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We demonstrate a method to systematically obtain eigenvalues and eigenstates of a many-body
Hamiltonian describing collective neutrino oscillations. The method is derived from the Richardson-Gaudin
framework, which involves casting the eigenproblem as a set of coupled nonlinear “Bethe ansatz equations,”
the solutions of which can then be used to parametrize the eigenvalues and eigenvectors. The specific
approach outlined in this paper consists of defining auxiliary variables that are related to the Bethe ansatz
parameters, thereby transforming the Bethe ansatz equations into a different set of equations that are
numerically better behaved and more tractable. We show that it is possible to express not only the eigenvalues,
but also the eigenstates, directly in terms of these auxiliary variables without involving the Bethe ansatz
parameters themselves. In this paper, we limit ourselves to a two-flavor, single-angle neutrino system.
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I. INTRODUCTION

Experimental evidence has ascertained that neutrinos can
undergo flavor oscillations, as a result of mass differences
between propagation eigenstates, which are distinct from
the eigenstates of the weak interaction [1-3]. Additionally,
it has been shown that the mixing between the two sets of
eigenstates can be modified in the presence of coherent
forward scattering of neutrinos on charged leptons [4-7], as
well as coherent neutrino-neutrino forward scattering
[8—13]. The latter contribution is of particular interest on
account of its nonlinear nature and becomes relevant in
environments with high neutrino fluxes, such as the hot and
dense early universe [14-23], as well as in compact-object
systems, such as the neutrino emission accompanying a
core-collapse supernova explosion or black hole-neutron
star or binary neutron star merger. The interplay between
the linear and nonlinear terms can result in various forms
of interesting collective flavor oscillation phenomena
[24-27], including spectral splits/swaps [28-50], matter-
neutrino resonances [23,51-60], and fast flavor oscillations
arising from spatial or temporal instabilities [61-73].

Collective oscillations of neutrinos have been investi-
gated in literature predominantly using the “mean field”
approach, wherein each neutrino is considered to be
interacting with a background mean field composed of
all other neutrinos. However, it has been pointed out
that this problem also lends itself to a full many-body
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description [27,49,74-79]. Such a description is much
more complete than the mean field approach, in the sense
that it operates within a larger Hilbert space, and captures
exclusive many-body effects such as the formation and the
evolution of entangled neutrino states. The many-body
Hamiltonian describing neutrino oscillations exhibits a
mathematical analogy to that of a one-dimensional spin
chain with one-particle and “long-range” two-particle
interactions (in momentum space), as well as the separable
pairing Hamiltonians describing nucleon pairs present in
different shell model orbitals [80,81]. Eigenvalues and
eigenvectors of the latter class of Hamiltonians were
already constructed in the 1960s by Richardson [82].
This solution was cast into an algebraic form by Gaudin
[83], whose formalism we shall use extensively in this
article.

The article is organized as follows. In Sec. II, we present
the many-body neutrino oscillation Hamiltonian with
vacuum and self-interaction terms, and simplify it using
the single-angle approximation. In Sec. III, we introduce
the Bethe ansatz method, also known as the Richardson-
Gaudin diagonalization technique, and we demonstrate
how the eigenvalues and eigenvectors of the Hamiltonian
may be systematically expressed using this method. In
Sec. IV, we recast the Bethe ansatz equations into a
different set of simpler, more tractable equations, and also
outline a procedure for calculating the eigenvalues and
eigenstates of the Hamiltonian in terms of the solutions to
these simpler equations. In Sec. V, we describe the analytic
and numerical solutions for specific cases. We conclude in
Sec. VI. Many of the mathematical details and derivations
are presented in the Appendixes.

© 2019 American Physical Society
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II. THE MANY-BODY
NEUTRINO HAMILTONIAN

In scenarios where the neutrino scattering rates are
sufficiently low for the neutrinos to be essentially free
streaming across the relevant physical scales, the flavor
evolution of neutrinos is dominated by coherent forward-
scattering processes. In that case, the interacting neutrinos
may be described as a many-body Hamiltonian system.
Generally speaking, such a Hamiltonian shall consist of
terms that represent neutrino oscillations in vacuum, as well
as interactions of neutrinos with ordinary background
matter and with other neutrinos, along with the correspond-
ing terms for antineutrinos.

In this article, for ease of discussion and to reduce
numerical complexity, we make a number of simplifying
assumptions. First and foremost, we restrict the discussion
to two flavor/mass states of neutrinos, rather than the full
three-flavor picture. Additionally, we pick a system con-
sisting only of neutrinos, and no antineutrinos.
Furthermore, keeping the environments where neutrino-
neutrino interactions are dominant in mind, we ignore the
interactions between neutrinos and ordinary (non-neutrino)
background matter. With these assumptions, the
Hamiltonian may be written as a sum of vacuum and
self-interaction terms, H,,. and H,,, given by

V2G -
v FZ(I —cosIpg)lp - Jq. (1)
P

H=Y w,B-J,+
P

where B = (0,0, —1),,.. = (5in 26,0, —c0526) 4, is @
unit vector indicating the direction of the mass basis in
isospin space, with 6 being the vacuum mixing angle, and
wp = 6m?/(2|p|) are the vacuum oscillation frequencies.
Here, 9p is the intersection angle between the trajectories
of neutrinos with 3-momenta p and q, V is the quantization
volume, and G is the Fermi coupling constant. Here,
we have defined the neutrino mass-basis isospin operators
71, in terms of the Fermionic creation and annihilation

operators [77]

J§ = a}(p)ax(p). )
J; = d5(p)ay(p). (3)
sy = % (a}(p)as (p) — a}(p)ax(p)). (4)

An analogous set of weak isospin operators may be
defined in the flavor basis, using the corresponding
creation/annihilation operators, which are related to their
mass basis counterparts via the following unitary trans-
formation:

a.(p) = cosa,(p) + sinfa,(p), (5)

a.(p) = —sinfa, (p) + cos Oay(p). (6)

The isospin operators form an SU(2) algebra, obeying
the usual commutation relations

V. Jq] = 26pq75. 5. J5) = £8pl5- (7)

At this point, it is important to note that the strength of
the interaction between any two neutrinos is dependent on
the intersection angle between their momenta, as can seen
from the second term of the Hamiltonian in Eq. (1). This
geometric dependence makes the collective neutrino oscil-
lation problem extremely complex, even in the mean field
limit. To avoid these complexities, and to facilitate a
qualitative understanding of various collective flavor evo-
lution phenomena, the so-called ‘“‘single-angle” approxi-
mation has been frequently adopted in the literature,
wherein the angle-dependent interaction is instead replaced
by an overall, angle-averaged coupling strength. The
implication of this approximation is that it removes any
trajectory-dependence from the flavor evolution of neutri-
nos. It has been demonstrated that the single-angle calcu-
lations are able to capture many of the qualitative behaviors
observed in the more sophisticated multi-angle calcula-
tions. To this end, we define a direction-independent weak
isospin operator jw as follows:

Jo="Y 1T, (8)

:()'m2

I P 20

The self-interaction term may then be approximated as

26 .. ..
\/;/ F<1—COS19pq>J-JE/l(F)J'J, 9)

H, ~

where we have defined J =3",J, = > pJp- The radial
dependence of the coupling strength p arises due to the
geometric dilution of the neutrino fluxes and the narrowing
of the intersection angles as one moves further from the
source. For example in a “neutrino bulb” model, where
neutrinos are assumed to be emitted isotropically from a
single spherical emission surface, the dependence is

given by
1 [ R\?

where R, is the radius of the neutrinosphere.
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ITI. DIAGONALIZATION AND THE
BETHE ANSATZ EQUATIONS

In the single-angle picture, the Hamiltonian from Eq. (1)
may be rewritten as

-

H=> w,B-T,+pur)-J. (11)
P

where p is now just an index denoting the oscillation
frequencies present in the system. It has been shown that
this particular Hamiltonian is amenable to diagonalization
using the Richardson-Gaudin procedure. To begin with,
one may observe that, among the common eigenstates
|j, m) of the total weak isospin operators 7% and J7, some
can be written as direct products of eigenstates |j,, &/,) of

jf, and J3,. For instance, the states

Jo4i) = Qlips+ip)-
P

jv_j>E®|jp7_jp>’ (12)

where j = Zp Jp» can be shown to be simultaneous
eigenstates of J?% and each J2 , and are therefore eigenstates
of the Hamiltonian." In particular, the highest and lowest
weight states |5.,5) and |5, —-%), where N is the total
number of neutrinos in the system, are eigenstates.
These represent the states where all the neutrinos are
either isospin-up or isospin-down, i.e., |vy,...,v;) and
|ta, ..., 1), respectively. The corresponding eigenvalues
for these two states can be easily shown to be

N N (N
Einp = :szpTP_F.ua <§+ 1>’ (13)
»

where N, is the number of neutrinos at the oscillation
frequency w,, and where we have suppressed the radial
dependence in the notation of y for convenience. The
remaining eigenstates of the Hamiltonian may then be
systematically constructed by first defining the Gaudin
algebra with the operators

J

Scg =3 (14)

P wp_ga

-

where we have introduced a sequence of Bethe ansatz
variables {,, which are yet to be determined, following the
formalism introduced in [78].

Our Bethe ansatz is the claim that the eigenstates of our
system are states of the form

'Note that, for j < N/2, not every state of the form lj, £J) is

an eigenstate. j = ) ,j, is a necessary condition.

it =N (I )it 19
a=1

where |j,+j) is an eigenstate, S; =S7({,), and
N (¢, ...,¢,) is a normalization factor. An eigenstate of
the Hamiltonian, such as the one defined in Eq. (15), is
typically a linear superposition of several mass basis states
(i.e., Kronecker products of mass states of individual
neutrinos), each consisting of N/2 + j — k neutrinos in
the v, state and N/2 — j + k neutrinos in the v, state. The
fact that each eigenstate has a well-defined number of v,
and v, is a consequence of the total J* = ) | J, commuting
with the Hamiltonian H from Eq. (11). Eigenstates of the
Hamiltonian are therefore also eigenstates of J*:

NGy = (=), s Co)- (16)

A similar procedure may be carried out in which we
instead apply S; operators to |j,—j) to obtain such
eigenstates. In fact, these two procedures yield identical
results. This fact can be shown by defining a rotation
operator T = ¢/ +/7) for which TJ:T~' = —J* and
TJ*T' = JF, and so T|j,—j) = |j, +j). Moreover, one
can see that, if |y) is an eigenstate obtained from Eq. (15),
then T|y) is an eigenstate of a Hamiltonian THT! =
—prpé-jp +u(r)J - J that may be obtained from a
“raising formalism” using S instead.

For a particular eigenstate consisting of x neutrinos in
the isospin-down (v,) configuration, we will have « differ-
ent ansatz variables {, to determine, and one can show
[27,49] using the commutation relations between the
Gaudin operators that this requirement is equivalent to
the condition

1 S
5= o _ : (17)
2/'4 p=1 W, — Z:a = Ca - é:/}
P#a
fora =1, ...,x. Here, M is the total number of energy (or

equivalently, w) values in the system, and where j, is

related to the eigenvalue of the Casimir operator .7?, (each
Jp can take values from O or 1/2 to N, /2). For a particular
choice of k, and j,s, Eq. (17) can admit multiple solutions
of the form {(j,...,{,}. Obtaining the complete set of
eigenstates and eigenvalues for an N-neutrino system
therefore involves solving multiple sets of equations of
the form Eq. (17), for «k =1,..., N and each jp =0 or
1/2,...,N,/2. For the specific case where j, = 1/2 for all
p, the number of solutions of Eq. (17) for a given « is equal
to NC,, and the total number of solutions is 2, across all
values of k.

One can always choose j = N/2 as the starting point for
the construction of eigenstates using the Bethe ansatz
method. With this choice, the energy eigenvalue for the
eigenstate defined in Eq. (15) can be shown to be
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E:E+N/2+Z§a—ﬂK(N—K+1)- (18)

a=1

IV. THE LAMBDA METHOD

The Bethe ansatz equations, Eq. (17), constitute a set of
coupled algebraic equations in x variables. In principle,
numerical solutions to this set of equations may be
sought—however, in their original form the equations
are unwieldy. For starters, the variables ¢, admit complex
values, and the equations contain singularities for certain
values of parameters @, and p where the different ¢,
approach each other. Moreover, if each equation were to be
converted into a coupled polynomial form (by cross-
multiplying all the denominators), then the order of each
polynomial would be M + k — 2. Therefore, it is worth-
while to explore the possibilities of recasting the Bethe
ansatz equations into a different, more tractable form.

In order to accomplish this, one may introduce certain
auxiliary functions which depend on the Bethe ansatz
variables. For instance, following Refs. [84,85] we may
define the function

AQA) = 2,1 o (19)

and transform Eq. (17) into a first-order ordinary differ-
ential equation

A(4) = Ao,
szq PR (20)

where the prime represents derivative with respect to A.
Equation (20) is not straightforward to integrate because of
the presence of the parameters A(w, ), whose values are not
known a priori, and are in fact dependent on the equation
itself. These parameters can be determined by taking the

A2+ N(2)

limit of Eq. (20) as 4 - w,, for each p =1, ..., M. Doing
so yields the following system of equations:
1 Mo OA,—A
A+ (=2 )N, +—A, =) 2j,—L—2 (21
P (=200 0N, =5 2], ()
q9#p
where A, = A(w,) and A}, = N'(w,),forp =1,...,M.In

particular, if j, = 1/2 for all p, then our equations for A,
reduce simply to the form

1 M A —A
A2 +—-A :§ L —" 22
P 1 Wp — Wy )

q#p

yielding a system of coupled algebraic equations of
quadratic order in the parameters A,. Physically, this
represents the case where the system is composed of
neutrinos that all have pairwise distinct momenta, allowing

us to choose a discrete set of w, bins in which each bin
includes exactly one neutrino. Details of the derivation of
Egs. (20) and (22) are given in Appendix A.

Equation (22) is manifestly much simpler than the
original Bethe ansatz equations (17). Moreover, unlike
Eq. (17) where each value of k = 1, ..., N requires solving
a separate set of Bethe ansatz equations, Eq. (22) represents
just a single set of equations that can be solved to yield all
the solutions corresponding to different values of . In
Sec. IVA, we show that the following relation holds
between the variables A, and :

< A e k(k—1)
ZJPwPAP:KZJP_z—Zga_ 2 (23)
p=1 p=1 ﬂa:l

which may be used to express our energy eigenvalues
from Eq. (18) in terms of A, instead of the Bethe ansatz
variables {,:

M
E=Eyp—2u)_ j,w,A,. (24)

p=1
Thus, we seek to determine the parameters Ay, ..., Ay

from Eq. (22). Following that, one may use Eq. (19), which
may then be inverted to obtain the Bethe ansatz variables ¢,.
The ¢, may then be used to reconstruct the states and their
energies that solve our model using Egs. (14) and (18).
Alternatively, we show in this paper that for the system in
which j, = 1/2 for all p, one may instead directly recon-
struct the eigenstates and their energies using the variables
A o without involving the Bethe ansatz variables. These two
procedures are detailed in Secs. IV A and IV B, respectively.

A. Obtaining the Bethe ansatz roots &,
from the variables A,

After solving Eq. (22) for A, it is possible to reduce the
problem of obtaining the Bethe ansatz variables ¢, to that
of solving a single polynomial equation of order k. This
process involves two steps, the first being deriving a set of
constraint relations between the A ,s and the power sums of
£,s. Using the definition Eq. (19), one has

M
ijwlngp = Z Z]P
e

a=1 p=

—zzfp‘”"f’“ YOI

(0 _Z:a

- é’a
k
-5, (zw;s-fca-l)
_ k Ca
>k . (25)
rally=m1s 2u
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Here, in the final step, we have used the Bethe ansatz
equation (17) to replace the second inner sum. Using
symmetry arguments and changing the order of the
summations, the above equation becomes

S o m—Z(ZC ) (2t )

BN
Z‘:" ;c =2,

=2 (2}3—1) (prw?f’

=1

_%Zg __ZZ¢ =1 (26)

af  [=]
a#p

N—

Here, it is useful to define the power sums of the Bethe
ansatz variables, O, = > % | { k. This allows us to write the
above expression as

M k M
> oty = =5,00+ 0 (szw;—f)
p=1 =1 p=1

1 Tk
5 [Z Q1Qi1-1 — ka—J . (27)
I=1

For the first few values of k, the above equation takes the
following forms:

Z]P P = i’ (28)

2 2
. 0, . K(K_ 1)
Z.]pwp p = _Z+ KZ]p - ) s (29)
P P

ija)?,Ap = —g—:—FKijw,, + lej,,
» P P

—(k=1)Qy. (30)

for k = 0, 1, and 2, respectively. In particular, the equation
for k =0 may be treated as a constraint relation for the
solutions A, obtained by solving Eq. (22), and can also be
used to classify those solutions according to x. Also note
that the equation for k = 1 is identical to Eq. (23), which
can be used to express the energy eigenvalues in terms of
the A, as shown earlier.

Using Eq. (27), one can successively calculate the power
sums QO to any desired value of k, once all the A, are
known. And the first x power sums, Q1, ..., Q,, can be used
to obtain all the roots {,. This involves first calculating the
elementary symmetric polynomials of the {,s from the

power sums. The elementary symmetric polynomials are

eo=1, e, => 04 €= Eaﬁ<aCa§ﬂ, and so on. For
k < k, these can be calculated recursively from the power
sums using Newton’s identities:

ke (L1, ..n i Z(— )ler_i ;. (31)

Therefore, one has

ey =ey0 =0y, (32)

(101 —€0>). (33)

l\JI'—‘

and so on. Once the x elementary symmetric polynomials
ey,...,e, are evaluated, then the polynomial P(1) =

*_(A=¢,), whose roots are {,:a=1,...,k may be
constructed as

P(2) =) (=1)kepa<. (34)

k=0

Any one-dimensional polynomial root-finding algorithm
can be employed to numerically obtain the roots ¢, of this
polynomial. Once the {, are determined, then the eigen-
states of the Hamiltonian may be explicitly constructed
using Eq. (15). As an aside, it is also interesting to note that
P(2) is related to the function A(4) as A(4) = P'(1)/P(A).

B. Constructing the eigenstates directly using A,

Alternatively, we show that it is possible to directly
compute the eigenstates of the Hamiltonian in terms of the
auxiliary variables, without needing to calculate the Bethe
ansatz variables first. Unlike the procedure described in
Sec. IVA, this method does not involve any additional
numerical root-finding after obtaining the A s and therefore
eliminates a potential source of numerical error. We can
use the fact [J;,,J;] =0 to find that the right-hand side
of Eq. (15) can be rewritten directly in terms of A,
(without involving the {,) for any x. Explicit derivations
of these identities for x =2, 3 are provided in
Appendixes C and D, and here we present the argument
for a generic k. Let us define the x X x matrix A with the
matrix elements A = 876, s where 5 is the Kronecker
delta. Disregarding the normahzatlon for the time being,
one can rewrite Eq. (15) as

St ) = el STo -, S )
= det(A)lj, +J), (35)
where e, is the xth elementary symmetric polynomial and
where we have used the fact that e, (xy, ..., x) = [[_; x;
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for any variables x;. Since A is a square matrix over a
commutative ring, we can use the Cayley-Hamilton theo-
rem to infer that

|Cl""’ |]7+]> (36)

Z sgn(o)tr,(

o’ES

where S(k) is the symmetry group of x letters and
tr,(A) = tr(A/1) - - tr(A/») for a permutation ¢ of cycle
type (f1,--., f,) [86]. The traces may be expressed in terms
of the A,s via the following steps:

tr(4) = ZSV ZZ

i=1 p=

J_
1;1 _Ca (wpf _Ca)

K M
:ZZ.“Z‘];‘

a=1p;=1 pr=1

R R 1
XJP/’ZO) _é’al:l[fwm_w

m=1"Pm

M M
— E E JPI
=1 psy=I1

Here we have used the Heaviside cover-up rule between
the second and third equalities, and the definition from
Eq. (19) between the third and fourth equalities (after
exchanging the order of summation). An alternative deri-
vation for the individual overlaps of energy eigenstates with
the mass basis states is given in Refs. [87,88].

Since the form of sgn(o)tr,(A) depends on the cycle
type—which have multiplicities c,—but not the particular
o, we can reduce Eq. (36) to the following:

)= Y sl Al ). (9

* cycle types

SRR

Lastly, we note that reversing the order of / and m in the
denominator of Eq. (37) for each factor tr(A/) in tr,(A)
produces a factor of sgn(c), which cancels with the same
factor already written in each term of Eq. (36). In fact, using
a decomposition into cycle types, 6 = (f1, ..., f,), We see
that sgn(e) = [T, (=1)/7! = (=1)**", while a factor of

" (=1)/i7t = (=1)*" is produced from reversing the
differences mentioned in the previous sentence.”

Alternatively, since tr(A/) is simply the power sum

*_,(S7)/, one may use Newton’s identities to system-
atically construct the elementary symmetric polynomial

“Interestingly, the resulting form of Eq. (36) with this
cancellation suggests that the module spanned by S7,...,S¢
forms a xth power symmetric (as opposed to exterior) algebra,
whose character can be described with the same formula.

e(S7. ..., S¢) using the traces tr(A), ..., tr(A*). This was
the basis of our numerical approach to calculating the
eigenstates, the results of which are shown in Sec. V.

V. SOLUTIONS OF THE BETHE
ANSATZ EQUATIONS

Having obtained a set of algebraic equations in the
auxiliary variables A ,, we are now in a position to discuss
the solutions to these equations. To begin with, one can
examine the solutions in the limit gy — 0, which we
henceforth shall also refer to as the “asymptotic limit.”
At this point, it is instructive to define the quantities A p =
uA, to rewrite Eq. (22) as

A2 +A, :ﬂz ”n (39)
q#tll b4

For convenience, we have defined Npg = Wp — 0.
Taking the limit 4 — 0 decouples the various modes from
each other, yielding the solutions A » = 0 or —1, independ-
ently for each p. These asymptotic solutions can serve as a
starting point for efficiently calculating numerical solutions
at a generic y > 0. This also makes it easy to see that for the
case where j, = 1/2 forall p, 2M solutions exist in total. In
fact, one can infer that the number of solutions is 2" even
when u > 0, by noting that Eq. (39) is a set of M mutually
co-prime coupled quadratic equations in M variables,
and therefore has a finite solution set. One can then
invoke homotopy continuation to argue that each
solution for a generic y > 0 is continuously connected
to a unique solution in the y — 0 limit [89] (see also,
Appendix B).

A. Algebraic solutions for M =2

For the purposes of gaining some mathematical and
physical intuition, we first show the analytic solutions for a
simple system consisting only of two interacting neutrinos,
at frequencies w; and @,. This corresponds to solving
Eq. (22) for M =2 and can serve as a test bed for the
numerical technique that we later implement for dealing
with the M > 2 cases, for which algebraic solutions either
do not exist or are difficult to obtain.

We thus aim to determine each A, for the model with
M = N =2 with j, = j, = 1/2. These A, can easily be
found analytically from Eq. (22). The four solutions are
listed in Table I, and categorized by their corresponding x

values. For a particular solution {A,:p =1, ..., M}, k can
be determined using the identity

M K

S A, = - (40)

p=1
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which was derived in Sec. IV A [Eq. (28)]. Note that, across
a complete set of solutions, « takes all values from
0,1,...,N, and Eq. (40) holds for arbitrary M = N.

Furthermore, using the algebraic A, solutions from
Table I, we may compute the energy eigenvalues using
Egs. (13) and (24) and eigenstates using Egs. (36) and (37)
[or more specifically, Eq. (C3) for M = 2]. These eigen-
values and eigenstates are aggregated in Table II. Note that
the A 4 and A, ; referenced in the latter table for k = 1 are
respectively from the two solutions in Table I for x = 1.
Additionally, normalization coefficients calculated for
states with x = 1, 2 are given by

11 1 11
N, |2=4[<—+—> Fr— —+—} (41)
b 4 ) ol \ 4R,

1

NP == (42)

respectively. Note that even though these normalization
coefficients are singular as u — 0, the eigenstates them-
selves are not.

B. Numerical solutions for M > 2

Extending from our argument of the previous section that
demonstrated there must be finitely many solutions to
Eq. (22) [or, equivalently, to Eq. (39)], we can further
observe that the problem with M > 2 essentially neces-
sitates solving a polynomial of degree higher than 4 in one
variable. From this observation we expect that we may not
be able to algebraically solve Eq. (22) or (39). Nevertheless,
we may solve these equations numerically, as we will
outline in this section.

Previously, we observed that we may obtain simple
limits to the solutions of Eq. (39) forany M > 2 as y — 0,
which we refer to as the “asymptotic solutions” to our
system. Moreover, we can show that the algebraic system
described by Eq. (39) is, in a sense, homotopic (continu-
ously deformable) to the “asymptotic system” in which we
take the limit 4 — O prior to determining its solutions. By
applying a homotopy method for numerically solving
algebraic systems of equations as studied in Ref. [89],
we may determine the solutions to Eq. (39) by tracking our
solutions as they vary from the 2¥ solutions in the limit
# — 0 of our system to our desired final y > 0. In fact, we
build upon this existing homotopy method for our pur-
poses: if 0 <7 <1 is our homotopy parameter, then we
observe that not only our solutions obtained for 7 =1,
but also all solutions determined for intermediate values
0 < t < 1 are physical solutions to Eq. (39). A proof of the
applicability of the homotopy method to our system is
given in Appendix B.

Numerical solutions can then be obtained using a
generalization of the Newton-Raphson method by the
homotopy method. We can modify this method to accom-
modate our homotopy process in estimating solutions to
Eq. (39) for generic p. We apply Newton’s method to solve
our system of equations at the nth homotopy step:

(43)

for each 1) > 0, where F is defined in Eq. (B3). At the nth
Homotopy step, the initial guess for Newton’s method is
taken to be the numerical solution Ag,"_l) obtained by

solving the system of equations at the (n — 1)th step, i.e.,

TABLE 1. Algebraic solutions for A, from Eq. (22) with M = 2.
Ay Ay
K= 0 0
k=1 it sen(m) | [E 4 g tsen(na) [+
—5ut,Tsen(m) [t =5 =7~ sen(ma) [+ 4
k=72 -1 _1
" u
TABLE II. Energy eigenvalues and eigenstates determined from Eq. (22) M = 2.
E |E)
0 2u = (o) + o) i, v1)
=1 o+ o) a1+ /1 1 @] L (M) + R 1.02)
—(@) + @) —p [1 —J1+ (“'14—”‘;’2@ 11.7 (A1 —[va, 1) + Ao _[v1,12)
k=2 2+ % (01 + o) V2, v2)
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FAMY LAY -1y = 6, (44)

Given the form of F in Eq. (B3), we can easily compute

the analytic form of the Jacobian 0z (Z,. 1), to used in each
step of Newton’s method. Finally, all 2" solutions to our
system can be obtained by repeating the procedure, starting
from each A » independently taking values O or —1 at u = 0.

To test this method, we computed the numerical sol-
utions to Eq. (22) for M = 2, and compared them with the
analytic results described in Sec. VA. The root-mean-
squared relative error between the analytic and numerical
values in comparing each component of each solution was
<1074, suggesting that the method was able to attain a
high level of numerical accuracy.

A potential issue with the utilization of homotopy
continuation with large-M-dimensional algebraic systems
is that the close proximity of solutions in R may cause
numerical solvers to jump between distinct solutions as ¢
varies between 0 and 1. For larger M values (such as
M = 10), introducing error-correcting algorithms during
each Newton-Raphson step helps in obtaining the expected
continuity of solutions as y is varied.

We applied this method to systems of interacting
neutrinos with equally spaced oscillation frequencies given
by when @, = pwy, just that only a single neutrino resides
at each oscillation frequency (therefore, j, = 1/2 for all p
and so M = N). Such a system of N neutrinos admits 2V
solutions. Solutions of the system for up to N ~ 15 can be
computed within a reasonable time frame using a personal
computer. In Fig. 1, we show the evolution with ¢ of one of
the solutions to such a system with N = 10 neutrinos.
Shown in the figure are the quantities A, = /~\p/ u, for
p=1,...,10.

We also used these solutions to calculate the eigenvalues
of our Hamiltonian using Eq. (11). In Fig. 2 we show all the
energy eigenvalues corresponding to solutions with
k=0,...,5, for the same system as in Fig. 1. We also
note that results for « > 5 may be obtained more efficiently
by implementing a “raising formalism” analogous to our
procedure from Egs. (15)-(24), in which we apply S
operators from our Gaudin algebra to the state |j, —j). In

analogy to AP, one can define the variables 2\9) in the

raising formalism, which obey the coupled quadratic
equations

L9 (45)

Similar to Eq. (40), the solutions /~\E,T) obey the constraint
relations

B/wo

FIG. 1. One out of the 210 solutions with k = 6 to Eq. (22) fora
system with M = N = 10 and w, = pw,, calculated numerically
using the modified Newton-Raphson method with homotopy
continuation. Observe that, as u — 0, six out of the ten A, values
approach —oo (as —1/p), as expected for a kx = 6 solution.

S kD
> ipA =+ (46)
p=1 2

where A;M = [\g) /p. In particular, a solution /~\§,T) of

Eq. (45) can be shown to correspond to a solution AE,“

of Eq. (39), via the identity
AV =14 AW, (47)

Using Eq. (40), it can be shown that the corresponding (1)
of a solution in the raising formalism can be related to a
given k) via k() = M —xW), further reinforcing this
duality. This correspondence of solutions for a given x
and M —« is also discussed in Refs. [49,78,87]. In
particular, Ref. [87] notes that, in the limit y — oo,

Ag) = Aé“-
For each value of x, one can observe that the energy
eigenvalues form b+ 1 distinct branches, where

b = min{x, M — k}, in the limit of large y, as previously
noticed in [49]. One may also observe that the self-
interaction term in the Hamiltonian from Eq. (11) becomes
dominant as u — oo, and therefore the eigenstates of H

approximately align with the eigenstates |j, m) of J - J,
with eigenvalues E =~ uj(j + 1). For an energy eigenstate
lw) with a given k, we can see that J*|yr) = m|y) where
m = M /2 — k; therefore as 4 — oo, the quantum number j
of all the eigenstates for that x may take values in the range
M/2,....M/2—b. So, as u — oo, we expect that the
energy eigenvalues of states with a given x will split into
b + 1 branches with the approximate energies given above.

In Fig. 3(a), we zoom in on the small u regions of
Fig. 2(f) (all eigenvalues of the x = 5 eigenstates) to better
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0 2 4 6 8 10
n/wo
() k=4

w/wo
(f) k=5

FIG. 2. Energy eigenvalues calculated from Eq. (24) after obtaining the values of each A ,. System parameters are identical to those in
Fig. 1. The solutions for k > 5 are omitted, as each of these plots are identical to their M — k counterparts, up to a constant vertical offset.

illustrate the various energy-level crossings that are present
in this region. To examine the nature of these level
crossings in better detail, we show in Fig. 3(b) the energy
eigenvalues of all the states (spanning all permitted x

values) in a system with N = M = 3. Eigenstates corre-
sponding to each k are assigned a particular color, as
described in the figure caption. Reference [49] observes
that the highest-energy states from among the solutions of
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0.3

0.25
0.2
0.15

0.1E

102wy

0.05 E

—0.05 ——

—0.1

70415 1 1 1 1 1
01 02 03 04 05 06 07 08 09 1

m/wo

(a)

FIG. 3.

m/wo

(b)

In the region of small i, we observe numerous level crossings between different energy states of the Hamiltonian in Eq. (11).

(a) Energy eigenvalues of all the k = 5 solutions for the case N = M = 10, such as in the case of x = 5 with the same conditions as in
Fig. 2(f). (b) Energy eigenvalues for all the solutions of a system with N = M = 3, with eigenvalues corresponding to different x coded
as follows: xk = 0 (dotted line), 1 (solid lines), 2 (dashed lines), and 3 (dot-dashed line).

each « (highlighted here as dashed lines) do not have
energy level crossings with other states of the same «,
which is consistent with our observation. Here, we would
additionally like to point out that the highest energy
eigenstate of a particular x can cross with other eigenstates
of a different k. However, since J° is a symmetry of the
Hamiltonian, and each k corresponds to a unique J°
eigenvalue [see Eq. (16)], these crossings do not result
in mixing between these eigenstates.

In addition to our energy eigenvalues, we may calculate
energy eigenstates for generic y using Egs. (35)—(37). These

0.8 F

0.6 |

Vil |2

04+t

[{viy, -

0.2

w/wo

(a)

FIG. 4. Overlaps, |(v; 2,

’ '~~5VIN|WIL>

of an excited state |y,) with the mass basis states (with iy,
different sizes N. Here, the nth energy eigenstate |y,,) (n = 0, ...,2" — 1) is connected to the mass eigenstate |v;

eigenstates may be encoded as a sequence of their 2¥
coefficients in the mass basis. Particular examples of eigen-
states for systems with M = 3, 4 are shown in Fig. 4. A
complete knowledge of the eigenvalues and eigenstates of the
system enables calculating the time evolution (i.e., evolution
with ) of an arbitrary initial state, in the adiabatic limit. This
can be used for the purposes of comparing the results of a
many-body calculation to the corresponding results in the
mean-field limit, as well as for studying exclusive many-body
effects like the emergence of quantum entanglement between
the various modes as the system evolves.

08}
L
Z 06}
£
D04t
§
02}
0
0 2 4 6 8 10
1/wo
(b)

..., iy = 1,2), for systems with
ys - Vg in the limit

u — 0, where jy_;; = 1+ (kth digit of n in binary representation). Observe that a state with a given x has VC, nontrivial components
for u > 0. (a) Mass-basis decomposition for the state |y, ) in the N = M = 3 system, as a function of y; this state has x = 1. (b) Mass-
basis decomposition of the state |y3) in the N = M = 4 system, as a function of y; this state has k = 2. Two of the six nontrivial overlaps
are numerically indistinguishable in (b).
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VI. CONCLUSIONS

Adiabatic evolution of a many-neutrino system in the
single-angle approximation is exactly solvable in the sense
that such an evolution can be completely characterized by
the solutions of the appropriate Bethe ansatz equations.
However, solving those nonlinear Bethe ansatz equations is
a highly nontrivial problem. In this paper we presented a
technique to evaluate the exact adiabatic eigenvalues
and eigenstates of the collective neutrino oscillation
Hamiltonian by casting Bethe ansatz equations first into
a differential form, then into a set of algebraic equations
which are numerically more tractable than the original
Bethe ansatz equations. With our outlined procedure, to
determine solutions for up to N ~ 15 for the interesting
region of 4 < 5 a personal computer is sufficient. Going to
higher values of N would require more computational
power. In the future we will explore the behavior of the
solutions as N gets larger.

An immediate benefit of obtaining such exact solutions is
the ability to explore the limits of applicability of the
commonly used mean-field solutions. Notably, our exact
problem (with j, = 1/2) has 2N solutions, while the mean-
field problem has only 2N solutions in total. Clearly, in the
mean-field case we are either losing or combining many
states. Earlier studies of the question of entangled neutrinos
also explored modifications of the collective oscillations due
to the many-body effects present when one goes beyond the
one-body description inherent to the mean-field approxima-
tion [74-76]. These papers primarily investigate part of the
Hamiltonian which survives in the large ¢ limit and explore if
the oscillations speed up due to many-particle entangle-
ments. The growth rates they obtain differ by a factor of /N
relative to each other, depending on the setup. In future
publications we plan to explore many-body entanglement
effects using our approach, for generic values of  where both
the one-body and two-body terms in the Hamiltonian play a
role. Clearly exploring these issues is a step which needs to be
taken before moving on to astrophysics applications.

Many of the elements heavier than iron were formed by
rapidly capturing neutrons on seed nuclei (r-process
nucleosynthesis). In the astrophysical site of the r-process
nucleosynthesis many reactions take place during a rather
short duration, a feature which is typically associated with
explosive phenomena. Currently the leading candidates for
the sites of r-process nucleosynthesis are core-collapse
supernovae and binary neutron star mergers. It is known
that these nucleosynthesis yields are sensitive to the
neutrino flavor evolution inside the supernova envelope.
Here we presented an exact procedure to describe neutrino
propagation including neutrino-neutrino interactions. It
would be also interesting to explore whether any possible
differences between the mean-field approximation and the
exact adiabatic many-body approach would impact nucleo-
synthesis yields as well as supernova neutrino detection in
terrestrial experiments.

ACKNOWLEDGMENTS

We would like to thank E. Armstrong, S. Birol, S.
Coppersmith, G. Fuller, E. Grohs, A. Hashimoto, C.
Johnson, E. Rrapaj, J. Schmidt, M. Sen, and S. Shalgar
for valuable conversations. This work was supported in part
by the U.S. National Science Foundation Grants No. PHY-
1630782 and No. PHY-1806368.

APPENDIX A: DERIVING THE LAMBDA
EQUATIONS FROM THE BETHE ANSATZ

In this Appendix, we shall present the derivation of the
coupled quadratic equations in Lambda, Eq. (22), from the
Bethe ansatz equations (17). These results are dispersed
through the condensed-matter physics literature. Here for
the convenience of the reader we gather them in one place.
Using the function A(1) defined in Eq. (19), one can write

! . . 1
NO+HND =D ity

a#f

(A1)

Using partial fraction decomposition and symmetry
arguments, this may be rewritten as

o 1
A2(2) + N (2 22[/1 Ca,%;é C/,»]

W(C,)
=2 —.
;l - é’a

Replacing W(¢,) with the left-hand side of the Bethe
ansatz equations (17), one obtains

221 c:a[___zp:ijze“a]' A

Using the definition of A(4) from Eq. (19) after changing
the order of summation and using partial fraction decom-
position, this equation reduces to

(A2)

A2 (1) + N (A

A w,)

—w

AX(2) + N (2) + %A = 22 Jp 2 Au) (A4)

It can be shown that the ordinary differential equation,
Eq. (A4), is exactly equivalent to the Bethe ansatz equa-
tions, i.e., every solution of Eq. (A4) corresponds to a
unique solution of the Bethe ansatz equations, and vice
versa. This equivalence can be proven using the fact that
every step of the above derivation is reversible—one could
just as easily start with Eq. (A4) and derive the Bethe ansatz
equations (17).

The ordinary differential equation in Eq. (A4) may be
converted to a set of algebraic equations in A(w,,), for each
@, in the system. In order to do so, one can Taylor-expand
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A(4) around 4 = ,. Following this Taylor expansion, the
right-hand side of Eq. (A4) may be written as

> A—w,
- A4) = Aw,)
- 22]” l—w
P#q p

) 1
+2j, [A’(a)q) —f—EA”(a)q)(/l—a)q) +---|  (AS)
where A'(w,), A"(w,), ... are the successive derivatives of
A(4) with respect to 4, as evaluated at A = w,,. Using this
expansion and then taking the limit 4 — @,, one obtains the
following set of equations (one for each w,):

A2(wy) + (1= 2j,)N (@,) + 1A<wq>
-2y, LR, (0
P#q P

If j, = 1/2 for each g (corresponding to there being
just one neutrino per bin), then the A’ term vanishes
and the equations become purely algebraic [Eq. (22)],
and can in principle be solved to obtain the solutions
{A@y):q=1,....M}. If j, > 1/2, then one can take
successive derivatives of Eq. (A4) with respect to 4, as
noted in Refs. [84,85,90,91]. For example, taking the first
derivative of Eq. (A4) followed by the 4 — w,, limit gives us

2A(w )N (w,) + (1 = j, )N (w,) +/%A’(wq)
_ 22 { A((‘Z)q)__a/)\()az’p) (A7)
P#q q D

Now, if j, = 1, then the A" term vanishes, and one may
use Egs. (A6) and (A7) to eliminate A’(w,,) from the system
of equations. Likewise, if j, = 3/2, one may obtain an
additional equation by taking the second derivative of
Eq. (A4), and use it along with Eqgs. (A6) and (A7) to
eliminate A’(w,) and A”(@,). And so on, for higher values
of j,.

APPENDIX B: PROOF OF THE
APPLICABILITY OF THE HOMOTOPY
CONTINUATION METHOD

To carry out this homotopy method, let us first rewrite
Eq. (39) as the system F(Z) = 0 using the functions

z
F,Q) =242, - ,MZ L

(B1)
q#p '71"1

for p =1, ..., M. In particular, since we know each value of
AP must be real,’ we restrict 7 € R. Additionally, we can

define a set of functions G with simpler solutions by
G,(2)=2+2z, (B2)

and the family of functions F(Z, 1) = (1 — 1)G(3) + tF(Z)
for 0 <t < 1. Then, from the explicit form of

FoEn) =2 4z,-wd L1 (B3
q#p Mpq
we see that 7 is an analytic (and therefore a C*) mapping of
M % [0,1] - RM. By Sard’s theorem, we find that 7 is a
regular function. Recall that regular, in the context of
algebraic geometry, means that (i) F (Zo, 1) =0 implies
9-F (Zy. 1) has rank M for fixed 1 = 0, 1 atalmost all 70 €
M and (i) F(Zy. 1) = O implies 8,7 (%, 1) has rank M
for fixed 0 < r < 1 atalmost all 7, € RM . (To clarity, 83‘,.75
is the total Jacobian of H while 83.7? is the Jacobian of F
stripped of its final column, 8,.7? .) Further, a theorem by
Garcia and Zangwill [89] states that if, in addition, for all
sequences with [|Z"|| > oo there is a p such that F,, G,
satisfy

F(7(n)
lim 7”& ) La

- (B4)
m—o0o Gp (Z( Tm))

for some a > 0 and a subsequence of points Z"») at which
G,(Z")) # 0, then all roots of F can be found one to one

from the known roots of G (i.e., the asymptotic solutions as
u — 0) by homotopy curves as we vary t = 0 to t = 1. The
symbol £ implies that the real part of the limit (which

generically may be complex if our chosen F were not
strictly real) must be greater than or equal to a positive a
that we are free to choose. We can see that this additional
hypothesis is true for our system by first calculating for an
arbitrary p that

FP(Z<”>) . l’lz(ﬁ&p( ) Z‘I )/”pq
oy — 1T Wz (BS)
GP(Z ) Zp + Zp

for any sequence of points Z(") after eliminating any of the
points in the sequence solving G, () = 0 for some p. (We
know we may choose such a p since we know there are
finitely many points solving G,(Z) =0 for all p.)

’Since the eigenvalues of a Hermitian operator are real
[cf. Egs. (23) and (24)], any complex-valued solutions ¢, of
Eq. (17) must come in complex conjugate pairs [49,78], implying
by Eq. (19) that A(w),) and therefore A(w,) must be real.
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Moreover, we may observe that this sequence must have at

least one r for which |z£")| — oo at the fastest rate amongst
the Z"). Selecting p=r we find that F,(z")/G ,(Z") — 1
on this subsequence. Thus, we have shown our desired
system Fis homotopic to G as we vary tu from O to u, in the
sense described by Ref. [89], and so all our solutions
to F(Z) =0 can be found from those of G(Z) = 0 via a
single homotopy parameter. Thus we justify our use of
the algebraic homotopy method for finding our /~\(a)p)
solutions.

Additionally, we confirm from this process that there
must be exactly 2" solutions to Eq. (39) for i # 0 as well.
Moreover, for a given k = —Zé”:l 1~\p, there are YC,
solutions. We can observe that there are equally as many
ways for us to permute the values 0,—1 amongst our
different /1,, for a given x. Thus, we expect that by
considering all possible permutations of 0,—1 for each
A, at y =0 we may find all >-¥ (MC, = 2" solutions.

Lastly, consider the situation in which we fix the values
of each w,, while we allow y > 0 to increase. Observe from
our above discussion of the homotopy method that the
maximum value of u (i.e., tu with t = 1) in Eq. (B3) is
simply an arbitrary real u > 0. So, we expect that we
may obtain not only the numerical solutions to F(Z) =

.i'(f, 1) =0 but also the nth (n=0,1...) intermediate

numerical solutions 7" to F(Z", /M) =0 for each
0 <t < 1, provided that our steps "+ — ") > 0 are
sufficiently small for the discrete steps of our homotopy
method to be appropriate. In fact, by applying this method
to only F | ji—p,,» WE May obtain the solutions to Eq. (39) for
all 0 < p < piyax With an arbitrary maximum g, as 7

may be interpreted as the solutions to I | =ty

APPENDIX C: DERIVATIONS
OF EIGENSTATES FOR k=2, 3

We can demonstrate the claim from Sec. IV B that our
general eigenstates can be written in terms of A, in lieu of
¢, for k =2, 3 when j, = 1/2 for all p. Here we present
two ways to derive the eigenstate expressions for k = 2, 3.
First note that, for all x, we have the identity

o ()

a=1

()

= e (AT ATy)lj. i) (CT)

where e, is the degree-k elementary symmetric polynomial
in M variables. Now, for x = 2 we have

and so

g lj+J)

(€2)

STS3 1. +i) = [(i%) —22: ;)2]

M

1 A, —A
i +i) == (A A +M>J:J—|j, +j).-
ZZ Ptiq w, —w, rvaq

P.g=1
P#q

a=1

(C3)

Thus, we have rewritten the eigenstates as well as the eigenvalues of the Hamiltonian in Eq. (11) completely in terms of

our defined A(w
carried out for x = 3 similarly:

») parameters, bypassing the need to directly compute the Bethe ansatz variables {,,. This process can be
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>_(Sa) L+ —23: EM: T o +i)
o J B a=1 éa( ga)(wr_ga) G

p.q.r=1
Pq. rdlsuml

M

1 1 1 7.
,; Z|: <w _Ca_wq_ga>wr_ga:| P

p.q.rdistinct

-3 b ) e e )
par1 Wp —Wq 3 a)p_z:a a)r_z:a Wy — W, wq_z:a wr_ga

p.q.rdistinct

M
1 /A=A, A=A\
- § (p _4 w)JPJqJ’|J’+J> (C4)
q P r

p.g.r=1 wp
p.q.rdistinct

)

)

and

>SS ZS|+—Z3:ZM: e (J’_ o >+>
a=1 Pta / J B a=1 _C/})(wq_é:y) wr_gk (o _gl / /

p rdlslmu

M

1 1 1 e
- HZ <a) _Ca_wq_z:a> |:Ar_wr_Ca:|]pJq]r |J’+J>

P.q. rdmmu =1
3
A,,Alz<1_1>1]___
riJ»
—w, w,-w0, i \w,~ly w,—C) o, =]

1 (A,,—A, Ag=A
q

a)p—a)

1”1”

p.q.rdistinct

SR il bl el C5
e | IS (©s)

/7 g.r=1
p.q.rdistinct

where in the first line we are using f # y and f,y # a. Thus,

ST85851j.+)j) = [(Z sa> —2(35)3—32(55)2;54 1 +J)

A, — A 2 A —AN A —A
P q P r q r S
31 Z [APAqAr+3Arwp_w +a) _a’q< - a’r)] P

" parl e ®p Wp =Wy W~
p.q.rdistinct

. (C6)

There is a more direct approach to arrive at the same results, by decomposing terms of S7S; and S7S;S53
immediately without consideration of other products—as we will do in the next section. Also, note that the form of
these results bears similarity to the characters of exterior powers of vector spaces (i.e., AV for k = 2, 3), suggesting a
possibility that knowledge of these characters may allow us to rewrite [[5_; S, in terms of A, more
swiftly.

APPENDIX D: ALTERNATIVE DERIVATION OF EIGENSTATES FOR k=2, 3

Here, we present a more direct method of evaluating the product [ [5_, S
can quickly compute:

) for the cases of k = 2, 3. Ink = 2, we
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N R
STS31j.+)) = 5(51 Sy + 8380 +)
1
+ JoJ j
2p;1|:w _Cl a) _C2> (wp_¢2)<wq_gl):| P >
1 1 1
ko) (e
2;[0) - ( 1 wq_Cl> (wp_CZ)( 7 wq_é’z P >
P#q
e A, = A o
:22<A A +‘1>J;J;|J,+J>. (D1)
ppzéql q
Analogously, we can extend this argument to x = 3:
M I I Ty
STSyS51j. +i) = Ak A jr i)
e [).qazrf‘vl‘ (wp_gl)(wq_CZpr_gS)
M
1 1 1
- Ar = - JoJg i i +i
p;l (wp_é’l)(wq_z:Z)( a)r_é’l wr_§2) b | >
p.q.rdistinct
1 M 1 1 1
- A, - - )J-J-J: j.+i) (D2)
'aegr;@) p,q%im (@ = Co2)) ( 0, =Cory @ =Co)) 7!
while
M M 1 1
r — = ; .’ . - _ Ar +
Z ( Z.:1)(6‘)17 g ) P > 3 Z] |:(a)p - Cl)(a)q - CZ) (0)], - C2)(wq - C3)
p.q.rdistinct qrdlﬂlmcl
+ ! }J‘ Jolj, +)
J>»TJ
(a)p - §3)(wq - é:l)
M M
A 1 A 1
= ! S, I 00, +)) = = ! (A - ) “JoJ j
2 oy =Ty =gy P =g 2 T (Mg T ) e )
p.q.rdistinct p.q.rdistinct
M M
A A, —A
= 4 SJoJr i ) = A,(A A, +—£ q>J‘J‘J: Jo+i) (D3)
GeSyZm( )p g%lnc[ (wp B Ca(l))(wq B CG(Z)) o /7.5::;15&]1101 n @~ wq o
and
M
Z 1 T d3 071 +))
p.g.r=1 w _gl Cl) _gz)(a)r_gl)
p.q.rdistinct
.Y 26 e LIS
D-ESym q dmmcl ( CO’ ) a)q B 56(2) wq B 66(3)
! > EM: ! x<A ! )J‘J‘J‘ . +J)
~ 715 - rlJ>TJ
lzgesym(:;) ) Z:;lélr'liilrncl (wp - Cu(l))(a}r - é’a(l)) ! Wy — Cv(l) P
Ap=A,  A~A
1 - A - A, Lo o,
- L NI T ). D4
pqrdlsllml
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Thus, we arrive at

S7S787

- 1 p
H>:§ Z [ApAqA,+3A,w

p.gr=1
p.q.rdistinct

A, = A
14

p—w

2 (A=A A —=ANT
—w(J—w_J—wﬂthL” (D5)
q P r r
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