4 by performing a se-
quence of stellar subdivisions. This implies that a polytope with normal fan
Y can be obtained by repeatedly truncating faces of the standard simplex A,,.
For a detailed discussion of stellar subdivisions of normal fans and truncations
of polytopes, we refer to Chapters III and V of [Ewa96]. In the language of
toric geometry, this shows that the toric variety of ¥ 5 can be obtained from
the n-dimensional projective space by blowing up torus orbit closures.

Choose a sequence of order filters obtained by adding a single subset in
& at a time:

@,...,9,,@+,...,,@ Wlth g+:¢@,U{Z}
The corresponding sequence of ¥ interpolates between the collections ¥4 and
Y.
E@W“'WE'@_ WE(@_‘_ W"‘WE'@.

The modification in the middle replaces the cones of the form oz, with the
sums of the form

Ogp<{z} + OI<7,

where [ is any proper subset of Z. In other words, the modification is the stellar
subdivision of X4 _ relative to the cone oz.4. Since a stellar subdivision of
the normal fan of a polytope is the normal fan of a polytope, by induction we
know that the collection ¥ 4 is the normal fan of a polytope. O

Note that, in the notation of the preceding paragraph, ¥4 _ = X4, if Z
has cardinality 1.

3. Matroids and their flats

3.1. Let M be a loopless matroid of rank r 4+ 1 on the ground set FE.
We denote rky;, crkyr, and cly; for the rank function, the corank function, and
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390 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

the closure operator of M respectively. We omit the subscripts when M is
understood from the context. If F' is a nonempty proper flat of M, we write
M® := the restriction of M to F', a loopless matroid on F of rank = rky(F),
My := the contraction of M by F', a loopless matroid on

E\ F of rank = crky(F).

We refer to [Ox192] and [Wel76] for basic notions of matroid theory.
Let &(M) be the poset of nonempty proper flats of M. There are an
injective map from the poset of the restriction

FooMb) — 2(M)), G— G
and an injective map from the poset of the contraction
LF:gZ(MF>—>f@(M), G— GUF.

We identify the flats of Mp with the flats of M containing F' using ¢p. If & is
a subset of (M), we set

P = (" P and Pp = (1p) 2.

3.2.  Throughout this section the symbol .# will stand for a totally or-
dered subset of Z2(M), that is, a flag of nonempty proper flats of M:

F={RChc - ChICPM),

As before, we write min % for the intersection of all members of .% inside FE.
We extend the notion of compatibility in Definition 2.1 to the case when the
matroid M is not Boolean.

Definition 3.1. When [ is a subset of min % of cardinality less than
rky(min %), we say that I is compatible with .% in M, and we write I <j .Z#.

Since any flag of nonempty proper flats of M has length at most r, any

cone

Oley7 = cone{ei and ep fori € I and F € ﬁ}
associated to a compatible pair in M has dimension at most r. Conversely, any
such cone is contained in an r-dimensional cone of the same type: For this one
may take

I' = a subset that is maximal among those containing I
and compatible with .% in M,
F' = a flag of flats maximal among those containing .7

and compatible with I’ in M,
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HODGE THEORY FOR COMBINATORIAL GEOMETRIES 391

or alternatively take
Z' = a flag of flats maximal among those containing .%#
and compatible with I in M,
I’ = a subset that is maximal among those containing I

and compatible with .#’ in M.

We note that any subset of ' with cardinality at most r is compatible in
M with the empty flag of flats, and the empty subset of E is compatible in M
with any flag of nonempty proper flats of M. Therefore we may write

AfayZ = Dayo * Doz and Orcy7 = Or<yo + 0gay 7

The set of all simplices associated to compatible pairs in M form a simplicial
complex, that is,

A11<M«?1 N AIQ<N192:AI1QIQ<1\4§10«92 .

3.3.  An order filter &2 of (M) is a collection of nonempty proper flats
of M with the following property:

If F; C F5 are nonempty proper flats of M, then F; € & implies I, € &2.
We write &7 := P U{E} for the order filter of the lattice of flats of M generated
by £.

Definition 3.2. The Bergman fan of an order filter &2 C (M) is the set
of simplicial cones

Ymp = {0’[<y for clym(1) ¢ P and .F C 9}
The reduced Bergman fan of & is the subset of the Bergman fan

EM,y = {01<My for cly(I) ¢ & and F C 3”}
When &2 = (M), we omit & from the notation and write the Bergman fan
by Y.

We note that the Bergman complexr and the reduced Bergman complex
KM’ 2 C Ay o, defined in analogous ways using the simplices A;-z and
Ar<\.7, share the same set of vertices.

Two extreme cases give familiar geometric objects. When &2 is the set of
all nonempty proper flats of M, we have

XM= XM = EM,@
= the fine subdivision of the tropical linear space of M [AKO06].
When & is empty, we have

iM@ = the r-dimensional skeleton of the normal fan of the simplex A,
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and Xy, is the fan whose maximal cones are op<g for rank r flats F' of M.
We remark that

Aw,e = the Alexander dual of the matroid complex
IN(M™) of the dual matroid M*.

See [Bjo92] for basic facts on the matroid complexes and [MS05b, Ch. 5] for
the Alexander dual of a simplicial complex.

We show that, in general, the Bergman fan and the reduced Bergman fan
are indeed fans, and the reduced Bergman fan is pure of dimension r.

PROPOSITION 3.3. The collection X\, » is a subfan of the normal fan of
a polytope.

Proof. Since & is an order filter, any face of a cone in Xy, » is in ¥y 2.
Therefore it is enough to show that there is a normal fan of a polytope that
contains Y1 » as a subset.

For this we consider the order filter of Z(FE) generated by &2, that is, the
collection of sets

P = {nonempty proper subset of E containing a flat in ,@} C Z(E).

If the closure of I C E in M is not in @\, then I does not contain any flat
in &, and hence

Xme € X
The latter collection is the normal fan of a polytope by Proposition 2.4. ([

Since & is an order filter, any face of a cone in EM 2 is in f}M o, and
hence ¥y, is a subfan of Yy ». It follows that the reduced Bergman fan also
is a subfan of the normal fan of a polytope.

PROPOSITION 3.4. The reduced Bergman fan fMgz is pure of dimension r.

Proof. Let I be a subset of E whose closure is not in &, and let .% be a
flag of flats in & compatible with I in M. We show that there are I’ containing
I and .#' containing .% such that

I'<yZ, dy(l)¢ P, FCP, and [I'|+|F|=r

First choose any flag of flats .%#’ that is maximal among those contain-
ing %, contained in &2, and compatible with I in M. Next choose any flat
F of M that is maximal among those containing I and strictly contained in
min %'

We note that, by the maximality of F' and the maximality of .#’ respec-
tively,

rky (F) = rky(min ') — 1 =17 — | F|.
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HODGE THEORY FOR COMBINATORIAL GEOMETRIES 393

Since the rank of a set is at most its cardinality, the above implies
1] <r— |7 <|F).

This shows that there is I’ containing I, contained in F', and with cardinality
exactly  — | #'|. Any such I’ is automatically compatible with .#” in M.

We show that the closure of I’ is not in &2 by showing that the flat F is not
in Z. If otherwise, by the maximality of .#’, the set I cannot be compatible
in M with the flag {F'}, meaning

1| > rkm(F).

The above implies that the closure of I in M, which is not in &2, is equal to F.
This gives the desired contradiction. ([

Our inductive approach to the hard Lefschetz theorem and the Hodge-
Riemann relations for matroids is modeled on the observation that any facet
of a permutohedron is the product of two smaller permutohedrons. We note
below that the Bergman fan 3y » has an analogous local structure when M
has no parallel elements, that is, when no two elements of E are contained in
a common rank 1 flat of M.

Recall that the star of a cone ¢ in a fan X in a vector space Np is the fan

star(o, X)) := {? | o/ is the image in Ng /(o) of a cone ¢’ in ¥ containing a}.
If o is a ray generated by a vector e, we write star(e, ) for the star of o in X.

PROPOSITION 3.5. Let M be a loopless matroid on E, and let & be an
order filter of Z2(M).
(1) If Fis a flat in &, then the isomorphism Ng/(er) — Nrp@®Npg\ p induces
a bijection
star(eF,EM’,@) — ZMF“@F X ZMF-
(2) If {i} is a proper flat of M, then the isomorphism Ng/(e;) — Npg\ (i)
induces a bijection

star(e;, Xn,») — XMy, Py -

Under the same assumptions, the stars of ep and e; in the reduced Bergman
fan Y\ » admit analogous descriptions.

Recall that a loopless matroid is a combinatorial geometry if all single
element subsets of E are flats. When M is not a combinatorial geometry,
the star of e; in Xy » is not necessarily a product of smaller Bergman fans.
However, when M is a combinatorial geometry, Proposition 3.5 shows that the
star of every ray in Xy o is a product of at most two Bergman fans.
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4. Piecewise linear functions and their convexity

4.1. Piecewise linear functions on possibly incomplete fans will play an
important role throughout the paper. In this section, we prove several general
properties concerning convexity of such functions, working with a dual pair
free abelian groups

<—,—>:NXM—>Z, Nr:=N&®&zR, Mg :=M®zR

and a fan ¥ in the vector space Ng. Throughout this section we assume that
3l is unimodular; that is, every cone in ¥ is generated by a part of a basis of IN.
The set of primitive ray generators of ¥ will be denoted V.

We say that a function ¢ : |X| — R is piecewise linear if it is continuous
and the restriction of £ to any cone in ¥ is the restriction of a linear function
on Ng. The function /¢ is said to be integral if

((|2INN) C Z,
and the function ¢ is said to be positive if

((IZ1\ {0}) S Rso.

An important example of a piecewise linear function on ¥ is the Courant
function xe associated to a primitive ray generator e of 3, whose values at Vx
are given by the Kronecker delta function. Since ¥ is unimodular, the Courant
functions are integral, and they form a basis of the group of integral piecewise
linear functions on X:

PL(Y) = { > Cewe | e € Z} ~ 7=,
ecVy

An integral linear function on Ny restricts to an integral piecewise linear func-
tion on 3, giving a homomorphism

resy, : M — PL(Y), m—> Z (e,m) Te.
ecVy

We denote the cokernel of the restriction map by
AY(E) :=PL(Z)/M.

In general, this group may have torsion, even under our assumption that X is
unimodular. When integral piecewise linear functions ¢ and ¢ on ¥ differ by
the restriction of an integral linear function on Ng, we say that ¢ and ¢ are
equivalent over Z.

Note that the group of piecewise linear functions modulo linear functions
on X can be identified with the tensor product

AYD)R == AYZ) @z R.
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When piecewise linear functions ¢ and ¢ on X differ by the restriction of a

linear function on Ng, we say that ¢ and ¢’ are equivalent.

We describe three basic pullback homomorphisms between the groups A'.

Let ¥/ be a subfan of ¥, and let o be a cone in X.

(1)

The restriction of functions from ¥ to X' defines a surjective homomor-
phism

PL(X) — PL(Y),
and this descends to a surjective homomorphism
pE’gE : AI(E) — AI(E/)

In terms of Courant functions, pyycy is uniquely determined by its values

Te if eisin Vyy,
Te — . )
0  if otherwise.

Any integral piecewise linear function £ on X is equivalent over Z to an
integral piecewise linear function ¢’ that is zero on o, and the choice of
such ¢ is unique up to an integral linear function on Ng/(co). Therefore
we have a surjective homomorphism

Poey Al(E) — Al(star(a, Y)),

uniquely determined by its values on xe for primitive ray generators e not
contained in o:

xg if there is a cone in Y containing e and o,
Te . .
0 if otherwise.

Here € is the image of e in the quotient space Ng /(o).
A piecewise linear function on the product of two fans 1 x X9 is the sum
of its restrictions to the subfans

Y1 x {0} C X1 x ¥y and {0} x 3o C ¥y x Xo.
Therefore we have an isomorphism
PL(X; x o) ~ PL(X1) ® PL(X,),
and this descends to an isomorphism

Py, 3, ¢ AI(ZI X 22) ~ Al(Zl) P AI(ZQ)
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4.2. We define the link of a cone ¢ in ¥ to be the collection
link(o, X)) := {a’ € ¥ | ¢’ is contained in a cone
in ¥ containing o, and o N o’ = {O}}
Note that the link of ¢ in X is a subfan of 3.

Definition 4.1. Let £ be a piecewise linear function on 3, and let o be a
cone in X.

(1) The function ¢ is convexr around o if it is equivalent to a piecewise linear
function that is zero on ¢ and nonnegative on the rays of the link of o.

(2) The function ¢ is strictly conver around o if it is equivalent to a piecewise
linear function that is zero on ¢ and positive on the rays of the link of o.

The function £ is conver if it is convex around every cone in X and strictly
conveg if it is strictly convex around every cone in 3.

When ¥ is complete, the function £ is convex in the sense of Definition 4.1
if and only if it is convex in the usual sense:

l(u; +ug) < /l(uy) +4(ug) for uj,uy € Np.

In general, writing ¢ for the inclusion of the torus orbit closure corresponding
to ¢ in the toric variety of 3, we have

¢ is convex around o

<= " of the class of the divisor associated to ¢ is effective.

For a detailed discussion and related notions of convexity from the point of
view of toric geometry, see [GM12, §2].

Definition 4.2. The ample cone of ¥ is the open convex cone
= {Classes of strictly convex piecewise linear functions on E} C AY(D)g.
The nef cone of X is the closed convex cone

Ny = {classes of convex piecewise linear functions on E} C AYZ)g.

Note that the closure of the ample cone #5 is contained in the nef
cone 5. In many interesting cases, the reverse inclusion also holds.

PropPOSITION 4.3. If J5 is nonempty, then A5 is the closure of Js.

Proof. If £1 is a convex piecewise linear function and #s is strictly convex
piecewise linear function on X, then the sum ¢; + e/y is strictly convex for
every positive number €. This shows that the nef cone of ¥ is in the closure of
the ample cone of X. O
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We record here that the various pullbacks of an ample class are ample.
The proof is straightforward from Definition 4.1.

PROPOSITION 4.4. Let X' be a subfan of X, o be a cone in X, and let
Y1 X Yo be a product fan.

(1) The pullback homomorphism psycy, induces a map between the ample cones
sy — Ty
(2) The pullback homomorphism p,cy, induces a map between the ample cones
K5 — Htar(o,5)-
(3) The isomorphism Py, .3, nduces a bijective map between the ample cones
A5y x5, — Ay X K,

Recall that the support function of a polytope is a strictly convex piecewise
linear function on the normal fan of the polytope. An elementary proof can be
found in [Oda88, Cor. A.19]. It follows from the first item of Proposition 4.4
that any subfan of the normal fan of a polytope has a nonempty ample cone. In
particular, by Proposition 3.3, the Bergman fan ¥\ » has a nonempty ample
cone.

Strictly convex piecewise linear functions on the normal fan of the per-
mutohedron can be described in a particularly nice way: A piecewise linear
function on ¥ p(g) is strictly convex if and only if it is of the form

Z CFTF, CF, T CR, > CFNF, T CRUR,
Fe?(E)
for any incomparable Fi, Fs, with ¢y = cg = 0.

For this and related results, see [BB11]. The restriction of any such strictly
submodular function gives a strictly convex function on the Bergman fan iy
and defines an ample class on Y.

4.3. We specialize to the case of matroids and prove basic properties of
convex piecewise linear functions on the Bergman fan ¥y . We write J# »
for the ample cone of ¥\ » and A3y » for the nef cone of Xy 5.

PROPOSITION 4.5. Let M be a loopless matroid on E, and let & be an
order filter of Z2(M).

(1) The nef cone of X\, is equal to the closure of the ample cone of ¥y »:
H, 2 = M2
(2) The ample cone of X\, is equal to the interior of the nef cone of ¥z, o:

%M7y = Wﬁ’y.
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Proof. Propositions 3.3 shows that the ample cone % » is nonempty.
Therefore, by Proposition 4.3, the nef cone 431 is equal to the closure
of %M, P

The second assertion can be deduced from the first using the following
general property of convex sets: An open convex set is equal to the interior of
its closure. O

The main result here is that the ample cone and its ambient vector space
iz C AN (Svo)r

depend only on &2 and the combinatorial geometry of M; see Proposition 4.8
below. We set

E = {A|Aisarank1ﬂat ofM}.

Definition 4.6. The combinatorial geometry of M is the simple matroid M
on E determined by its poset of nonempty proper flats 2(M) = £2(M).

The set of primitive ray generators of ¥y » is the disjoint union
{ei | the closure of 4 in M is not in @} U {eF | F'is a flat in 32} C Ngg,

and the set of primitive ray generators of ¥g; ,, is the disjoint union

{eA | A is a rank 1 flat of M not in ,@} U {eF | F'is a flat in 9} C Ngg-

The corresponding Courant functions on the Bergman fans will be denoted x;,
zr, and x4, T respectively.

Let 7 be the surjective map between the ground sets of M and M given
by the closure operator of M. We fix an arbitrary section ¢ of = by choosing
an element from each rank 1 flat:

7 FE—F, L E— F, mot =id.
The maps 7 and ¢ induce the horizontal homomorphisms in the diagram

TPL

PL(Ew,») =<————= PL(%§ »)
res res
™
M = M,

where the homomorphism 7py, is obtained by setting

$i'—>xﬂ(i), Tp——TF

for elements i whose closure is not in &2, and for flats F' in &2,
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and the homomorphism ¢py, is obtained by setting
TA V= Tya), TFF—TF
for rank 1 flats A not in &2, and for flats F' in Z.
In the diagram above, we have
TpL, O T€S = I'es 0 ™M, LpL, OTeS = Ireso iy, 7pL otpr, =id, a0 v = id.
PropPOSITION 4.7. The homomorphism mpy, induces an isomorphism
mpL : AN (Sme) — Al(EM”@).
The homomorphism tp1, induces the inverse isomorphism
wpr, : AN (B ) — A (Sw).
We use the same symbols to denote the isomorphisms A!'(X\ »)r S
Al(ZM 2)R-

Proof. 1t is enough to check that the composition tpr, o 7py, is the identity.
Let ¢ and j be elements whose closures are not in &?. Consider the linear
function on Ngr given by the integral vector

e —e; c Mg.
The restriction of this linear function to Xy » is the linear combination
res(e; —ej) = (.TUZ -+ Z xF) — (xj + Z xp)
icFe® jEFeP
If 7 and j have the same closure, then a flat contains 7 if and only if it contains 7,

and hence the linear function witnesses that the piecewise linear functions x;
and z; are equivalent over Z. It follows that tpy, o wpp, = id. (]

The maps 7 and ¢ induce simplicial maps between the Bergman complexes

TA

An, A o Ar<g ¥ Dp(y<zy Da<g — Dys)<F -
b )

A
The simplicial map maA collapses those simplices containing vectors of parallel
elements, and
TA ©ta = id.
The other composition ta o ma is a deformation retraction. For this note that
Arcg € Ay = ta 0 TA(A1<7) U A<z C Dpinrcs.

The simplex A, -1,7.# is in Ay ; hence we can find a homotopy taoma ~ id.

PROPOSITION 4.8. The isomorphism wpy, restricts to a bijective map be-
tween the ample cones
Jﬁwg — ‘%/M P
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Proof. By Proposition 4.5, it is enough to show that mpy, restricts to a
bijective map

JVMJ;’Z — ‘/VM P
We use the following maps corresponding to ma and ta:

™

_——
EM,@TEM@, OI<F = Op(l)<F, OI<F F Oy (5)<F-

One direction is more direct: The homomorphism ¢p;, maps a convex
piecewise linear function ¢ to a convex piecewise linear function ¢py,(¢). Indeed,
for any cone o7 7 in Xy, 2,

(Z Is zero on o4 (5)<# and nonnegative on the link of o (1)< 7 in Xg; 9”)
== (LPL(Z) is zero on o -1z
and nonnegative on the link of o, -1,(<7 In E]\/Lg?)

e (LPL(Z) is zero on o7 and nonnegative on the link of ;. # in ZM“@)

Next we show the other direction: The homomorphism 7pr, maps a convex
piecewise linear function ¢ to a convex piecewise linear function mpy,(¢). The
main claim is that, for any cone o s 2 in ZM, P

¢ is convex around 0,-1( )<z = 7pL({) is convex around o, 7.

This can be deduced from the following identities between the subfans of Yy g:

7r§1 (the set of all faces of O'j<(g(7) = (the set, of all faces of Uwfl(’ﬂ)<g‘),
75" (the link of 0y« in Sg7 ) = (the link of 015 in Syr ).

It is straightforward to check the two equalities from the definitions of Xy, »
and Y55 5. ([

Remark 4.9. Note that a Bergman fan and the corresponding reduced
Bergman fan share the same set of primitive ray generators. Therefore we
have isomorphisms

A (By,0) == AN 3y )

I I

A (En,2) == AN (S5 »)-
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We remark that there are inclusion maps between the corresponding ample
cones

,%/M’gz —_— ‘%/M,QZ

L

I R 2

In general, all three inclusions shown above may be strict.

5. Homology and cohomology

5.1. Let ¥ be a unimodular fan in an n-dimensional latticed vector
space Ng, and let X, be the set of k-dimensional cones in X. If 7 is a codi-
mension 1 face of a unimodular cone o, we write

€,/ :=the primitive generator of the unique 1-dimensional face of o not in 7.
Definition 5.1. A k-dimensional Minkowski weight on ¥ is a function
w:XE — 7
that satisfies the balancing condition: For every (k—1)-dimensional cone 7 in X,

Z w(o) ey, is contained in the subspace generated by 7.

TCO
The group of Minkowski weights on Y is the group

MW, (%) = P MW, (%),
keZ

where MW (X) := {k-dimensional Minkowski weights on Z} C 7%k,

The group of Minkowski weights was studied by Fulton and Sturmfels in
the context of toric geometry [FS97]. An equivalent notion of stress space was
independently pursued by Lee in [Lee96]. Both were inspired by McMullen,
who introduced the notion of weights on polytopes and initiated the study of
its algebraic properties [McM89], [McM96]. We record here some immediate
properties of the group of Minkowski weights on X..

(1) The group MW (%) is canonically isomorphic to the group of integers:
MWy(X) = 2> ~ 7.
(2) The group MW/ (X)) is perpendicular to the image of the restriction map
from M:
MW, (X) = im(ress) ™ C Z>1.

(3) The group MW (X) is trivial for k negative or k larger than the dimension
of 3.
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If ¥ is in addition complete, then an n-dimensional weight on X satisfies
the balancing condition if and only if it is constant. Therefore, in this case,
there is a canonical isomorphism

MW, (2) ~ Z.

We show that the Bergman fan Yj; has the same property with respect to its
dimension r.

PROPOSITION 5.2. An r-dimensional weight on Y\ satisfies the balancing
condition if and only if it is constant.

It follows that there is a canonical isomorphism MW,.(2y) ~ Z. We begin
the proof of Proposition 5.2 with the following lemma.

LEMMA 5.3. The Bergman fan 3\ is connected in codimension 1.
We remark that Lemma 5.3 is a direct consequence of the shellability of

Ay see [Bjo92].

Proof. The claim is that, for any two r-dimensional cones o4, 0y in Xy,
there is a sequence

oz =090 OT1Co1D:---Co-12OT1m Co=o0g,

where 7; is a common facet of 0;_1 and o; in Xj;. We express this by writing
oF ~ 0yg.

We prove by induction on the rank of M. If min % = min ¢, then the
induction hypothesis applied to M,i;, # shows that

Oz ~ 0g.

If otherwise, we choose a flag of nonempty proper flats # maximal among
those satisfying min .% Umin ¢ < 7. By the induction hypothesis applied to
Myin .z, we have

0F ~ 0{min F}UH"
Similarly, by the induction hypothesis applied to M,in ¢, we have
0y ~ O{ming}usr-

Since any 1-dimensional fan is connected in codimension 1, this complete the
induction. O

Proof of Proposition 5.2. The proof is based on the flat partition property
for matroids M on E:

If F is a flat of M, then the flats of M that cover F' partition E \ F.
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Let 74 be a codimension 1 cone in the Bergman fan 31, and set
Vitar(#) := the set of primitive ray generators of the star of
Ty in EM g NE,R/<7—37>-
The flat partition property applied to the restrictions of M shows that, first,
the sum of all the vectors in Viian ) is zero and, second, any proper subset
of Vitar(w) 1s linearly independent. Therefore, for an r-dimensional weight w
on Xy,
w satisfies the balancing condition at 1«
<= w is constant on cones containing 7.

By the connectedness of Lemma 5.3, the latter condition for every 74 implies
that w is constant. O

5.2.  We continue to work with a unimodular fan 3 in Ng. As before, we
write Vy for the set of primitive ray generators of 3. Let Sy be the polynomial
ring over Z with variables indexed by Vs:

SZ = Z[xe]eEVZ-

For each k-dimensional cone ¢ in X, we associate a degree k square-free mono-

ty = [[ ze.

eco

The subgroup of Sy, generated by all such monomials z, will be denoted

Z53) = P Za..

oEY

mial

Let Z*(X) be the sum of Z¥(X) over all nonnegative integers k.

Definition 5.4. The Chow ring of ¥ is the commutative graded algebra
AX(X) = Sy /(Is + Jx),
where Iy, and Jyx. are the ideals of Sy, defined by
I5, := the ideal generated by the square-free monomials not in Z*(3),

Jy, := the ideal generated by the linear forms Z (e,m) xe for m € M.
ecVy

We write A*(X) for the degree k& component of A*(¥), and we set
A*(D)p = A*(Z)®zR and AF(D)r = A¥(2) @z R.
If we identify the variables of Sy; with the Courant functions on X, then the
degree 1 component of A*(3) agrees with the group introduced in Section 4:

AL(Z) = PL(Z)/M.

This content downloaded from
128.146.226.111 on Mon, 17 Jun 2019 22:45:15 UTC
All use subject to https://about.jstor.org/terms



404 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

Note that the pullback homomorphisms between A' introduced in that section
uniquely extend to graded ring homomorphisms between A*:
(1) The homomorphism py,cy, uniquely extends to a surjective graded ring
homomorphism
Pycy t AN(E) — A* ().
(2) The homomorphism p,cy, uniquely extends to a surjective graded ring
homomorphism

Poeyy 1 AY(X) — A¥(star(o, X)).
(3) The isomorphism py;, y,, uniquely extends to a graded ring isomorphism
Py, 3, ¢ A*(El X 22) — A*(Zl) X7 A*(Zg)

We remark that the Chow ring A*(X)r can be identified with the ring
of piecewise polynomial functions on ¥ modulo linear functions on Ng; see
[Bil&9].

PROPOSITION 5.5. The group AF(X) is generated by Z*(X) for each non-
negative integer k.

In particular, if k larger than the dimension of ¥, then A*(X) = 0.

Proof. Let o be a cone in X, let e, e, ..., € be its primitive ray genera-
tors, and consider a degree k monomial of the form

ki k2
e1re2

ak ki >hy > >k > 1.

Tolw o

We show that the image of this monomial in A¥(X) is in the span of Z¥(%).

We do this by descending induction on the dimension of o. If dim o = k,
there is nothing to prove. If otherwise, we use the unimodularity of ¢ to choose
m € M such that

(e1,m) =—1 and (ez,m) =---= (e;,m) = 0.

This shows that, modulo the relations given by Iy, and Jy, we have

k1 ,.k2 k; k1—1, ko k;
eiVey e e1 Loy g Z <eam> TLe,

eclink(o)

Tl X2 Tt =X
where the sum is over the set of primitive ray generators of the link of ¢ in X.
The induction hypothesis applies to each of the terms in the expansion of the

right-hand side. U

The group of k-dimensional weights on ¥ can be identified with the dual
of Z¥(%) under the tautological isomorphism

ty, : Z¥* — Homgy(Z%(%),Z), W (:cg — w(a)).

By Proposition 5.5, the target of ty contains Homg(A*(X),Z) as a subgroup.
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PROPOSITION 5.6. The isomorphism ty, restricts to the bijection between
the subgroups
MW(X) — Homgz(A*(X),Z).

The bijection in Proposition 5.6 is an analogue of the Kronecker duality
homomorphism in algebraic topology. We use it to define the cap product

AY(D) x MW (Z) — MW,_(2), ENw(o) =tyw( - zs).
This makes the group MW, (X) a graded module over the Chow ring A*(X).

Proof. The homomorphisms from AF(X) to Z bijectively correspond to
the homomorphisms from Z*(X) to Z that vanish on the subgroup

ZEE) N (Is + Js) € ZF (D).

The main point is that this subgroup is generated by polynomials of the form

( Z (e,m) l‘e> Zr,
e€link(7)
where 7 is a (k — 1)-dimensional cone of ¥ and m is an element perpendicular
to (7). This is a special case of [FMSS95, Th. 1]. It follows that a k-dimensional
weight w corresponds to a homomorphism A*(X) — Z if and only if

Z w(o)(e,/r,m) =0 for all m € (r)+,

TCOo
where the sum is over all k-dimensional cones ¢ in ¥ containing 7. Since
(t)1+ = (1), the latter condition is equivalent to the balancing condition on
w at T. g

5.3. The ideals Iy, and Jy, have a particularly simple description when
3> = ¥u. In this case, we label the variables of Sy, by the nonempty proper
flats of M and write

St = Zlzrlrerw)-
For a flag of nonempty proper flats .#, we set 7 = [[pes F.
(Incomparability relations). The ideal Iy, is generated by the quadratic mono-
mials
TR TRy,
where F; and F5 are two incomparable nonempty proper flats of M.
(Linear relations). The ideal Jy; is generated by the linear forms

DRI DE
iheFr in€F
where 77 and i are distinct elements of the ground set E.

The quotient ring A*(Xy) and its generalizations were studied by Feichtner
and Yuzvinsky in [FY04].
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Definition 5.7. To an element ¢ in F, we associate linear forms
an =Y xR, Buii= Y TR
icF i¢F
Their classes in A*(X)yp), which are independent of i, will be written ap; and
B respectively.

We show that A"(Xy) is generated by the element of;, where r is the
dimension of Y.

PRrROPOSITION 5.8. Let F} C F» C --- C Fy be any flag of nonempty
proper flats of M.

(1) If the rank of Fy, is not m for some m < k, then
TRTFR TR, ofM_k =0¢e€ A" (Zm).
(2) If the rank of Fy, is m for all m < k, then

—k
TRTp TR oy = ay € AT(EM).

In particular, for any two maximal flags of nonempty proper flats .%; and
F5 of M,

Tz =Tz, € AT(EM).

Since MW, (Xy) is isomorphic to Z, this implies that A"(Xy) is isomorphic
to Z; see Proposition 5.10.

Proof. As a general observation, we note that for any element ¢ not in a
nonempty proper flat F,

TR QM = TR (ng) S A*(EM),
G

where the sum is over all proper flats containing F' and {i}. In particular, if
the rank of F' is r, then the product is zero.

We prove the first assertion by descending induction on k, which is nec-
essarily less than r. If K = r — 1, then the rank of F} should be r, and hence
the product is zero. For general k, we choose an element ¢ not in Fj. By the
observation made above, we have

r—k r—k—1
TR TR, TE, 0y :xpleQ--':ch(ng) o ,

G
where the sum is over all proper flats containing Fj, and {i}. The right-hand
side is zero by the induction hypothesis for k 4+ 1 applied to each of the terms
in the expansion.
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HODGE THEORY FOR COMBINATORIAL GEOMETRIES 407

We prove the second assertion by ascending induction on k. When k£ = 1,
we choose an element i in F; and consider the corresponding representative of

0471;/[ = (Z.ZL'G)OZTNFI,
G

where the sum is over all proper flats containing i. By the first part of the
proposition for £ = 1, only one term in the expansion of the right-hand side is
nonzero, and this gives

ap to write

r r—1
OZM = .’EFl O[M

For general k, we start from the induction hypothesis

ro_ r—(k—1)
N = TR TE, " TF, 0\ .

Choose an element ¢ in Fj \ Fx_1 and use the general observation made above
to write

—k
ay = TRTR, TR, (ng)al’{/[ ,
G

where the sum is over all proper flats containing Fj_; and {i}. By the first
part of the proposition for k, only one term in the expansion of the right-hand
side is nonzero, and we get

r—k
ay = TR TR, TR, TR0 - O

When ¥ is complete, Fulton and Sturmfels showed in [FS97] that there is
an isomorphism

AF(R) — MW, (%), & (0 — deg & a0),

where n is the dimension of ¥ and “deg” is the degree map of the complete
toric variety of . In Theorem 6.19, we show that there is an isomorphism for
the Bergman fan

AR (SM) — MW, (Zm), & (0z > deg & -22),

where 7 is the dimension of X and “deg” is a homomorphism constructed
from M. These isomorphisms are analogues of the Poincaré duality homo-
morphism in algebraic topology.

Definition 5.9. The degree map of M is the homomorphism obtained by
taking the cap product

deg: A"(X\n) — Z, E— &N 1y,

where 1y = 1 is the constant r-dimensional Minkowski weight on Y.
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408 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

By Proposition 5.5, the homomorphism deg is uniquely determined by its
property
deg(z#) =1 for all monomials x &

corresponding to an r-dimensional cone in Y.
ProposITION 5.10. The degree map of M is an isomorphism.

Proof. The second part of Proposition 5.8 shows that A"(Xy) is generated
by the element o}, and that deg(aq;) = deg(z#) = 1. O

5.4. Weremark on algebraic geometric properties of Bergman fans, work-
ing over a fixed field K. For basics on toric varieties, we refer to [Ful93]. The
results of this subsection will be independent from the remainder of the paper.

The main object is the smooth toric variety X (X) over K associated to a
unimodular fan ¥ in Ng:

X(%) = | Spec K[o" N M].
ocEY
It is known that the Chow ring of ¥ is naturally isomorphic to the Chow ring
of X(X):
A (X)) — AY(X (D)), zy — [X (star(o))].
See [Dan78, §10] for the proof when ¥ is complete, and see [BDCP90] and
[Bri96] for the general case.

Definition 5.11. A morphism between smooth algebraic varieties X7 — X5
is a Chow equivalence if the induced homomorphism between the Chow rings
A*(Xy) — A*(X1) is an isomorphism.

In fact, the results of this subsection will be valid for any variety that is
locally a quotient of a manifold by a finite group so that A*(X) ®z Q has the
structure of a graded algebra over (. Matroids provide nontrivial examples of
Chow equivalences. For example, consider the subfan iM 2 € Y, and the
corresponding open subset

X(Emz) € X(Eu2).

In Proposition 6.2, we show that the above inclusion is a Chow equivalence for
any M and Z.

We remark that, when K = C, a Chow equivalence need not induce an
isomorphism between singular cohomology rings. For example, consider any
line in a projective plane minus two points

(CPI c (C]PQ \ {p17p2}-

The inclusion is a Chow equivalence for any two distinct points pi, ps outside
CP!, but the two spaces have different singular cohomology rings.
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HODGE THEORY FOR COMBINATORIAL GEOMETRIES 409

We show that the notion of Chow equivalence can be used to characterize
the realizability of matroids.

THEOREM 5.12. There is a Chow equivalence from a smooth projective
variety over K to X (Xn\) if and only if the matroid M is realizable over K.

Proof. This is a classical variant of the tropical characterization of the
realizability of matroids in [KP11]. We write r for the dimension of ¥y and
n for the dimension of X (Xy). As before, the ground set of M will be E =
{0,1,...,n}.

The “if” direction follows from the construction of De Concini-Procesi
wonderful models [DCP95]. Suppose that the loopless matroid M is realized
by a spanning set of nonzero vectors

%:{anfl’afn}gV/K

The realization & gives an injective linear map between two projective spaces
Ly :P(VY) — X(Xg), Lo=1fo:fi:: fal,

where ¥4 is the complete fan in Ngr corresponding to the empty order fil-
ter of Z(E). Note that the normal fan of the n-dimensional permutohedron
Y »(g) can be obtained from the normal fan of the n-dimensional simplex Y
by performing a sequence of stellar subdivisions. In other words, there is a
morphism between toric varieties

T XX o) — X(Xg),

which is the composition of blowups of torus-invariant subvarieties. To be
explicit, consider a sequence of order filters of Z(F) obtained by adding a
single subset at a time:

@,,:@_,9+,,<@(E) Wlth 9+:<@_U{Z}

The corresponding sequence of ¥ interpolates between the collections g and
Yo (E):
Yg oy~ Xgp, e Vg

The modification in the middle replaces the cones of the form oz, with the
sums of the form

Op<{z} T OI<Z,

where [ is any proper subset of Z. The wonderful model Yy, associated to
Z is by definition the strict transform of P(V"Y) under the composition of
toric blowups 7. The torus-invariant prime divisors of X (X)) correspond
to nonempty proper subsets of E, and those divisors intersecting Y, exactly
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410 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

correspond to nonempty proper flats of M. Therefore the smooth projective
variety Y is contained in the open subset

X(Em) € X(Eom))-

The inclusion Yz C X (2y) is a Chow equivalence [FY04, Cor. 2].

The “only if” direction follows from computations in A*(X)) made in the
previous subsection. Suppose that there is a Chow equivalence from a smooth
projective variety

Y — X(Zm).
Propositions 5.5 and 5.10 show that
A"(Y)~ A™(Sy) ~Z and  AF(Y) ~ A¥(Zy) ~ 0 for all k larger than r.

Since Y is complete, the above implies that the dimension of Y is r. Let g be
the composition

Y L x (o) e X (5y) = PP

where 7y is the restriction of the composition of toric blowups w. We use
Proposition 5.8 to compute the degree of the image g(Y) C P".
For this we note that, for any element ¢ € E, we have
7'('1\_/[1{22‘ = O} = U DF,
i€EF
where z; is the homogeneous coordinate of P™ corresponding to ¢ and D is the
torus-invariant prime divisor of X (X)) corresponding to a nonempty proper
flat F'. All the components of 7r1\_/[1{z,~ = 0} appear with multiplicity 1, and
hence
WK/[ O]pn(l) =M € Al(EM).
Hence, under the isomorphism f* between the Chow rings, the 0-dimensional
cycle (g*Opn(1))" is the image of the generator

(13 Opn (1)) = aly € A™(Sy) ~ Z.

By the projection formula, the above implies that the degree of the image of
Y in P" is 1. In other words, ¢g(Y) C P" is an r-dimensional linear subspace
defined over K. We express the inclusion in the form

Ly :P(VY) — P, Lo =1fo:fi: - ful
Let M’ be the loopless matroid on F defined by the set of nonzero vectors
Z# C V/K. The image of Y in X (X)) is the wonderful model Yz, and hence
X(Ew) € X (M)
Observe that none of the torus-invariant prime divisors of X (3y) are rationally

equivalent to zero. Since f is a Chow equivalence, the observation implies that
the torus-invariant prime divisors of X (X)) and X () bijectively correspond
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HODGE THEORY FOR COMBINATORIAL GEOMETRIES 411

to each other. Since a matroid is determined by its set of nonempty proper
flats, this shows that M = M'. O

6. Poincaré duality for matroids

6.1. The principal result of this section is an analogue of Poincaré duality
for A*(Xwm,2); see Theorem 6.19. We give an alternative description of the
Chow ring suitable for this purpose.

Definition 6.1. Let Sgpue be the polynomial ring over Z with variables
indexed by EU £2:
Spuz = L[Ti, TFlicE e
The Chow ring of (M, &) is the commutative graded algebra
A* (M, @) := Spup /(A + Io+ I3+ Fy),
where ¥, %, S5, S, are the ideals of Sg» defined below.

(Incomparability relations). The ideal .#; is generated by the quadratic mono-
mials

TR T Fy,

where F; and F5 are two incomparable flats in the order filter Z.

(Complement relations). The ideal .#; is generated by the quadratic monomials
TiTF,

where F' is a flat in the order filter &2 and 7 is an element in the complement

(Closure relations). The ideal .#3 is generated by the monomials
H T,
i€l
where I is an independent set of M whose closure is in &2 U {E}.

(Linear relations). The ideal .#; is generated by the linear forms
o o) o+ ),
i€F jEF

where ¢ and j are distinct elements of F and the sums are over flats F'in .

When & = (M), we omit & from the notation and write the Chow ring by
A*(M).

When & is empty, the relations in .#; show that all x; are equal in the
Chow ring, and hence

A*(M, @) = Z[z]/(2"+1).
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412 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

When & is &(M), the relations in .#3 show that all z; are zero in the Chow
ring, and hence

A*(M) ~ A*(3n).
In general, if 7 is an element whose closure is in &, then z; is zero in the Chow
ring. The square-free monomial relations in the remaining set of variables

correspond bijectively to the non-faces of the Bergman complex Ay 4, and
hence

A*(M, P) ~ A*(Sw).

More precisely, in the notation of Definitions 5.4 and 6.1, for X = ¥y », we
have

A+ I+ I3=1Is and S =Js.

We show that the Chow ring of (M, &) is also isomorphic to the Chow
ring of the reduced Bergman fan ¥y ».

PROPOSITION 6.2. Let I be a subset of E, and let F be a flat in an order
filter & of 22(M).
(1) If I has cardinality at least the rank of F, then

(sz>:1cp =0e A*(M, 2).

el
(2) If I has cardinality at least r + 1, then
H:L’Z' =0e A*(M, ,@)

el

In other words, the inclusion of the open subset X (EM 7) € X(XMm,2)
is a Chow equivalence. Since the reduced Bergman fan has dimension r, this
implies that

ARM, 2) =0 for k > 7.

Proof. For the first assertion, we use complement relations in % to reduce
to the case when I C F. We prove by induction on the difference between the
rank of F' and the rank of I.

When the difference is zero, I contains a basis of F, and the desired
vanishing follows from a closure relation in .#35. When the difference is positive,
we choose a subset J C F' with

rk(J) =tk(I)+1, I\J={i} and J\I={j}.

From the linear relation in .4 for ¢ and j, we deduce that

$¢+ngzxj+2$g,

i€G jea
J¢G i¢G
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HODGE THEORY FOR COMBINATORIAL GEOMETRIES 413
where the sums are over flats G in &?. Multiplying both sides by (Hz‘e nJ :1:@) TR,

(IL=)er = (L)

Indeed, a term involving z¢ in the expansions of the products is zero in the

we get,

Chow ring by

(1) an incomparability relation in %, if G € F;

(2) a complement relation in %, if INJ ¢ G;

(3) the induction hypothesis for I N J C G, if otherwise.

The right-hand side of the equality is zero by the induction hypothesis for
JCF.

The second assertion can be proved in the same way, by descending in-
duction on the rank of I, using the first part of the proposition. O

We record here that the isomorphism of Proposition 4.7 uniquely extends
to an isomorphism between the corresponding Chow rings.

PROPOSITION 6.3. The homomorphism wpr, induces an isomorphism of
graded rings

mpr, ¢ A¥(M, ) — A*(M, 2).
The homomorphism tpr1, induces the inverse isomorphism of graded rings
tpr, ¢ AY(M, &) — A" (M, 2).
Proof. Consider the extensions of wpy, and tpy, to the polynomial rings

;‘:PL
_
Seuy <~ SEUBZJ'
LPL

The result follows from the observation that 7pr, and 7py, preserve the monomial
relations in %, %, and .¥3. O

6.2. Let Z_ be an order filter of &(M), and let Z be a flat maximal in
Z(M)\ Z_. We set

P =P _U{Z} C PM).
The collection &, is an order filter of &(M).

Definition 6.4. The matroidal flip from &_ to &, is the modification of
fans ¥y o~ Yo,

The flat Z will be called the center of the matroidal flip. The matroidal
flip removes the cones

or<z with cly(l) =Z and min .F # Z
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and replaces them with the cones
or<z with cly(l) # Z and min ¥ = Z.
The center Z is necessarily minimal in &7, and we have

star( oz<o , XMz ) ~ XMy,
star(a®<{Z}, ZM’gZ+) ~ EMZﬁ X XMy, -
Remark 6.5. The matroidal flip preserves the homotopy type of the un-

derlying simplicial complexes Ay and Ay g, . To see this, consider the
inclusion

Am, 2, C A}y »_ = the stellar subdivision of Ayp o relative to Az<g.

We claim that the left-hand side is a deformation retract of the right-hand side.
More precisely, there is a sequence of compositions of elementary collapses

— Al,crk(Z)—l —

. 1,1
ANo = Ay P WAM@_W“-

l,crk(Z 2,1 2,2 2,crk(2)—1
AMW() AN, - A C s A2

M, 2 M,2_
A?\/Icr;( ) _ A AM PPN Ai;ICI;EZ)_l v o Ay
where Ay k+ is the subcomplex of A} @ obtained by collapsing all the faces
NPT Wlth

cdv(l) =2, min F #7Z, |Z\I|=m, |Z|=cku(Z)—k.

The faces Aj. gz satisfying the above conditions can be collapsed in Aﬁ]f]
because

link(Ar<7, Ay ) = {ez}-
It follows that the homotopy type of the Bergman complex Ayp o is indepen-
dent of &2. For basics of elementary collapses of simplicial complexes, see
[Koz08, Ch. 6]. The special case that Ay is homotopic to Ay is an elemen-
tary consequence of the nerve theorem and gives a homotopy version of the
usual crosscut theorem [Koz08, Ch. 13].

We construct homomorphisms associated to the matroidal flip, the pull-
back homomorphism and the Gysin homomorphism.

PropPOSITION 6.6. There is a graded ring homomorphism between the
Chow rings

7  A'(M, 2_) — A" (M, Z)
uniquely determined by the property

ri+xz ifi € Z,

rp— g and x;+— T
’ x; ifi ¢ Z.
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The map &7 will be called the pullback homomorphism associated to the
matroidal flip from &_ to &,. We will show that the pullback homomorphism
is injective in Theorem 6.18.

Proof. Consider the homomorphism between the polynomial rings
¢z : Spuy_ — SEuz,
defined by the same rule determining ®z. We claim that
¢z(H) C A1, ¢z(I2) C A+ S, ¢z(I3) C S+ S5, ¢z(I) C i

The first and the last inclusions are straightforward to verify.
We check the second inclusion. For an element i in E \ F', we have

rixp +xgzrp ifi € Z,

¢z (zier) = {xiazp ifi ¢ Z.

If i is in Z \ F', then the monomial xzzp is in .#] because Z is minimal in &, .
We check the third inclusion. For an independent set I whose closure is

in #_U{E},

iel iel\Z i€InzZ
The term [[;c; z; in the expansion of the right-hand side is in .#5. Since Z is

minimal in &2, there is an element in I\ Z, and hence all the remaining terms
in the expansion are in %. U

PROPOSITION 6.7. The pullback homomorphism ®z is an isomorphism
when tkpm(Z) = 1.

Proof. Let j1 and jo be distinct elements of Z. If Z has rank 1, then a
flat contains j; if and only if it contains jo. It follows from the linear relation
in Sgue_ for j1 and jo that

xj, =xj, € AY(M, Z_).
We choose an element j € Z and construct the inverse ®’, of ®, by setting
0 ifieZ,
Tz — x;, xpr—zp, and z; — o
x; ifi¢ Z.

It is straightforward to check that @/, is well defined and that &, = ®,'. O

As before, we identify the flats of My with the flats of M containing Z,
and we identify the flats of MZ with the flats of M contained in Z.

PROPOSITION 6.8. Let p and q be positive integers.
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(1) There is a group homomorphism
UhT: ATP(My) — AYM, Py
uniquely determined by the property vz — xt, z.7.
(2) There is a group homomorphism
27 ATP(M?) — AY(M)

uniquely determined by the property xz — %, x5.

The map \Il%q will be called the Gysin homomorphism of type p,q asso-
ciated to the matroidal flip from &_ to ;. We will show that the Gysin
homomorphism is injective when p < rky(Z) in Theorem 6.18.

Proof. 1t is clear that the Gysin homomorphism W27 respects the incom-
parability relations. We check that U2 respects the linear relations.

Let i1 and ia be elements in F \ Z, and consider the linear relation in
SEUy+ for il and ig:

(xil + Z SUF) — (wil + Z SUF> € Sy
ner i€l
Since i1 and iz are not in Z, multiplying the linear relation with a¥, gives
m%( Z Tp — Z $F) € S+ S5+ Ay
ZU{i1 }CF ZU{i2}CF
The second statement on I'? can be proved in the same way, using ¢; and
’iQ in Z. O

Let & be any order filter of Z(M). We choose a sequence of order filters
of the form
D, P, Py, Py, P (M),
where an order filter in the sequence is obtained from the preceding one by
adding a single flat. The corresponding sequence of matroidal flips interpolates
between ¥\ and Y:

XM,z ~ XM,y v v DN v e v D)L

Definition 6.9. We write @45 and ® ». for the compositions of pullback
homomorphisms

by A (M, 0) — A*(M,Z) and Pgpe: A*(M,Z) — A*(M).
Note that ® » and ® ». depend only on & and not on the chosen sequence

of matroidal flips. The composition of all the pullback homomorphisms ® . o
® » is uniquely determined by its property

(I)ch O@gﬂ (.CCZ) = M.
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6.3. Let Z_ and &, be as before, and let Z be the center of the ma-
troidal flip from &_ to H,. For positive integers p and g, we consider the
pullback homomorphism in degree ¢

o AYM, Z_) — AYM, 2.)
and the Gysin homomorphism of type p, g
wht . ATP(My) — AYM, 24).
ProPOSITION 6.10. For any positive integer q, the sum of the pullback

homomorphism and Gysin homomorphisms

rk(Z)—1

Lo P v
p=1

is a surjective group homomorphism to AY(M, 2).

The proof is given below Lemma 6.16. In Theorem 6.18, we will show that
the sum is in fact an isomorphism.

COROLLARY 6.11. The pullback homomorphism ®z is an isomorphism in
degree r:

O, AT(M, P_) ~ A"(M, P,).

Repeated application of the corollary shows that, for any order filter &2,
the homomorphisms ® 4 and ® - are isomorphisms in degree r:

T ATM, @) ~ AT(M, 2) and @ : AT(M, P) ~ AT(M).

Proof of Corollary 6.11. The contracted matroid Mz has rank crky(Z2),
and hence
U7 =0 when p < rky(Z) and g = 7.
Therefore Proposition 6.10 for ¢ = r says that the homomorphism &z is sur-

jective in degree 7.
Choose a sequence of matroidal flips

YMg v Ml v MMy, v v UM,
and consider the corresponding group homomorphisms

@97 D z (I).@C

AT(M, 2_) AT(M, P,) — = A™(M).

A"™(M, @)

Proposition 6.10 applied to each matroidal flips in the sequence shows that
all three homomorphisms are surjective. The first group is clearly isomorphic
to Z, and by Proposition 5.10, the last group is also isomorphic to Z. It follows
that all three homomorphisms are isomorphisms. O
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Let S\, be the element 3 in Definition 5.7 for the contracted matroid Mz.
The first part of Proposition 6.8 shows that the expression xz By, defines an
element in A*(M, Z,).

LEMMA 6.12. For any element ¢ in Z, we have
zixy + 1y +xzPu, =0€ A*(M, 2,).

Proof. We choose an element j in F'\ Z and consider the linear relation
in Spug, for i and j:

(m ZmF> - <xj+ Z:L‘F> c .7

i€l JEF
Jer i¢F

Since ¢ is in Z, and Z is minimal in &, multiplying the linear relation with
Ty gives

szxi—i-l'ZZ-i-( Z Jﬁz.%'F) € S+ Sy + .
ZCFCFU)

The sum in the parenthesis is the image of 5\, under the homomorphism \1122.
O

Let apz be the element « in Definition 5.7 for the restricted matroid MZ.
The second part of Proposition 6.8 shows that the expression xz oz defines
an element in A*(M).

LEMMA 6.13. If Z is mazimal amonyg flats strictly contained in a proper

flat Z, then
xzﬁ2($z +apz) =0€ A*(M).
If Z is maximal among flats strictly contained in the flat E, then

xz(xz + aMz) =0e€ A*(M)

Proof. We justify the first statement; the second statement can be proved
in the same way.
Choose an element ¢ in Z and an element j in Z \ Z. The linear relation

S =Y ap € AT(M).

i€k jer
JEr i¢F
Multiplying both sides by the monomial zz x, the incomparability relations

for ¢ and j shows that

give
x5 Tz + ( Z TR xz) r5z=0¢€ A"(M).
i€FCZ
The sum in the parenthesis is the image of apz under the homomorphism F%Z.
O
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LEMMA 6.14. The sum of the images of Gysin homomorphisms is the
ideal generated by xz:

S im WO =gy AY(M, 24).
p>0g¢>0

Proof. 1t is enough to prove that the right-hand side is contained in the
left-hand side. Since Z is minimal in &, , the incomparability relations in .#
and the complement relations in % show that any nonzero degree ¢ monomial
in the ideal generated by xz is of the form

b Ha:l;f wal, ICZ< %,
FeF iel

where the sum of the exponents is ¢q. Since the exponent k of xz is positive,
Lemma 6.12 shows that this monomial is in the sum

im W57 im U5 4 im W O

LEMMA 6.15. For positive integers p and q, we have
Ty im CIDqZ Cim \I’Eqﬂ and xz im \Il%q Cim \I/%H’qﬂ.
If F' is a proper flat strictly containing Z, then
TF im <I>qZ Cim @qZH and xp im \Ii%q Cim \I’%‘Hl.

Proof. Only the first inclusion is nontrivial. Note that the left-hand side
is generated by elements of the form

E=xy H x];;F H xf’ H (xi—l-xz)ki,
FeF i€eI\Z i€elnZ

where [ is a subset of E and .% is a flag in &Z_. When [ is contained in Z,
Lemma 6.12 shows that

k ki~ - 1,g+1
E=ay H ry H(—BMZ) €im ¥ 7.
Fez el
When I is not contained in Z, a complement relation in Sgyg, shows that

£€=0. O

LEMMA 6.16. For any integers k > rkni(Z) and g > k, we have
k—1
im \I/]}’q Cim ®% + Z im ¢27.
p=1

Proof. By the second statement of Lemma 6.15, it is enough to prove the
assertion when ¢ = k: The general case can be deduced by multiplying both
sides of the inclusion by z ¢ for Z < %.
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420 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

By the first statement of Lemma 6.15, it is enough to justify the above
when k = rky(Z): The general case can be deduced by multiplying both sides
of the inclusion by powers of x 7.

We prove the assertion when k = ¢ = rky(Z). For this we choose a basis
I of Z and expand the product

H(ml +x7) € im ®F.

el
The closure relation for I shows that the term [];c; #; in the expansion is zero,
and hence, by Lemma 6.12,

[[@i+22) = (—=Bm,)* — (—22 — fui,)* € im @F.
el
Expanding the right-hand side, we see that

k—1
2% € im ®f + Y im \Il%k.
p=1

Since im \Il’}k is generated by x’}, this implies the asserted inclusion. ([

Proof of Proposition 6.10. By Lemma 6.16, it is enough to show that the
sum % @ @]_; U5 is surjective. By Lemma 6.14, the image of the second
summand is the degree ¢ part of the ideal generated by zz.

We show that any monomial is in the image of the pullback homomorphism
®, modulo the ideal generated by xz. Note that any degree ¢ monomial not
in the ideal generated by xz is of the form

k ki
H 'y H:J;l , Z ¢ 7.
FeF icl
Modulo the ideal generated by xz, this monomial is equal to
@Z(Ha:FF Ha:z)— HZL‘FF H x; H(a:z-—i—:vz) ) O
Fesz iel Fez i€\Z i€InZ
We use Proposition 6.10 to show that the Gysin homomorphism between
top degrees is an isomorphism.
PROPOSITION 6.17. The Gysin homomorphism W9 is an isomorphism
when p =1k(Z) and q = r:
) . k Z -
Oha . AKD) "L (M) ~ A™(M, 2,).
Proof. We consider the composition

P,q D pe

\4
Acrk(Z)fl<MZ) 4 AT‘(M, @+> +

A"™(M), T b—>erk(Z) Tg.

The second map is an isomorphism by Corollary 6.11, and therefore it is enough
to show that the composition is an isomorphism.

This content downloaded from
128.146.226.111 on Mon, 17 Jun 2019 22:45:15 UTC
All use subject to https://about.jstor.org/terms



HODGE THEORY FOR COMBINATORIAL GEOMETRIES 421

For this we choose two flags of nonempty proper flats of M:
24 = a flag of flats strictly contained in Z with | 27| = rk(Z) — 1,
% = a flag of flats strictly containing Z with | 25| = crk(Z) — 1.
We claim that the composition maps a generator to a generator:
(—1)k(#)-1 erk(Z) Ty =To xzTy € AT(M).
Indeed, the map F;rk(z)
M? gives

applied to the second formula of Proposition 5.8 for

Ty Tz Ty = (aMz)rk(Z)_l Tz Ty € A*(M)
and, by Lemma 6.13, the right-hand side of the above is equal to
(—1)A1 25D g € AX (M), O
6.4. Let &_, &, and Z be as before, and let & be any order filter of
THEOREM 6.18 (Decomposition). For any positive integer q, the sum of

the pullback homomorphism and the Gysin homomorphisms

rk(Z)—-1

Lo P v
p=1

is an isomorphism to AY(M, Z,.).

THEOREM 6.19 (Poincaré Duality). For any nonnegative integer q < r,
the multiplication map

AIM, 2) x ATI(M, &) — A" (M, &)
defines an isomorphism between groups
ATTI(M, &) ~ Homz(AI(M, &), A" (M, £)).

In particular, the groups A9(M, &) are torsion free. We simultaneously
prove Theorem 6.18 (Decomposition) and Theorem 6.19 (Poincaré Duality)
by lexicographic induction on the rank of matroids and the cardinality of the
order filters. The proof is given below in Lemma 6.21.

LEMMA 6.20. Let g1 and g2 be positive integers.

(1) For any positive integer p, we have
im U2 - im % C im \II%QH”D.
(2) For any positive integers p1 and p2, we have

im \1/%1,(11 .im \1,122,!12 Cim \I,Iélerz,(th(H‘
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422 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

The first inclusion shows that, when ¢; + g2 = 7 and p is less than rk(Z),
im L7 - im &% = 0.
The second inclusion shows that, when ¢ +¢2 = 7 and p;+ps is less than rk(Z2),
im OO im U2 = (.
Proof. The assertions are direct consequences of Lemma 6.15. ([

LEMMA 6.21. Let q be a positive integer, and let p1, ps be distinct positive
integers less than rk(Z).
(1) If Poincaré Duality holds for A*(M, 22_), then
rk(Z)—-1
ker 4, =0 and im ®% N Z im 27 = 0.
p=1
(2) If Poincaré Duality holds for A*(Mg), then

ker U717 =ker U729 =0 and im U0 Nim ¥27=0

Proof. Let & be a nonzero element in the domain of ®%. Since ® is an
isomorphism between top degrees, Poincaré Duality for (M, &2_) implies that

Y (€) - im @} £ 0.

This shows that ®% is injective. On the other hand, Lemma 6.20 shows that

rk(Z)—-1
< > im \pgq> -im @7, 7 = 0.

p=1

This shows that the image of ®% intersects the image of @;kz(lz) _1\11%(1 trivially.

Let & be a nonzero element in the domain of %7, where p = p; or p = ps.
Since ¥y is an isomorphism between top degrees, Poincaré Duality for My
implies that

W) - im WP L,
This shows that ¥2? is injective. For the assertion on the intersection, we
assume that p = p; > po. Under this assumption Lemma 6.20 shows
im W27 im WA TP — g,
This shows that the image of U217 intersects the image of W27 trivially. O
Proofs of Theorems 6.18 and 6.19. We simultaneously prove Decomposi-

tion and Poincaré Duality by lexicographic induction on the rank of M and
the cardinality of &?_. Note that both statements are valid when r = 1, and
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Poincaré Duality holds when ¢ = 0 or ¢ = r. Assuming that Poincaré Duality
holds for A*(Mz), we show the implications
(Poincaré Duality holds for A*(M, 9,)>

= (Poincaré Duality holds for A*(M, &7_)
and Decomposition holds for &_ C W+)

= (Poincaré Duality holds for A*(M, ,@+)>

The base case of the induction is provided by the isomorphism
A*(M, @) ~ Z[z]/(z").

The first implication follows from Proposition 6.10 and Lemma 6.21.
We prove the second implication. Decomposition for &#_ C &2, shows
that, for any positive integer g < r, we have

AYM, 2,) = im ®% &im U @im 027 @ - @ im UFD T and
AT, 2,) = im D 9 @ im PP
@im AP g g im Wl

By Poincaré Duality for (M, &_) and Poincaré Duality for Mz, all the sum-
mands above are torsion free. We construct bases of the sums by choosing
bases of their summands.

We use Corollary 6.11 and Proposition 6.17 to obtain isomorphisms

AT(M, Z_) ~ A"(M, 2,) ~ A1 (My) ~ Z.
For a positive integer ¢ < r, consider the matrices of multiplications

My = (AIM, Py) x ATTIM, Py) — Z),

M= (AIM, P) x ATIM, 2_) — Z)
and, for positive integers p < rk(2),
My = (ATP(M ) x AT=HEA (M ) — 7).

By Lemma 6.20, under the chosen bases ordered as shown above, .Z is a
block upper triangular matrix with block diagonals .Z_ and .#,, up to signs.
It follows from Poincaré Duality for (M, &7_) and Poincaré Duality for Mz that
rk(Z)—-1
det Ay = +det A_ x H det .4, = +1.
p=1
This proves the second implication, completing the lexicographic induction.
O
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7. Hard Lefschetz property and Hodge-Riemann relations

7.1. Let r be a nonnegative integer. We record basic algebraic facts con-
cerning Poincaré duality, the hard Lefschetz property, and the Hodge-Riemann
relations.

Definition 7.1. A graded Artinian ring R* satisfies Poincaré duality of
dimension r if

(1) there are isomorphisms R® ~ R and R" ~ R,
(2) for every integer ¢ > r, we have R? ~ 0, and
(3) for every integer ¢ < r, the multiplication defines an isomorphism

R"™9 — Homg(RY, R").
In this case, we say that R* is a Poincaré duality algebra of dimension r.

In the remainder of this subsection, we suppose that R* is a Poincaré
duality algebra of dimension r. We fix an isomorphism, called the degree map
for R*,

deg: R" — R.
PROPOSITION 7.2. For any nonzero element x in R, the quotient ring
R*/ann(x), where ann(zx):={a € R* | z-a = 0},
is a Poincaré duality algebra of dimension r — d.

By definition, the degree map for R*/ann(z) induced by x is the homo-
morphism

deg(z - —) : R"%/ann(z) — R, a+ ann(z) — deg(x - a).

The Poincaré duality for R* shows that the degree map for R*/ann(x) is an
isomorphism.

Proof. This is straightforward to check; see, for example, [MS05a, Cor.
1.2.3]. ([l

Definition 7.3. Let £ be an element of R', and let ¢ be a nonnegative
integer < 5.

(1) The Lefschetz operator on R? associated to ¢ is the linear map
L} :RT — R, a— (T2 ¢,

(2) The Hodge-Riemann form on RY associated to ¢ is the symmetric bilinear
form

Q}:R'x R — R, (a1,a2) — (—=1)7 deg (a; - L} (a2)).

This content downloaded from
128.146.226.111 on Mon, 17 Jun 2019 22:45:15 UTC
All use subject to https://about.jstor.org/terms



HODGE THEORY FOR COMBINATORIAL GEOMETRIES 425

(3) The primitive subspace of R? associated to ¢ is the subspace
Pl :={a€ R7|(-Li(a) =0} C RY.
Definition 7.4 (Hard Lefschetz property and Hodge-Riemann relations).
We say that

(1) R* satisfies HL(¢) if the Lefschetz operator L] is an isomorphism on R?
for all ¢ < 5, and

(2) R* satisfies HR(¢) if the Hodge-Riemann form Qf is positive definite on
P/ for all ¢ < .

If the Lefschetz operator LZ is an isomorphism, then there is a decompo-
sition
R =PI @ ¢ RY.
Consequently, when R* satisfies HL(?), we have the Lefschetz decomposition of
R for ¢ < 5:
RI=PloI(PI " ®--- @ 1P
An important basic fact is that the Lefschetz decomposition of R? is orthogonal

with respect to the Hodge-Riemann form @Q}: For nonnegative integers ¢; <
q2 < q, we have

Qz(gthal,gth@)
= (_1)Qdeg (glp*th <£r72(qﬂh)al>a2> =0, a € Péq—lh7 as € Peq—th_

PROPOSITION 7.5. The following conditions are equivalent for £ € R':

(1) R* satisfies HL().

(2) The Hodge-Riemann form Qf on R is nondegenerate for all g < 5
Proof. The Hodge-Riemann form Qf on RY is nondegenerate if and only

if the composition

Lq
RI—" > R™9— Homg(R%, R")

is an isomorphism, where the second map is given by the multiplication in R*.
Since R* satisfies Poincaré duality, the composition is an isomorphism if and
only if L} is an isomorphism. O

If Lj(a) = 0, then Qf(a,a) = 0 and a € P/. Thus the property HR(¢)
implies the property HL(?).

PROPOSITION 7.6. The following conditions are equivalent for £ € R':
(1) R* satisfies HR(Y).
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(2) The Hodge-Riemann form Q} on R is nondegenerate and has signature

q
Z(—l)q_p(dimRRp - dimRRp_l) forall g <

r
p=0 2

Here, the signature of a symmetric bilinear form is ny — n_, where n,
and n_ are the number of positive and negative eigenvalues of any matrix
representation the bilinear form [Jac85, §6.3].

Proof. If R* satisfies HR(?), then R* satisfies HL(¢), and therefore we have
the Lefschetz decomposition

RI=Plo(Pl ' ®-- 0@ P

Recall that the Lefschetz decomposition of R? is orthogonal with respect to
Q7, and note that there is an isometry

(Pf, Qf) ~ (ﬂqu Py, (—1)q7pQ21> for every nonnegative integer p < q.

Therefore the condition HR(¢) implies that

M=

(signature of Qf on Rq> =) (=17 (signature of Q) on P )

I
o

p

Il
M=

(—1)97P (dimRRp - dimRRp’l).

Il
o

p

Conversely, suppose that the Hodge-Riemann forms @)} are nondegenerate
and their signatures are given by the stated formula. Proposition 7.5 shows
that R* satisfies HL(¢), and hence

RI=PloIPI '@ @ 1P

The Lefschetz decomposition of R? is orthogonal with respect to QZ, and there-
fore

(signature of Q on Pf)

= (signature of Q on Rq) - (signature of Qz_l on Rq_l).

The assumptions on the signatures of QZ and szl show that the right-hand
side is
dimgR? — dimg R?™* = dimg Py.

Since Qf is nondegenerate on P/, this means that Q] is positive definite on P}.
U
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7.2. In this subsection, we show that the properties HL and HR are
preserved under the tensor product of Poincaré duality algebras.

Let R} and R3 be Poincaré duality algebras of dimensions ry and rg re-
spectively. We choose degree maps for R} and for R3, denoted

deg; : R' — R, deg, : R — R.

We note that Ry ®r Rs is a Poincaré duality algebra of dimension 71 + r9: For
any two graded components of the tensor product with complementary degrees

(RYon BS) © (B " or RY) @ © (B @r RY),
(Rl @ RS) ® (R ©r BY) @ o (R ®r RY),

the multiplication of the two can be represented by a block diagonal matrix
with diagonals

(RY* @r B) x (BRI @z RP ™) — R s RY.
By definition, the induced degree map for the tensor product is the isomorphism
degl XR deg2 : R;l KR Rg2 — R.

We use the induced degree map whenever we discuss the property HR for
tensor products.

PROPOSITION 7.7. Let £1 be an element of R%, and let ¢5 be an element
of R3.

(1) If R} satisfies HL(¢1) and R satisfies HL(¢2), then R} ®r R3 satisfies
HL(6 © 1+ 1@ 06).

(2) If R} satisfies HR(¢1) and Rj satisfies HR({2), then R} ®@r Rj satisfies
HR(6 ©1+1® L)

We begin the proof with the following special case.

LEMMA 7.8. Let r1 <rse be nonnegative integers, and consider the Poincaré
duality algebras

R = Rla)/(23 ) and Ry = Rlrs] /(e ™)
equipped with the degree maps
deg; : R' — R, ' — 1,
degy : Ry — R, x5 — 1.

Then R} satisfies HR(x1), Ra satisfies HR(x2), and R} ®r R5 satisfies HR(x1®
1+1® x9).
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The first two assertions are easy to check, and the third assertion fol-
lows from the Hodge-Riemann relations for the cohomology of the compact
Kahler manifold CP™ x CP™. Below we sketch a combinatorial proof using
the Lindstrom-Gessel-Viennot lemma (cf. [McD11, proof of Lemma 2.2]).

Proof. For the third assertion, we identify the tensor product with
R* := Rz, zo]/ (7, 22T and set £ := 21 + xo.
The induced degree map for the tensor product will be written
deg: Rt — R, zytan? — 1.

CLAIM. For some (equivalently any) choice of basis of R%, we have

(¢+1)
(—1)q T det (Qg) > 0 for all nonnegative integers q < 7.

We show that it is enough to prove the claim. The inequality of the claim
implies that Q7 is nondegenerate for ¢ < r1, and hence L] is an isomorphism
for ¢ < r1. The Hilbert function of R* forces the dimensions of the primitive
subspaces to satisfy

: 1 forg<mr
dimRqu = { ’
and that there is a decomposition
RI=Pl (P @ - © 1P for q<ri.

Every summand of the above decomposition is 1-dimensional, and hence

(signature of Q7 on Rq) ==+1- (signature of Qz_l on Rq_l).

0 forg>nr

The claim on the determinant of Qf determines the sign of £1 in the above
equality:
(signature of QZ) =1- (signature of Q(fl).
It follows that the signature of Qf on P} is 1 for ¢ < 71, and thus R satisfies
HR(Y).
To prove the claim, we consider the monomial basis
{xﬁa}g*i |i= 0,1,...,q} C RY.

The matrix [a;;] that represents (—1)? Q7 has binomial coefficients as its entries:

r1+1ry —2q
T‘l—i—j ’

The sign of the determinant of [a;;] can be determined using the Lindstrém-
Gessel-Viennot lemma:

laij] == ldeg((:m + :Uz)r1+r2_2qx§+jxg_i+q_j)] =

(—1)Q(q+1)/2det [aij] > 0.

See [Aig07, §5.4] for an exposition and similar examples. O
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Now we reduce Proposition 7.7 to the case of Lemma 7.8. We first intro-
duce some useful notions to be used in the remaining part of the proof.

Let R* be a Poincaré duality algebra of dimension r, and let £ be an
element of R!.

Definition 7.9. Let V* be a graded subspace of R*. We say that

(1) V* satisfies HL(?) if Qf restricted to V7 is nondegenerate for all nonnega-
tive ¢ < 3.

(2) V* satisfies HR(¢) if Q] restricted to V7 is nondegenerate and has signature

q
Z(—l)qu (dimRVp - dimRfol) for all nonnegative ¢ < g
p=0

Propositions 7.5 and 7.6 show that this agrees with the previous definition
when V* = R*.

Definition 7.10. Let V* and V5" be graded subspaces of R*. We write
to mean that V* N V5 = 0 and V; ¢ V3! = 0 for all nonnegative integers ¢ < r,
and we write

Vi Lo Vi

to mean that Vi* N V5" = 0 and Qf(V{!, V') = 0 for all nonnegative integers
q<3.

Here we record basic properties of the two notions of orthogonality. Let
S* be another Poincaré duality algebra of dimension s.

LEMMA 7.11. Let V", V5" C R* and W{, W35 C S* be graded subspaces.
(1) IfVi" Lg; V5" and if both V', V3 satisfy HL({), then Vi"@& V5 satisfy HL(Z).
(2) If Vi Loy V5 and if both Vi*, V5 satisfy HR({), then Vi" @ V5" satisfy
HR(?).
(3) If Vi Lpp V5 and if £V C V¥, then Vi Lg: Vs
(4) If vi* Lpp V5, then (VI" @r W) Lpp (V5" ®r W3).

Proof. The first two assertions are straightforward. We justify the third
assertion: For any nonnegative integer ¢ < 5, the assumption on Vi* implies
LIV C V7% and hence

Qi (Vi V5) € deg(V/™V5) = 0.

For the fourth assertion, we check that for any nonnegative integers p1, p2, g1, g2
whose sum is r + s,

VIV @p WEWE =0,
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The assumption on V;* and V5" shows that the first factor is trivial if p; +p2 > r,
and the second factor is trivial if otherwise. O

Proof of Proposition 7.7. Suppose that R} satisfies HR(¢;) and that R}
satisfies HR(¢2). We set

R* := R] ®r R3, C:=0101+1R L.

We show that R* satisfy HR(¢). The assertion on HL can be proved in the
same way.
For every p <

to Qy:

1

%, choose an orthogonal basis of P, C R{ with respect
1

p D p P

{UI,UQ,...,Um(p)} cCp.
Similarly, for every ¢ < %, choose an orthogonal basis of P/ C Rj with respect
to Q7

{wg,wg, .. 'va(q)} C P
Here we use the upper indices to indicate the degrees of basis elements. To
each pair of v/ and w?, we associate a graded subspace of R*:

B* (v, w]) := B*(v]) @ B*(w]), where

B (o) := (o) & LL(oF) & @ £ (vf) C R,

2

B*(w]) := (w!) & loy(w]) & - - & £ (w]) C Rj,

Let us compare the tensor product B*(v?, w?) with the truncated polynomial
ring
Spq = Rlay, wa] /(a7 H p2 200,

The properties HR(¢;) and HR(¢2) show that, for every nonnegative integer
k< %, there is an isometry

(Bk+p+q(vf7w;g)7 le+p+q) ~ (S]’j’q, (—1)Pta Q§1+xg).

Therefore, by Lemma 7.8, the graded subspace B*(v! ,w?) C R* satisfies
HR(Y).

The properties HL(¢;) and HL(¢2) imply that there is a direct sum de-
composition

R = @ B*(vf,w?).
Ps50,

It is enough to prove that the above decomposition is orthogonal with respect
to @Q;:

CLAmM. Any two distinct summands of R* satisfy B*(v,w) Lq: B*(v',w’).
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For the proof of the claim, we may suppose that w # w’. The orthogonality
of the Lefschetz decomposition for Rj with respect to )y, shows that

B(w) Lpp B(w').
By the fourth assertion of Lemma 7.11, the above implies
B*(v,w) Lpp B*(v',w’).
By the third assertion of Lemma 7.11, this gives the claimed statement. (]

7.3. Let X be a unimodular fan, or more generally a simplicial fan in Ng.
The purpose of this subsection is to state and prove Propositions 7.15 and 7.16,
which together support the inductive structure of the proof of Main Theo-
rem 8.8.

Definition 7.12. We say that X satisfies Poincaré duality of dimension r
if A*(¥)Rr is a Poincaré duality algebra of dimension r.

In the remainder of this subsection, we suppose that ¥ satisfies Poincaré
duality of dimension r. We fix an isomorphism, called the degree map for X,

deg: A"(X)r — R.

As before, we write Vx for the set of primitive ray generators of 3.

Note that for any nonnegative integer ¢ and e € Vx, there is a commutative
diagram
Pe

A1(X) Ad(star(e, X))

Te'—

ATH(D),

where pe is the pullback homomorphism pecs; and xe-— are the multiplications
by ze. It follows that there is a surjective graded ring homomorphism

Te : A¥(star(e, X)) — A*(X)/ann(ze).

PropPOSITION 7.13. The star of e in % satisfies Poincaré duality of di-
mension v — 1 if and only if we is an isomorphism:

A*(star(e, X)) ~ A*(X)/ann(xe).

Proof. The “if” direction follows from Proposition 7.2: The quotient of
A*(X) by the annihilator of ze is a Poincaré duality algebra of dimension r — 1.
The “only if” direction follows from the observation that any surjective
graded ring homomorphism between Poincaré duality algebras of the same
dimension is an isomorphism. O
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Definition 7.14. Let ¥ be a fan that satisfies Poincaré duality of dimen-
sion r. We say that

(1) X satisfies the hard Lefschetz property if A*(X)r satisfies HL(¢) for all
e Ay
(2) X satisfies the Hodge-Riemann relations if A*(X)g satisfies HR(¢) for all
{ € J#5; and
(3) X satisfies the local Hodge-Riemann relations if the Poincaré duality alge-
bra
A*(X)r/ann(xe)

satisfies HR({e) with respect to the degree map induced by ze for all ¢ €
J5, and e € V.

Hereafter we write /e for the image of ¢ in the quotient A*(X)r/ann(ze).

PROPOSITION 7.15. If Y satisfies the local Hodge-Riemann relations, then
> satisfies the hard Lefschetz property.

Proof. By definition, for £ € J5; there are positive real numbers ce such
that
(= Z Coo € AY(D)R.
ecVy
We need to show that the Lefschetz operator L on A?(X)g is injective for all
q < 5. Nothing is claimed when 7 = 2¢, so we may assume that r — 2q is
positive.

Let f be an element in the kernel of L{, and write fe for the image of f
in the quotient A?(X)r/ann(xe). Note that the element f has the following
properties:

(1) for all e € Vi, the image fe belongs to the primitive subspace Pfe ; and
(2) for the positive real numbers ce as above, we have

Z Ce Qze(fea fe) = Qg(ﬂ f)=0.

ecVy
By the local Hodge-Riemann relations, the two properties above show that all
the fe are zero:

Te-f=0€ A*(X)r for all e € V.

Since the elements ze generate the Poincaré duality algebra A*(X)g, this im-
plies that f = 0. O

PRrOPOSITION 7.16. If ¥ satisfies the hard Lefschetz property, then the
following are equivalent:

(1) A*(X)r satisfies HR({) for some { € Hs;
(2) A*(X)r satisfies HR({) for all L € 5.
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Proof. Let £y and ¢ be elements of #5,, and suppose that A*(X)g satisfies
HR(¢y). Consider the parametrized family

b= (1—t)by+tly, 0<t<l.

Since %5, is convex, the elements ¢; are ample for all ¢.

Note that Qj, are nondegenerate on A4(X)g for all ¢ and ¢ < § because
) satisfies the hard Lefschetz property. It follows that the signatures of ta
should be independent of ¢ for all ¢ < §. Since A*(X)r satisfies HR({p), the
common signature should be

Xq:(—l)q”’ (dimR AP()R — dimg Apfl(z)R),
p=0

We conclude by Proposition 7.6 that A*(X)r satisfies HR(¢y). O

8. Proof of the main theorem

8.1. As a final preparation for the proof of the main theorem, we show
that the property HR is preserved by a matroidal flip for particular choices of
ample classes.

Let M be as before, and consider the matroidal flip from &_ to &, with
center Z. We will use the following homomorphisms:

(1) the pullback homomorphism &, : A*(M, Z_) — A*(M, Z,);

(2) the Gysin homomorphisms W27 : A77P(My) — AI(M, L2,);

(3) the pullback homomorphism py : A*(M, Z_) — A*(My).

The homomorphism pz is obtained from the graded ring homomorphism pyey,
where 0 = 075 and ¥ = ¥\ »_, making use of the identification

star(o, X) ~ X,

In the remainder of this section, we fix a strictly convex piecewise linear func-
tion /_ on Yy, »_. For nonnegative real numbers ¢, we set

€+(t) = (I)Z(f_) —lxy € Al(M, ,@_;,.) Rz R.
We write £z for the pullback of /_ to the star of the cone 074 in the Bergman
fan Yy o :
by = pz(ff) S Al(Mz) ®7 R.
Proposition 4.4 shows that £z is the class of a strictly convex piecewise linear
function on Xy, .

LEMMA 8.1. 04 (t) is strictly convex for all sufficiently small positive t.

Proof. It is enough to show that ¢, (t) is strictly convex around a given
cone o<z in X\ oz, .
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When Z ¢ %, the cone oz is in the fan ¥y » , and hence we may
suppose that

¢_ is zero on o7z and positive on the link of o7« 7z in Xy 2 .

It is straightforward to deduce from the above that if
0<t< > l_(e),
i€ Z\I

then ¢ () is zero on o077 and positive on the link of o7 in ¥y », . Note
that Z \ I is nonempty and each of the summands in the right-hand side of the
above inequality is positive.

When Z € #, the cone 07 2\(z) is in the fan ¥y »_, and hence we may
suppose that

¢_ is zero on 07 7\ (7 and positive on the link of 072\ (71 in Xpm 5_.

Let J be the flat min.# \ {Z}, and let m(t) be the linear function on Ng
defined by setting
ﬁ ifieZ\1I,

€e; — ﬁtzl ifieJ \ Z,
0  if otherwise.
It is straightforward to deduce from the above that, for all sufficiently small
positive t,

04 (t) +m(t) is zero on o7z and positive on the link of 072 in Xy o, .

More precisely, the latter statement is valid for all ¢ that satisfy the inequalities
0<t< min{f,(ep), ep is in the link of 07 7\ (7} in Eny_}.
Here the minimum of the empty set is defined to be oo. O
We write “deg” for the degree map of M and of Mz, and we fix the degree
maps
deg, : A"(M, Z,) — Z, a— deg(fbgﬁ(a)),
deg_ : A"(M, Z_) — Z, a— deg(q)g/vi(a));
see Definition 6.9. We omit the subscripts + and — from the notation when

there is no danger of confusion. The goal of this subsection is to prove the
following;:

PROPOSITION 8.2. Let 0, Uz, and {4 (t) be as above, and suppose that
(1) the Chow ring of ¥\, 4 satisfies HR((_), and
(2) the Chow ring of ¥\, satisfies HR(£z).
Then the Chow ring of Xm, o, satisfies HR(£4.(t)) for all sufficiently small
positive t.
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Hereafter we suppose HR(¢_) and HR(¢z). We introduce the main char-
acters appearing in the proof of Proposition 8.2:

(1) a Poincaré duality algebra of dimension r:
T
A= @ AL AL AL 2 e R
q=0
(2) a Poincaré duality algebra of dimension r:
T
A* = @ AL, AL = (im @qz) Rz R;
q=0

(3) a Poincaré duality algebra of dimension r — 2:

r—2
I — * q
Ty =T, Thi=(Zls)/ (a5 P @2 AT (M) @2 R;
q=0
(4) a graded subspace of A%, the sum of the images of the Gysin homomor-
phisms:
r—1 rk(Z)—-1
Gy = @qu, GY, = @ (im \Il%q) ®z R.
g=1 p=1

The truncated polynomial ring in the definition of 77 is given the degree map
(_$Z)rk(Z)—2 —s 1,

so that the truncated polynomial ring satisfies HR(—z ). The tensor product
T7 is given the induced degree map

(—22)ED 255 1,

where 2 is any maximal flag of nonempty proper flats of Mz. It follows from
Proposition 7.7 that the tensor product satisfies HR(1 ® {7z —zz ® 1).

Definition 8.3. For nonnegative ¢ < 5, we write the Poincaré duality
pairings for A* and 77 by

(-, —>i* cAT X AT 5 R,

q—1 . g—1 r—q—1
<7,7>T2 T < T R
We omit the superscripts g and ¢—1 from the notation when there is no danger

of confusion.

Theorem 6.18 shows that @ defines an isomorphism between the graded
rings
A" (M, Z_) @z R ~ A*
and that there is a decomposition into a direct sum

AL = A" B G
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In addition, it shows that xz - — is an isomorphism between the graded vector
spaces
Ty ~ Gy
The inverse of the isomorphism xz - — will be denoted x%l - —.
We equip the above graded vector spaces with the following symmetric
bilinear forms:

Definition 8.4. Let q be a nonnegative integer < 5.

(1) (A‘_IH QLo QqZ): Q% and Q% are the bilinear forms on A? and G defined
below.
(2) (Aci, Qq_): Q7 is the restriction of the Hodge-Riemann form QZ+(O) to AZ.

(3) (Tg, Q‘fy): %, is the Hodge-Riemann form associated to
7 =(10l;—2;01) €T}

(4) (Gq ,Q%): ? is the bilinear form defined by saying that zz - — gives an
isometry

(757 Q5") ~ (6% Q%)

We observe that Q% ®QY, satisfies the following version of Hodge-Riemann
relations:

PROPOSITION 8.5. The bilinear form QL @® QY is nondegenerate on A%
and has signature
q
Z(—l)q_p(dz’mRAf_ - dimRAJ_fl) for all nonnegative g < g
p=0
Proof. Theorem 6.18 shows that ®; ®z R defines an isometry
(A7, 20, Q1) = (42, Q7).

It follows from the assumption on Xy » that Q% is nondegenerate on A? and

has signature
q

> (1)1 (dimg A” — dimg A”"").

p=0
It follows from the assumption on Xy, that Q% is nondegenerate on G% and
has signature

qg—1 q—1

S (-1 (dimeTh — dimgTh ) = 3 (=1)7P 7 (dimp GG — dimpGY)
p=0 p=0
q
- I;)<_1)q—p (dimeGY — dimpGY ).
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The assertion is deduced from the fact that the signature of the sum is the
sum of the signatures. ([

We now construct a continuous family of symmetric bilinear forms Qf on
A% parametrized by positive real numbers ¢. This family Q7 will be shown to
have the following properties:

(1) For every positive real number ¢, there is an isometry

(4%, QF) = (4%, QL )-
(2) The sequence Qf as t goes to zero converges to the sum of Q% and Q%:
lim Qf = Q1 & Q7.
For positive real numbers ¢, we define a graded linear transformation
Spr AL — ALY

to be the sum of the identity on A* and the linear transformations

(im ¥57) @2 R — (m W57) @z R, ar—t 5 Pa,

The inverse transformation S; ! is the sum of the identity on A* and the linear

transformations
rk(Z2)

(im \I/%q> ®zR — (im \Iﬂgq) ®z R, a—t 2 Paq,.

Definition 8.6. The symmetric bilinear form Qf is defined so that S; de-
fines an isometry

(Ai, Qg) ~ (Ai, Q‘L (t)) for all nonnegative integers ¢ <

N3

In other words, for any elements a1, a2 € Ai, we set

Qf(a1,a2) := (—1)?deg(Si(a1) - £4 (1) Si(ag))-

The first property of Qf mentioned above is built into the definition. We
verify the assertion on the limit of Qf as t goes to zero.

PROPOSITION 8.7. For all nonnegative integers q < 5, we have
li a_ 9 q
Jm Q; =QL Q%
Proof. We first construct a deformation of the Poincaré duality pairing
AL x AT — R
<a1,a2>f = deg(St(al), St(a2)>, t>0.

We omit the upper index ¢ when there is no danger of confusion.
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Cram (1). For any by,by € A* and c1,¢c0 € G and a1 = by 4+ ¢1,a2 =
by + co € AZ,

T _ —1 —1
<a1,a2>0 " %E% <a1’a2>t - <b1’b2>A*_ - <xZ 1,%z CQ>T§'
We write z := rk(Z) and choose bases of A% and A’ that respect the
decompositions
Al =A% (im \I'Eq @ im \If%q @---@im \I/ZZ_l’q) ®z R and
A=A (im U g im UL TN @ im \If%’"’q) @z R.
Let .#_ be the matrix of the Poincaré duality pairing between A? and A" 7.
Let .#), p, be the matrix of the Poincaré duality pairing between im U727 @7 R

and im ¥2"7% ®; R. Lemma 6.20 shows that the matrix of the deformed
Poincaré pairing on A% is

[ 0 0 0 0
0 Moy tdo, . Mo,y - V2o,
0 0 Mo M3, 2 B3 M o
0 0 0 %3,,2—3 te tZ74%z—1,z—3
| 0 0 0 0 0 Mo—1,1

The claim on the limit of the deformed Poincaré duality pairing follows. The
minus sign on the right-hand side of the claim comes from the following com-
putation made in Proposition 6.17:

deg(m?(z)xg’) _ (_1)rk(Z)—1'

We use the deformed Poincaré duality pairing to understand the limit of
the bilinear form Q. For an element a of A}r, we write the multiplication with
a by

. * *+1
M AL — AT Tr—a-x,

and we define its deformation M := S;' o M@0 S;. In terms of the operator
Mf +() the bilinear form Qf can be written

Q?(a1,a2) _ (—1)qdeg(5t(a1) CME® oo M) 6 S, (a2))

(—1)qdeg(St(a1) - St o Mf“‘(t) 6:440 Mf+(t) (a2))

(—1)4 <a1, Mtg+(t) 6. o Mt@r(t) (a2)>t.
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Define linear operators M'®/Z M*2®1 and M7 on G% by the isomorphisms
( *ZyM1®ZZ) ~ (j—vk—].7 1 ®£Z . _)’
(G},M$Z®1) ~ (T*_l,CCZ ®1- 7),
* T\ ~ x—1 L
(05.0%) = (1),
Note that the linear operator M7 is the difference M1®fz — pfzz®1,

CrLAIM (2). The limit of the operator Mf+(t) as t goes to zero decomposes
into the sum

. 1 RO\ x £,(0) T
(43 Jim 24) = (42 @ G5, MO @ 117,
Assuming the second claim, we finish the proof as follows: We have

: q — (_1\2 1 e (t) o £ (t)
lim Qf (a1, a2) = (~1) lim (@, M 00 2+ (a2) )

and from the first and the second claim, we see that the right-hand side is
(—1) <a1, (MO 7)o - o(MHO g7 (a2)>0 = QL (b1, b2)+Q%(c1, ),

where a; = b; + ¢; for b; € A* and ¢; € G7,. Notice that the minus sign in the
first claim cancels with (—1)?71 in the Hodge-Riemann form

(147,Q% ") ~ (6%, Q%)

We now prove the second claim made above. Write Mf +(

)

as the difference
Mer(t) _ St,l o M1 o8, = St—l ° (M£+(0) _ Mtacz) 08, = Mtf+(0) _ Mttzz.
By Lemma 6.20, the operators M) and S, commute, and hence

(A*+’ Mth(o)) _ (Aj-’ M‘+(0)) _ (A*_ oGy, A+ @M@‘Z).

Lemma 6.20 shows that the matrix of M*Z in the chosen bases of Af{_ and Ai“
is of the form

0 0 0 0 B
cC 0 0 0 B
0 Id 0 0 B
0 0 -~ Id 0 B,
|0 0 -~ 0 Id B, |

where “Id” are the identity matrices representing

ATP(My)p =~ im U9 — im WD & A97P(My)g.
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KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

can be written

0 0 0 0 5B, |
rk(Z)

t—=C 0 0 0 k@)-1p,
0 Id 0 0 tk(@)-2p,
0 0 Id 0 2B,

0 0 0 Id tB.

At the limit ¢ = 0, the matrix represents the sum 0 @ M*2®! and therefore

(Ai; ,lim Mf+(”) - (Ai oGy, M+0O g M1®’fZ) - (At OGY, 00 sz®1)

= (Aj ® Gy, Mt+(0) @M?).
This completes the proof of the second claim. O
Proof of Proposition 8.2. By Propositions 8.5 and 8.7, we know lim;_,o Qf

is nondegenerate on A% and has signature

q
z:(—l)q*}7 (dimRAﬁ - dimRAﬁ_1> for all nonnegative ¢ <

r
p=0 2

Therefore the same must be true for Qf for all sufficiently small positive t. By
construction, there is an isometry

(at.00) = (a2 01,
and thus A% satisfies HR(¢4.(t)) for all sufficiently small positive t. O

8.2.
the degree map of M and, for an order filter &2 of &y, we fix an isomorphism

A"(M, ) — Z, a— deg(®pe(a)).

We are now ready to prove the main theorem. We write “deg” for

THEOREM 8.8 (Main Theorem). Let M be a loopless matroid, and let &
be an order filter of Py\p.

(1) The Bergman fan ¥np,o satisfies the hard Lefschetz property.
(2) The Bergman fan ¥y, 2 satisfies the Hodge-Riemann relations.

When & = £, the above implies Theorem 1.4 in the introduction be-
cause any strictly submodular function defines a strictly convex piecewise linear
function on Xy.

Proof. We prove by lexicographic induction on the rank of M and the
cardinality of 2. The base case of the induction is when &7 is empty, where
we have

A*(M, @)g ~ R[m]/(a:r+1), Ti— T.
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Under the above identification, the ample cone is the set of positive multiples
of z, and the degree " is 1. It is straightforward to check in this case that
the Bergman fan satisfies the hard Lefschetz property and the Hodge-Riemann
relations.

For the general case, we set & = &2, and consider the matroidal flip from
P_ to X4 with center Z. By Propositions 4.7 and 4.8, we may replace M by
the associated combinatorial geometry M. In this case, Proposition 3.5 shows
that the star of every ray in Yy » is a product of at most two Bergman fans
of matroids (one of which may not be a combinatorial geometry) to which the
induction hypothesis on the rank of matroid applies. We use Propositions 7.7
and 4.4 to deduce that the star of every ray in Xy » satisfies the Hodge-
Riemann relations; that is, 3\ & satisfies the local Hodge-Riemann relations.
By Proposition 7.15, this implies that ¥\ » satisfies the hard Lefschetz prop-
erty.

Next we show that ¥y o satisfies the Hodge-Riemann relations. Since
Ym, o satisfies the hard Lefschetz property, Proposition 7.16 shows that it is
enough to prove that the Chow ring of ¥y 4 satisfies HR(¢) for some £ € 1 5.
Since the induction hypothesis on the size of order filter applies to both ¥y 5
and Xy, this follows from Proposition 8.2. O

We remark that the same inductive approach can be used to prove the
following stronger statement. (See [Cat08] for an overview of the analogous
facts in the context of convex polytopes and compact Kéhler manifolds.) We
leave details to the interested reader.

THEOREM 8.9. Let M be a loopless matroid on E, and let &2 be an order
filter of 1.
(1) The Bergman fan X\, 5 satisfies the mixed hard Lefschetz theorem: For
any multiset
L={l,lo, ... bz} C Hr,
the linear map given by the multiplication

Li]%’ : Aq(M, QZ)R — Ar_q(M, 9)]{@, a+— (flgg e -Erfgq) - a

is an isomorphism for all nonnegative integers q < 5.
(2) The Bergman fan Y,z satisfies the mixed Hodge-Riemann Relations:
For any multiset

L = {El,ﬁg,...,&_gq} C Jre» and any € v,
the symmetric bilinear form given by the multiplication
QY AIM, P)g x AYM, P)g — R, (a1,a2) — (—1)?deg(ay - LY (az))

1s positive definite on the kernel off-Lff for all nonnegative integers q < 5.

This content downloaded from
128.146.226.111 on Mon, 17 Jun 2019 22:45:15 UTC
All use subject to https://about.jstor.org/terms



442 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

9. Log-concavity conjectures

9.1. Let M be a loopless matroid of rank r + 1 on the ground set £ =
{0,1,...,n}. The characteristic polynomial of M is defined to be
() = 3 (= xTD,
ICE
where the sum is over all subsets I C E and crk(7) is the corank of I in M.
Equivalently,
) = Y (@, F) AT,
FCE
where the sum is over all flats F' C E and uy is the Mobius function of the
lattice of flats of M. Any one of the two descriptions clearly shows that
(1) the degree of the characteristic polynomial is r 4 1,
(2) the leading coefficient of the characteristic polynomial is 1, and
(3) the characteristic polynomial satisfies xnm (1) = 0.
See [Zas87], [Aig87] for basic properties of the characteristic polynomial and
its coeflicients.

Definition 9.1. The reduced characteristic polynomial Xy;(\) is

Xu(A) = xam(A) /(A —1).
We define a sequence of integers p®(M), p' (M), ..., u"(M) by the equality
T
T = (=1 () A,
k=0

The first number in the sequence is 1, and the last number in the sequence
is the absolute value of the Mébius number (2, E). In general, 1% (M) is the
alternating sum of the absolute values of the coefficients of the characteristic
polynomial

pF (M) = wp(M) — wi_1 (M) + - - - + (—1)*wo(M).
We will show that the Hodge-Riemann relations for A*(M)gr imply the log-
concavity
pE L M) pF L (M) < pF(M)?2 for 0 <k <7
Because the convolution of two log-concave sequences is log-concave, the above
implies the log-concavity of the sequence wy(M).

Definition 9.2. Let .Z = {Fy C F» C --- C Fj} be a k-step flag of
nonempty proper flats of M.
(1) The flag .# is said to be initial if r(F,,) = m for all indices m.
(2) The flag .# is said to be descending if min(F;) > min(F) > --- >
min(Fy) > 0.
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We write Di(M) for the set of initial descending k-step flags of nonempty
proper flats of M.

Here, the usual ordering of the ground set £ = {0,1,...,n} is used to
define min(F").

For inductive purposes it will be useful to consider the truncation of M,
denoted tr(M). This is the matroid on E whose rank function is defined by

ki oy (1) := min(rky (1), 7).

The lattice of flats of tr(M) is obtained from the lattice of flats of M by removing
all the flats of rank r. It follows that, for any nonnegative integer k < r, there
is a bijection

Dk(M) ~ Dk(tr(M))
and an equality between the coefficients of the reduced characteristic polyno-
mials

P M) = 1 (e (M),

The second equality shows that all the integers p* (M) are positive; see [Zas87,
Th. 7.1.8].

LEMMA 9.3. For every positive integer k < r, we have

uF (M) = [ DL (M)

Proof. The assertion for k = r is the known fact that x" (M) is the number
of facets of Ay that are glued along their entire boundaries in its lexicographic
shelling; see [Bj692, Prop. 7.6.4]. The general case is obtained from the same
equality applied to repeated truncations of M. See [HK12, Prop. 2.4] for an
alternative approach using Weisner’s theorem. U

We now show that p®(M) is the degree of the product ag/fk B See
Definition 5.7 for the elements ay;, fu € AY(M), and Definition 5.9 for the
degree map of M.

LEMMA 9.4. For every positive integer k < r, we have

By=Y zz € A" (M),
F

where the sum is over all descending k-step flags of nonempty proper flats of M.

Proof. We prove by induction on the positive integer k. When k = 1, the
assertion is precisely that Sy represents Sy in the Chow ring of M:

Bm = Pao = Y xr € A*(M).

0¢F
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In the general case, we use the induction hypothesis for k to write
N =" Buzs,
F

where the sum is over all descending k-step flags of nonempty proper flats of
M. For each of the summands Sy ., we write

F = {F1 CFC---C Fk}, and set ig := min(Fy).

By considering the representative of Sy corresponding to the element i, we

see that
Puzg = ( > $F)$fi = gy,
iz ¢F %
where the second sum is over all descending flags of nonempty proper flats of
M of the form

G={FCFC - CF}
This complete the induction. O

Combining Lemmas 9.3, 9.4, and Proposition 5.8, we see that the coeffi-
cients of the reduced characteristic polynomial of M are given by the degrees
of the products ai/fk B

PROPOSITION 9.5. For every nonnegative integer k < r, we have

pF(M) = deg(ar* B3).
We illustrate the proof of the above formula for the rank 3 uniform matroid

U on {0,1,2,3} with flats
o, {0}, {1}, {2}, {3}, {0,1}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}, {0,1,2,3}.

The constant term p?(U) of the reduced characteristic polynomial of U is 3,
which is the size of the set of initial descending 2-step flags of nonempty proper
flats,

Da(U) = {{2} € {1,2}, {3} € {1,3}, {3} C {2,3}}.
In the Chow ring of U, we have By 1 = fu2 = Bu,3 by the linear relations, and
hence
Bt = Bula1 + z2 + 3 + 212 + 13 + T23)
= fui(z1 + z12 + 213) + Pu2(r2 + x23) + Puz(z3)
= (zo + T2 + 3 + 02 + To3 + T23)(T1 + T12 + T13)
+ (xo + 21 + x3 + o1 + T3 + T13) (T2 + T23)
+ (xo + z1 + 22 + zo1 + To2 + z12)(x3).
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Using the incomparability relations, we see that there are only three nonvan-
ishing terms in the expansion of the last expression, each corresponding to one
of the three initial descending flag of flats:

2
B% = xax12 + 23213 + T3T23.

9.2. Now we explain why the Hodge-Riemann relations imply the log-
concavity of the reduced characteristic polynomial. We first state a lemma
involving inequalities among degrees of products:

LEMMA 9.6. Let {1 and l be elements of AY(M)r. If £ is nef, then
deg(£1 €1 057%) deg(ly lo £52) < deg(ly la 15 2)>.

Proof. We first prove the statement when /5 is ample. Let Q}Q be the
Hodge-Riemann form

Q}?Q P AN (Mg % A'(M)r — R, (a1, az) — —deg(ay 65_2 az).
Theorem 8.8 for & = ) shows that the Chow ring A*(M) satisfies HL(¢2)
and HR(¢2). The property HL(¢3) gives the Lefschetz decomposition

A (Mg = (£2) ® Py, (M),

which is orthogonal with respect to the Hodge-Riemann form Q%Q. The prop-
erty HR(f) says that Qj, is negative definite on (f3) and positive definite on
its orthogonal complement, P, (M).

Consider the restriction of Qy, to the subspace (£1,£3) C AY(M)g. Either
£1 is a multiple of £y or the restriction of Q}Q is indefinite, and hence

deg (0161 0572) deg(lals 052) < deg(ly £ 05%)>.

Next we prove the statement when ¢5 is nef. The discussion below Propo-
sition 4.4 shows that the ample cone J#; is nonempty. Choose any ample
class ¢, and use the assumption that ¢5 is nef to deduce that

lo(t) := Lo + t L is ample for all positive real numbers ¢.
Using the first part of the proof, we get, for any positive real number ¢,
deg (0101 €2(t)"?) deg(La(t) La(t) €a(t)"~2) < deg (1 la(t) 2()" %)
By taking the limit £ — 0, we obtain the desired inequality. U

LEMMA 9.7. Let M be a loopless matroid.

(1) The element g is the class of a convex piecewise linear function on Xy;.
(2) The element By is the class of a convex piecewise linear function on 3.

In other words, ay and By are nef.
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Proof. For the first assertion, it is enough to show that anr is the class
of a nonnegative piecewise linear function that is zero on a given cone oy g
in Xy For this we choose an element ¢ not in any of the flats in .. The
representative o ; of ay has the desired property.

Similarly, for the second assertion, it is enough to show that £y is the class
of a nonnegative piecewise linear function that is zero on a given cone oz o
in Y. For this we choose an element ¢ in the flat min .%. The representative
B, of fu has the desired property. O

PROPOSITION 9.8. For every positive integer k < r, we have
pEH M) M) < (M),

Proof. We prove by induction on the rank of M. When k is less than
r — 1, the induction hypothesis applies to the truncation of M. When k is
r — 1, Proposition 9.5 shows that the assertion is equivalent to the inequality

deg(ad; Sy 2)deg(B Bir?) < deglad S )%

This follows from Lemma 9.6 applied to ayr and Sy, because By is nef by
Lemma 9.7. O

We conclude with the proof of the announced log-concavity results.

THEOREM 9.9. Let M be a matroid, and let G be a graph.

(1) The coefficients of the reduced characteristic polynomial of M form a log-
concave sequence.

(2) The coefficients of the characteristic polynomial of M form a log-concave
sequence.

(3) The number of independent subsets of size i of M form a log-concave
sequence in t.

(4) The coefficients of the chromatic polynomial of G form a log-concave
sequence.

The second item proves the aforementioned conjecture of Heron [Her72],
Rota [Rot71], and Welsh [Wel76]. The third item proves the conjecture of
Mason [Mas72] and Welsh [Wel71]. The last item proves the conjecture of
Read [Rea68] and Hoggar [Hog74].

Proof. 1t follows from Proposition 9.8 that the coefficients of the reduced
characteristic polynomial of M form a log-concave sequence. Since the convo-
lution of two log-concave sequences is a log-concave sequence, the coefficients
of the characteristic polynomial of M also form a log-concave sequence.

To justify the third assertion, we use the result of Brylawski [Bry77],
[Len13] that the number of independent subsets of size k of M is the absolute
value of the coefficient of \"~* of the reduced characteristic polynomial of
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another matroid. It follows that the number of independent subsets of size k

of M form a log-concave sequence in k.

For the last assertion, we recall that the chromatic polynomial of a graph
is given by the characteristic polynomial of the associated graphic matroid
[Wel76]. More precisely, we have

xXa(A) = A" xag (M),

where n¢g is the number of connected components of G. It follows that the
coefficients of the chromatic polynomial of G form a log-concave sequence. [
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