
Motion planning under uncertainty and sensing limitations using
exploration versus exploitation

Saumya Saxena1, Matthew Travers1 and Howie Choset1

Abstract— We address the problem of planning under motion
and sensing uncertainty using sensors that have inherent limita-
tions such as limited effective range. Traditional optimization-
based planning methods use local sensing information to guide
the system toward regions of reliable measurements in order
to gain information while planning to ensure high-level tasks
are completed. In the case of sensors with limited sensing
capabilities, this local sensing information is not readily avail-
able. Thus, we need methods that can efficiently explore the
environment and find these regions of reliable measurements.
We present a novel sampling-based planner (Particle Filter
based Affine Quadratic Tree — PF-AQT) that explores the state
space of the robot, composed of effective and ineffective sensing
domains, and plans to reach a goal with minimal uncertainty.
We then use the output trajectory from PF-AQT to initialize
an optimization-based planner that finds a locally optimal
trajectory that minimizes control effort and uncertainty. In
doing so we reap the exploration benefits of sampling-based
methods and exploitation benefits of optimization-based meth-
ods for dealing with uncertainty and limited sensing capabilities
of the robot. Though generalizable, this work focuses on the
problem of planning under uncertainty for robots with range
and binary contact sensors. We demonstrate our results using
two dynamical systems: double integrator model and a non-
holonomic car-like robot.

I. INTRODUCTION

Sensing modalities such as cameras, proximity sensors,

LIDAR, contact sensors, etc., are popular localization tools,

but have their inherent limitations such as having a limited

range of effective use. To ensure successful completion of

high-level tasks, robots should take actions to explore regions

where reliable sensor measurements can be obtained for

better localization. Traditional optimization based methods

use local sensing information to drive the system to regions

with reliable measurements. Sensors with limited effective

range exhibit steep transitions from reliable to unreliable

sensing domains, thus when a sensor is outside its range

of effective use, the capability of such methods to estimate a

direction of motion that can lead to reliable measurements is

inhibited. We propose a novel method that overcomes this

challenge by using a combination of sampling-based and

optimization-based techniques, thus giving us the advantage

of both exploration and exploitation. The proposed method

is composed of two parts:

Exploration: We present the Particle Filter based Affine

Quadratic Tree (PF-AQT) — a novel sampling-based planner

that explores the state space of a robot, by effectively

sampling in regions of reliable and unreliable measurements.

1Carnegie Mellon University, Pittsburgh, PA, USA (saumyas,
mtravers, choset)@andrew.cmu.edu

Based on these samples, the planner grows a search tree

giving emphasis to growth toward states sampled in regions

of reliable measurement. Though generalizable, we focus on

a robotic system having proximity sensors and binary contact

sensors. Our method uses uncertainty as a measure to govern

when the robot needs to come in contact to better localize

itself. Thus, PF-AQT outputs a feasible trajectory that uses

reliable measurements for localization while ensuring suc-

cessful completion of high-level tasks.

Exploitation: Optimization-based motion planning meth-

ods start with an initial trajectory and iteratively find a locally

optimal trajectory that minimizes the uncertainty growth and

control effort along the path to a goal. This local optimality

is obtained in the neighborhood of the initial trajectory thus

making these methods very sensitive to the choice of trajec-

tories for initialization. We need to initialize such methods

with trajectories that explore our regions of interest. Thus,

for systems with limited sensing range, we need to initialize

these methods with trajectories that pass through regions of

reliable measurements. The output trajectory from PF-AQT

serves as a good initialization as it already incorporates the

benefit of exploring the state space to reduce uncertainty.

In this work, we leverage the optimization-based motion

planning under uncertainty algorithm developed by [1] and

modify it to handle contacts.

In the remainder of this paper, Section II presents the

prior work that we leverage for the development of our

algorithm, Section III presents the details of the PF-AQT

planner, Section IV presents the use of an optimal belief

space planner which we modify to handle contacts and in

Section V we demonstrate the performance of our algorithm

on two systems: (1) the double integrator (2) nonholonomic

car-like robot.

II. PRIOR WORK

This work builds on ideas in planning under uncertainty

using sampling-based and optimization-based motion plan-

ning approaches. Some of the relevant prior work has been

discussed to provide context to the work presented in the

further sections.

Sampling-based planning methods, like Rapidly exploring

Random Tree (RRT), use incremental sampling to grow a

tree in the state space and compute motion plans that take

the robot from a start to a goal state while avoiding obstacles.

Typically, for kinematic systems, the metric defining the

distance between two nodes of a RRT is usually assumed

as the Euclidean distance [2], [3], but for dynamic systems

finding this metric is non-trivial. Several algorithms have

been proposed [4], [5], [6], [7], [8] that use optimal control

methods to derive this distance metric. Our PF-AQT planner

leverages the AQR-based heuristic [5] because of its capa-

bility to drive a dynamical system towards a non-fixed point

but uses it to plan in the belief space.

A planner that plans in the space of probability distri-

butions over the state of the robot is called a belief space

planner (BSP). Sampling-based belief space planning meth-

ods have been developed [9], [10], [11] that find trajectories

stabilized with linear estimators and controllers, and search

over the space of these trajectories to find a low uncertainty

path to the goal. Sampling-based methods that plan for

contacts to reduce uncertainty [12], [13] have also been

developed but they only deal with kinematic systems and

use randomized selection of actions. Our PF-AQT planner,

however, plans in the continuous state and action space of

kinodynamic systems and uses uncertainty as a measure to

govern contact.

Optimal belief space planning (BSP) methods [14], [15],

[1] deal with motion and sensing noise by using a com-

bination of optimal estimators, like EKF [16], and optimal

controllers, like linear quadratic regulator, and find a tra-

jectory that minimizes a given cost function (a trade-off

between control effort and uncertainty). These algorithms

use gradient information from measurement models to drive

the system near regions of low uncertainty measurements. In

the absence of these gradients as in the case of limited range

sensors, these algorithms fail to find a trajectory that takes

advantage of reliable meaurements. Methods to deal with

this problem have been proposed [17], [18] that smooth out

sensing discontinuities and sequentially dilute this assump-

tion over subsequent iterations. These assumptions are not

valid for sensing modalities such as binary contact sensors.

Our algorithm on the other hand is robust to all sensing

modalities including binary contact sensing. Additionally,

dealing with contacts in optimal BSP scenarios requires us to

include deterministic contact dynamics [19], [20] and perfect

zero-variance pseudo-measurement [21] upon contact in the

belief dynamics of the robot.

III. EXPLORATION: SAMPLING-BASED MOTION

PLANNING

We introduce the sampling-based planner PF-AQT that

explores the state space of the robot by growing a search

tree and uses a particle filter to propagate belief across free

and contact state motion.

A. Problem definition

The problem is to find a trajectory in a known environment

that begins at a start state and reaches the goal state,

while avoiding obstacles, satisfying the system dynamics and

minimizing a given cost function J = g(bt, ut). The details

of the cost function are discussed later sections.

Our system of interest is nonlinear with motion and

sensor uncertainty and is partially observable. The stochastic

nonlinear dynamics and observation model of such systems

can be written in discrete time as:

xt+1 = f(xt, ut,mt)

zt = h(xt, ut, nt)

where xt is the state vector, ut is the input vector, mt is

the motion noise and nt the measurement noise. The motion

and measurement noise can be state or control dependent.

The contact dynamics are assumed inelastic, i.e. the system

comes to rest on contact with an obstacle. The initial belief
of the robot is specified as a Gaussian distribution: b0 =
N (μ0, Σ0).

B. Belief Propagation

Belief evolves using a particle filter. Belief at every time

step t is represented by a set of random samples taken

from a distribution bt, which can be written as, St =
{x[1]

t , x[2]t , . . . , x[N]
t }. These random states are also called par-

ticles, thus the belief is represented by a set of particles. Each

particle evolves using a separate control strategy specified by

the AQR controller [5].

We model a robot navigating an environment with onboard

proximity sensor and binary contact sensor. A proximity

sensor gets measurements only when the robot is within a

finite distance to an obstacle. On contact, the binary contact

sensor, based on the robot’s current belief, gives with high

certainty the location of the robot along the contact normal

of the known obstacle.

C. Particle filter based affine quadratic tree — PF-AQT

The planning algorithm is inspired by RRT* [3]. We grow

a tree (T) in belief space, each node n having the following

set of parameters: 1) Particle set S representing the belief, 2)

Total Cost of the sequence of trajectories connecting the start

node to n (definition of this cost is given in later sections),

and 3) Pointer to the Parent node, connecting node n to the

rest of the tree.

n = (S,Cost, Parent)

The process of tree expansion for our PF-AQT algorithm

can be summarized as follows. The algorithm begins by

initializing the tree with the start node. The start node is

obtained by taking N random samples from the initial belief

b0 = N (μ0, Σ0). Samples are then generated at random

from the state space and the tree is expanded. One such tree

expansion step is as follows. Once a random sample xrand

is obtained, the tree is spanned to find the node nearest to

this sample based on the AQR heuristic [5]. After finding

the nearest node nnearest, we use the AQR controller to

reach xrand starting from the mean of the particle set of the

nearest node. It is important to note that we are distinguishing

between a node n, the particle set associated with a node

n.S and a state x. We then look for a parent node for the

new state xnew in the tree (T). The criteria for selecting the

parent node is given in Section III-C.4. The parent node is

then extended to xnew using a particle filter. The trajectory

is checked for collision at every time step dt where dt is

the time discretization along each trajectory. If a feasible

trajectory is found, the node at the end of the trajectory gets

added to the tree. The various steps of the algorithm are

explained in detail below and a high level description can be

found in Algorithm 1.

Algorithm 1: PF-AQT

T ← InitializeTree()
for i ← 1 toM do

xrand ← RandomSample()

nnearest ← AQRNearest(T , xrand)

xnew ← AQRSteer(nnearest, xrand)

nParent ← ChooseParent(T , xnew)

if Cov(nParent.S) < CovThresh then
Snew ← PFExtend(nParent, xnew) ;

else
Snew ← PFContact(nParent) ;

end
if CollisionFree(nparent, snew) then

nnew.Cost ← nParent.Cost+
AQRdist(nParent, Snew)

nnew.Parent ← nParent

nnew.S ← Snew ;

T ← T ∪ {nnew}
end

end

1) RandomSample(): Samples are generated indepen-

dently from a uniform distribution whose dimension is equal

to the dimension of the state space.

2) AQRNearest (T , xrand): As in the case of RRT, the

planner spans the tree to find the node which is “nearest”

to the random sample xrand. The performance of an RRT

depends highly on the accuracy with which the chosen

distance heuristic represents the cost to travel from one node

to the other [2]. We choose the AQR heuristic developed in

[5], wherein the authors find an optimal control policy and

cost function for driving a linearized affine system to a non-

fixed point. Since we sample in the full state of the robot,

xrand will have a non-zero velocity. Thus, we use the AQR

cost function as the heuristic to find the nearest node to xrand

in the tree. We refer to this cost function as AQRdist(x1, x2)

in our algorithm.

We evaluate the cost to travel from the mean of the particle

set of each node in the tree to the random state. We find

nnearest as the node in the tree closest to xrand based on

the above cost function. Note that AQRdist is based on a

linearization about the target location and therefore is not a

true measure of distance; for nodes that are close together,

this approximation is sufficient but for nodes that are far

apart, which is the case early in the planning phase, this

approximation may not hold. As the tree grows denser, we

no longer have to worry about this.

3) AQRSteer (nnearest, xrand): Starting from the state

xnearest (mean of the particle set nnearest.s), we use the

AQR controller to generate a trajectory from xnearest to as

close as possible to xrand. The end of the trajectory gener-

ated, is our new state xnew. In this function, we propagate

the mean of the particle set to get an estimate of the position

of the new node. The actual node propagation is done using

a particle filter as explained in further subsections.

4) ChooseParent (T , xnew): As in the case of RRT*, we

look for a parent node for xnew. The parent node is a node

that connects xnew to the tree such that the cost to travel

from the start node to xnew is minimum. We have modified

this criteria to include uncertainty of the parent node in the

cost. This has been done so that the planner chooses a node

as a parent not only if its control cost is low but also if its

uncertainty is low. This allows for nodes in the discontinuous

measurement domains to grow.

The criteria for choosing a parent is as follows – let x′

represent the mean of the particle set of a node n′. For each

node n′ in the tree, we check if it is in the neighborhood

of xnew. The neighborhood is defined as AQRdist(x′, xnew)

< min(η, γ(log d
d)1/n) where d is the size of the tree and

η and γ are constants. For a thorough discussion on this

neighbourhood bound the reader may refer to [2]. From

among these near nodes we choose the node with the lowest

cost. The cost is defined as

Costnear = Wdist ∗ [n′.Cost+AQRdist(x′, xnew)]
+Wcov ∗ Cov(n′.s) (1)

Where, Cov(n′.s) represents the covariance of a particle

set. Here, we can adjust the weights Wdist and Wcov in the

cost function (1) to find a balance between expanding a node

that is closer versus expanding a node with low uncertainty.

The node with the lowest cost is chosen as the parent node

nparent. If no parent is found the current sample is rejected

and we resample.

5) ChooseAction: After having found the parent node

nparent, we evaluate if we should find a trajectory connecting

nparent and xnew or if nparent should move towards an

obstacle to come in contact. If the covariance of the particle

set of nparent is greater than a threshold value CovThresh
(specified by the user), it should come in contact with

the nearest obstacle to reduce its uncertainty, else it is

connected to xnew. This function ensures that nodes with

high uncertainty are not propagated forward towards the goal.

Such nodes come in contact with a wall to reduce uncertainty.

6) PFExtend(nparent, xnew): This function finds a trajec-

tory from nparent to xnew using a particle filter for belief

propagation and checks for collisions at every time step.

To drive the system from nparent to xnew, we linearize the

system about xnew to evaluate the AQR feedback controller.

As in a particle filter, each particle is a different state,

representing an estimate of the current location of the robot.

Thus, the AQR feedback controller is evaluated and used

as the motion model for each particle independently. The

motion model for each particle m at time step t is represented

as [16]:

x[m]
t ∼ p(xt|ut, x[m]

t−1)

Next we take a measurement at each time step and find

the probability of the measurement zt under each particle

x[m]
t , that is, w

[m]
t = p(zt|x[m]

t)
We use the above importance factor to resample the par-

ticle set. The term p(zt|x[m]
t) includes in it the measurement

noise. The higher the uncertainty in the measurement, the

larger the spread of the Gaussian, resulting in more uni-

formly distributed weights. Thus, the particles get resampled

uniformly when the measurement noise is high which leads

to lower reduction in uncertainty and vice-versa. The node

is propagated forward towards xnew and a new particle set

Snew is generated. If no undesired collision is detected along

the path, Snew is added as a new node (nnew) to the tree

with nparent as its parent. Cost of nnew is defined as:

nnew.Cost =nparent.Cost+ (2)

AQRdist(mean(nparent.S),mean(Snew))

where AQRdist represents the AQR controller cost of

travelling from the mean of the particle set of the parent

node nparent to the mean of the particle set Snew.

7) PFContact (nparent): After a node is selected to come

in contact, the planner searches in the environment for the

nearest contact location. The node is then propagated in the

direction of nearest contact using a particle filter.

Belief propagation for the node coming in contact with

an obstacle takes place using a particle filter in broadly

the same way as described in the previous subsection. The

differences are in the controller used for the motion model

and in the measurement on coming in contact. Instead of

an AQR controller, we use infinite-horizon LQR controller

to drive each particle to come in contact with the nearest

wall. We use this controller because it is very effective in

driving the system to a fixed point (zero velocity) without

specification of the time horizon. As we assume that we

come to rest upon collision, this controller is very effective

in slowing down the system as it tries to come in contact.

Upon coming in contact, we assume a perfect zero-variance

pseudo-measurement [21] in the direction of contact normal,

thus the node loses all uncertainty in one direction upon

contact. The new node nnew is then added to the tree.

8) GoalReached: Every time a new node nnew is added

to the tree, it is checked for two criteria. First, we check if

nnew is in a given neighborhood of the goal. Second, we

check if the uncertainty of nnew is less than a pre-specified

value GoalThresh. Once the goal is reached, we output a

feasible trajectory connecting the start and the goal state.

In the absence of binary contact sensors, the PFContact
step can be ignored and the algorithm works well for other

traditional limited field of view sensors.

IV. EXPLOITATION: OPTIMAL BELIEF SPACE

PLANNING

We now use the output of our PF-AQT planner and exploit

the space of trajectories in its vicinity to find a locally

optimal trajectory that minimizes a given cost function. We

build on the optimal BSP approach developed in [1].

A. Belief propagation

Belief evolves using an extended Kalman filter that as-

sumes Gaussian motion and sensor noise, and is applicable

to systems with nonlinear dynamics. Measurement model is

same as used for PF-AQT. Starting with an initial nominal

trajectory, we approximate the value function at each time

step t in the trajectory and optimize it to find the optimal

policy. We forward integrate this policy to find the nominal

trajectory for the next iteration. We then find the value

function for this new nominal trajectory and the process

continues until convergence to a locally optimal trajectory.

For the belief update steps and evaluation of the optimal

policy the reader may refer to [1].

B. Forward integrate

The control policy is forward integrated using the deter-

ministic belief dynamics [1]:

b̄i+1
0 = b0 (3)

ūi+1
t = Li

t(b̄
i+1
t − b̄i

t) + lit + ūi
t

b̄i+1
t+1 = g[b̄i+1

t , ūi+1
t]

where b0 is the belief at the start position. The superscripts

represent the iteration, thus, given a nominal trajectory at

the ith iteration we find the control trajectory and forward

integrate it to find the nominal trajectory for the (i + 1)th

iteration. The nominal trajectory for the first iteration is the

output trajectory from PF-AQT, which gives the benefit of

exploration.

As evident from the belief dynamics, this formulation does

not take into account contact with the environment. Thus,

we explicitly incorporate linear complimentarity constraints

in the forward simulation of dynamics at every time step.

Let us write the mean of the belief as x̂t = (qt, q̇t). The 2D

contact dynamics can be written as a linear complimentarity

problem in the following manner [19], [20]:

qt − qt+1 + q̇t+1 dt = 0 (4)

q̇t+1 − q̇t − (ut+1 + λt+1) dt = 0 (5)

φ(qt), λt,y, λ
+
t,x, λ

−
t,x, γt ≥ 0 (6)

μλt,y − λ+
t,x − λ−

t,x ≥ 0 (7)

γt ±Ψ(qt, q̇t) ≥ 0 (8)

φ(qt)
Tλt,y = 0 (9)

(μλt,y − λ+
t,x − λ−

t,x)γt = 0 (10)

(γt +Ψ(qk, q̇t))
Tλ+

t,x = 0 (11)

(γt −Ψ(qt, q̇t))
Tλ−

t,x = 0 (12)

λt = [(λ+
t,x−λ−

t,x) , λt,y] represents the contact force. The

above equations are written assuming that the normal contact

force λt,y acts in the y-direction and the tangential force

has been split into its +x and -x components, λ+
t,x and λ−

t,x

respectively. (4) & (5) represent the discrete time dynamics

for forward propagation. Slack variable γt represents the

magnitude of relative velocity of bodies coming in contact.

φ(qt) is the distance from contact location. (7) enforces

(a) Final trajectory (green) generated using
the PF-AQT planner

(b) Locally optimal solution (magenta) us-
ing iLQG BSP method. Nominal trajectory
is generated using deterministic trajectory
optimization (Straight line joining start and
goal).

(c) Locally optimal solution (magenta) using
iLQG BSP method. Nominal trajectory is
the output trajectory from PF-AQT planner
(dotted green).

Fig. 1: A robot with double integrator model moving in a 2D environment with walls at y = 1 and y = 50. (a) PF-AQT

tree with sub-trajectories and associated beliefs represented as particle sets at the end of each sub-trajectory (shown in

yellow, red, blue, cyan and magenta colors). Nominal trajectory (green) exploits reliable measurements to better localize

itself before moving towards the goal. (b) Locally optimal solution (magenta) using a nominal trajectory generated using a

deterministic trajectory optimization method (straight line connecting start and goal). iLQG planner converges to a locally

optimal trajectory identical to this nominal trajectory. (c) Locally optimal solution (magenta) using the output trajectory from

PF-AQT as the nominal trajectory (dotted green). Robot travels near the wall to get better measurements from proximity

sensors and contact sensors before moving towards the goal with low uncertainty.

friction cone constraints. Ψ(qt, q̇t) is the relative tangential

velocity. (9) represents positive contact force upon contact

and no contact force at a distance. (10) ensures that the

contact forces lie on the edge of the friction cone when the

contact is sliding.

We satisfy the constraints (4) - (12) at every time step

and find the control policy and state trajectory that satisfies

the free space as well as contact dynamics of the system.

The uncertainty update upon contact follows the proce-

dure developed by [21]. We apply a zero-variance pseudo-

measurement update at the contact location to enforce the

equality constraints. The measurement variance is zero in

the direction of the contact normal.

V. RESULTS

We apply our approach in simulation to two systems: (i)

double integrator with linear dynamics, (ii) nonholonomic

car-like robot with nonlinear dynamics. The motion planning

scenario involves motion and measurement uncertainties and

contact with nearby walls.

For each dynamic system, we first present results for the

PF-AQT planner. The results for the optimal belief space

planner are then presented in two scenarios. First, we seed

the planner with a nominal trajectory generated using direct

collocation without considering uncertainty in the system.

Second, we seed the planner with the nominal trajectory

obtained from our PF-AQT planner. The results are compared

for these two scenarios.

The cost function for the iLQG based belief space planning

algorithm is taken as a cost that minimizes the control effort

and uncertainty along the trajectory and penalizes distance

from the goal at the final time T:

cT (bT) = x̂T
t QT x̂t + trace[

√
ΣT QT

√
ΣT]

ct(bt, ut) = uT
t Rtut + trace[

√
Σt Qt

√
Σt]

A. Double integrator model

A robot with double integrator dynamics (13) moving

in a 2D environment is considered with noisy motion and

measurement models. The state is represented as q = (x, y,
ẋ, ẏ), where (x, y) is the position of the robot in 2D space

and (ẋ, ẏ) are the velocities. The acceleration of the robot is

directly controlled u = (ẍ, ÿ).

qt+1 = qt +

⎡
⎢⎢⎣
ẋ
ẏ
ẍ
ÿ

⎤
⎥⎥⎦ dt+Mm , m ∼ N (0, I) (13)

where M scales the motion noise. The state is partially

observable, as only the position of the robot is sensed.

The measurement model comprises of a limited field of

view proximity sensor and a binary contact sensor. Thus,

measurements are obtained only near the walls/obstacles, and

most of the free space has no measurements.

z =

[
x
y

]
+Nn , n ∼ N (0, I) (14)

where N scales the measurement noise based on the robot’s

distance to the wall. Contact detection using binary contact

sensors allows us to have perfect measurements along the

contact normal when contact occurs.

The robot navigates in a 2D environment with walls at

y = 1 and y = 50, thus, enclosing the state space at the top

and bottom of the Figures 1a, 1b, 1c. The initial state is at

(a) Final trajectory (green) generated using
the PF-AQT planner

(b) Locally optimal solution (magenta) us-
ing iLQG BSP method. Nominal trajectory
is generated using deterministic trajectory
optimization (Straight line joining start and
goal).

(c) Locally optimal solution (magenta) using
iLQG BSP method. Nominal trajectory is
the output trajectory from PF-AQT planner
(dotted green).

Fig. 2: A non-holonomic car-like robot moving in a 2D environment with walls at y = 1 and y = 50. (a) PF-AQT tree with

sub-trajectories and associated beliefs represented as particle sets at the end of each sub-trajectory (shown in yellow, red, blue,

cyan and magenta colors). Nominal trajectory (green) exploits reliable measurements to better localize itself before moving

towards the goal. (b) Locally optimal solution (magenta) using a nominal trajectory generated using a deterministic trajectory

optimization method (straight line connecting start and goal). iLQG planner converges to a locally optimal trajectory identical

to this nominal trajectory. (c) Locally optimal solution (magenta) using the output trajectory from PF-AQTC as the nominal

trajectory (dotted green). Robot travels near the wall to get better measurements from proximity sensors and contact sensors

before moving towards the goal with low uncertainty.

the left center of the figure at q = (5, 25, 0, 0) and the goal

state is at the right center of the figure at q = (40, 25, 0, 0).
Control cost matrix of Qt = I is used for the AQR controller.

For the infinite horizon controller we define state and control

cost matrices as Qt = I and Rt = 10I .

Figure 1a shows the evolution of the PF-AQT tree with

the various branches (sub-trajectories) plotted with their

associated beliefs represented as particle sets at the end of

each sub-trajectory (shown in yellow, red, blue, cyan and

magenta colors). The sampling-based planner leads the robot

close to the wall to get measurements from the proximity

sensors and come in contact, in order to better localize itself,

and then move towards the goal. The robot starts with an

initial covariance of 2 units at the start position and reaches

the goal with a covariance of 0.26 units. The goal reaching

covariance threshold GoalThresh was set at 0.3 units.

Figure 1b shows results for the iLQG based optimal belief

space planner (which we modified to handle contacts). The

planner uses the result from direct collocation, as its nom-

inal trajectory. For a double integrator model this nominal

trajectory is a straight line joining start and goal states. The

nominal trajectory is shown in blue and the optimal trajectory

is shown in magenta. We observe that the iLQG planner

converges to a locally optimal trajectory identical to the

nominal trajectory. This is because the robot is far from areas

where it can get reliable measurements (the walls). The local

optima is at the nominal trajectory where the control effort

is lowest. No gradients are detected to give the optimizer a

direction for uncertainty reduction. Thus, in the absence of

a good nominal trajectory, that can drive the system to areas

of discontinuous measurements, it is very difficult for locally

optimal planners to explore such regions.

Figure 1c shows results for the iLQG based belief space

planner that uses the output trajectory from our PF-AQT

planner as the nominal trajectory. The nominal trajectory is

shown in dotted green and the optimal trajectory is shown in

magenta. We observe that the planner leads the robot close to

the wall and slides along it, to get reliable sensing, and then

moves towards the goal. Thus, it is evident that the nominal

trajectory plays a big role in allowing the system to find

a solution in regions where low uncertainty measurements

are available. The algorithm converges to a locally optimal

trajectory in 6 iterations. The expected cost of the initial

nominal trajectory is 95.1 units and the cost of the locally

optimal trajectory obtained upon convergence is 4.1 units.

B. Non-holonomic car-like robot

A car-like robot with nonholonomic constraints navigating

through a 2D environment is considered with noisy motion

and measurement models. The state is partially observable,

only the position of the robot is sensed. The state is rep-

resented as x = (x, y, θ, v), where (x, y) is the position

of the robot in 2D space, θ is the orientation and v is the

speed. The control input consists of u = (a, θ̇) where a is the

acceleration and θ̇ = v
L tanφ, φ is the steering angle. Thus,

the car dynamics can be written as:

xt+1 = xt +

⎡
⎢⎢⎣
v cos θ
v sin θ

θ̇
a

⎤
⎥⎥⎦ dt+Mm , m ∼ N (0, I)

where M scales the motion noise. Measurement model is

the same as in the case of double integrator model (14).

Robot navigates in a 2D environment with walls at y = 1
and y = 50, thus, enclosing the state space at the top and

bottom of the figure. The initial state is at the left center of

the figure at q = (5, 25, 0, 0) and the goal state is at the right

center of the figure at q = (40, 25, 0, 0). Control cost matrix

of Qt = I is used for the AQR controller. For the infinite

horizon controller we define state and control cost matrices

as Qt = I and Rt = 10I .

Figure 2a shows the evolution of the PF-AQT tree for

the car-like robot with the various sub-trajectories plotted

with associated beliefs represented as particle sets at the end

of each sub-trajectory (shown in yellow, red, blue, cyan and

magenta colors). The sampling-based planner leads the robot

close to the wall to get measurements from the proximity

sensors and comes in contact, in order to better localize itself,

and then move towards the goal. The robot starts with an

initial covariance of 2 units at the start position and reaches

the goal with a covariance of 0.19 units. The goal reaching

threshold was set at 0.3 units.

Figure 2b shows results for the iLQG based optimal

belief space planner. The planner uses the result from direct

collocation, as its nominal trajectory. For a car-like robot

with initial pose (5, 25, 0, 0), that is, pointing right (towards

the goal), this nominal trajectory is a straight line joining

start and goal states. The nominal trajectory is shown in blue

and the optimal trajectory is shown in magenta. We observe

that the iLQG planner converges to a trajectory identical to

the nominal trajectory. This is because the robot is far from

areas with reliable measurements, thus the gradients in the

optimization cannot drive it towards those regions and the

planner converges to the local minima. In the absence of a

good nominal trajectory that can drive the system to areas

of reliable measurements, it is very difficult for the locally

optimal planner to explore such regions.

Figure 2c shows the locally optimal trajectory (magenta)

in the vicinity of the trajectory provided by the PF-AQT

algorithm shown in dotted green. We observe that the planner

leads the robot close to the wall and slides along it, to get

reliable measurements, and then moves towards the goal.

Thus, the nominal trajectory plays a great role in allowing

the system to find a solution in the regions where reliable

measurements are available. The algorithm converges to a

locally optimal trajectory in 10 iterations. The expected cost

of the initial nominal trajectory is 35.1 units and the cost of

the locally optimal trajectory obtained upon convergence is

2.8 units.

VI. CONCLUSION

Our work has been completed in two parts. In the first

part, through the development of the PF-AQT algorithm,

we have provided a means for successfully “exploring”

the state space and using reliable measurements from the

environment for better localization along the path to goal

attainment. In the second part, the output from PF-AQT was

used to initialize an optimal BSP method that “exploited” the

space of trajectories in the vicinity of the initial trajectory

to find a locally optimal trajectory. Our results have been

demonstrated using the double integrator model and non-

holonomic car-like robot.

REFERENCES

[1] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under
uncertainty using iterative local optimization in belief space,” The
International Journal of Robotics Research, vol. 31, no. 11, pp. 1263–
1278, 2012.

[2] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[3] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Robotics Science and Systems VI, vol.
104, p. 2, 2010.

[4] D. J. Webb and J. van den Berg, “Kinodynamic rrt*: Asymptotically
optimal motion planning for robots with linear dynamics,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on.
IEEE, 2013, pp. 5054–5061.

[5] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic
for rapidly exploring state space,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on. IEEE, 2010, pp. 5021–5028.

[6] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in Decision and Control
(CDC), 2010 49th IEEE Conference on. IEEE, 2010, pp. 7681–7687.

[7] G. Goretkin, A. Perez, R. Platt, and G. Konidaris, “Optimal sampling-
based planning for linear-quadratic kinodynamic systems,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on.
IEEE, 2013, pp. 2429–2436.

[8] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez,
“Lqr-rrt*: Optimal sampling-based motion planning with automatically
derived extension heuristics,” 2012.

[9] J. Van Den Berg, P. Abbeel, and K. Goldberg, “Lqg-mp: Optimized
path planning for robots with motion uncertainty and imperfect state
information,” The International Journal of Robotics Research, vol. 30,
no. 7, pp. 895–913, 2011.

[10] L. Jaillet, J. Hoffman, J. Van den Berg, P. Abbeel, J. M. Porta, and
K. Goldberg, “Eg-rrt: Environment-guided random trees for kinody-
namic motion planning with uncertainty and obstacles,” in Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on. IEEE, 2011, pp. 2646–2652.

[11] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on. IEEE, 2011, pp. 723–730.

[12] A. Sieverling, C. Eppner, F. Wolff, and O. Brock, “Interleaving motion
in contact and in free space for planning under uncertainty,” in
Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on. IEEE, 2017, pp. 4011–4073.

[13] E. Páll, A. Sieverling, and O. Brock, “Contingent contact-based motion
planning,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 6615–6621.

[14] R. Platt Jr, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief
space planning assuming maximum likelihood observations,” 2010.

[15] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under
uncertainty using differential dynamic programming in belief space,”
in Robotics Research. Springer, 2017, pp. 473–490.

[16] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[17] S. Patil, Y. Duan, J. Schulman, K. Goldberg, and P. Abbeel, “Gaussian
belief space planning with discontinuities in sensing domains,” in 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 6483–6490.

[18] K. Hausman, G. Kahn, S. Patil, J. Müller, K. Goldberg, P. Abbeel,
and G. S. Sukhatme, “Cooperative occlusion-aware multi-robot target
tracking using optimization,” rll. berkeley. edu, 2015.

[19] D. E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and coulomb friction,”
International Journal for Numerical Methods in Engineering, vol. 39,
no. 15, pp. 2673–2691, 1996.

[20] M. Posa and R. Tedrake, “Direct trajectory optimization of rigid body
dynamical systems through contact,” in Algorithmic foundations of
robotics X. Springer, 2013, pp. 527–542.

[21] S. Tully, A. Bajo, G. Kantor, H. Choset, and N. Simaan, “Constrained
filtering with contact detection data for the localization and registration
of continuum robots in flexible environments,” in 2012 IEEE Inter-
national Conference on Robotics and Automation. IEEE, 2012, pp.
3388–3394.

