arXiv:1805.02636v3 [math-ph] 8 Dec 2018

Dispersive and effective properties of two-dimensional
periodic media

Yuri A. Godin* and Boris Vainberg!

Abstract

We consider transverse propagation of electromagnetic waves through a two-dimensional
composite material containing a periodic rectangular array of circular cylinders. Propagation of
waves is described by the Helmholtz equation with the continuity conditions for the tangential
components of the electric and magnetic fields on the boundaries of the cylinders. We assume
that the cell size is small compared to the wavelength, but large compared to the radius a
of the inclusions. Explicit formulas are obtained for asymptotic expansion of the solution of
the problem in terms of the dimensionless magnitude ¢ of the wave vector and radius a. This
leads to explicit formulas for the effective dielectric tensor and the dispersion relation with the
rigorously justified error of order O((¢? + a?)%/?).

1 Introduction

Periodic media have attracted a great deal of attention due to the possibility of manipulating the
dispersion relation. In the case of electromagnetic waves, such media known as photonic crystals [1]
exhibit strong anisotropy of wave propagation including its total suppression |2, 3], nonreciprocal
wave transmission [4], slow light [5-7], superlensing, [8] and more. The advent of metamaterials has
allowed for the engineering of new tunable and switchable devices on the length scale [9].

In this paper we study the propagation of waves in a doubly periodic array of scatterers. The
multipole expansion method introduce in [10] was applied to the propagation of electromagnetic
waves in a doubly periodic lattice in [11], while in [12] this approach was employed in the problem
of elastic wave propagation in a two-dimensional solid containing a doubly periodic array of circular
holes. Using the method of matched asymptotic expansion, a dispersion relation was obtained
in [13] for a doubly periodic array of small rigid scatterers and in [14] for elastic waves in a lattice
of cylindrical cavities. Application of the method to the scatterers with homogeneous Dirichlet
boundary conditions was considered in [15] and [16]. A rigorous analysis of a sub-wavelength
plasmonic crystal was presented in [17], where solution of a nonlinear eigenvalue problem is given
in terms of convergent high-contrast power series for the electromagnetic fields and the first branch
of the dispersion relation.

We consider transverse propagation of electromagnetic waves through a two-dimensional com-
posite material containing a periodic rectangular array C of circular cylinders with a positive finite
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dielectric constant €. The periods of the lattice 7, and 7, are normalized in such a way that
¢ = min{|m|,|72|} = 1, while the radius of the cylinders a < 0.5 (see Figure 1). We assume that
the relative magnetic permeability of the cylinders and the matrix equals unity.
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Figure 1: Geometry of rectangular lattice of cylinders and the fundamental cell ABCD.

In dimensionless variables, propagation of the TE mode H = (0,0, u) in the zy-plane is described
by the equation

—V - (e 'Vu(r)) = v’ u(r), r¢dC (1.1)
where
Uin, T € C, e, recC,
u= €= (1.2)
uex> r ¢ C) ]-, T ¢ C,

w
r = (z,y), v = — < 1, where c is the speed of light in vacuum, w is the frequency of the incident

wave and v is normalized by the condition ¢ = 1. On the cylinders boundary dC we impose
continuity conditions of the tangential components of H(r) and E(r)

[u(r)] =0, (1.3)
ﬂlau(r)ﬂ — 0. (1.4)

e On

Hereafter, brackets [-] denote the jump of the enclosed quantity across the interface of the cylinders.
In addition, u(r) must satisfy the Floquet-Bloch condition

u(r +7) = e97u(r), (1.5)
where 7 is any of the lattice periods, ¢ = (¢s,¢,) = ¢ runs the primitive cell of the dual lattice

with ¢ = (cos@,sinf) being the unit vector. This condition implies that the function e 4" u(r) is
periodic over the fundamental cell ABCD that we symbolically write as

Je " u(r)[= 0. (1.6)

Subsequently, the inverted brackets | - [ denote the jump of the enclosed expression and their first
derivatives across the opposite sides of the cells of periodicity.

The outline of the paper is the following. In Section 2 we formulate main results. In Section
3 we seek the solution of the problem as a power series in terms of the absolute value of the
quasimomentum ¢, and then derive recurrence relations between the coefficients u; of the power



series. We prove that the coefficients are odd functions in space variables if k is odd, and otherwise
even. We also prove that the power series for the eigenvalues contains only even powers of ¢. In
Section 4 we obtain explicit formulas for the coefficients of the series with a given accuracy in terms
of the radius a of the cylinders. Explicit approximations of the effective tensor with the accuracy
O((¢?+a?)"/?) and the dispersion relation with the accuracy O(¢?(¢*>+a?)?) are obtained in Section
5. To prove these results we show in Appendix that the power series in ¢ of the solution u and of
the eigenfrequency converge uniformly in a.

We assume that the dielectric constant e is positive and fixed (does not depend on a and q)
while a is small. The case of lossy composites and metamaterials will be considered elsewhere. Let
us stress again that our goal is explicit formulas with high accuracy and rigorous estimates of the
remainders in a multidimensional setting. There are many papers where similar problems were often
solved under more general assumptions, but with less demanding goals. See, for example, [12,18-23].

2 Formulation of the problem and the main result

We reduce the above problem to the fundamental cell S centered at the origin:

—%AUIV2U, reS, r=|r|#a, (2.1)
[u(r)] =0, ﬂ%ﬁgg?ﬂ =0, Je " u(r)[=0 on OS. (2.2)

The main result of the paper concerns approximation of the effective dielectric tensor €* defined
ic /1
from (D) = e* (E), where (F) = < <—V x (0,0, u)> is the average electric field and (D) = (eE)
w o\ €
is the average electric displacement. Here u is the z-component of the magnetic field: H = (0,0, u).
It states that in the low frequency regime with small inclusions when ¢ + a? < 1, we have

2 2 1 2.2
et = (1 pt - reed (71 cos® § + 73 sin” 9)) I

T1T2 12 T1T2

Arolat { m7e 0

2.2 ~
T T 0 mm

5
} +0((¢+a)?), (2.3)
-1
where o = %, e = T,k = 1,2, ;m = ((11/2), 72 = i (ir2/2), and ((z) is the Weierstrass
€
zeta-function [24]. We also obtain an approximation of the dispersion relation

= (1 B 2raa?

T1T2

) + 0 ((¢* + a*)?) . (2.4)
The method used in the paper can be used to obtain the above expressions with higher accuracy.

3 Series expansion of the field

Elliptic problem (2.1)-(2.2) is symmetric, depends analytically on ¢, and has a simple eigenvalue
v? = 0 when ¢ = 0 with the eigenfunction u = const. Thus the eigenvalue v? depends analytically



on ¢ for ¢ < 1, and the eigenfunction u(r, ) can be chosen to be analytic in ¢, i.e., for small g we
can expand u and v? in a power series

U('l", q) =1 + qul(ra Q) + q2u2(’r, qA) + q3U3('f‘, q) +.. ) (31)
1/2 = q)\l + q2>\2 + q3)\3 +.... (32)

The latter series can be viewed as a perturbation of a simple eigenvalue v = 0 corresponding to
the eigenfunction u = 1. The rigorous justification of (3.1), (3.2) will be given in the Appendix. It
will be shown there that series (3.1) converges in the Sobolev space H!(S), and both of them are
uniform in a. Moreover, it will be shown below that series (3.2) contains only even powers of ¢, i.e.,
Aony1 = 0.

Substituting expansions (3.1)—(3.2) into (2.1) we obtain a system of recurrence equations for
determination of wu,,

1

——Au; =X\, T#a (3.3)
€
1

7 Aug = Ay + Muy, 1 #a, (3.4)
1

—E AUg = )\3 —+ )\gul + )\11,62, r % a, (35)
1 k—1

— Aug = A + nz::l Moonlln, T #a, k>4 (3.6)

On the boundary r = a functions wuy satisfy the conditions (in what follows we omit dependence of
ug on q for brevity)

[ur(r)] =0, (3.7)
ﬂ%augy)ﬂ —0, (3.8)

while on 0S we have a system of recurrence equations

Jur(m)[ =lig - r[, (3.9)

Jus(r)[ =164 - 7)o — o5 ()] (310)

Jus(r) =06+ P = 5 i s + 51 (-7’ G.11)
_1)k+1 E-1  \n+1

Jur(r)[ = ]] ( 2 (ig-r)" + Z ( 2! (iG - )" Up—n |l k>4 (3.12)

In what follows we need to establish some important properties of the functions u,. Firstly, we
normalize u(r, q) in such a way that [;u(r,q)dS = |S| = my7p. This implies that

/ up(r)dS = 0. (3.13)
S



We also will need Green’s formula for solutions of (2.1), (2.2):

/1|vu\2d5:y2/ uf2dS. (3.14)
s € S

that follows from the symmetry of the problem (2.1), (2.2). Indeed, let S = S;;, U Se, where S, is
the disk r < a. One can multiply both sides of (2.1) by the complex conjugate @ of u and apply
Green’s first identity to each part of S. When we add up the identities, the contour integrals over
the boundary r = a are cancelled due to (2.2), and (3.14) follows.

Consider an auxiliary problem for the function v(r)

1
_EAU:f’ resS, r#a, (3.15)

with the homogeneous conditions

[o(r)] =0, |E aﬁ;ﬂ —0, Jum)[=o0. (3.16)

Lemma 1. (a) Problem (3.15)-(3.16) with f = 0 has a unique solution v = const. (b) The
nonhomogeneous problem (3.15)-(3.16) has a solution if and only if f is orthogonal to a constant.

Proof. First statement follows from the application of Green’s formula (3.14) with v = 0 to (3.15).
The second statement is the Fredholm alternative applied to equation (3.15). O

Lemma 2. The pair ug(r), A\ is defined uniquely from (3.8)-(3.13), i.e., problem (3.3)-(3.13) does
not have solutions that are different from those defined in (3.1), (3.2).

Proof. Let k > 1 be the least number for which there are two different pairs wug(r), \r. Then

3.3-3.6 implies that there are two different functions u,(:)(fr) and u,(f)(r). Hence their difference

v(r) = u,(:)(r) - u,(f)('r) satisfies (3.15)-(3.16) with f = )\S) — )\l(f). From the previous lemma it
follows that A,(cl) = A}(@z) and v(r) = const. The latter together with (3.13) implies v(r) = 0. O

We will use the term odd or even function if the corresponding property holds with respect to
the origin, i.e., a scalar function f(r) is odd if f(—r) = —f(r) and is even if f(—r) = f(r). Now
we can formulate the result concerning the structure of expansions (3.1)-(3.2).

Theorem 1. Functions ug(r, q) in expansion (3.1) are odd functions of r for odd k and even ones
if k is even. Expansion (3.2) of v* contains only even powers of q, i.e. dop_1 =0, k=1,2,...

Proof. We prove the theorem by induction in k. For & = 1 the boundary condition (3.9) is odd.
Then the even component v(r) of u; is the solution of (3.15)-(3.16) with f = A;. From lemma 1 it
follows that A\; = 0 and lemma 2 implies that v = 0. Hence, the statement of the theorem is valid
for k = 1. Assume now that the statement of the theorem holds for 1 < k < ky. Let us prove it for
k = ko. We need to consider two cases of even and odd k.

Case 1: If kg = 2m then A\;_, = 0 in (3.6) when n is odd. Thus, the right-hand side of (3.6)
is even by the induction hypothesis. The right-hand side of (3.12) is also even. Thus, the odd
component of us,, satisfies the homogeneous problem and equals zero due to Lemma 1.



Case 2: Let kg = 2m + 1. Then the right-hand side of (3.6) is the sum of Ay, ; and an odd
function by the induction hypothesis. The right-hand side of (3.12) is odd. Thus, the even
component of ug,,,1 is the solution of (3.15)-(3.16) with f = const = Ao i1. From Lemmas
1 and 2 it follow that As,,+1 = 0 and the even component of s, 1 is zero.

O

Substitution of expansion (3.1) into (3.14) and taking into account the oddness and evenness of
uy, leads to approximation of v?. In particular, we obtain to the order O (¢%)

1
/ E (|VU1|2 + q2 (‘VUQP + 2Re (Vu1 : Vﬂg))) ds
1/2 — q2 S

+0(¢°), (3.17)
/S (14 ¢* (Jw]* + 2Rewy)) dS

where 4 is the complex conjugate of u.

4 A priori estimates for the power series terms

Functions uy in (3.17) and in formulas (5.5), (5.6) (which are used to find £*, see below) are obtained
as solutions of certain boundary value problems which depend on a and can be expanded in power
series in a. We need some a priori estimates for the solutions of these problems in order to justify the
asymptotic convergence of the power series in a. We will start with recalling the Poincaré lemma,
which is so simple in our setting (S is a rectangle) that we will prove it.

Lemma 3. Let v € H'(S) and
/v(r) dS =0. (4.1)
S

Then [|vllz, < CilIVvl|L, and [[v]la < Cof[ VoL,

Proof. We will prove the first inequality since it obviously implies the second with Cy = /C? + 1.
In order to prove the first inequality we write u in the form of the Fourier series:

! Qﬂi(m_i_ﬂ)
U= E Umn© o/,
m,n

where the prime indicates that the term vgg is omitted. This term is zero due to (4.1). It remains
to compare the norms expressed through the Fourier coefficients:

2 2
! / m n
lol, = €3~ [vmal?, er&z:c}jwm,nf[(_) +<_)]7 =
m,n mn T1 T2

Lemma 4. Let v(r) be the solution of the problem

%Av(r) =f(r), re8, r#a, (4.2)



subject to the conditions

[v(r)] =0, |F aﬁ;ﬂ —0, J(m[=0, (4.3)

€

and let condition (4.1) hold. Then
[l < CHA L, - (4.4)

Proof. Multiplying (4.2) by © and applying Green’s first identity we obtain

/fvdS /—UAUdS / IVol* dS = H

To be more accurate, one needs to write Green’s first identities separately for each part S;,, Se, of
S, add them and check that the contour integrals over the boundary r = a are cancelled. Equality
(4.5) implies ||V1)||2L2 < | fllg, llvllg,- It remains to apply Lemma 3.

(4.5)

O

Next lemma shows that a similar estimate holds when an inhomogeneity appears in the boundary
condition.

Lemma 5. Suppose that v(r) satisfies
Av(r)=0, reS, r#a, (4.6)
the boundary conditions

[o(r)] = h(o). ﬂla”(”

2] g B (47)
where ¢ is the polar angle. Let also v(0) = 0. Then

1/2 1/2

et <o ([ (@0 s ror)as) +2 ([T (0 oor)as) - as

Proof. Let h = 0. After the substitution
—(a - T)g(gb), r<a, (49)

v=wv +w, where v = a2
0, r > a,

the problem for w is reduced to that outlined in the previous lemma with

I { = (9r = 4a)g(6) + (r —a)g"(9)), 7 <a. o)

0, r > a.

If there is a jump h(¢) of the function in (4.7) instead of the jump ¢(¢) of the derivative then
function vy in (4.9) must be replaced by the function

2

(2r — 3a) h(¢), r < a,
0, r > a.

v =< @3

(4.11)

O

If an inhomogeneity is present in both the equation and the boundary conditions then the sum
of the estimates from lemma 4 and lemma 5 gives an estimate of the norm of the gradient.



4.1 Approximation of u;

Harmonic function u; is a solution of the static (with ¢ = 0) problem. It is expedient to look for
up in the form of a power series in the inclusion and a combination of a linear and Weierstrass’
zeta-function and its derivatives outside the inclusion. The choice of the Weierstrass function is
dictated by periodicity of the composite and the periodic properties of the Weierstrass function.
This approach was used in [25]. Here we use similar representation of w; and achieve desired
accuracy in a using a finite number of terms of the corresponding series.

We introduce complex variable z = x + iy = re'?, and along with vector periods 7, and 7 we
will use their complex counterparts 7, > 0 and iy, 75 > 0. Weierstrass’ zeta-function [24] is defined
by

1 / 1 1 2
- = 4.12
¢(z) . +Z L_Pm’n + o + Pz (4.12)

m,n

where P, ,, = mm + inty are coordinates of the lattice nodes in the complex plane. Prime in
the sum means that summation is extended over all pairs m, n except m = n = 0. We use its
quasiperiodicity property

((z+m) = ¢(2) = 2m, m =¢(n/2), (4.13)
((z+im) = ((2) = 2m, M2 = ((i12/2), (4.14)

where for rectangular lattices 7; is purely real while 7, is purely imaginary. It is convenient to
introduce real parameter 7y = iny. If we subtract from ((z) its linear part then the resulting
function will be periodic and harmonic. Thus,

ﬂg(z)—@H%yﬂ:o. (4.15)

71 T2
This property is used in the lemma below to find an approximation u; to u; to the order O (a5).
Lemma 6. Denote ui" = uy,r < a, and u¢* = Uy, 7 > a. Let

u'" = ir(A; cos ¢ + By sin ¢), (4.16)
~ . . . 2 2in)
W =ig -+ ia®Re [(01 +iDy) (g(z) TRy 2R y)} . (4.17)
T1 T2
where real constants Ay, By, Cy, Dy are given below. Then ||uy — Uy g < Ca®.

Proof. Let us substitute u; into (3.3), (3.7)-(3.8) (with £ = 1) and (3.9). Functions (4.16), (4.17)
are harmonic, i.e., (3.3) holds for w;. Due to (4.15) property (3.9) is satisfied for u$* and its normal
derivatives.

To satisfy conditions (3.7)-(3.8) on the boundary r = a we expand ((z) in a Laurent series

¢(z) = % =) s, (4.18)
k=2

where sq;, are real lattice sums

r 1
s%zzﬁ, k=2.3,.... (4.19)



We substitute (4.18) into (4.17) and equate the coeflicients of cos ¢ and sin ¢ in (3.7)-(3.8). This
leads to

2 2 - 2 -
Al = c (1 4 2m a2> cost, C) =« (1 + = 2) cosd, (4.20)
e+1 1 1
2 207 5\ 2 -
B, = c (1 4 2 a2) sinfl, D; =« (1 + Gl 2) sin 6, (4.21)
e+1 T2 T2

-1
where o = ;L—l Hence, approximation (4.16)-(4.17) satisfies exactly (3.3) and (3.9). Conditions

(3.7)-(3.8) are satisfied exactly only for the terms containing cos¢ and sin¢ but have an error
in the terms cosng,sinng with n > 3. This error is large, and Lemma 5 does not allow us to
justify that (4.16)-(4.17) approximates u; with the desired accuracy. Therefore we will add an
extra term to wi, but later it will be shown that this extra term can be omitted. Hence, let
v =0 r <a, v =0, r > a, where

U = ir(Ar cos ¢ + Bysing) +ir’(Az cos 3¢ + By sin 3¢), (4.22)
2 2'~
=i -7 +ia’Re [ (Cy +1Dy) (C 771 71_172 y)] +ia'Re [(Cy +1D3) (" (2)]
2
1 2 2i
Zi(j-r—l—ia2Re |:Cl—|—1D1 (——5433_ﬂ _‘_ﬂ _I_O(ZE)))]
2z T

+ia*Re {(OQHDQ) ( +O(z ))} (4.23)

where A, By, C1, D; remain the same. The function above is still harmonic. Since derivatives of
zeta-function are periodic, their addition to u$* does not violate (3.9). We substitute (4.22), (4.23)
into (3.7)-(3.8) and equate coefficients of cos 3¢ and sin 3¢. This gives

2aa’es 20 - 1 20 -
Ay = — 11+ n a? cosh, Cy =—=0a’a*sy |1+ A a? cosf, (4.24)
e+1 T1 2 T1
2aa’es 207] - 1 2] -
= 11+ /s a? sin 6, Dy == ca?a*sy [ 14+ —2 iz a? sin 6. (4.25)
e+1 T2 2 D)

From (4.22)-(4.25) it follows that v; satisfies (3.7), (3.8) with the accuracy O(a”) and O(a®), respec-
tively. Thus Lemma 5 implies that ||u; — 01|z < Ca’. One can easily check that ||, — 0| g =
O(a®).

]

4.2 Approximation of us

Function us is an odd one and does not contribute to the average electric field. However, it appears
n (3.11) and in (3.17). Because of that we will determine uy to the order O (a?). In the equation
ug satisfies

—= Au2 Ao, T #a, (4.26)

one must know A in order to find wu,. We will find it with an accuracy higher than that for u, since
Ay is involved not only in (4.26) but also in the dispersion relation (3.2).
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Lemma 7. The following relation is valid for Ay:

2raa?

Ao =1~— +O(a4).

T1T2

Proof. 1t follows from (3.2) and (3.17) that

1 1 9 1 /1 in12 ex|2
Ao = E/SE |VU1‘ ds = § (g /Szn ‘Vul ‘ dS_'_/Sex |Vu1 ‘ dS) : (4’27)

Lemma 6 yields

1/ }vugnfdszl/ V@[> ds + 0 (a7) = L wa? (42 + B?) + 0 (")
g Sin g Sin g

4ra’ 4
:@:{%+OQ”' (4.28)

From (4.17), (4.20)-(4.21) we have

2a? 2 24’7 2
/ |Vus®|* dS = / ((cos@ _ 2 Cl> + (sin@ e Dl)
exr ex Tl T2

+ 20 (cos 0 - 20 €1 )Re [(Ch +1D)¢!(2)] — 242 (sin - 207 Dy ) [(Cy +1D)¢(2)]
T1 T2
Lt (|G + Di?) |C’(z)\2) 4+ 0 (a). (4.29)

To evaluate the integral containing the derivatives of zeta-function we use Green’s theorem along
with the quasiperiodicity properties (4.13)-(4.14):

i _ i _ N

/ ('(z)dS = 3 (2)dz = mme — o — 3 (2)dz = mme — Mo, (4.30)
Sex 88@90 8Sin

where the last integral vanished due to expansion (4.18). Finally, we need to evaluate the integral

of |¢’(2)|?>. The integral of the regular part of ¢/(2) is bounded in a. Therefore we have

73

1 T drd
/ IC'(2)]2dS = / S rdrdg+0(1) = / / r9 L o) = % +0(1). (4.31)
ex ex r>a J0
Now using the Legendre relation [24] which in our case reads 1,75 + 7271 = 7 we obtain

/ IVus® > dS = 71y (1 — 4aa? (ﬂ cos?0 + 2 sin® 9)) — ma?

T T2
+ 2aa® (M7 — 7271 (cos? 6 — sin® 0) + ma’a® + O (a*)
=77 — 2raad’ — wa® + wata® 4+ O (a*) . (4.32)

Finally substituting all terms in (4.27) we have

T1T2 T1T2

N =1 2raa? N 1 < Ama’e
T1T2

2 2
@+1P—wf+w&f>:1— T L0(aY). (433)

O
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Lemma 8. The following approximation for us is valid in the space H*:

(iqA'fr)2a r<a,
If 62 = then HU2 - ﬂ2HH1 < CCLz. (434)

(iG-r)*, r>a,

N~ M

Proof. Denote a o-neighborhood of S by (9S),. We fix ¢ in such a way that r > a in (9S),. From
Lemmas 6, 7 it follows that wus is a solution of the problem

—%Au2:1+0(a2), recS, r#a,

] =0, |12 —o

Joa(r)] = | g vy = 5 G2
where u; has the following form in (9S),:
ur = (ig-7) + b1, ||hllmos),) < Ca’. (4.35)
Let n =n(r) € C=, n(r) = 1in (0S)s/2, n(r) =01in S\(9S),. Then
In(r)(ig - v)hl|m(s) < Ca?,

and therefore it is enough to prove estimate (4.34) for vy — Uy where vy = uy — n(r)(iq - r)h;.
Obviously, vy satisfies the relations

1
——Ave=1+fy, r€S8S, r#a,
€

1 8vg(r)ﬂ o

e On

el =0, |

Jeatr) = | 3 Ga- 7]

where fo = O (a®) + A[n(r)(ig - 7)hy]. The same relations with fo = 0 are valid for @y. Hence,
Lemma 4 provides the estimate (4.34) for vy — Uy if || fo||z, < Ca®. The latter inequality follows
from (4.35). Indeed, Au; = A(ig - r) = 0. Thus Ahy = 0, and therefore,

Aln(r)(ig - r)i] = Aln(r)(iq - )by +2(V[n(r)(ig - r)], Vhi) .

This and (4.35) imply the estimate on f, and complete the proof of the lemma. O
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4.3 Approximation of ug

From Lemma 6 and (4.18) it follows that ||u; — (i - )|z, < Caln <. Together with Lemma 7, it
allow us to rewrite problem (3.5), (3.7), (3.8), (3.11) for ug in the form

L Auwy= (a7 [ ra |l <Caln’ (436)
i =0, |+ 257 o, (437
Jus(r)[ = ﬂ (ig - r)ug — % (iq - 7)%u; + % (iq - r)? |[ (4.38)

Similar to the previous case we formulate

Lemma 9.

(iG-r)’, r<a,

~ - 1
If ug= then |luz — us||z < Caln o (4.39)

| = M

(ig-)°, r>a,

Proof. We will use notation (0S), and n(r) from the previous Lemma. We need to single out the
main therm (as a — 0) of the right-hand side of (4.38). Lemmas 6 and 8 imply

w =ig-r+hi, |hillmes),) < Cia, (4.40)
1,
Uy = 5 (ig - 7)* + ho, 22|l 1 ((88), < Cod®. (4.41)

We introduce function vz = us — g3, g3 = n(r) ((ig - 7)hs — % (ig - 7)*hy). This function satisfies
the relations

1
—— Avs=ig-r+ f;5, resS, r#a,
€

il =0, 2250 —o,

Jeutr) = | G- * .

where f3 = O (alna)+ Ags, and the last relation above (for the jump of v3 on 9S) is a-independent.
From (4.40),(4.41) it follow that ||g3|| g1 < Ca?, and therefore one can prove Lemma 9 for vs instead
of uz. We note that us satisfies the same relations as those for vs with f3 = 0. Thus, estimate
(4.39) for v3 — Uz will follow from Lemma 4 if we show that || f]z, < Calnl. Thus, to complete
the proof of the Lemma it suffices to show that ||Ags||r, < Ca®.

From equations (3.3),(3.4) (where A; = 0) and (4.40), (4.41) it follows that Ahy = 0, Ahy =
1 — Xy = O (a?). Hence

Ags = he A(n(r) (ig - 7)) + 2(V[n(r)(iq - )], Vha) + n(r) (ig - ) O(a?)
—%hlA( (r)(ig-r ) (Vn(r)(ig - r)*], Vh). (4.42)

Now the desired estimate on Ags follows from (4.40),(4.41). O
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5 Effective dielectric tensor and the dispersion relation

Let us recall that the two-dimensional electric component of the TE-mode is determined by E =
CuxH=" [uy, —u,] and that D = eE. The effective dielectric tensor €* of the problem relates
w

We
the average electric field and the average electric displacement over the fundamental cell

(D) =¢€"(E). (5.1)

In the principal axes €* has a diagonal form and can be found from the relation
1
/ Viuds = E*/ “vitudS, Viu= [y, —Uy). (5.2)
S s €

We represent €* in the form

e =1+e¢, (5.3)
g1 0
0 &

E/ Lotuas = (1 — 1)/ V+uds. (5.4)
s € £ Sin

Observe that in the right-hand side of (5.4) integration is performed only over S;,. With expansion
(3.1), Theorem 1 and Theorem 2 on the uniform convergence of u (see Appendix A) we obtain for
the entries of €

where I is a 2 X 2 identity matrix and € = [ } . Substituting (5.3) into (5.2) we obtain

equation for &

E [ 2o, uru)das =2 [ o, fup)as o (@4 a)t),  (69)
s € € Sin

_5—1

5 [ 2o, +tus)as | oo rreayasto(@+a)t).  60)
S Sin

3

Now using (4.20)-(4.21), we evaluate the integrals involved in (5.5)-(5.6)

- 2rica’ 2
/ Opu"dS = Tia? A, = ea (1 _ 2% a2) cosf + O (a%), (5.7)
Sin e+ 1 T1
/Sm O,uidS = ia*B, = ;—fi (1 — (71_2772 a2) sind + O (a°), (5.8)
) . . 4 1
/ Oyuy' dS = —ECOSQ/ (zcosf +ysinf)*dS = T o504+ 0 (aPIn - , (5.9)
Sin 2 Sin 8 a
) . . 4 1
/ Oyus' dS = —gsin(?/ (zcosf +ysinh)*dS = _mga sinf 4+ O <a5 In —) . (5.10)
Sz‘n Sz‘n a

Integrals over S., = S \ §;,, are evaluated using Green’s theorem

/ V4§t ds = —% [u$® dz, uf® dy] +7{ [u}* dz, ui" dy] . (5.11)
Sea as

8Sin
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Integrals over the boundary dS are evaluated by the property (3.9) of u

T1/2 T1/2
7{ ui"dr = / uy” (1’, —E> dz — / ug” <x, E) do = —inmsind, (5.12)
2 /2 2 /2 2

T2/2 o T2/2 7_1
7{ ui"dy = / (e (5, y) dy — / ug” (—g,y) dy = imm cos . (5.13)
S T2/2 T2/2

Second integral is evaluated using (4.16), (4.20), and (4.21)

2T
% u* do = —ia® / (Aj cos ¢ + Bysin ¢)sin o dg = —7ia® By

2 . 2 2 2~
= T Ging (1 S 0, (a6)) . (5.14)
e+1 To
Similarly,
, 2mia’e 2ca’n,
"dy = 01— O (a®) ). 5.15
foran =T (122 o () (5.15)

Finally from (4.39) we estimate integrals of us to the order O (a*)

/ Oyuz dS = —% cos@/(:c cos @ + ysin0)? dedy = —17;;—2 cosf (1{ cos® 0 + 73sin’0),  (5.16)
s s

/ Oyusz dS = —% sin@/(m cos ) + ysin 0)? dady = —1;1;—2 sin @ (77 cos® 0 + 73 sin’0) . (5.17)
S S

Substituting evaluated integrals into (5.5)-(5.6) we obtain components of the effective tensor with
5
the accuracy O ((q2 + a2)§)

2aa? 7 2aa?7] :
2raa? (1 — M) 2 TA*TITy (1 — %) (£ cos? 0 + 74 sin® 0)

er=1+ L . . , (5.18)

1Ty — 2maa? (1 — 20‘?—2’72) 12 (7.172 — 9roa? (1 _ 204;2772))

2raa? (1 — %) e Taa*T T (1 — @) (£ cos® § + 74 sin” §)

e=1+ N T3 - (5.19)

1Ty — 2maa? (1 — 20‘?—1’71) (7.172 9o (1 _ 20c7_12771>>

With Legendre’s relation 17 + 727 = 7 the series expansion of €* gives
. 2maa’ 1 maa’q? )
et = (1 e + 2 (71 cos® 0 + 73 sin® 9)) I
47‘(‘0&2@4 LD 0 5
S ] o). (520)
172 271

T
For the square lattice 71 = 75 = 7 we have 1 = 7y = o [26]. Then in our approximation &*
T

becomes isotropic €* = ¢*I, where

2 2\ 2
1 5
e =142a 7% + 2a° <7%) + 35 raa’q’ + O ((q2 + a2)2) : (5.21)
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It should be remarked that while the static part of (5.21) agrees with the expansion of Maxwell’s
formula the frequency-dependent correction differs substantially from that obtained in [11].
Going back to evaluation of (3.17) one can easily check that

|VU2‘2 + 2Re (Vu1 . Vﬂg) = O (a2) y (522)
lu1|* + 2Reuy = O (a”) . (5.23)

Then from (4.33) and (3.17) we obtain the dispersion relation

2ama?

v =¢? <1 — ) +0 (¢*(¢* +a*)?) . (5.24)
T1T2

Thus the first correction in the dispersion relation does not depend of the shape of the lattice but

only on the concentration of the scatterers.

6 Conclusion

We have considered the problem of transverse propagation of electromagnetic waves through a
doubly periodic rectangular array of circular dielectric cylinders of radius a. Solution of the problem
is sought in the form of a power series in terms of the magnitude ¢ of the quasimomentum of the
Bloch wave. We prove that the eigenfunction and the eigenvalue are analytic functions of ¢? that
converge uniformly in a. We find explicitly frequency correction terms to the effective dielectric
tensor as well as to the dispersion relation and rigorously estimate the remainders. The approach
devised in the paper can also be used to find higher order terms of the effective tensor and the
dispersion relation.

Appendix A. Uniform property of the series expansion

The following theorem shows that the series expansion of the eigenfunction u is uniform in a.

Theorem 2. Let a < ag < min(7y,72). Then there are constants qo, Ao > 0 such that the eigenvalue
problem (2.1)-(2.2) has a unique eigenvalue X\ = v? when q < qo, |\ < Xo, and the eigenvalue is
simple. The corresponding eigenfunction u = u(r, q,a) normalized by the condition

/u(r,q) dS =|S| =7nmn (A1)
S
s analytic in g

u=1+ Zun(r>a) ", ¢<qo, |unllm < Ch, (A.2)
n=1

where C,, do not depend on a and the series converges in H'(S) uniformly in a. The corresponding
eigenvalue A can also be expanded in a power series in q,q < (o, which converges uniformly in
a,a < ag.
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Proof. Let us reduce the problem (2.1)-(2.2) to an equivalent one where the domain of the operator
does not depend on ¢q. Let

B(r) =1+ (9" — 1) a(r), (A.3)

where a(r) is a C* function whose graph is shown in Figure 2. The substitution u = fv in
(2.1)-(2.2) and multiplication of the equation by 37! reduces the problem to the following one

a(r) .

-/

r

Qo

Figure 2: Graph of the function a(r).

(_é A Bq) o= Ao, By — % (2V5 - Vo +uAf), (A4)

where A = v? and the domain 2 = %2(a) of operators ~ A and B, consists of functions v €

H?(S;,) ® H? (S..) that satisfy [v(r)] =0, |E 02(7:)

We will need the following lemma:

ﬂ = 0 and the periodicity condition Jv(r)[= 0.

1

Lemma 10. There exist constants 1,72 > 0 such that the operator — A + B, does not have
€

eigenvalues in the annulus y1q < |A| < 72 when a < ag, 0 < g < 72/M

Proof. We normalize the eigenfunction v in (4.2) by the condition ||v||;2 = 1. Thus

S Jonl = ——, where v= 3 v (HHE), (A5)

T1T2

m,n=0 m,n=0

L o)+ 188D < Oq for
B

Let us show that the coefficient vgg cannot be very small. Clearly,

small ¢q. Thus,
[Bqvllz, < Cq(|[VollL, +1). (A.6)

From here and Green’s formula applied to (4.2) it follows that

1
/SE Vol*dS < | Bgllz, - lollz, + IAlllvllZ, < Ca(IVulle, + 1)+ AL ¢ < 1. (A7)
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Hence,

IVoll7, < CLA +q) for ¢ <1, (A.8)

(2m)? Zom |V, [(T)Q - (ﬁﬂ i < Cr (A +4q) for ¢ <1, (A.9)

(mom)( n 2

This and (A.5) imply the existence of Cjy > 0 such that |vg| > Cp for small enough |A| + ¢.
Lemma 1 implies that a non-trivial solution of (A.4) exists only if

/ (A — Bv)dS =0. (A.10)
S
From (A.6) and (A.8) it follows that

[ 1Baslds < ¢ [/ I+ a+d] < g (A11)
S

if [A\| + ¢ is small. Thus (A.10) implies that |A\|Cy < Csq for small eigenvalues when ¢ < 1, i.e.,
there exists v, > 0 such that eigenvalues A in the circle || < 72 are located only inside of a smaller
circle |A| < v1¢,m = C3/Cp, when ¢ is small enough. O

Continuing the proof of the theorem we assume below that a < ag, ¢ < v2/71. Thus, the circle

1 1
I' = {\ : |A| = 72} splits the spectrum of — A + B, into two parts. Since operator — A + B, :
€ €

P(a) — Ly, where P(a) was defined in (A.4), has a discrete spectrum, operator
1 -1
Pq:/ (—A+Bq—)\) dr (A.12)
r \e

is a projection on the space spanned by the eigenfunctions of — A + B, with eigenvalues inside I'.

€
We will show below that ||P, — Fp|| < 1 if ¢ and -, are small enough. Hence [27, sec. XIIL.2], the
ranges of P, and F, have the same dimensions. We reduce 7,, if needed, to guarantee that Fy is

1
the projection on the simple eigenfunction u = const of — A. Then — A 4+ B, has a unique simple
€

€
eigenvalue in I' when ¢,v2 < 1. The corresponding eigenfunction is proportional to F,f with an

arbitrary f such that P,f # 0. Function f needs to be normalized to guarantee (A.1).
-1

1 1
It was shown above that — A — X is invertible when A € I', i. e. | - A — A) : Ly — H'is
€ €

bounded. We need an estimate for this operator with a constant that does not depend on a.
Let

1
(—A—)\)u:feLg, u€ Ya), a<a, MeTl. (A.13)
€
Lemma 1 implies that

/ (\u+ f)dS =0, (A.14)
S
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and from Green’s formula it follows that

B

1
— Az, < /S |ful dS < pallullZ, + %Ilflliz- (A.15)

Lo

Thus,

1
IVull2, < (mnun%z b ||f||%2) max (€). (A.16)

Hence,

m 2 n 2
£ mt[(@) (0
(mn)#(0,0) n 2

where w,,, are Fourier coefficients of u. If 4, is small enough then the latter estimate and (A.14)

1
<Cw |22 Y, ltmal’ +luool*| + =17, (A17)
(m.m)£(0,0) i

imply
2 2 2
m n | fool 1
Sl [(—) H(2) | el S < calrig, s
(m,n)#(0,0) ! ? ? ?
From here and (A.14) it also follows that
lullZ, = D Jumal® + oo | mme < Ol (A.19)

(m,n)#(0,0)

Thus, < C||f|lz,, where C does not depend on a and A € T

H1

<1A—)\)_ f
€

Now we write

1 1 1 -1

where operator 7j, is analytic in ¢, its power series converges in the norm space uniformly in @ and
|T,|| = 0 as |¢| — 0. It remains to write P, in the form

P, = /F (% A= A) B S (-7,)"dA (A.21)

n=0

and expand T, in a power series in ¢. This proves that |P, — Pyl < 1 if ¢ < 1 and provides a
power series for P,f which converges in H'(S) uniformly in a. Power expansion of A = v/ follows
immediately from (3.14).

U
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