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1. Introduction

In a series of papers, Alexandru Buium introduced a notion of arithmetic derivations, 
extending the analogy between function fields like C[[t]] and mixed characteristic local 
fields like Zunr

p (see the textbook [5]). For example, there is an arithmetic derivation 
operator on Zunr

p , called a p-derivation, defined by

δx = ϕ(x) − xp

p
,

where ϕ is the Frobenius. While δ does not obey the usual Leibniz rule and is not even 
additive, it has many formal properties in common with derivations. Just as the usual 
notion of derivation measures non-constancy of an object over a base, this arithmetic 
derivation measures how much the Frobenius action on an object over Zunr

p differs from 
x �→ xp: the arithmetic analogue of triviality of a family is the existence of a lift of 
Frobenius. This is consistent with Borger’s approach to the field of one element [1], 
where one views lifts of Frobenius as a necessary condition for descent to F1, just as a 
vector field on a family extending a vector field on the base is a necessary condition for 
descent from C[[t]] to C.

More generally, Buium [4] classified all arithmetic analogues of derivations on a local 
domain R of characteristic zero. By an “arithmetic analogue of a derivation,” we mean 
an operation θ : R → R on a ring R, which has a sum rule, a product rule, and which 
is appropriately normalized to take certain values on 0 and 1. Buium proved that for R, 
a local ring of characteristic zero, there can only exist four types of operations up to 
equivalence: derivations, difference operations, p-derivations, and p-difference operations 
where p is some prime. These various notions afford analogous definitions of differentials 
and jet spaces.

It turns out that operations θ satisfying the conditions imposed in [4] are intimately 
tied to ring schemes. Under this correspondence, usual derivations correspond to the ring 
scheme of dual numbers, and Buium’s p-derivations correspond to the ring of p-typical 
Witt vectors of length two. In fact, the ring scheme formalism of Borger–Weiland [6]
provides a uniform framework for formulating differentials and jet spaces as well as 
working over a base.

One classical construction using differentials that has been missing its p-differential 
analogue is that of taking differentials on the total space. Specifically, if one has a scheme 
π : X → S smooth over a base, one may form the exact sequence

0 π∗Ω1
S Ω1

X Ω1
X/S 0.

This construction is crucial to Katz–Oda’s construction of the Gauss–Manin connection 
[12]. The purpose of this paper is to construct an analogue of the restriction of this exact 
sequence to a closed fiber, at least for the case where the base is SpecZ/p2. In fact, 
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we will consider schemes defined over SpecZ/p2 as families over a “deeper” base below 
Z/p2 and measure their non-triviality. In this sense, our work comes into contact with 
the philosophy of the field of one element. The geometric counterpart of our construction 
can be found in [7].

This paper accomplishes the goal by introducing a new class of arithmetic derivations 
from a ring modulo p2 to a ring modulo p that interpolates between Buium’s p-derivations 
and ordinary Frobenius semi-linear derivations. We call these total p-derivations. They 
globalize on schemes X defined over W2(k), the p-typical Witt vectors length 2 of a 
field of characteristic p. In fact, their dual notion, total p-differentials form a sheaf Ω1,tot

X

on X0, the reduction of X. They fit into an exact sequence

0 OX0

α Ω1,tot
X

β
F ∗
X0

Ω1
X0

0

where F ∗
X0

Ω1
X0

is the pullback by absolute Frobenius of the sheaf of differentials on X0. 
The appearance of OX0 is a reflection of the fact that SpecW2(k) should be thought of 
as an object with a one-dimensional cotangent space over a “deeper” scheme. Regarding 
p-differentials as analogous to differentials on a total space, we construct analogues of 
the Gauss–Manin connection and the Kodaira–Spencer class. The usual Gauss–Manin 
connection is a measure of the non-triviality of a local system arising as the cohomol-
ogy of a family; our analogue measures the existence of lifts of Frobenius. This gives an 
alternative view of Deligne–Illusie’s deformation-theoretic approach [8] to studying lifts 
of Frobenius. The arithmetic analogue of the Kodaira–Spencer class via a different con-
struction already appears with applications to Diophantine geometry in [2]. We also give 
a description of total p-differentials in terms of the biring formalism. Further discussion 
of the arithmetic analogue of Kodaira–Spencer classes is in [10].
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2. Total p-differentials

2.1. Total p-derivations

Let k be a perfect field of characteristic p > 2. Let R = W2(k) be the p-typical 
Witt vectors [13] of length 2. Let ϕ : R → R be the homomorphism induced by Witt 
functoriality from the Frobenius on k. Let A be a finitely generated flat R-algebra with 
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mod p reduction A0. For r ∈ R, we will write r for the element r · 1 ∈ A. Let Cp(X, Y )
be the polynomial

Cp(X,Y ) = Xp + Y p − (X + Y )p

p
.

Definition 2.1.1. For an A0-module D0, a total p-derivation of A into D0 is a map 
δ : A → D0 such that

(1) for a, b ∈ A, δ(a + b) = δa + δb + (Cp(a, b))δp,
(2) for a, b ∈ A δ(ab) = (δa)bp + ap(δb), and
(3) for r ∈ R, δr = ((ϕ(r) − rp)/p)(δp).

Here, we treat D0 as an A-module via the natural quotient A → A0. If δp = 0, then 
the derivation is a Frobenius semi-linear derivation. If δp = 1, then it is a p-derivation. 
Both of these notions are central to [3]. Total p-derivations interpolate between them.

Example 2.2. For each c ∈ Z/p we may specify a total p-derivation θp,c : Z/p2 → Z/p by 
setting (following item 3):

θp,c(r) = c

(
r − rp

p

)
.

So, θp,c(p) = c. Observe that total p-derivations Z/p2 → Z/p are determined by their 
value on p: if θ and θ′ are two such derivations then θ − θ′ is a Frobenius semi-linear 
derivation, and the only Frobenius semi-linear derivation from Z/p2 to Z/p is zero.

2.3. Witt interpolation

Another view of total p-derivations can be given in terms of a construction interpo-
lating between length 2 Witt vectors and a twisted infinitesimal thickening. Let D0 be a 
k-algebra. For c ∈ D0, let Uc(D0) be the ring whose underlying set is D0 ×D0 equipped 
with the operations

(x0, x1) + (y0, y1) = (x0 + y0, x1 + y1 + cCp(x0, y0))

(x0, x1) · (y0, y1) = (x0y0, x
p
0y1 + yp0x1).

It is easily seen that U1(D0) = W2(D0). On the other hand, U0(D0) is an infinitesi-
mal thickening of D0 twisted by Frobenius. The ring Uc(D0) can be equipped with an 
R-algebra structure (using the fact that (1, 0) is the multiplicative identity) by

r · (1, 0) =
(
r, c

(
ϕ(r) − rp

))
.

p
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Observe that p ·(1, 0) = (0, c). For any value of c, there is a homomorphism Uc(B0) → B0
given by (x0, x1) �→ x0. The kernel I satisfies I2 = 0 and pI = 0. The operation D0 �→
Uc(D0) can be seen as a Witt interpolation functor going from k-algebras to R-algebras.

The proof of the following is straightforward.

Lemma 2.4. For e ∈ A0, there is a homomorphism he : Uc(D0) → Uce(D0) given by 
h(x0, x1) = (x0, ex1).

Proposition 2.5. Given a homomorphism f : A0 → D0 making D0 into an A0-module, 
total p-derivations δ of A into D0 with δp = c ∈ D0 are in one-to-one correspondence 
with R-algebra homomorphisms

(f, δ) : A → Uc(D0), a �→ (f(π0(a)), δa)

where π0 : A → A0 is reduction.

Lemma 2.6. Let g : A → B be formally smooth. Let D0 be a B0-algebra, with an A0-
algebra structure induced by g. Then a total p-derivation δA of A into D0 has a lift δB
of B into D0 (that is δA = δB ◦ g). If, in addition, g is formally unramified, this lift is 
unique.

Proof. Let c = δA(p). Then, the total p-derivativation δA induces a homomorphism 
(f, δA) : A → Uc(D0). Consider the commutative diagram

B
h

D0

A

g

Uc(D0).

The top horizontal arrow h is the B0-algebra structure, and the right vertical arrow is 
reduction. The dotted arrow exists by formal smoothness (and is unique if f is formally 
unramified). It must be of the form (h, δB) for a total p-derivation δB. �

The construction of Uc is functorial: if h : B0 → C0 is a A0-algebra homomorphism, 
then there is an induced homomorphism h : Uc(B0) → Uh(c)(C0).

2.7. Total p-differentials

The module of total p-differentials Ω1,tot
A is the A0-module generated by the symbols 

dtotx for x ∈ A subject to the relations

(1) for a, b ∈ A, dtot(a + b) = dtota + dtotb + (Cp(a, b))dtotp,
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(2) for a, b ∈ A, dtot(ab) = (dtota)bp + ap(dtotb), and
(3) for r ∈ R, dtotr = ((ϕ(r) − rp)/p)(dtotp).

Here, we treat Ω1,tot
A as an A-module with the A-action factoring through the reduction 

A → A0 There is a natural total p-derivation δ : A → Ω1,tot
A that satisfies the following 

universality property: for any total p-derivation δ′ : A → D0, there is a unique A0-module 
homomorphism g : Ω1,tot

A → D0 such that δ′ = g ◦ δ.

Example 2.8. For A = R[x1, . . . , xn], a free polynomial algebra, Ω1,tot
A is a free A0-module 

of rank n + 1, generated by dtotp, dtotx1, . . . , dtotxn.

There are pullbacks for total p-differentials: given an R-algebra homomorphism 
f : A → B, there is a well-defined map of B0-modules,

Ω1,tot
A ⊗A0 B0 → Ω1,tot

B

taking dtota ⊗ b0 �→ b0d
tot(f(a)): it can be verified to be linear in the first coordinate 

and to respect the tensor product over A0.
For an A0-module M0, we will consider F ∗

A0
M0 to be the Frobenius tensor product of 

M : F ∗
A0

M0 is M0⊗A0 A0 where A0 is given an A0-module structure twisted by Frobenius 
(for r ∈ A0, x ∈ A0, r · x = rpx). The quotient of Ω1,tot

A by dtotp is F ∗
A0

Ω1
A0

. There is a 
natural A0-module homomorphism α : A0 → Ω1,tot

A given by α(x) = xdtotp. A left-inverse 
of α is a homomorphism h : Ω1,tot

A → A0 with h(dtotp) = 1.
We will relate left-inverses of α to lifts of the absolute Frobenius. Here, a lift of absolute 

Frobenius is a ring homomorphism ϕ : A → A such that ϕ restricts to the Frobenius on R

and makes the following diagram commute

A
ϕ

π0

A

π0

A0
x�→xp

A0

Remark 2.9. In much of the literature, one lifts the relative Frobenius which is a k-linear 
homomorphism A0 → A

(p)
0 . Here, A(p)

0 = A0 ⊗k k (with the k-algebra structure on k
being given by r ·x = rpx) so for c ∈ k, cx ⊗1 = x ⊗ cp. Lifts of relative Frobenius are in 
bijective correspondence with lifts of absolute Frobenius. Indeed, one has a commutative 
diagram
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A0 A
(p)
0

F
A0

G

FA0

k kxp←�x

where F is the relative Frobenius given by x ⊗ c �→ cxp and G is the structure homomor-
phism given by x �→ x ⊗ 1. Similarly, we may form A(ϕ) = A ⊗R R where R is given an 
R-algebra structure by r ·x = ϕ(r)x. A lift of relative Frobenius is an R-homomorphism 
Φ: A → A(ϕ) reducing to F . Throughout this paper, except in remarks, we will use 
absolute Frobenius which will be denoted by subscripted F .

Lemma 2.10. Left-inverses h : Ω1,tot
A → A0 of α are in bijective correspondence with lifts 

of Frobenius on A where the correspondence is given by

h �→ [ϕh : x �→ xp + ph(dtotx)].

Proof. Let h be a left-inverse. Define ϕh : A → A by ϕh(x) = xp +ph(dtotx). We observe 
that

ϕh(x + y) = (x + y)p + ph(dtot(x + y))
= (x + y)p + ph(dtotx + dtoty + Cp(x, y)dtotp)
= xp + yp + ph(dtotx + dtoty)
= ϕh(x) + ϕh(y)

and that

ϕh(xy) = (xy)p + ph(dtot(xy))
= (xy)p + ph(xpdtoty + ypdtotx)
= (xp + ph(dtotx))(yp + ph(dtoty))
= ϕh(x)ϕh(y).

If ϕ : A → A is a lift of Frobenius, then we define h : A → A0 by h(x) = (ϕ(x) −xp)/p. 
This makes sense since the reduction to k of ϕ(x) −xp is 0 and A has no p-torsion because 
A is a flat R-algebra. We claim that h factors through dtot : A → Ω1,tot. This follows 
from reversing the above arguments and noting that ϕ restricts to the usual Frobenius 
on R. �
Lemma 2.11. Let A be a smooth R-algebra. Then, there is an exact sequence of 
A0-modules,

0 A0
α Ω1,tot

A

β
F ∗
A0

Ω1
A0

0.
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Proof. We only need to show that α is an injection. Because we are in the affine setting, 
there is a lift of Frobenius on A by smoothness, and therefore a left-inverse of α. �
2.12. Globalization

The above constructions globalize by gluing. Indeed, given a scheme X over R, can 
produce a sheaf Ω1,tot

X0
on the reduction X0 over k. We cover X by affines Ui = SpecAi

and construct Ω1,tot
Ai

over (Ai)0. To verify that these glue together, following [5], we must 
verify that given an R-algebra A, f ∈ A with nonzero reduction f0 ∈ A0, we have a 
natural isomorphism of (A0)f0-modules:

Ω1,tot
Af

∼= Ω1,tot
A ⊗A0 (A0)f0 .

This is a consequence of the following straightforward computation for a ∈ A and n a 
positive integer:

dtot
(

a

fn

)
= fpn

0 dtota− ap0d
tot(fn)

f2pn
0

.

Recall that on an open affine U0 = SpecA0 ⊂ X0, if the quasicoherent sheaf F
corresponds to a module M , the pullback by absolute Frobenius F ∗

X0
F on U corresponds 

to F ∗
A0

M . Consequently, for X smooth over R, the short exact sequence of Lemma 2.11
globalizes to a sequence of sheaves of OX0-modules, the fundamental exact sequence of 
total p-differentials:

0 OX0

α Ω1,tot
X

β
F ∗
X0

Ω1
X0

0 (2.12.1)

This exact sequence is an imprecise analogue of the first exact sequence of Kähler dif-
ferentials [11, Prop 8.3A], albeit with the differentials twisted by Frobenius. If R were 
k[ε]/ε2 instead of W2(k), there would be a sequence of X → SpecR → Speck. In that 
situation, the sheaf Ω1

R/k would pull back to X0 as the structure sheaf OX0 .
The existence of the locally split short exact sequence immediately yields the following.

Proposition 2.13. If X is smooth over R, then Ω1,tot
X is locally free.

Given a morphism f : X → Y over SpecR, there is a morphism of sheaves on X0, 
f∗Ω1,tot

Y → Ω1,tot
X .

Lemma 2.14. Let f : X → Y be a smooth morphism of smooth schemes over R. Then f
induces an injection f∗Ω1,tot

Y → Ω1,tot
X . If, in addition, f is étale, then f is an isomor-

phism.
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Proof. We have a commutative diagram of locally free sheaves with exact rows:

0 OX0

α Ω1,tot
X

β
F ∗
X0

Ω1
X0

0

0 f∗OY0

α
f∗Ω1,tot

Y

β
f∗F ∗

Y0
Ω1

Y0
0.

The left vertical arrow is an isomorphism by the definition of the pullback of sheaves 
while the right vertical arrow is injective if f is smooth (and an isomorphism if f is 
étale). �

By globalizing Lemma 2.10, we obtain the following:

Proposition 2.15. Splittings of the fundamental exact sequence (2.12.1) are in bijective 
correspondence with lifts of Frobenius. The set of lifts of Frobenius is a torsor over 
H0(X0, Hom(F ∗

X0
Ω1

X0
, OX0)).

Proof. A splitting of the fundamental exact sequence locally gives lifts of Frobe-
nius which glue into a global lift. Any two splittings differ by a global section of 
Hom(F ∗

X0
Ω1

X0
, OX0). �

2.16. Total jet spaces

Total p-differentials were originally developed by the authors to recontextualize some 
arguments of Buium [3]. Specifically, given a scheme X over W (k), Buium introduced 
the p-jet space X1. Its reduction to k, X1

0 is a torsor for the Frobenius tangent space 
(that is, the pullback of the tangent space of X0 by absolute Frobenius) and is related to 
the Greenberg transform. In [3, Prop 1.10], Buium considers the projective completion 
of X1

0 (considered as an affine torsor). By making use of the fundamental exact sequence, 
one can see that the projectivization of Ω1,tot

X is manifestly a projective completion of 
the dual to F ∗

X0
Ω1

X0
. This gives a useful functorial understanding of such completions.

2.17. Birings

In [6], Borger and Weiland make use of the formalism of birings, which are ring objects 
in the category of rings, to put certain universal constructions in algebra on equal footing. 
One has two subcategories of rings R1, R2 and wishes to study functors F : R1 → R2
between them. The example to keep in mind is the formation of Witt vectors from the 
category of Z/p-algebras to the category of Z/p2-algebras. In certain cases, the functor 
will be representable by a biring. That is, there is a ring Q equipped with the data of 
coaddition Δ+ : Q → Q ⊗Q and comultiplication Δ× : Q → Q ⊗Q along with additive 
and multiplicative counits and additive antipode such that for A ∈ R1,



T. Dupuy et al. / Journal of Algebra 524 (2019) 110–123 119
F (A) = Hom(Q,A)

where Hom denotes ring homomorphisms. The coaddition and comultiplication induce 
addition and multiplication on F (A). One may further consider categories Ri of algebras 
over fields ki and then incorporate the data for algebra structures.

We will describe the construction in terms of Z/p and Z/p2 knowing that they can 
be replaced by k and W2(k) for a characteristic p field k. For c ∈ Z/p, we will consider 
the Witt interpolation functor Uc (see subsection 2.3) as a functor from Z/p-algebras to 
Z/p2-algebras. We define

Qc = (Z/p)[e, η]

with coaddition and comultiplication

Δ+(e) = e⊗ 1 + 1 ⊗ e

Δ+(η) = η ⊗ 1 + 1 ⊗ η − c

p−1∑
j=1

1
p

(
p

j

)
ep−j ⊗ ej

Δ×(e) = e⊗ e

Δ×(η) = ep ⊗ η + η ⊗ ep

with the other structures defined naturally. It is straightforward to verify the following:

Lemma 2.18. For any Z/p-algebra D0, there is an isomorphism:

HomZ/p(Qc, D0) → Uc(D0)

f �→ (x0, x1) = (f(e), f(η)).

Here, we take f to the vector in Uc(D0) whose components are f(e) and f(η). The 
coaddition and comultiplication induce addition and multiplication in Uc(D0). We may 
view the Z/p2-algebra structure on Uc(D0) as being induced by the map

γ : Z/p2 → AutZ/p(Qc)

a �→
[
e �→a0e

η �→ap0η + epθp,c(a)

]

where θp,c is defined in Example 2.2. In other words, it is the map taking the vector 
(f(e), f(η)) to (f(γ(a)(e)), f(γ(a)(η)).



120 T. Dupuy et al. / Journal of Algebra 524 (2019) 110–123
3. Extension classes from the fundamental exact sequence

In this section, we will suppose that X is smooth over R. Recall that by Lemma 2.10 a 
splitting of the fundamental exact sequence, if it exists, induces a lift of Frobenius on X. 
As an extension class, the fundamental exact sequence gives an element

κ ∈ Ext1(F ∗
X0

Ω1
X0

,OX0) ∼= H1(X0, F
∗
X0

TX0)

(where TX0 is dual to Ω1
X0

) that is the obstruction to a lift of Frobenius. We might call 
this the arithmetic Kodaira–Spencer class. If we imagine SpecR to be a point with a 
vector in the “p-direction”, this would be analogous to the Kodaira–Spencer map applied 
to this vector. The extension class is interpreted as a Čech class by picking a covering Ui

of X such that there is a splitting σi : F ∗
(Ui)0Ω

1
(Ui)0 → Ω1,tot

Ui
. Then, sij = σi − σj gives 

a homomorphism F ∗
(Ui∩Uj)0Ω

1
(Ui∩Uj)0 → O(Ui∩Uj)0 . The cocycle {sij} is a representative 

of κ in H1(X0, Hom(F ∗
X0

ΩX0 , OX0)) ∼= H1(X0, F ∗
X0

TX0).
The Deligne–Illusie class [8, Sec. 2] (see also [9]), which is sometimes treated in the 

literature as analogous to the Kodaira–Spencer class, also obstructs the lift of Frobenius, 
and it is indeed equivalent to the above class by Theorem 3.2 below. We can construct 
the Deligne–Illusie class as a Čech class. Cover X with affine opens Ui which carry lifts 
of semi-linear Frobenius FUi

: Ui → Ui. One defines a homomorphism

cij = F ∗
Ui

− F ∗
Uj

: O(Ui ∩ Uj) → pF∗O(Ui ∩ Uj)

where F is some lift of Frobenius on Ui ∩ Uj . Now, if F is any lift of Frobenius on an 
open U ⊂ X, we have a canonical isomorphism p : (FU0)∗OU0 → pF∗OU of sheaves on U0. 
Then, by [8, Sec. 2(c)(4)], cij : O(Ui ∩Uj) → O(Ui ∩Uj) factors through the differential 
d in the sense that there is a homomorphism

hij : Ω1
X0

(Ui ∩ Uj) → (FX0)∗OX0(Ui ∩ Uj)

that fits into a commutative diagram

OX(Ui ∩ Uj)

π0

cij
pF∗OX(Ui ∩ Uj)

OX0(Ui ∩ Uj)

d

Ω1
X0

(Ui ∩ Uj)
hij

(FX0)∗OX0(Ui ∩ Uj)

p
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By [8, Sec. 2(c)(5)], the collection {hij} gives a cocycle and therefore an element h of

H1(X0,Hom(Ω1
X0

, (FX0)∗OX0)) ∼= H1(X0,Hom(F ∗
X0

Ω1
X0

,OX0)).

Remark 3.1. The Deligne–Illusie class is also defined using lifts of relative Frobenius 
F and written as a element of H1(X(p)

0 , Hom(Ω1
X

(p)
0

, F∗OX0)) where X(p)
0 is the base-

change by Frobenius, X0 ×k k. To see that this is equivalent, we relate the sheaves of 
differentials that appear. The absolute Frobenius on X0 factors as

X0
F

X
(p)
0

G
X0

where G is the isomorphism induced by the base-change by Frobenius on k. From the 
exact sequence

0 G∗Ω1
X0

Ω1
X

(p)
0

Ω1
X

(p)
0 /X0

0

and the vanishing of Ω1
X

(p)
0 /X0

, we have an isomorphism between G∗Ω1
X0

and Ω1
X

(p)
0

. 
Pulling each back by F , we get

F ∗
X0

Ω1
X0

∼= F ∗Ω1
X

(p)
0

.

Theorem 3.2. We have the following relation between the arithmetic Kodaira–Spencer 
class and the Deligne–Illusie class:

κ = −h.

Proof. The Frobenius lift F ∗
Ui

: O(Ui) → O(Ui) is equivalent to a splitting hi : Ω1,tot
Ui

→
O(Ui)0 over Ui by

F ∗
Ui

(x) = xp + hi(dtotx).

This splitting induces σi : F ∗
Ui

Ω1
(Ui)0 → Ω1,tot

Ui
by σi(F ∗

(Ui)0dx0) = dtotx −α(hi(dtotx)) for 
any lift x of x0. Consequently, for x ∈ O(Ui ∩ Uj), we have

α(F ∗
Ui

(x) − F ∗
Uj

(x)) = α(hi(dtotx) − hj(dtotx)) = σj(F ∗
(Uj)0dx0) − σi(F ∗

(Ui)0dx0)

giving the equality of the Deligne–Illusie and the extension classes. �
4. Arithmetic Gauss–Manin homomorphism

There is an arithmetic Gauss–Manin homomorphism in our framework. It is the con-
necting homomorphism H0(X0, F ∗

X0
Ω1

X0
) → H1(X0, OX0) of the long exact sequence 

attached to
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0 OX0 Ω1,tot
X F ∗

X0
Ω1

X0
0.

This is analogous to the Gauss–Manin connection for the first de Rham cohomology over 
a one-dimensional base π : Y → S arising from the exact sequence

0 π∗Ω1
S Ω1

Y Ω1
Y/S 0.

Theorem 4.1. The arithmetic Gauss–Manin homomorphism is given by cup product with 
the extension class κ.

Proof. We compute the arithmetic Gauss–Manin homomorphism. Let ω̃ ∈ H0(X0,

F ∗
X0

Ω1
X0

). We pick a covering Ui of X such that on Ui, ω̃i lifts to ωi ∈ Ω1,tot
Ui

. Then, 
the image of the Gauss–Manin homomorphism is the cocycle gij = ωi − ωj . Because 
ω̃i = ω̃j on Ui ∩ Uj , gij is valued in OX0 .

By refining the cover, we may suppose that we have a splitting of the fundamental 
exact sequence on each Ui, σi : F ∗

(Ui)0Ω
1
(Ui)0 → Ω1,tot

Ui
. Set ωi = σi(ω̃i) Then the image of 

the Gauss–Manin map is given by the cocycle gij = σi(ωi) −σj(ωj). On Ui ∩Uj we have

gij = σi(ω̃i) − σj(ω̃j)

= σi(ω̃i) − σj(ω̃i)

= (σi − σj)(ω̃i)

= sij(ω̃i).

Therefore, by unwinding the definition of the cup product, we see

{gij} = {ω̃i} ∪ {sij}. �
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