Motion planning under uncertainty and sensing limitations using
exploration versus exploitation

Saumya Saxena', Matthew Travers' and Howie Choset!

Abstract— We address the problem of planning under motion
and sensing uncertainty using sensors that have inherent limita-
tions such as limited effective range. Traditional optimization-
based planning methods use local sensing information to guide
the system toward regions of reliable measurements in order
to gain information while planning to ensure high-level tasks
are completed. In the case of sensors with limited sensing
capabilities, this local sensing information is not readily avail-
able. Thus, we need methods that can efficiently explore the
environment and find these regions of reliable measurements.
We present a novel sampling-based planner (Particle Filter
based Affine Quadratic Tree — PF-AQT) that explores the state
space of the robot, composed of effective and ineffective sensing
domains, and plans to reach a goal with minimal uncertainty.
We then use the output trajectory from PF-AQT to initialize
an optimization-based planner that finds a locally optimal
trajectory that minimizes control effort and uncertainty. In
doing so we reap the exploration benefits of sampling-based
methods and exploitation benefits of optimization-based meth-
ods for dealing with uncertainty and limited sensing capabilities
of the robot. Though generalizable, this work focuses on the
problem of planning under uncertainty for robots with range
and binary contact sensors. We demonstrate our results using
two dynamical systems: double integrator model and a non-
holonomic car-like robot.

I. INTRODUCTION

Sensing modalities such as cameras, proximity sensors,
LIDAR, contact sensors, etc., are popular localization tools,
but have their inherent limitations such as having a limited
range of effective use. To ensure successful completion of
high-level tasks, robots should take actions to explore regions
where reliable sensor measurements can be obtained for
better localization. Traditional optimization based methods
use local sensing information to drive the system to regions
with reliable measurements. Sensors with limited effective
range exhibit steep transitions from reliable to unreliable
sensing domains, thus when a sensor is outside its range
of effective use, the capability of such methods to estimate a
direction of motion that can lead to reliable measurements is
inhibited. We propose a novel method that overcomes this
challenge by using a combination of sampling-based and
optimization-based techniques, thus giving us the advantage
of both exploration and exploitation. The proposed method
is composed of two parts:

Exploration: We present the Particle Filter based Affine
Quadratic Tree (PF-AQT) — a novel sampling-based planner
that explores the state space of a robot, by effectively
sampling in regions of reliable and unreliable measurements.

1Carnegie Mellon University, Pittsburgh, PA, USA (saumyas,
mtravers, choset)@andrew.cmu.edu

Based on these samples, the planner grows a search tree
giving emphasis to growth toward states sampled in regions
of reliable measurement. Though generalizable, we focus on
a robotic system having proximity sensors and binary contact
sensors. Our method uses uncertainty as a measure to govern
when the robot needs to come in contact to better localize
itself. Thus, PF-AQT outputs a feasible trajectory that uses
reliable measurements for localization while ensuring suc-
cessful completion of high-level tasks.

Exploitation: Optimization-based motion planning meth-
ods start with an initial trajectory and iteratively find a locally
optimal trajectory that minimizes the uncertainty growth and
control effort along the path to a goal. This local optimality
is obtained in the neighborhood of the initial trajectory thus
making these methods very sensitive to the choice of trajec-
tories for initialization. We need to initialize such methods
with trajectories that explore our regions of interest. Thus,
for systems with limited sensing range, we need to initialize
these methods with trajectories that pass through regions of
reliable measurements. The output trajectory from PF-AQT
serves as a good initialization as it already incorporates the
benefit of exploring the state space to reduce uncertainty.
In this work, we leverage the optimization-based motion
planning under uncertainty algorithm developed by [1] and
modify it to handle contacts.

In the remainder of this paper, Section II presents the
prior work that we leverage for the development of our
algorithm, Section III presents the details of the PF-AQT
planner, Section IV presents the use of an optimal belief
space planner which we modify to handle contacts and in
Section V we demonstrate the performance of our algorithm
on two systems: (1) the double integrator (2) nonholonomic
car-like robot.

II. PRIOR WORK

This work builds on ideas in planning under uncertainty
using sampling-based and optimization-based motion plan-
ning approaches. Some of the relevant prior work has been
discussed to provide context to the work presented in the
further sections.

Sampling-based planning methods, like Rapidly exploring
Random Tree (RRT), use incremental sampling to grow a
tree in the state space and compute motion plans that take
the robot from a start to a goal state while avoiding obstacles.
Typically, for kinematic systems, the metric defining the
distance between two nodes of a RRT is usually assumed
as the Euclidean distance [2], [3], but for dynamic systems
finding this metric is non-trivial. Several algorithms have



been proposed [4], [5], [6], [7], [8] that use optimal control
methods to derive this distance metric. Our PF-AQT planner
leverages the AQR-based heuristic [5] because of its capa-
bility to drive a dynamical system towards a non-fixed point
but uses it to plan in the belief space.

A planner that plans in the space of probability distri-
butions over the state of the robot is called a belief space
planner (BSP). Sampling-based belief space planning meth-
ods have been developed [9], [10], [11] that find trajectories
stabilized with linear estimators and controllers, and search
over the space of these trajectories to find a low uncertainty
path to the goal. Sampling-based methods that plan for
contacts to reduce uncertainty [12], [13] have also been
developed but they only deal with kinematic systems and
use randomized selection of actions. Our PF-AQT planner,
however, plans in the continuous state and action space of
kinodynamic systems and uses uncertainty as a measure to
govern contact.

Optimal belief space planning (BSP) methods [14], [15],
[1] deal with motion and sensing noise by using a com-
bination of optimal estimators, like EKF [16], and optimal
controllers, like linear quadratic regulator, and find a tra-
jectory that minimizes a given cost function (a trade-off
between control effort and uncertainty). These algorithms
use gradient information from measurement models to drive
the system near regions of low uncertainty measurements. In
the absence of these gradients as in the case of limited range
sensors, these algorithms fail to find a trajectory that takes
advantage of reliable meaurements. Methods to deal with
this problem have been proposed [17], [18] that smooth out
sensing discontinuities and sequentially dilute this assump-
tion over subsequent iterations. These assumptions are not
valid for sensing modalities such as binary contact sensors.
Our algorithm on the other hand is robust to all sensing
modalities including binary contact sensing. Additionally,
dealing with contacts in optimal BSP scenarios requires us to
include deterministic contact dynamics [19], [20] and perfect
zero-variance pseudo-measurement [21] upon contact in the
belief dynamics of the robot.

III. EXPLORATION: SAMPLING-BASED MOTION
PLANNING

We introduce the sampling-based planner PF-AQT that
explores the state space of the robot by growing a search
tree and uses a particle filter to propagate belief across free
and contact state motion.

A. Problem definition

The problem is to find a trajectory in a known environment
that begins at a start state and reaches the goal state,
while avoiding obstacles, satisfying the system dynamics and
minimizing a given cost function J = g(by, u;). The details
of the cost function are discussed later sections.

Our system of interest is nonlinear with motion and
sensor uncertainty and is partially observable. The stochastic
nonlinear dynamics and observation model of such systems

can be written in discrete time as:

Xt+1 = f(XtJlnmt)

7 = h(Xtvutant)

where x; is the state vector, u; is the input vector, m; is
the motion noise and n; the measurement noise. The motion
and measurement noise can be state or control dependent.
The contact dynamics are assumed inelastic, i.e. the system
comes to rest on contact with an obstacle. The initial belief
of the robot is specified as a Gaussian distribution: by =

N(I'l’07 ZO)
B. Belief Propagation

Belief evolves using a particle filter. Belief at every time
step t is represented by a set of random samples taken
from a distribution b;, which can be written as, S; =
{XP] , XE], e ,X£N] }. These random states are also called par-
ticles, thus the belief is represented by a set of particles. Each
particle evolves using a separate control strategy specified by
the AQR controller [5].

We model a robot navigating an environment with onboard
proximity sensor and binary contact sensor. A proximity
sensor gets measurements only when the robot is within a
finite distance to an obstacle. On contact, the binary contact
sensor, based on the robot’s current belief, gives with high
certainty the location of the robot along the contact normal
of the known obstacle.

C. Farticle filter based affine quadratic tree — PF-AQT

The planning algorithm is inspired by RRT* [3]. We grow
a tree (7) in belief space, each node n having the following
set of parameters: 1) Particle set S representing the belief, 2)
Total Cost of the sequence of trajectories connecting the start
node to n (definition of this cost is given in later sections),
and 3) Pointer to the Parent node, connecting node n to the
rest of the tree.

n = (S, Cost, Parent)

The process of tree expansion for our PF-AQT algorithm
can be summarized as follows. The algorithm begins by
initializing the tree with the start node. The start node is
obtained by taking N random samples from the initial belief
by = N(pg, Xo). Samples are then generated at random
from the state space and the tree is expanded. One such tree
expansion step is as follows. Once a random sample X4
is obtained, the tree is spanned to find the node nearest to
this sample based on the AQR heuristic [5]. After finding
the nearest node n,eqrest, W€ use the AQR controller to
reach X,qnq starting from the mean of the particle set of the
nearest node. It is important to note that we are distinguishing
between a node n, the particle set associated with a node
n.S and a state x. We then look for a parent node for the
new state X, in the tree (7). The criteria for selecting the
parent node is given in Section III-C.4. The parent node is
then extended to X,.,, using a particle filter. The trajectory
is checked for collision at every time step dr where dt is
the time discretization along each trajectory. If a feasible



trajectory is found, the node at the end of the trajectory gets
added to the tree. The various steps of the algorithm are
explained in detail below and a high level description can be
found in Algorithm 1.

Algorithm 1: PF-AQT
T <+ InitializeTree()

for i + 1toM do
Xrand — RandomSample()

Npearest < AQRNearest(T, X;qnd)
Xnew < AQRSteer(nnearestaXrand)
Nparent < ChooseParent(7T, X,,cu)
if Cov(nparent-S) < CovThresh then

‘ Snew <~ PFExtend(nParentyxnew) 5
else

‘ Snew < PFContact(nparent) ;
end

if CollisionFree(nparent, Snew) then
nnew-COSt — nParen,t-COSt+

AQRdZ’St(nParentv Snew)
Npew-Parent < Npgrent
nnew-S — Snew 5
T+ T U {npew}

end

end

1) RandomSample(): Samples are generated indepen-
dently from a uniform distribution whose dimension is equal
to the dimension of the state space.

2) AQRNearest (T, X,qnaq): As in the case of RRT, the
planner spans the tree to find the node which is “nearest”
to the random sample X,.q,q. The performance of an RRT
depends highly on the accuracy with which the chosen
distance heuristic represents the cost to travel from one node
to the other [2]. We choose the AQR heuristic developed in
[5], wherein the authors find an optimal control policy and
cost function for driving a linearized affine system to a non-
fixed point. Since we sample in the full state of the robot,
Xrand Will have a non-zero velocity. Thus, we use the AQR
cost function as the heuristic to find the nearest node to X,
in the tree. We refer to this cost function as AQRdist(x1, Xs)
in our algorithm.

We evaluate the cost to travel from the mean of the particle
set of each node in the tree to the random state. We find
Nnearest a8 the node in the tree closest to X,.,,q based on
the above cost function. Note that AQRdist is based on a
linearization about the target location and therefore is not a
true measure of distance; for nodes that are close together,
this approximation is sufficient but for nodes that are far
apart, which is the case early in the planning phase, this
approximation may not hold. As the tree grows denser, we
no longer have to worry about this.

3) AQRSteer (NpearestsXrand): Starting from the state
Xnearest (Mean of the particle set Nyeqrest-S), We use the
AQR controller to generate a trajectory from Xpcqrest tO as
close as possible to X,.4,4.- The end of the trajectory gener-

ated, iS our new state X, In this function, we propagate
the mean of the particle set to get an estimate of the position
of the new node. The actual node propagation is done using
a particle filter as explained in further subsections.

4) ChooseParent (T ,Xnew): As in the case of RRT*, we
look for a parent node for X,,.,. The parent node is a node
that connects X,,.,, to the tree such that the cost to travel
from the start node to X,,.,, 1S minimum. We have modified
this criteria to include uncertainty of the parent node in the
cost. This has been done so that the planner chooses a node
as a parent not only if its control cost is low but also if its
uncertainty is low. This allows for nodes in the discontinuous
measurement domains to grow.

The criteria for choosing a parent is as follows — let x’
represent the mean of the particle set of a node n’. For each
node n’ in the tree, we check if it is in the neighborhood
of X,e. The neighborhood is defined as AQRdist(X’, X,¢)
< min(n,v(%)l/”) where d is the size of the tree and
n and v are constants. For a thorough discussion on this
neighbourhood bound the reader may refer to [2]. From
among these near nodes we choose the node with the lowest
cost. The cost is defined as

Costyear = Waist * [n'.Cost + AQRdist(X', Xpew)]
+ Weop * Cov(n'.s) (1

Where, Coov(n'.s) represents the covariance of a particle
set. Here, we can adjust the weights Wy;s; and W, in the
cost function (1) to find a balance between expanding a node
that is closer versus expanding a node with low uncertainty.
The node with the lowest cost is chosen as the parent node
Nparent- If NO parent is found the current sample is rejected
and we resample.

5) ChooseAction: After having found the parent node
Nparent, We evaluate if we should find a trajectory connecting
Nparent aNd Xpey OF if Npgrens should move towards an
obstacle to come in contact. If the covariance of the particle
set of npqrent is greater than a threshold value CovT hresh
(specified by the user), it should come in contact with
the nearest obstacle to reduce its uncertainty, else it is
connected to X,,.,. This function ensures that nodes with
high uncertainty are not propagated forward towards the goal.
Such nodes come in contact with a wall to reduce uncertainty.

6) PFExtend(nparent, Xnew): This function finds a trajec-
tory from 7pqrent 1O Xpeq Using a particle filter for belief
propagation and checks for collisions at every time step.

To drive the system from nparent 10 Xpeq, We linearize the
system about X,,.,, to evaluate the AQR feedback controller.
As in a particle filter, each particle is a different state,
representing an estimate of the current location of the robot.
Thus, the AQR feedback controller is evaluated and used
as the motion model for each particle independently. The
motion model for each particle m at time step ¢ is represented
as [16]:

X~ p(xelug, x(™)



Next we take a measurement at each time step and find
the probability of the measurement z; under each particle

™ that is, wi™ = p(z[x[™)

We use the above importance factor to resample the par-
ticle set. The term p(z|x,™) includes in it the measurement
noise. The higher the uncertainty in the measurement, the
larger the spread of the Gaussian, resulting in more uni-
formly distributed weights. Thus, the particles get resampled
uniformly when the measurement noise is high which leads
to lower reduction in uncertainty and vice-versa. The node
is propagated forward towards X,.,, and a new particle set
Shnew 18 generated. If no undesired collision is detected along
the path, S, is added as a new node (1) to the tree
With Npgrens as its parent. Cost of 1y, is defined as:

Npew-C0St =Nparent.Cost+ 2)
AQRdist(mean(nparent-S), mean(Spew))

where AQRdist represents the AQR controller cost of
travelling from the mean of the particle set of the parent
node npgrent to the mean of the particle set Syeqp-

7) PFContact (nparent): After a node is selected to come
in contact, the planner searches in the environment for the
nearest contact location. The node is then propagated in the
direction of nearest contact using a particle filter.

Belief propagation for the node coming in contact with
an obstacle takes place using a particle filter in broadly
the same way as described in the previous subsection. The
differences are in the controller used for the motion model
and in the measurement on coming in contact. Instead of
an AQR controller, we use infinite-horizon LQR controller
to drive each particle to come in contact with the nearest
wall. We use this controller because it is very effective in
driving the system to a fixed point (zero velocity) without
specification of the time horizon. As we assume that we
come to rest upon collision, this controller is very effective
in slowing down the system as it tries to come in contact.
Upon coming in contact, we assume a perfect zero-variance
pseudo-measurement [21] in the direction of contact normal,
thus the node loses all uncertainty in one direction upon
contact. The new node 7,,.,, is then added to the tree.

8) GoalReached: Every time a new node 1., is added
to the tree, it is checked for two criteria. First, we check if
Nnew 18 1IN a given neighborhood of the goal. Second, we
check if the uncertainty of 7, is less than a pre-specified
value GoalThresh. Once the goal is reached, we output a
feasible trajectory connecting the start and the goal state.

In the absence of binary contact sensors, the PFContact
step can be ignored and the algorithm works well for other
traditional limited field of view sensors.

IV. EXPLOITATION: OPTIMAL BELIEF SPACE
PLANNING

We now use the output of our PF-AQT planner and exploit
the space of trajectories in its vicinity to find a locally
optimal trajectory that minimizes a given cost function. We
build on the optimal BSP approach developed in [1].

A. Belief propagation

Belief evolves using an extended Kalman filter that as-
sumes Gaussian motion and sensor noise, and is applicable
to systems with nonlinear dynamics. Measurement model is
same as used for PF-AQT. Starting with an initial nominal
trajectory, we approximate the value function at each time
step ¢ in the trajectory and optimize it to find the optimal
policy. We forward integrate this policy to find the nominal
trajectory for the next iteration. We then find the value
function for this new nominal trajectory and the process
continues until convergence to a locally optimal trajectory.
For the belief update steps and evaluation of the optimal
policy the reader may refer to [1].

B. Forward integrate

The control policy is forward integrated using the deter-
ministic belief dynamics [1]:

1+1

bo = Dby 3)
;" = Li(b,"" — b)) +1; + 0}

z+1 z+1 —q
b, = g[b +1]

where by is the belief at the start position. The superscripts
represent the iteration, thus, given a nominal trajectory at
the i iteration we find the control trajectory and forward
integrate it to find the nominal trajectory for the (i + 1)1
iteration. The nominal trajectory for the first iteration is the
output trajectory from PF-AQT, which gives the benefit of
exploration.

As evident from the belief dynamics, this formulation does
not take into account contact with the environment. Thus,
we explicitly incorporate linear complimentarity constraints
in the forward simulation of dynamics at every time step.
Let us write the mean of the belief as X; = (q;, q,). The 2D
contact dynamics can be written as a linear complimentarity
problem in the following manner [19], [20]:

4 — Q441 Q1 dt =0 )

Qi1 — G — (W1 + A1) dE =0 (5)
D(qt)s Mys Ms A 76 = 0 (6)

pAty — A — A >0 7)

v+ V(q, Gi) > (8

$(q)" Ay =0 9)

(BAy = A = A )1 =0 (10)

(ve + W(qr, dt)) A* =0 (11)

(ve — ¥(qr,Ge))" A (12)

At = [(A\f, —Ai.) s Aey] represents the contact force. The
above equations are written assuming that the normal contact
force A¢, acts in the y-direction and the tangential force
has been split into its +x and -x components, \;" 2 and A;
respectively. (4) & (5) represent the discrete time dynamics
for forward propagation. Slack variable v, represents the
magnitude of relative velocity of bodies coming in contact.
o(q¢) is the distance from contact location. (7) enforces



0 10 20

(a) Final trajectory (green) generated using
the PF-AQT planner

goal).

(b) Locally optimal solution (magenta) us-
ing iILQG BSP method. Nominal trajectory
is generated using deterministic trajectory
optimization (Straight line joining start and

— Nominal trajectory| — Nominal trajectory
— Optimal trajectory |—Optimal trajectory

~ 3 Goal

Goal

30 40 50

(c) Locally optimal solution (magenta) using
iLQG BSP method. Nominal trajectory is
the output trajectory from PF-AQT planner
(dotted green).

Fig. 1: A robot with double integrator model moving in a 2D environment with walls at y = 1 and y = 50. (a) PF-AQT
tree with sub-trajectories and associated beliefs represented as particle sets at the end of each sub-trajectory (shown in
yellow, red, blue, cyan and magenta colors). Nominal trajectory (green) exploits reliable measurements to better localize
itself before moving towards the goal. (b) Locally optimal solution (magenta) using a nominal trajectory generated using a
deterministic trajectory optimization method (straight line connecting start and goal). iLQG planner converges to a locally
optimal trajectory identical to this nominal trajectory. (c) Locally optimal solution (magenta) using the output trajectory from
PF-AQT as the nominal trajectory (dotted green). Robot travels near the wall to get better measurements from proximity
sensors and contact sensors before moving towards the goal with low uncertainty.

friction cone constraints. ¥(qy, ¢;) is the relative tangential
velocity. (9) represents positive contact force upon contact
and no contact force at a distance. (10) ensures that the
contact forces lie on the edge of the friction cone when the
contact is sliding.

We satisfy the constraints (4) - (12) at every time step
and find the control policy and state trajectory that satisfies
the free space as well as contact dynamics of the system.
The uncertainty update upon contact follows the proce-
dure developed by [21]. We apply a zero-variance pseudo-
measurement update at the contact location to enforce the
equality constraints. The measurement variance is zero in
the direction of the contact normal.

V. RESULTS

We apply our approach in simulation to two systems: (i)
double integrator with linear dynamics, (ii) nonholonomic
car-like robot with nonlinear dynamics. The motion planning
scenario involves motion and measurement uncertainties and
contact with nearby walls.

For each dynamic system, we first present results for the
PF-AQT planner. The results for the optimal belief space
planner are then presented in two scenarios. First, we seed
the planner with a nominal trajectory generated using direct
collocation without considering uncertainty in the system.
Second, we seed the planner with the nominal trajectory
obtained from our PF-AQT planner. The results are compared
for these two scenarios.

The cost function for the iLQG based belief space planning
algorithm is taken as a cost that minimizes the control effort
and uncertainty along the trajectory and penalizes distance

from the goal at the final time 7

CT(bT) = )A(Z—‘QTYA(t + trace[\/g QT \/E]
ce(by,uy) = ul Ryug + trace[y/S, Qu/S]

A. Double integrator model

A robot with double integrator dynamics (13) moving
in a 2D environment is considered with noisy motion and
measurement models. The state is represented as q = (x, ,
x, 1), where (x, y) is the position of the robot in 2D space
and (&, y) are the velocities. The acceleration of the robot is
directly controlled u = (&, ¥).

qt+1:qt+ dt + Mm ) mNN(Oa I) (13)

s R 8.

Y

where M scales the motion noise. The state is partially
observable, as only the position of the robot is sensed.
The measurement model comprises of a limited field of
view proximity sensor and a binary contact sensor. Thus,
measurements are obtained only near the walls/obstacles, and
most of the free space has no measurements.

z= erNn . n~N(0,I) (14)
where N scales the measurement noise based on the robot’s
distance to the wall. Contact detection using binary contact
sensors allows us to have perfect measurements along the
contact normal when contact occurs.

The robot navigates in a 2D environment with walls at
y = 1 and y = 50, thus, enclosing the state space at the top
and bottom of the Figures la, 1b, 1c. The initial state is at



0 10 20

(a) Final trajectory (green) generated using
the PF-AQT planner

goal).

(b) Locally optimal solution (magenta) us-
ing iLQG BSP method. Nominal trajectory
is generated using deterministic trajectory
optimization (Straight line joining start and

— Nominal trajectory|
——Optimal trajectory = Nominal trajectory|
[——Optimal trajectory

Goal

Goal

30 40 50

0 10 20 30 40 50

(c) Locally optimal solution (magenta) using
iLQG BSP method. Nominal trajectory is
the output trajectory from PF-AQT planner
(dotted green).

Fig. 2: A non-holonomic car-like robot moving in a 2D environment with walls at y = 1 and y = 50. (a) PF-AQT tree with
sub-trajectories and associated beliefs represented as particle sets at the end of each sub-trajectory (shown in yellow, red, blue,
cyan and magenta colors). Nominal trajectory (green) exploits reliable measurements to better localize itself before moving
towards the goal. (b) Locally optimal solution (magenta) using a nominal trajectory generated using a deterministic trajectory
optimization method (straight line connecting start and goal). iLQG planner converges to a locally optimal trajectory identical
to this nominal trajectory. (c) Locally optimal solution (magenta) using the output trajectory from PF-AQTC as the nominal
trajectory (dotted green). Robot travels near the wall to get better measurements from proximity sensors and contact sensors

before moving towards the goal with low uncertainty.

the left center of the figure at q = (5,25,0,0) and the goal
state is at the right center of the figure at q = (40, 25,0, 0).
Control cost matrix of QQ; = I is used for the AQR controller.
For the infinite horizon controller we define state and control
cost matrices as (Q; = I and R; = 101.

Figure la shows the evolution of the PF-AQT tree with
the various branches (sub-trajectories) plotted with their
associated beliefs represented as particle sets at the end of
each sub-trajectory (shown in yellow, red, blue, cyan and
magenta colors). The sampling-based planner leads the robot
close to the wall to get measurements from the proximity
sensors and come in contact, in order to better localize itself,
and then move towards the goal. The robot starts with an
initial covariance of 2 units at the start position and reaches
the goal with a covariance of 0.26 units. The goal reaching
covariance threshold GoalThresh was set at 0.3 units.

Figure 1b shows results for the iLQG based optimal belief
space planner (which we modified to handle contacts). The
planner uses the result from direct collocation, as its nom-
inal trajectory. For a double integrator model this nominal
trajectory is a straight line joining start and goal states. The
nominal trajectory is shown in blue and the optimal trajectory
is shown in magenta. We observe that the iLQG planner
converges to a locally optimal trajectory identical to the
nominal trajectory. This is because the robot is far from areas
where it can get reliable measurements (the walls). The local
optima is at the nominal trajectory where the control effort
is lowest. No gradients are detected to give the optimizer a
direction for uncertainty reduction. Thus, in the absence of
a good nominal trajectory, that can drive the system to areas
of discontinuous measurements, it is very difficult for locally
optimal planners to explore such regions.

Figure lc shows results for the iLQG based belief space

planner that uses the output trajectory from our PF-AQT
planner as the nominal trajectory. The nominal trajectory is
shown in dotted green and the optimal trajectory is shown in
magenta. We observe that the planner leads the robot close to
the wall and slides along it, to get reliable sensing, and then
moves towards the goal. Thus, it is evident that the nominal
trajectory plays a big role in allowing the system to find
a solution in regions where low uncertainty measurements
are available. The algorithm converges to a locally optimal
trajectory in 6 iterations. The expected cost of the initial
nominal trajectory is 95.1 units and the cost of the locally
optimal trajectory obtained upon convergence is 4.1 units.

B. Non-holonomic car-like robot

A car-like robot with nonholonomic constraints navigating
through a 2D environment is considered with noisy motion
and measurement models. The state is partially observable,
only the position of the robot is sensed. The state is rep-
resented as x = (x, y, 6, v), where (x, y) is the position
of the robot in 2D space, 6 is the orientation and v is the
speed. The control input consists of u = (a, 0) where a is the
acceleration and 6 = 7 tan ¢, ¢ is the steering angle. Thus,
the car dynamics can be written as:

v cos 6

vs‘19.n9 dt+ Mm |

a

m ~ N (0, I)

X¢+1 = X¢ +

where M scales the motion noise. Measurement model is
the same as in the case of double integrator model (14).
Robot navigates in a 2D environment with walls at y = 1
and y = 50, thus, enclosing the state space at the top and
bottom of the figure. The initial state is at the left center of
the figure at q = (5,25,0,0) and the goal state is at the right



center of the figure at q = (40, 25,0, 0). Control cost matrix
of @y = I is used for the AQR controller. For the infinite
horizon controller we define state and control cost matrices
as @ = I and R; = 101.

Figure 2a shows the evolution of the PF-AQT tree for
the car-like robot with the various sub-trajectories plotted
with associated beliefs represented as particle sets at the end
of each sub-trajectory (shown in yellow, red, blue, cyan and
magenta colors). The sampling-based planner leads the robot
close to the wall to get measurements from the proximity
sensors and comes in contact, in order to better localize itself,
and then move towards the goal. The robot starts with an
initial covariance of 2 units at the start position and reaches
the goal with a covariance of 0.19 units. The goal reaching
threshold was set at 0.3 units.

Figure 2b shows results for the iLQG based optimal
belief space planner. The planner uses the result from direct
collocation, as its nominal trajectory. For a car-like robot
with initial pose (5, 25, 0, 0), that is, pointing right (towards
the goal), this nominal trajectory is a straight line joining
start and goal states. The nominal trajectory is shown in blue
and the optimal trajectory is shown in magenta. We observe
that the iLQG planner converges to a trajectory identical to
the nominal trajectory. This is because the robot is far from
areas with reliable measurements, thus the gradients in the
optimization cannot drive it towards those regions and the
planner converges to the local minima. In the absence of a
good nominal trajectory that can drive the system to areas
of reliable measurements, it is very difficult for the locally
optimal planner to explore such regions.

Figure 2c shows the locally optimal trajectory (magenta)
in the vicinity of the trajectory provided by the PF-AQT
algorithm shown in dotted green. We observe that the planner
leads the robot close to the wall and slides along it, to get
reliable measurements, and then moves towards the goal.
Thus, the nominal trajectory plays a great role in allowing
the system to find a solution in the regions where reliable
measurements are available. The algorithm converges to a
locally optimal trajectory in 10 iterations. The expected cost
of the initial nominal trajectory is 35.1 units and the cost of
the locally optimal trajectory obtained upon convergence is
2.8 units.

VI. CONCLUSION

Our work has been completed in two parts. In the first
part, through the development of the PF-AQT algorithm,
we have provided a means for successfully “exploring”
the state space and using reliable measurements from the
environment for better localization along the path to goal
attainment. In the second part, the output from PF-AQT was
used to initialize an optimal BSP method that “exploited” the
space of trajectories in the vicinity of the initial trajectory
to find a locally optimal trajectory. Our results have been
demonstrated using the double integrator model and non-
holonomic car-like robot.

[1]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under
uncertainty using iterative local optimization in belief space,” The
International Journal of Robotics Research, vol. 31, no. 11, pp. 1263—
1278, 2012.

S. M. LaValle, Planning algorithms.
2006.

S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Robotics Science and Systems VI, vol.
104, p. 2, 2010.

D. J. Webb and J. van den Berg, “Kinodynamic rrt*: Asymptotically
optimal motion planning for robots with linear dynamics,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on.
IEEE, 2013, pp. 5054-5061.

E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic
for rapidly exploring state space,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on. 1EEE, 2010, pp. 5021-5028.
S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in Decision and Control
(CDC), 2010 49th IEEE Conference on. 1EEE, 2010, pp. 7681-7687.
G. Goretkin, A. Perez, R. Platt, and G. Konidaris, “Optimal sampling-
based planning for linear-quadratic kinodynamic systems,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on.
IEEE, 2013, pp. 2429-2436.

A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez,
“Lqr-rrt*: Optimal sampling-based motion planning with automatically
derived extension heuristics,” 2012.

J. Van Den Berg, P. Abbeel, and K. Goldberg, “Lqg-mp: Optimized
path planning for robots with motion uncertainty and imperfect state
information,” The International Journal of Robotics Research, vol. 30,
no. 7, pp. 895-913, 2011.

L. Jaillet, J. Hoffman, J. Van den Berg, P. Abbeel, J. M. Porta, and
K. Goldberg, “Eg-rrt: Environment-guided random trees for kinody-
namic motion planning with uncertainty and obstacles,” in Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on. IEEE, 2011, pp. 2646-2652.

A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on. 1EEE, 2011, pp. 723-730.

A. Sieverling, C. Eppner, F. Wolff, and O. Brock, “Interleaving motion
in contact and in free space for planning under uncertainty,” in
Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on. 1EEE, 2017, pp. 4011-4073.

E. Pdll, A. Sieverling, and O. Brock, “Contingent contact-based motion
planning,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2018, pp. 6615-6621.

R. Platt Jr, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief
space planning assuming maximum likelihood observations,” 2010.
J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under
uncertainty using differential dynamic programming in belief space,”
in Robotics Research. Springer, 2017, pp. 473—490.

S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

S. Patil, Y. Duan, J. Schulman, K. Goldberg, and P. Abbeel, “Gaussian
belief space planning with discontinuities in sensing domains,” in 20/4
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 6483-6490.

K. Hausman, G. Kahn, S. Patil, J. Miiller, K. Goldberg, P. Abbeel,
and G. S. Sukhatme, “Cooperative occlusion-aware multi-robot target
tracking using optimization,” rll. berkeley. edu, 2015.

D. E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and coulomb friction,”
International Journal for Numerical Methods in Engineering, vol. 39,
no. 15, pp. 2673-2691, 1996.

M. Posa and R. Tedrake, “Direct trajectory optimization of rigid body
dynamical systems through contact,” in Algorithmic foundations of
robotics X. Springer, 2013, pp. 527-542.

S. Tully, A. Bajo, G. Kantor, H. Choset, and N. Simaan, “Constrained
filtering with contact detection data for the localization and registration
of continuum robots in flexible environments,” in 2012 IEEE Inter-
national Conference on Robotics and Automation. 1EEE, 2012, pp.
3388-3394.

Cambridge university press,



