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ARTICLE INFO ABSTRACT

Keywords: Many habitat resources fluctuate in availability due to natural environmental variability and anthropogenic

Connectivity metrics influences. These fluctuations pose challenges to organisms attempting to move from one habitat patch to an-

Dynamic connectivity other, and also pose challenges to detecting and managing factors impacting landscape connectivity. Our un-

Longitudinal study derstanding of these relationships is further hampered by lack of precedence on how to quantify dynamic

glean};?)te sensing connectivity. The ephemeral freshwater wetlands of the southern Great Plains of the USA (playas) form a dy-

Texas namic habitat network that serves as a case study of these challenges and allows us to propose a suite of con-
nectivity metrics to monitor changes in network topology and evaluate the management importance of in-
dividual wetlands. We used satellite imagery to examine inundation patterns of > 7000 playas in a 29,083 km?
portion of Texas on 80 dates from 1984 to 2011. Based on historic locations of playa basins, approximately 85%
of playas (particularly those <10ha) have lost the capacity to hold water even during regionally wet times,
resulting in a ~69% reduction of surface water area. These losses were associated with proximity to cropland,
with total cropland acreage increasing by 0.07-17.34% of county land area during our focal time span in 10 of
the 14 counties in our study area. We examined connectivity at wetland and whole-network scales to determine
effects of playa losses on network topology and thus on connectivity. We evaluated 11 metrics for this purpose,
which quantified the number of wet playas present on each date, their degree of connectedness, their clustering,
path redundancy within the network, overall network topology, the importance of individual playas in various
roles, and the size of a single playa that would provide equivalent connectivity (amount of reachable habitat) as
in the actual network. Topology has thinned over the past three decades with playa losses, reflected in increasing
graph density, average path length, degree of connectivity for highly linked hubs, and average number of cut-
points. Similarly, graph diameter is currently less than half of the historic potential maximum, and the
equivalent connected area has declined by over 23% since 1984 (and by over 82% relative to historic values).
These patterns suggest that path redundancy through the network has declined such that dispersers currently
have fewer connectivity options compared to a few decades ago. Relatively high transitivity scores indicate that
the playa network is still populated with a large (but diminishing) number of wetlands, and the dwindling
surface water present in the remaining playas is not compensating for playa losses over time. Average coales-
cence distances are currently higher than the dispersal capacity of many organisms, meaning that the playa
network is fragmented such that only an extremely vagile disperser (capable of moving at least 18-45 km) would
be able to traverse the landscape via the remaining wetlands, even if all were wet simultaneously. These findings
illustrate the importance of using multiple indicators in assaying dynamic connectivity and provides a frame-
work of possible metrics to use for monitoring and assessment of any dynamic habitat network.

1. Introduction environmental variability but also increasingly as a result of human
activities related to large-scale land conversion. Organisms that use
Many habitat resources fluctuate in availability due to natural these resources must therefore navigate a dynamic habitat network.
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Landscape connectivity, defined as how the spatial arrangement of
habitat patches facilitates or impedes the movement of organisms
(Taylor et al., 1993), may be enhanced or compromised by such fluc-
tuations. Because compromised habitat connectivity increases extinc-
tion risk, quantifying changes in habitat connectivity has become a
primary focus in the study of habitat networks (Lookingbill et al., 2010;
Estrada, 2012). However, most work has been on static networks or on
networks at a single snapshot in time (e.g. Jordan et al., 2003; Baum
et al., 2004; Pascual-Hortal and Saura, 2007). It has only been re-
cognized recently that connectivity is dynamic (Matisziw and Murray,
2009; Saura et al., 2011; Ruiz et al., 2014; Tulbure et al., 2014; Zeigler
and Fagan, 2014; Bishop-Taylor et al., 2015; Bishop-Taylor et al., 2017;
Martensen et al., 2017), with a challenge remaining in assessing
changes in connectivity in temporally fluctuating habitat networks.
Comparing an ecological network to a null model constructed with a
similar number of nodes (habitat patches) and node degree distribution
(e.g. by using a power law function to generate a neutral model of a
scale-free network, or a random/Poisson model) is relatively well-es-
tablished (e.g. Watts and Strogatz, 1998; Moore and Newman, 2000;
Proulx et al., 2005; Wright, 2010; Estrada, 2012; Lee and Maeng, 2013).
However, empirical comparisons across non-theoretical networks are
crucial in distinguishing natural intra- and interannual variability in
dynamic networks from directional changes resulting from land use
changes or climate shifts, and are necessary for natural resource mon-
itoring and management in a changing world.

This challenge is further complicated by the fact that there are
numerous indices that quantify various aspects of connectivity at two
different scales: that of the entire network, and that of the relative
importance of each node within the network (Tischendorf and Fahrig,
2000b; Kindlmann and Burel, 2008; Baranyi et al., 2011; Laita et al.,
2011). Common global metrics quantify the structure of ecological
networks in terms of the number of nodes, path redundancy within the
network, and overall network topology; the role(s) of individual nodes
can be quantified in terms of their degree of connectedness. However,
there is no consensus on which metrics may be most useful for com-
parative work (Kupfer, 2012; Ernst, 2014), although Baranyi et al.
(2011) had some suggestions on individual-scale metrics useful in
ranking nodes, and Estrada (2012) suggested various indices for com-
prehensively describing network structure with respect to node density
and clustering and the importance and roles of individual nodes, as well
as some that are more appropriate for a theoretical or social network
than for a spatially explicit landscape network. This lack of agreement
is particularly problematic when examining dynamic connectivity,
which by its very nature requires quantitative comparisons over time.
Thus, even though there are numerous metrics that can be used to
quantitatively describe structural connectivity, there are few examples
of comparing these indices over time. Connectivity in dynamic habitat
networks thus represents an important but understudied and growing
research need.

Wetlands are a prime example of a dynamic habitat network, fluc-
tuating in availability based on precipitation patterns (droughts, floods)
and human activities (drainage, infill, channelization), and thus also
impose dynamic connectivity on wetland-associated wildlife. Wetlands
are among the most sensitive ecosystems to land conversion and climate
change (Brinson and Malverez, 2002). About half of the freshwater
wetlands in the U.S. have been lost in the past 200 years due to human
activity, mostly in the Great Plains (Dahl, 2011). As part of the United
States’ breadbasket, corn belt, and cotton belt, the Great Plains have
experienced extensive conversion of native grasslands to tillage agri-
culture, threatening prairie wetlands (Wright and Wimberly, 2013).
Examinations of how these activities may have altered connectivity
among prairie wetlands have been scarce, however (Ruiz et al., 2014;
Uden et al., 2014), so we examined whether temporal trends in the
playa network were associated with land use.

The most prevalent wetlands of the southern Great Plains are playas
(Smith, 2003). Playas are ephemeral freshwater wetlands that are
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Fig. 1. Playas of the Great Plains (digital data from the Playa Lakes Joint
Venture; www.pljv.org/partners/maps-data/playa-maps), showing our focal
area (Landsat 5 scene 30/36; parallelogram) and the city of Amarillo, Texas
(largest populated place within scene 30/36; red circle). Base map “USA States”
from ArcGIS online.
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important resources for people and wildlife (Bolen et al., 1989) (Fig. 1).
Playas support breeding (e.g. amphibians, invertebrates, waders, wa-
terbirds) and overwintering (e.g. waterfowl, cranes) wildlife, and are
continentally important migratory stopover habitats along the Central
Migratory Flyway. Playas are filled from precipitation and runoff and as
such are influenced by land-use activity in their watersheds as well as
by weather variability (Smith et al., 2011). Hydroperiods are highly
variable within and between years, ranging from 15 to 185 days de-
pending on rainfall and surrounding land use (Ghioca and Smith, 2008;
Collins et al., 2014). Indeed, it is the dynamic drying/inundation pat-
terns of playas that enhance regional biodiversity (Haukos and Smith,
1994). When dry, their clay basins form cracks that, when wetted en-
ough, swell and seal, thereby allowing the playa to hold water. Sur-
rounding land-use can facilitate or impede runoff, thereby affecting
playa hydroperiod (Collins et al., 2014), but it is unknown how much
precipitation is needed, over what time frame, for a playa within a
given land-use type to hold water (Ganesan et al., 2016). During
droughts, many playas will be dry for weeks to years, although most are
still detectable due to the presence of a depression, hydric soils, and
associated vegetation (Smith, 2003). Human activities associated with
agriculture, such as drainage and infill, have disrupted the ability of
some playas to hold water and have caused some playas to disappear
from the landscape altogether (Johnson et al., 2012). Historically, there
were an estimated > 30,000 of these ephemeral freshwater wetlands
(Smith, 2003), yet it is unknown how many have been lost in terms of
their capacity to hold water, in large part because of the inherently
dynamic hydrology of playas. Loss estimates range from 17% to over
85%, and even moderate losses may compromise the unique and vital
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habitat network that is the playa wetland system of the Great Plains
(Johnson, 2011; Collins et al., 2014). Patterns of loss with respect to
geomorphological patterns, such as playa basin size, are also unknown,
but smaller basins should dry out more quickly or be infilled with
erosional sediments more readily, meaning that the networks may be
altered in predictable ways. Therefore, changes in connectivity of this
network from playa losses have far-reaching implications on con-
tinental-scale biodiversity. Playas thus represent a model system of
dynamic connectivity, but examining long-term patterns in this and
other fluctuating systems will depend on using indices that are sensitive
enough to capture changes at both the whole-network and individual-
node scales.

To complicate matters, there are several dozen indices that measure
different structural landscape properties or potential functional out-
comes of dispersal at a population or community level (Tischendorf and
Fahrig, 2000a, 2000b; Moilanen and Nieminen, 2002; Calabrese and
Fagan, 2004; Kindlmann and Burel, 2008; Vogt et al., 2009; Laita et al.,
2011). One family of metrics consists of variants of least-cost paths
based on landscape resistance or circuit theory (see e.g. Adriaensen
et al., 2003; Zeller et al., 2012). These indicators must be parameterized
with empirical data (which are lacking for most species) or on expert
opinion that may be incomplete, inaccurate, or biased (Spear et al.,
2010). In contrast, connectivity metrics from graph theory (a Euclidian
distance-based family of metrics; Bunn et al., 2000; Fortuna et al., 2006;
Fall et al., 2007) do not need to be parameterized with such data, but
also do not incorporate aspects related to the matrix between habitat
patches. Although these two approaches are not mutually exclusive
(and indeed, resistance-weighted distances derived from least cost or
circuit-based modelling can be used as inputs to calculate graph theory-
based connectivity metrics), they quantify different aspects of con-
nectivity (structural vs. functional; Calabrese and Fagan, 2004;
Kindlmann and Burel, 2008). Since environmental management deci-
sions are typically made based on structural aspects of habitat avail-
ability rather than on species-specific functional aspects, it is not sur-
prising that graph theoretical approaches are being increasingly
adopted for rapid structural habitat assessment for conservation plan-
ning (Minor and Urban, 2007). A graph-theoretical approach is thus
ideal for quantitative appraisals of dynamic connectivity because it
does not require species-specific demographic data and instead focuses
on dispersal distances for a range of organisms (Saura and Rubio,
2010). Even so, there are numerous graph theoretical metrics, and
because different indices quantify connectivity at different scales (in-
dividual patches vs. the entire network), a suite of metrics that allow for
inferences about dynamic connectivity at multiple scales is needed. We
therefore undertook a longitudinal analysis of landscape change and
dynamic connectivity among playas over the past 30 years. We pre-
dicted that we would see fluctuations in the numbers of wet playas
(given inherent weather variability) but that there would be an overall
loss trend of playas over time (particularly smaller ones) that coincides
with conversion of grassland to other forms of land use; we further
predicted that this decrease in node density would be reflected in
connectivity in terms of limiting the number and distance or efficiency
of dispersal options. In testing these predictions, we provide a case
study of an approach that examines connectivity within dynamic ha-
bitat networks, with suggested metrics to use when assessing changes in
connectivity over time.

2. Materials and methods

Our main objective was to create a framework for assessing changes
in connectivity over time. First, we quantified the playa network in
terms of numbers of nodes (wet playas) present. We used satellite
imagery to enumerate and measure wet playas over three decades
(portions of the 1980’s, 1990’s, and 2000’s) within a portion of Texas
(Landsat 5 TM scene 30/36; https://glovis.usgs.gov) that contains the
highest density of playa basins in the Great Plains (Fish et al., 1998).
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Table 1

Dates of the Landsat scene 30/36 images that were used in our study. Images
were chosen from portions of three decades that included years that were both
wetter and drier than the long-term average. During each set of focal years (i.e.,

decade), all consecutive images that were cloud-free were used.

1980’s (1984-1986)
13 dates:

1990’s (1995-1998)
30 dates:

2000’s (2007-2011)
37 dates:

14 April 1984

19 July 1984

8 November 1984
10 December 1984
12 February 1985
1 April 1985

14 January 1986
30 January 1986
4 April 1986

20 April 1986

6 May 1986

11 September 1986
13 October 1986

24 February 1995
13 April 1995

16 June 1995

6 October 1995

22 October 1995

7 November 1995
26 January 1996
14 March 1996

15 April 1996

1 May 1996

18 Jun 1996

4 July 1996

8 October 1996

9 November 1996
25 November 1996
11 December 1996
28 January 1997
21 June 1997

14 August 1997

25 September 1997
27 October 1997
14 December 1997
4 March 1998

5 April 1998

21 April 1998

24 June 1998

14 October 1998
15 November 1998
1 December 1998
17 December 1998

8 January 2007

19 July 2007

31 March 2008

16 April 2008

2 May 2008

18 May 2008

3 June 2008

21 July 2008

6 August 2008

22 August 2008
25 October 2008
12 December 2008
13 January 2009
29 January 2009
18 March 2009

3 April 2009

22 June 2009

8 July 2009

26 September 2009
16 January 2010
17 February 2010
6 April 2010

9 June 2010

25 June 2010

12 August 2010
29 September 2010
15 October 2010
16 November 2010
2 December 2010
3 January 2011

27 May 2011

12 June 2011

28 June 2011

14 July 2011

2 October 2011

18 October 2011

3 November 2011
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Fig. 2. Annual precipitation data for Amarillo, Texas (largest populated place
within scene 30/36). The long-term (1892-2011) average is represented as a
dashed blue line (51.38cm). Our focal years (1984-1986, 1995-1998,
2007-2011) are colored relative to mean annual precipitation (blue = wetter
than average, brown = drier than average, gray = years not examined).

Eighty images (Table 1) for the years 1984-1986 (13 dates), 1995-1998
(30 dates), and 2007-2011 (37 dates) were processed, spanning dry and
wet periods (Fig. 2), following the classification protocol in Ruiz et al.
(2014). This dataset encompasses all of the available high-quality,
cloud-free images over the focal years. The satellite data (resolution:
30m X 30m) were processed in ENVI 4.8 (Exelis Visual Information
Solutions, Inc., Boulder, Colorado, USA) to distinguish water from non-
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water via a band-math classification method (Collins et al., 2014); de-
tected waters were masked in ArcGIS 10.2.2 (Esri, Redlands, California,
USA) against historic locations of playas from a digital map of hydric
soils (Fish et al., 1998), following protocols in Collins et al. (2014). The
data were clipped to a common extent (29,083 km?) in UTM Zone 14N.

Our focal period encompassed a range of precipitation levels, in-
cluding wetter than average and drier than average years during each
decade. Annual precipitation data were obtained from the National
Weather Service station at the Rick Husband Amarillo International
Airport (the most complete long-term weather dataset for the region;
http://www.nws.noaa.gov/climate/index.php?wfo = ama).
Coefficients of variation (CV) of precipitation for our focal years and for
the span 1892-2011 were calculated to assess norms, variability, and
extremes. Due to a paucity of weather stations near playas, we did not
attempt to model shorter-term or more localized, accumulated pre-
cipitation corresponding to each of the Landsat dates.

We examined playas during wet and dry portions of the three focal
decades relative to historic locations of playas based on hydric soil lo-
cations from county soil surveys mostly conducted shortly after World
War II (Fish et al., 1998). These surveys represent the only compre-
hensive information available about the locations of playas in this area
before the development of satellite technology and likely underestimate
the true number of playas originally present in the region. However,
because it is unlikely that all basins would have held water simulta-
neously, these historic numbers should be considered potential
maxima.

We plotted the number and basin size distributions of historic lo-
cations of playas, playas that held water at least once, and wet surface
areas within playas. Kruskal-Wallis %> nonparametric analyses of var-
iance by ranks with Kolmogorov-Smirnov (K-S) pairwise tests of means
with Dunn-Sidék corrections for multiple comparisons (Cramer and
Howitt, 2004) were conducted to compare numbers and sizes of playas
over time (means across dates within decades). Coefficients of variation
(CV) were calculated to compare variability in playa size distributions
over time (see also Van Meter and Basu, 2015). Finally, we used a chi-
square test to determine whether losses of playas (in terms of their
ability to hold water) in certain size categories (<10 ha in basin area)
occurred more frequently than expected. All analyses were performed
in SAS 9.3 (SAS Institute, Cary, North Carolina, USA).

To assess whether temporal trends in the playa network were as-
sociated with land use, we examined how land use in our focal region
changed over our study span. We used the U.S. Department of
Agriculture’s (USDA) Census of Agriculture (a long-term county-level
census performed every 5-10 years since 1840) data from the 1987,
1997, and 2007 censuses for the 14 counties with the majority or en-
tirety of their land area within scene 30/36 (Table 2). These data are
relatively coarse in land-use categorization, separating irrigated from
total cropland, and cropland from pasture, but finer details are only
available for Texas since 2008 from the USDA National Agricultural
Statistics Service’s CropScape program (https://nassgeodata.gmu.edu/
CropScape/). Pasture/grassland included grazed grasslands as well as
ungrazed grasslands, including Conservation Reserve Program (CRP)
land. The USDA’s Conservation Reserve Program was first implemented
in 1986 and has effectively reclaimed former cropland to ungrazed and
unmowed perennial grasses (Heard et al., 2000), but CRP locations are
not publicly available due to landowner privacy regulations. Therefore,
we could not distinguish CRP from non-CRP grasslands and therefore
consider pasture/grassland as a single category.

We used graph theory metrics to quantify structural connectivity
within the playa network. In this approach, a network is a graph of
nodes (i.e., playas) connected by links (single Euclidian distance be-
tween a pair of nodes) (Table 3). Dispersal paths through the network
are thus formed from multiple links. We chose a suite of easily inter-
pretable metrics to examine connectivity in terms of the importance of
individual playas on connectivity up to overall network topology
(Estrada, 2012; Kupfer, 2012); some of these metrics have also been
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Table 2

Percentages of county area designated as total cropland (“Total”) and irrigated
(“Irrigated”) cropland by the USDA Census of Agriculture for 1987, 1997, and
2007 for the 14 counties with a majority or entirety of their area contained
within Landsat scene 30/36. A dash (“~“) indicates that data were not reported
for that category in the census for that county in that year.

County County 1987 1997 2007

size

(km?) Total Irrigated Total Irrigated Total Irrigated
Armstrong 2367 29.03 1.33 - 1.40 27.25 1.02
Briscoe 2336 2491 4.88 26.71 4.87 28.88 5.48
Carson 2393 48.86 10.76 45.96 12.47 55.97 7.02
Castro 2328 73.82 31.32 71.13 39.42 75.54 37.07
Collingsworth 2380 27.23 1.09 30.05 3.69 32.90 5.05
Donley 2416 13.23 0.66 15.56 2.09 14.02 2.82
Floyd 2572 70.90 22.74 64.31 26.68 66.19 20.42
Hale 2603 78.88 37.46 79.63 48.24 71.88 37.85
Hall 2341 29.84 0.93 29.80 1.54 37.86 4.82
Lamb 2637 61.69 27.36 67.44 33.49 79.03 36.04
Motley 2564 16.55 0.61 - 1.02 16.62 0.52
Potter 2388 9.88 1.29 - 1.37 12.61 1.18
Randall 2388 44.49 5.23 46.88 6.51 45.78 3.35
Swisher 2334 67.37 20.01 61.48 19.89 65.90 14.54
Averages 2431.93 42.62 11.83 48.99 14.48 45.03 12.66

used in other studies on dynamic connectivity (Ruiz et al., 2014;
Tulbure et al., 2014; Bishop-Taylor et al., 2015). Using the igraph
package (Csardi and Nepusz, 2006) in R 3.0.2 (R Core Team, 2014), we
first determined the coalescence distance of the network on each date.
This distance is the maximum nearest-neighbor distance between
nodes; for an organism capable of dispersing at least the coalescence
distance, the entire network is potentially traversable (i.e., all playas
form a single cluster within the organism’s dispersal range). At the
coalescence distance, we then calculated the graph density, average
path length, graph diameter, and transitivity (Table 3). Graph density is
a bidirectional form of linkage density, calculated as the ratio of lin-
kages present to the number of all possible links among nodes; values
closer to 1 (maximum possible value) can indicate the presence of more
choices of paths through the network (if the numerator increases) or,
conversely, a simplified network (if the denominator decreases).
Therefore, this metric should be examined with respect to changes in
the number of links present to determine which situation is present.
Average path length should not be confused with path length in a
geographic or physical distance sense: average path length in a graph is
the number of connections that a node has with other nodes within the
specified (coalescence) distance and as such represents average nodal
connectance; as such, lower values indicate more circulation efficiency
through the network. Graph diameter is the longest geodesic among the
shortest routes through the network, so higher values indicate greater
graph complexity. Transitivity is an assay of the degree of clustering in
the overall network; this clustering coefficient ranges from 0 (no clus-
ters of at least three nodes are present) to 1 (all nodes are within the
coalescence distance of at least two other nodes, forming a perfectly
closed graph) and measures the degree to which a graph has groups of
nodes with a relatively high density of links among them as opposed to
a thinner network. Collectively, these metrics provide assessments of
path redundancy, which is associated with network resiliency (Janssen
et al., 2006; Rayfield et al., 2011), and network density.

We used the equivalent connected area (ECA) index (Saura et al.,
2011) to evaluate changes in habitat connectivity compared to changes
in habitat amount, i.e., the number of wet playas as well as the area in
hectares of open water (Bishop-Taylor et al., 2017; Martensen et al.,
2017). Based on the number and size of nodes at a specified proximity,
ECA indicates the size of a single habitat patch (node) that would be
needed to provide the same probability of connectivity as the observed
fragmented network of nodes currently being evaluated. ECA thus ac-
counts for the habitat available within the individual nodes themselves


http://www.nws.noaa.gov/climate/
https://nassgeodata.gmu.edu/CropScape/
https://nassgeodata.gmu.edu/CropScape/

N.E. McIntyre et al.

Ecological Indicators 91 (2018) 607-616

Table 3
Glossary of the connectivity metrics that we used.
Metric Definition
Node Point of interest (playa centroid)
Link Euclidian distance between a pair of nodes

Coalescence distance
Graph density
Average path length
Graph diameter
Transitivity
Kleinberg’s hub score

Distance between the farthest pair of nearest-neighboring nodes

Linkage density; ratio of the actual number of links to the number of possible links among all pairs of nodes

Mean number of links connecting each node within a specified distance; not used in a geographic or physical distance sense

Longest shortest path through the network in terms of number of nodes

Global clustering coefficient; ratio of the number of closed clusters of at least three nodes to the number of connected clusters
Proportional to the number of links from a node, with a node that is connected to a large number of other nodes (within a specified dispersal

distance) receiving a high hub score, meaning that a hub is a node that is connected by a relatively high number of links to other nodes in

the network
Cutpoint

distance
Equivalent connectivity area (ECA)
ECA:Area

Any node whose loss fragments a coalesced (i.e., fully connected) network into pieces isolated by a distance greater than the coalescence

Size of a single node that would provide the same habitat availability as the observed spatially disjunct network of nodes
Ratio of ECA to total habitat area (wet area within playa basins)

based on their size as well as that which is available to a disperser for a
specified distance. Because it takes habitat size into account, this index
provides a complementary measure to our other indices in character-
izing the dynamic connectivity in our study area. Use of our other
connectivity indices not based on habitat area in tandem with ECA thus
enriches the characterization of dynamic connectivity in our study area.
We used the Conefor tool in ArcMap 10.5.1 (http://www.jennessent.
com/arcgis/conefor_inputs.htm) to generate input files of the network
of wet playas on each date and then calculated ECA in Conefor 2.6,
using the probabilistic PC formulation of ECA with nodes weighted by
their size (actual wet area, not basin size) (http://www.conefor.org;
Saura and Torné, 2009) for those node pairs located at a distance < the
coalescence distance for each date (as recommended in the Conefor
manual for large and sparse networks; Saura and Torné, 2012). We also
calculated ECA for all historic basins based on their basin size (rather
than the number of wet basins and wet area, as was done for each re-
cent date) (Table 3). ECA is well-suited to determine how landscape
connectivity is changing relative to the amount of habitat on the
landscape. Because network topology and, thus, connectivity through
the network are dependent on habitat availability (i.e., number and
distribution of nodes within the network), we can use it to tease apart
the effects of habitat loss from changes in connectivity. In our study
area, a loss in wetlands over time is of course going to constrain con-
nectivity. Therefore, the objective is not only to determine how much
connectivity is going to decrease, but also to determine whether this
decrease is above or below that which would be expected from habitat
loss alone. To do so, we constructed a 1:0.5 line on plots of ECA vs. the
number of wet playas, and ECA vs. the wet area. Because the ECA
metric is a square root function of the independent variable plotted on
the X-axis, a 1:0.5 line would be used rather than a 1:1 line. This line
effectively parses the graph space into two section: Values above this
line would indicate connectivity higher than expected based on habitat
availability, and conversely, values below this line would indicate
lower-than-expected connectivity. Because ECA can never assume a
value smaller than the size of the largest node in the network, we also
calculated the ECA:Area index to provide a scaled assessment of how
connectivity may change with habitat area (Bishop-Taylor et al., 2017).
A maximally connected network has an index value of 1 (i.e., upper
limit is 1); node isolation reduces ECA:Area index values (Bishop-Taylor
et al., 2017). ECA:Area thus provides an assay of network fragmenta-
tion.

To complement these whole-network connectivity metrics, we also
calculated two node-level metrics at the coalescence distance (Bodin
and Saura, 2010). The Kleinberg hub score calculated for each node on
each date reflects the number of links extending from a node; a node
connected to a large number of other nodes has a high hub score (Csardi
and Nepusz, 2006). Hubs are thus connected to more nodes relative to
other nodes within a network (Minor and Urban, 2008). Nodes were

also identified as to whether they were cutpoints or not (Csardi and
Nepusz, 2006; Galpern et al., 2011). Cutpoints are nodes that, if re-
moved from the network, result in the network becoming fragmented
into components that require a greater coalescence distance to link back
together (Keitt et al., 1997).

These metrics allowed us to characterize the basic structure of
ecological networks in terms of the number of nodes present and at
what maximum dispersal distance they are all potentially accessible by
a disperser (coalescence distance), their degree of connectedness
(number of links, hub score, average path length), path redundancy
within the network (graph density, graph diameter, average path
length), overall network topology (coalescence distance, graph density,
graph diameter), the role(s) of individual nodes (as hubs or cutpoints),
and assays of network fragmentation relative to habitat availability
(ECA, ECA:Area). Some of these metrics inform multiple facets of net-
work structure, making them especially valuable. All metrics were
calculated for each date and then averaged by decade for a more
equitable comparison of effects over time.

Because there have been few studies that have examined ecological
connectivity at more than one point in time, there was little conceptual
guidance from which to try to predict how a change in network to-
pology would be manifested in connectivity metrics. Some studies that
have examined connectivity longitudinally plotted trends in mean va-
lues over time (e.g. Tulbure et al., 2014) or examined changes in im-
portance rankings over time (e.g. Ruiz et al., 2014), so we also adopted
those approaches. We also took the approach used in Saura et al.
(2011), Bishop-Taylor et al. (2017), and Martensen et al. (2017), all of
which examined changes in ECA over time. We additionally used first
principles from the mathematical calculation of the metrics themselves
(formulae in Csardi and Nepusz, 2006) to make ecological predictions
and determine whether some metrics performed better than others. We
predicted a priori that the number of wet playas would decrease over
time due to playa losses from land-use changes. This was then expected
to cause the number of links to decrease because with fewer nodes there
would be fewer possible connections. This in turn was predicted to
cause a decrease graph density but increases in transitivity and average
path length because of the presence of fewer links. We expected coa-
lescence distance to increase because network thinning would mean
that it would take a greater distance to move among the remaining
nodes. Likewise, graph diameter should decrease as nodes are lost. We
expected the average hub score to decrease over time as nodes thinned
out and the number of cutpoints to increase as the network was pruned
of branches out to nodes. Finally, we expected ECA and ACA:Area to
decrease over time as habitat availability declined.

For these metrics to be useful guides in dynamic connectivity, they
needed to show significant differences over time. Metrics that are not
sensitive to changes in the numbers or placement of nodes in a network
would not be well-suited to detect shifts due to natural or
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Fig. 3. Numbers of playas across dates. Historic playas included all basins
(green column); this was compared to the mean (+standard error) number of
playas containing water (blue columns) across dates in the 1980’s-2000’s.
Columns with the same letter are not significantly different (K-S tests). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

anthropogenic fluctuations. But because certain metrics are bounded
(ratios must assume values between 0 and 1, for example) whereas
others are not, we compared relative changes over time (i.e., percent
increases or decreases) rather than absolute metric variations since
unbounded metrics would naturally tend to have larger changes stem-
ming from larger values. Metrics with higher ranges would have a
disproportionate influence on the analyses, so relative values are ne-
cessary to make more valid comparisons among the metrics.

3. Results

There were 7437 hydric soil-defined playa basins in our study area;
only 144 of these basins held water on the driest date (24 February
1995), and only 4950 held water on the wettest date (13 October
1986). There was a significant decrease in the number of playas in our
focal area that held water through the 1980’s, 1990’s, and 2000’s, re-
lative to historic basin numbers (Xz = 9.60, P = 0.0223; Fig. 3). Most of
those playas that were lost were small in size (basins < 10 ha), with
proportionally greater losses in this size category than expected from
their frequency (%2 = 4825.25, P < 0.0001; Fig. 4). There also were
differences in the surface areas of water within playas in recent decades
compared to historic basin sizes, driven by losses of small playas rather
than by any increase in the size of wet area (Table 4). This was expected
since historic data were based on the sizes of hydric soil basins, which
are static, whereas data from the 1980’s to 2000’s were based on the
actual presence of water within the basins, which fluctuates with pre-
cipitation as well as surrounding land use that influences runoff. The
drop in surface water availability was not due to marked differences in
annual rainfall among decades, although there was greater variability
in precipitation from 2007 to 2011 compared to our other two focal
decades as well as to the overall long-term pattern, due to a record
drought in 2011 (Table 4). The decrease in CV values from historic to
more recent decades indicates there is now a narrower range of sizes of
functional playas than historically (Table 4). There was no statistically
significant difference in the average sizes of surface water areas within
playa basins in the 1980’s-2000’s (x> = 0.90, P = 0.6379; blue col-
umns in Fig. 5); however, those playa basins that held water at least
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article.)

once during the 1980’s-2000’s were larger on average than historic
basins overall (x2 = 1486.91, P < 0.0001; green columns in Fig. 5),
consistent with losses of smaller playas. By the 1980’s, there was a loss
of 61.9% in surface water since historic times, comparing maximum
numbers of wet playas present (Table 5). From the 1980’s to the 2000’s,
there was a further loss of 36.4% of wet playas and 18.3% in surface
water. The fewest wet playas were encountered in the 2000’s. By the
2000’s, 85.1% of playas were lost (that is, from historic to the 2000’s,
85.1% of the playa basins examined never held water on any of the 80
dates). These trends indicate that playa dynamics are driven by more
than simply precipitation patterns, including drought/deluge periods;
land conversion is also a contributing factor. Most of our focal area was
converted to agriculture during the early 20th century, with an ex-
pansion of irrigation after World War II. Currently, some counties have
relatively more cropland than others for a variety of reasons, including
geographical differences in soil types, precipitation amounts, and ac-
cessibility to the aquifer, the primary source for irrigation in this region;
Donley, Motley, and Potter counties consistently have the least crop-
land, both total and irrigated, and Castro, Floyd, and Hale counties
consistently have the most (Table 2).

As predicted, the numbers of wet playas fluctuated by date, but
there was an overall decrease in the numbers of playas that held water
over time, particularly smaller ones, and these loss trends coincide with
an increase in cropland acreage from 1987 to 2007 in 10 out of 14
counties (by an average of 4.8%), and in irrigated cropland (by an
average of 3.6%) for 7 out of 14 counties (Table 2). These landscape
changes were reflected in changes in playa network connectivity:
Coalescence distances ranged from 18 to 45km by date, meaning that
an overland disperser traveling from wet playa to wet playa would need
to be able to travel at least 18 km in the best-case scenario and 45 km in
the worst-case scenario, ignoring intervening landscape structure.
Coalescence typically occurred at =20 km (79 out of 80 dates). On 14
dates, coalescence occurred at even greater distances (=30 km). Mean
coalescence varied by year, being nearly 1.5 times as long in the
drought-stricken year of 2011 (31.8 km) compared to the relatively wet
year of 2010 (23.6 km). These distances are much longer than the daily
or even lifetime dispersal distances of many organisms (e.g. amphi-
bians; Smith and Green, 2005) and twice as high compared to the
historic value of a fully intact network (12.7 km; Table 5).

As the numbers of nodes decreased through time, the number of
linkages likewise decreased (Table 5). As a consequence, the playa
network has become less connected overall, manifested in our focal
metrics (Table 5). For example, graph density has increased over time;
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Table 4
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Sizes of wet area within playa basins for each time period, relative to historic basins, annual precipitation totals, and coefficients of variation (CV) for the size

distributions of playas in Fig. 4.

Within clipped scene 30/36 Historic (hydric soils)

1980’s (1984-1986)

1990’s (1995-1998) 2000’s (2007-2011)

Mean (and range) size, ha 9.27
(0.12-163.38)

Median size, ha 5.41

CV playa sizes, ha 1.27

Mean (range) yearly precipitation, cm 51.38

(17.80-100.96)

CV precipitation, cm

4.56 4.82 4.66
(0.09-116.46) (0.18-117.81) (0.18-125.10)
1.62 1.62 1.53

0.23 0.29 0.32

56.69 51.46 50.61
(48.84-64.34) (43.56-63.37) (17.80-67.41)
13.67 16.96 37.64

14
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Fig. 5. Mean sizes in hectares (ha) of playas over time. Green columns indicate
playa basins whereas blue columns indicate wet area within basins detectable
via satellite imagery in the 1980’s-2000’s. Green basins in the 1980’s—2000’s
were only those that held water at least once; these were larger basins on
average than the historic distribution, indicating loss of small playas. Green
columns with the same capital letter and blue columns with the same lower-
case letter are not significantly different (K-S tests). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

historic

because this metric is the ratio of the number of links present to all
possible pairwise links, an increase in this value that occurs with a si-
multaneous decrease in the number of links present indicates that the
network is thinning (i.e., denominator is decreasing). Average path
length at coalescence for the recent networks were lower than the
historic value, suggesting that there are fewer connections among nodes

Table 5

now than previously; however, this metric has been increasing in recent
decades, suggesting a channelization of pathways. Graph diameter is
also currently lower than historically, likewise indicating fewer direct
path options through the network. Transitivity has increased, indicative
of thinning of paths through the network and loss of path redundancy.
Additionally, hub scores surprisingly have increased over time, sug-
gesting that the playa network is becoming fragmented into clusters,
which have a high number of connections among the nodes within a
cluster, but few connections among clusters; this suggestion is sup-
ported by relatively high and increasing transitivity scores. The number
of cutpoints is lower now than historically, but with an upward recent
trend, signaling greater risk of network fragmentation. Finally, the
status of any given playa as a cutpoint or hub for maintaining con-
nectivity was not constant through time.

The equivalent connected area (ECA) index was positively related to
the number of wet playas present and on the availability of water on the
landscape (Fig. 6), which is to be expected given that ECA is calculated
based on the number and sizes of nodes. Similarly, ECA values de-
creased over time, as would be expected as playas were lost (Table 5).
Most ECA values were at or above a 1:0.5 line with respect to the
numbers of wet playas present, indicating that connectivity among the
remaining playas was higher than expected, but was below the 1:0.5
line with respect to the size of wet playas present (surface water area),
suggesting that the amount of habitat area is of less importance than
habitat placement (Fig. 6). Likewise, the ECA:Area index decreased as
habitat availability increased on the landscape, with a curvilinear re-
lationship between ECA:Area and the number and size of wet playas
present (Table 5, Fig. 7). This decrease was expected because this me-
tric indicates network fragmentation, which logically should decrease
with increasing habitat availability. Low ECA:Area values indicate
network fragmentation. Furthermore, an examination of Fig. 7 shows
that the lowest values (and declines) are from the 1990’s and less so in

Connectivity metrics values at coalescence, averaged over all dates examined within each decade.

Within clipped scene 30/36 Historic' 1984-1986 1995-1998 2007-2011 Relative change, historic to most recent”  Relative change, 1980’s to most recent’
Number of nodes (wet playas)  7176" 1677° 1409.23° 1065.59° —85.1 —36.4
Average wet area, hectares 9.61 3.66 3.71 2.99 —-68.9 —-18.3
Number of links 875,603 258,409.20  156,816.00  120,975.80 —86.2 —53.2
Coalescence distance, km 12.65 25.85 25.80 26.35 108.3 1.9
Graph density 0.03 0.13 0.14 0.18 500 385
Average path length 6.90 3.59 3.61 4.14 -40 15.3
Graph diameter 30.00 12.38 11.90 14.59 —51.4 17.8
Transitivity 0.66 0.70 0.72 0.77 16.7 10
Hub score 0.10 0.28 0.27 0.31 210 10.7
Number of cutpoints 4.00 0.85 1.83 2.00 -50 135.3
ECA, hectares 3932.64 904.12 792.62 694.54 —-82.3 —23.2
ECA:Area 0.05 0.18 0.18 0.30 500 66.7

1 Connectivity metric values for historic playas are not averages because they are from a single point in time; values for the 1980, 1990’s, and 2000’s represent

means across dates (each date represents a network).

2 Difference between historic and values from the 2000’s, divided by historic values and multiplied by 100 to yield a% change.
3 Difference between values from the 1980’s and the 2000’s, divided by earlier values and multiplied by 100 to yield a% change.
4 Number of hydric soil basins, assuming all playa basins were wet simultaneously.

5 Mean number of wet playas across dates.
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Fig. 6. Plots of ECA in hectares vs. the number of wet playas (nodes) (top) and
wet area in hectares (bottom) for each of our 80 dates, with each of the three
decades denoted by different symbols (1980’s: green circles; 1990’s: orange
triangles; 2000’s: purple squares). The line is a 1:0.5 line. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

the 2000’s, which would seem counterintuitive, given the other metrics.
However, coalescence distances were highest in the 2000’s (Table 5),
and since we used the unique coalescence distance on each date to
calculate ECA, the networks from this decade may appear less frag-
mented than if a lower coalescence distance had been used.

Although all of the metrics displayed variation over time, particu-
larly relative to the historic number of playa basins (which is necessary
to document changes in network structure), some showed much less
change on an absolute basis than did others (Table 5), which was in-
fluenced by the possible range of values each metric could be. This was
particularly true for those indices that had a range from O to 1 (graph
density, transitivity, hub score, and ECA:Area). The other metrics did
not have such mathematical bounds on what value they could take
(could be any value =0) and so displayed relatively greater variability.
Even with these differences, however, there was agreement in the
trends that the metrics indicated, and when the relative values were
examined, the patterns of compromised connectivity were more evident
(Table 5). For example, the increase in graph density seen from
1984-1986 to 2007-2011 (0.13 to 0.18, respectively) was 38.5%; this
change, combined with a 53.2% decrease in the number of links over
that same span, indicates a loss in path redundancy in the playa net-
work over time. Relative changes in other metrics likewise reveal si-
milarly steep losses in habitat availability (ECA), and increases in net-
work fragmentation (number of cutpoints and ECA:Area), and these
changes are even larger when comparing the most recent values to
historic ones (Table 5).

614

Ecological Indicators 91 (2018) 607-616

0.6
T
05 | = ® 1980’
o 04 |‘.._ 1990’s
e [
< 03 ‘"& = M 2000’
< ° . u
[v) . L
) ok " ag %
) aE ¥ . o
0.1 °
L]
0
0 1000 2000 3000 4000 5000
number of wet playas
0.6
%
05 =
® 1980%s
o 04 !p .
< " 1990
< 03 “Am, s
S =8
[ ] 7,
o, o, W 2000’
. . v
' ¥ by” om o .
0.1 °
L]
0
0 5000 10000 15000 20000

wet area (hectares)

Fig. 7. Plot of ECA:Area index vs. the number of wet playas (nodes) (top) and
wet area in hectares (bottom) for each of our 80 dates, with each of the three
decades denoted by different symbols (1980’s: green circles; 1990’s: orange
triangles; 2000’s: purple squares). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

4. Discussion

Playa loss estimates in the southern Great Plains range from 17 to
60% (Johnson et al., 2012). Our estimates (44-70%) are comparable
even though we used a different technique (remote sensing rather than
their low-altitude aerial imagery) and examined many more basins over
a longer span. Most of the playa basins that no longer hold water, even
during rainy periods, have cropland in their watersheds, which pro-
motes erosion and infill with sediments (Collins et al., 2014; Starr et al.,
2016). Playa availability is thus a function of precipitation and nearby
land use (Ghioca and Smith, 2008; Collins et al., 2014); this has im-
plications on whether playas within different landscape contexts can
support the development of aquatic wildlife that require certain hy-
droperiods (which range from as little as 21 days for some anurans but
as long as 70days for others; Venne et al.,, 2012). Moreover, the
smallest playas in our focal area have been disproportionately lost.
Johnson et al. (2012) similarly found that smaller basins no longer
functioned as wetlands in terms of holding water. Small wetlands can
play important roles despite their size (Marton et al., 2015), so losing
small wetlands can compromise biogeochemical functions, including
groundwater recharge, carbon sequestration, and denitrification (Van
Meter and Basu, 2015).

Although relatively high transitivity scores indicate that the playa
network is populated with a large (but diminishing) number of wet-
lands, we saw some greater constraints in connectivity than would be
expected from habitat loss alone (Figs. 6 and 7). Indeed, changes in the
other metrics indicate a loss of path redundancy through the network,
meaning that dispersers have fewer connectivity options now than just



N.E. McIntyre et al.

a few decades ago. These findings indicate that the playa network is
highly fragmented, such that only an extremely vagile disperser would
be able to traverse the landscape via the remaining wetlands. Percola-
tion models have suggested that a loss of 60-80% of basins could re-
present a tipping point of connectivity in the playa network (Albanese
and Haukos, 2017), with our results indicating that the playas in our
focal area already intermittently experience such losses in terms of
water availability. This finding is ominous given that our focal area
(Landsat scene 30/36) was selected because it had the highest playa
density in the Great Plains; the playa network in other portions of the
Great Plains is less dense, meaning that if the changes in connectivity
we documented in scene 30/36 are likewise represented where the
network is already stretched thin, those areas have likely experienced
an even greater diminution in connectivity.

The metrics that we used were able to reveal that “small-world”
properties were evident for the playa network and increasing over time
(Table 5). Small-world networks have properties between completely
random and completely regular networks (Watts and Strogatz, 1998),
being characterized by containing clusters of nodes with high average
path length, high transitivity, and many hubs (Estrada, 2012). Their
few but dense connections makes small-world networks vulnerable to
overall network failure from losses of highly connected nodes, such as
hubs (Dunne et al., 2002). The apparent ubiquity of playas on the
landscape may belie the impact of their losses, but this collective is now
sparser than it was historically. Beyond reduction in habitat area and
resource availability, these losses have also compromised connectivity
in several ways, and one of the major challenges of connectivity con-
servation is that efforts cannot focus on a single site because the im-
portance of a given site changes over time (Ruiz et al., 2014).

Using the ECA metric, Bishop-Taylor et al. (2017) found that for an
intermittently flooded river system in Australia, connectivity was
higher than expected given decreases in surface water during periods of
drought, suggesting that the structure of this riverine network provided
a degree of resistance to dry conditions. Something similar appears to
be the case in our study area: Results from the ECA index analyses
suggest that connectivity within the playa network is higher than would
have been expected from habitat loss alone, at least most of the time.
The amount of water present in the remaining habitat is not compen-
sating for large-scale habitat loss in the playa network (Fig. 6), but key
placement of nodes as stepping-stones can cause connectivity to be
higher than expected, given habitat availability (Bishop-Taylor et al.,
2017; Martensen et al., 2017). These factors suggests that even when
the nodes present are small, their configuration can, at least on some
dates, provide a degree of resistance to dry conditions (see also Bishop-
Taylor et al., 2017).

Our approach could potentially be scaled up to the global level,
owing to the recent availability of high spatial- and temporal-resolution
products characterizing the dynamics of surface water (Pekel et al.,
2016). Such products are freely available online with the Global Surface
Water Explorer for the period 1984-2015 at a 30 m spatial resolution
and a monthly temporal resolution (https://global-surface-water.
appspot.com/). This dataset uses monthly water recurrence as a mea-
surement of interannual changes but acknowledges that finer-scaled
dynamics are not well-captured, noting that “short-duration seasonal
water...is likely to be underestimated” (Pekel et al., 2016). Thus, wet-
lands with short and highly variable hydroperiods, such as playas, may
not be well-represented, and so this dataset may need to be supple-
mented with additional satellite images (which are available at 16-day
intervals) to examine dynamic connectivity in ephemeral, seasonal, or
temporary waters. Other limitations are discussed in Pekel et al. (2016).

Previous studies that have used the ECA metric (and, by extension,
ECA:Area) used a constant threshold distance between node pairs
across dates, and picked an arbitrary distance to represent some bio-
logically relevant dispersal distance (e.g. 5000 m). In our case, we used
the coalescence distance found for each date, meaning that each date’s
ECA value was calculated for a unique distance rather than a common
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distance, in order to evaluate each network independently based on
maximal connectivity rather than a fixed distance. Similarly, our ap-
proach calculated the other network metrics for each date in-
dependently from the others, as has been done in other assessments of
dynamic connectivity (e.g. Ruiz et al., 2014; Tulbure et al., 2014;
Bishop-Taylor et al., 2015). A different spatio-temporal approach has
been used by Martensen et al. (2017), who proposed a way to deal
jointly with connections through space and time, rather than just
comparing connectivity values as obtained from each date in-
dependently. Indeed, Martensen et al. (2017) have suggested that
connectivity as assessed by 'standard' metrics may significantly under-
estimate actual connectivity, with a more comprehensive picture pro-
vided by a fully spatiotemporal network analysis. There are many
ecological indicators of landscape connectivity, but relatively few have
been evaluated as to whether they can track temporal dynamics (Saura
et al.,, 2011). Our ability to understand the drivers behind network
dynamics is compromised by a lack of understanding of how much
change in connectivity metrics is needed to signal environmental trends
and not merely natural variation. For naturally dynamic systems that
are also experiencing trends in occurrence, this ability is crucial. Not all
metrics were equally sensitive for monitoring purposes, however. Using
relative rather than absolute differences can reveal more striking pat-
terns, given that comparing metrics that have finite distributions (such
as proportions bounded between 0 and 1) to unbounded metrics is, by
its very nature, an unfair comparison. Having multiple and comparable
evaluations can thus determine whether there is consensus in a trend.

5. Conclusions

Our case study illustrates the importance of using multiple metrics
in assaying dynamic landscape connectivity and provides a framework
of 11 metrics from different network scales for longitudinal compar-
isons. Because many other ecological networks are experiencing natural
and/or anthropogenic alterations that may be inducing downstream
effects on connectivity, an approach and suite of metrics that can pro-
vide quantitative documentation of topological changes over time, such
as provided here, will be necessary for adaptive natural resource
management.
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