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The γ -strength functions and level densities in the quasicontinuum of 147,149Sm isotopes have been extracted

from particle-γ coincidences using the Oslo method. The nuclei of interest were populated via (p, d ) reactions

on pure 148,150Sm targets and the reaction products were recorded by the Hyperion array. An upbend in the

low-energy region of the γ SF has been observed. The systematic analysis of the γ SF for a range of Sm isotopes

highlights the interplay between scissors mode and the upbend. Shell-model calculations show reasonable

agreement with the experimental γ SFs and confirm the correspondence between the upbend and scissors mode.
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I. INTRODUCTION

The spectroscopic properties of excited nuclei provide
information on the internal structure of these highly dense,
many-body quantum systems. Low-energy excitation regime
is treated differently compared to the high-energy quasicon-
tinuum region. In the latter, the quantities such as discrete
energy levels are replaced by nuclear level densities (NLD)
and transition probabilities are defined as γ -ray strength func-
tions (γ SF) which are average reduced radiation or absorption
probabilities at any given photon energy Eγ [1]. Both of these
observables also form important inputs for Hauser-Feshbach
calculations predicting the astrophysical neutron capture rates
[2]. Therefore, a comprehensive understanding of NLD and
γ SF is required for insight into the astrophysical processes
driving the synthesis of nuclei in our universe [3–5].

The NLDs are often described by phenomenological ana-
lytical formulas built on the first principles of the Fermi gas
model [6]. However, due to the lack of experimental informa-
tion on NLD, especially at high energies, the parametrization
of the phenomenological models fails, giving rise to several
microscopic approaches [7–15].

In order to explain the shape of the γ SF, phenomena such
as giant electric dipole resonances are commonly adopted
to fit the enhanced dipole transition probability at energies
around 12–17 MeV [16]. Below the neutron separation en-
ergy, an enhancement in γ -ray strength is marked by excita-
tion modes such as the E1 pygmy resonance (Eγ ∼ 10 MeV)
[17,18], the M1 scissors mode in deformed nuclei (E ∼

3 MeV) [19], or the M1 spin-flip resonance (E ∼ 8 MeV)
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[20]. The emergence of these contributions is well studied and
explained based on sound theoretical calculations. However,
a relatively recent observation of the strength enhancement
in the energy range E � 3–4 MeV [21–24] does not have
an affirmed origin yet. Experiments involving the extraction
of angular distributions established that this newly found
low-energy upbend is of dipole nature [24]. However, the
information on its multipolarity is still elusive. A recent polar-
ization measurement of the photons originating in the (p, p′)
reaction of 56Fe presented a preference for M1 character of
the radiation in the region of enhancement [25]. This result is
supported by the quasiparticle random phase approximation
(QRPA) calculations [26] and the large-scale shell model cal-
culations (LSSM) in 94–96Mo [27], 56,57Fe [28], and 44Sc [29]
isotopes where the large B(M1) strength at low energy, re-
ferred to as low-energy magnetic dipole radiation (LEMAR),
is attributed to the reorientation of high- j proton and neutron
spins [30]. This phenomenon is expected to appear near
closed-shell nuclei having valence neutrons and protons in
high- j orbitals lying near to the Fermi surface. Recently, a
more detailed theoretical investigation of the development
of LEMAR across the N = 28–50 shell was performed for
60,64,68Fe nuclei [30]. It was observed that the enhancement
in the γ -ray strength at E < 3 MeV for the near closed-shell
isotope 60Fe evolves into a bimodal structure comprising of
a low-energy upbend and a scissors-like resonance at 3 MeV
toward the midshell 64,68Fe nuclei. This theoretical result of
the emergence of a bimodal structure in midshell nuclei was
tested against the available experimental data on the γ SF of
well-deformed 151,153Sm nuclei [31]. Both the Sm isotopes
exhibit well pronounced low-energy upbend and a bump at
∼3 MeV corresponding to the scissors mode.

While the strength of the upbend and the scissors mode
is a small contribution to the γ SF, it has a significant im-
pact on capture and photodissociation reaction rates. TALYS
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calculations shown in Ref. [31] highlight the profound effect
of the observed low-energy strength enhancement on the
neutron capture rates. An increase of 3 orders of magnitude
in the rates is predicted for Sm isotopes lying at the neutron
drip line, provided a similar enhancement exists in that region.
Measuring the γ SF in nuclei close to the neutron drip line is
still a far-fetched goal; however, a systematic study of the evo-
lution of low-energy upbend in stable members of an isotopic
chain is required to have a clear picture of the conclusions
made in Ref. [30] and to further extrapolate the properties
of the γ SF to the less explored neutron-rich regions. In this
paper, the systematic study of the evolution of the γ SF at low
energies was extended to 147,149Sm nuclei which are closer to
the N = 82 shell.

II. EXPERIMENTAL PROCEDURE

The experiment was performed at the Cyclotron Insti-
tute of Texas A&M University, where two 98(1)% isotopi-
cally enriched samarium targets, 148Sm and 150Sm, 0.8 and
1.1 mg/cm2 thick, respectively, were bombarded by a 1.0 nA,
28 MeV proton beam from the K-150 cyclotron. The reac-
tion products were detected by the Hyperion array [32] that
consists of 12 high-purity germanium (HPGe) clover-type
γ -ray detectors combined with the �E -E STARS telescope
for charged particle identification and energy measurement.

The telescope comprised two segmented silicon detectors,
140 μm (�E ) and 1000 μm (E ) thick. Each of the detectors
was a disk, 72 mm in diameter, with a 22 mm diameter
opening for the beam in the center. The disk was divided
into 24 concentric 1 mm wide rings and into 8 segments in
the angular direction. The �E -E system was placed 18 mm
behind the target, providing an angular coverage for particle
detection of 30–58 degrees. The design of the telescope
allowed for identification of the light ion charged particle
reaction products (protons, deuterons, and tritons) and an
energy resolution of 130 keV FWHM for detected deuterons.

The clover γ -ray detectors were positioned approximately
21 cm from the target at 45, 90, and 135 degrees with respect
to the incident beam axis. Using standard γ -ray calibration
sources, energy resolutions of 2.6 and 3.5 keV FWHM were
obtained at 122 and 963 keV, respectively. The absolute
photopeak efficiency of the Clover array was measured to be
∼10% at 130 keV [32]. Only the γ rays coincident with a
particle were recorded, which provided data required to build
the particle-γ matrices for the Oslo method. The current study
focused on two reactions: 148,150Sm(p, dγ )147,149Sm.

III. ANALYSIS AND RESULTS

To extract the NLD and γ SF from particle-γ coincidence
data, the Oslo method was used as the analysis technique [33].
This procedure relies on the fact that the γ rays emitted in
the first step of a decay cascade contain information about the
level density and the γ -ray strength function. Therefore, the
distribution of these first-generation, or the primary, γ rays
can be used to extract the functional form of the NLD and
γ SF. The first step in obtaining a first-generation γ -ray dis-
tribution is to construct an excitation energy vs γ -ray energy
matrix which is then unfolded to correct for the efficiency of
the clover detector array. For this purpose, response functions

FIG. 1. A comparison of experimental γ -ray spectrum of a

clover detector with GEANT4 simulation for 60Co source.

of the HPGe clovers were simulated for γ -ray energies up
to 10 MeV with the GEANT4 package [34]. The unfolding
procedure is an iterative process in which the shape of the
Compton background, the single and double escape peaks,
and the annihilation peaks are estimated and subtracted from
the observed spectrum to get the full energy γ -ray spectrum
[35]. A comparison of the experimental γ -ray spectrum of
one clover detector with a simulation for a 60Co source is
presented in Fig. 1. The resulting unfolded E vs Eγ matrix
is divided into excitation-energy bins i, and γ spectrum fi

is projected for each of these bins. The spectra f( j<i) for the
underlying bins j consist of all the γ rays in fi except the ones
emitted first in the cascade. Thus, the primary γ -ray spectrum
hi for each bin i is obtained iteratively by subtracting fi and
the weighted sum of all the spectra from the underlying bins as

hi = fi − gi, (1)

where gi is given by,

gi =
∑

j

ni jwi j fi j . (2)
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FIG. 2. First-generation (primary) γ -ray matrices for 147Sm (a)

and 149Sm (b).

054331-2



NUCLEAR LEVEL DENSITIES AND γ -RAY … PHYSICAL REVIEW C 99, 054331 (2019)

P
ro

b
a

b
ili

ty
 /

 1
6

0
 k

e
V

0.02

0.04

0.06

0.08

0.1

0.12
(a) E = 2.4 MeV  Exp. data 

 T ρ 

 [keV]γE
0 500 1000 1500 2000 2500 3000 3500 4000

P
ro

b
a
b
ili

ty
 /
 1

6
0
 k

e
V

0.02

0.04

0.06

0.08

0.1

0.12
(c) E = 3.6 MeV

(b) E = 3.0 MeV

 [keV]γE
0 500 1000 1500 2000 2500 3000 3500 4000

(d) E = 4.0 MeV

FIG. 3. A comparison of experimental primary γ -ray spectra (crosses) for four excitation energies and the product of ρ(E f ) and T (Eγ )

obtained from the χ 2 fit (solid lines) of P(E , Eγ ) in 149Sm. The fit is performed for the entire first-generation matrix and, as shown here, works

well for different subsets of excitation energies.

The factors ni j correct for the difference in population cross
sections of excited states and wi j correspond to the probability
of decay from states in bin i to states in bin j. The latter
constitute the weighing function W which becomes equal to
the primary γ -ray spectrum as the convergence is reached.
It has been proved that the final primary γ -ray spectrum is
independent of the first estimate of the weighing function W

[33]. A detailed description of the unfolding procedure and
creation of first-generation γ rays is provided in Refs. [35,36].

For the present data, experimental first-generation γ -
ray matrices P(E , Eγ ) for 147Sm and 148Sm are shown in
Figs. 2(a) and 2(b), respectively. For statistical γ decay, the
Brink-Axel hypothesis [38,39] allows one to represent the
primary γ -ray matrix P(E , Eγ ) as the product of level density
ρ(E f ) at the final excitation energy and the γ -ray transmission
coefficient T (Eγ ):

P(E , Eγ ) ∝ ρ(E f )T (Eγ ). (3)

As the above relation holds good only for the statistical
regime, a lower limit on the excitation energy and the γ -
ray energy is necessary while extracting the ρ(E f ) and
T (Eγ ) from P(E , Eγ ). In this analysis, conditions on Emin =

2.5 MeV, Emax = 4.0 MeV, and Emin
γ = 500 keV were em-

ployed for both the Sm nuclei. Experimental statistics in the
high-energy region determines the maximum value for the
excitation energy in the analysis. A comparison of the experi-
mental primary γ -ray spectra projected for different excitation
energies and the product of ρ(E f ) and T (Eγ ) obtained from a
χ2 fitting routine of P(E , Eγ ) in 149Sm is presented in Fig. 3.
An overall good agreement is obtained between the data and
the fit. The solution obtained after the fitting is the product
of ρ(E f ) and T (Eγ ), which is unique, but the individual
quantities are not. There are many functional forms of ρ(E f )
and T (Eγ ) which can give the same product. Therefore, to

get the final ρ̃ and T̃ as

ρ̃ = AeαE f ρ(E f ), (4)

T̃ = BeαEγ T (Eγ ), (5)

the A, B, and α coefficients need to be determined with the
help of the known experimental data.

To determine the parameters in Eq. (4), the level density
function ρ(E f ) is normalized to experimentally known dis-
crete energy levels and the level density at neutron-separation
energy Sn. As 147,149Sm are stable nuclei, the information on
their level schemes for excitation energies up to 1–2 MeV

TABLE I. Parameters used for normalizing experimentally deduced level density and γ -ray strength function for 147,149Sm from the current

work and for 151,153Sm taken from [31].

Nucleus Sn (MeV) σ (Sn) D0 (eV) ρ(Sn) 〈�γ (Sn)〉 TCT Shift parameter

(106 MeV−1) (meV) (MeV) (MeV)

147Sm 6.342 6.266 252(40)a 0.31(5)a 62(6)a 0.58 −0.66
149Sm 5.871 6.121 65(13) 1.04(29) 66.9(14) 0.48 −0.43
151Sm 5.597 6.15 46(8) 1.66(44) 60(5) 0.51 −1.37
153Sm 5.868 6.31 46(3) 1.75(36) 60(5) 0.53 −1.41

aEstimated from systematics.
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solid line corresponds to the linear fit of the 151,149,145Sm data points

giving an estimate of the level density in 147Sm (red square). A

reduction factor of 0.89 is used for all these ρ(Sn) calculated using

the parameters given in Ref. [37].

is comprehensive [40]. The level density at Sn is estimated
from the spin-cutoff parameter σ and the neutron-capture
data, which provides the s-wave neutron-resonance spacing
D0. For 149Sm, the D0 value is taken from [37] and σ is
provided by the NLD systematic study in Ref. [41]. The
latter is available for 147Sm; however, the D0 value does not

exist. Thus, a systematic study of level densities at Sn for
neighboring odd-A Sm isotopes was performed. The calcu-
lated ρ(Sn) as a function of neutron separation energy are
shown in Fig. 4. The level density for 147Sm is estimated
by fitting an exponential function to the data points of odd-
A 151,149,145Sm. The higher-mass 153,155Sm isotopes are not
included in the fit because of the variation observed in their
trend. It is expected that ρ(Sn) will increase as the atomic
mass increases; however, for 153,155Sm, a decreasing trend
of ρ(Sn) is observed, which can be linked to the onset of
deformation in these two isotopes. A similar behavior can
be seen in deformed Dy isotopes [42]. Table I lists the D0

and spin-cutoff parameters used for normalizing the experi-
mental level-density data in 147,149Sm nuclei. The parameters
are consistent with the results obtained for the heavier Sm
isotopes [31].

Once the level densities at low energies and at Sn are
determined, the slope of the experimental NLD curve is fixed
by using the constant-temperature (CT) approximation,

ρCT(E ) =
1

TCT

exp
E − E0

TCT

. (6)

The CT fits shown in Figs. 5(a) and. 5(b) yield constant-
temperature and shift parameters as given in Table I. TCT of
0.58 and 0.48 MeV are obtained for 147,149Sm, respectively,
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FIG. 5. Level-density functions for 147Sm (a) and 149Sm (b). Experimental data are shown as black squares. The dashed line corresponds

to the constant-temperature approximation extrapolating to ρ(Sn) (open squares). The solid line is the known level density in the low-energy

discrete region. Experimentally deduced γ -ray strength functions are shown in (c) and (d). For comparison, the analytical approximations for
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TABLE II. Parameters for resonances and the upbend for 147,149Sm isotopes from the current work and for 151,153Sm taken from [31].

Nucleus Giant dipole 1 and 2 resonances Spin-flip M1 Upbend Scissors resonance

ωE1,1 σE1,1 �E1,1 ωE1,2 σE1,2 �E1,2 Tf ωmM1 σM1 �M1 C η ωSR σSR �SR BSR

(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (MeV) (mb) (MeV) (MeV−3) (MeV−1) (MeV) (mb) (MeV) (μ2
N )

147Sm 13.8 200 3.8 15.5 230 5.6 0.55 8.1 2.3 4.0 10(5)10−7 3.2(10)
149Sm 12.9 180 3.9 15.7 230 6.5 0.47 7.7 2.6 4.0 20(10)10−7 5.0(10)
151Sm 12.8 160 3.5 15.9 230 5.5 0.55 7.7 3.8 4.0 20(10)10−7 5.0(5) 3.0(3) 0.6(2) 1.1(3) 7.8(34)
153Sm 12.1 140 2.9 16.0 232 5.2 0.45 7.7 3.3 4.0 20(10)10−7 5.0(10) 3.0(2) 0.6(1) 1.1(2) 7.8(20)

which are in accordance with the values reported in Ref. [31]
for heavier 151,153Sm isotopes.

The last step is to find the scaling parameters for the γ -ray
transmission coefficient T (Eγ ). The average total radiative
width 〈�γ 〉 at Sn needed for normalizing the T (Eγ ) was taken
from [37]. The normalization procedure is described in detail
in Refs. [19,21] and the parameters are summarized in Table I.

The transmission coefficients can be converted to the
dipole γ -ray strength function as

f (Eγ ) =
1

2π

T (Eγ )

E3
γ

. (7)

The resulting experimental γ SF are presented in solid squares
in Figs. 5(c) and 5(d), respectively. Additionally, results from
(γ , n) cross section measurements from Filipescu et al. [43]
are also shown for comparison. The dipole strength functions
shown were calculated from the reaction cross section given

in Refs. [43,44]:

f (Eγ ) = σ (Eγ )/(3π2h̄2c2Eγ ). (8)

The combined data sets were then fitted with two generalized
Lorentzians (GLOs) for the giant electric dipole resonance
(GDR) as defined in RIPL-3 [44]. The M1 spin-flip resonance
was fitted with a Lorentzian shape with estimates of parame-
ters given in RIPL-3.

The measured γ SF shown in Fig. 5 show a distinct feature
at low energies: an enhancement at energies below 2 MeV.
This feature, an upbend, was previously observed in deformed
151,153Sm isotopes [31] in combination with the scissors mode
at around 3 MeV. In the case presented here, the 147,149Sm
isotopes are nearly spherical, thus the scissors mode is not
present.

Following the procedure from [31], the upbend was
fitted with

fupbend(Eγ ) = C exp(−ηEγ ). (9)
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FIG. 6. γ -ray strength functions for all four Sm isotopes with the GDR contribution subtracted. Red solid lines indicate the fit to the upbend

region, while the red dashed lines show the fit uncertainty. The results are compared with shell model calculations (black curve).
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TABLE III. Total B(M1) strength in the 0–5 MeV region calcu-

lated for the upbend and scissor components of the γ SF.

Nucleus 147Sm 149Sm 151Sm 153Sm

B(M1)tot(μ
2
N ) 9.8+16.7

−6.3 7.2+9.8
−4.2 8.0+9.8

−4.2 8.0+9.8
−4.2

The results are shown as green dashed lines if Figs. 5(c)
and 5(d) and the fit parameters are listed in Table II. The
fit parameters obtained for 147,149Sm isotopes are consistent
with those for 151,153Sm from [31], as can be observed from
Table II.

In Fig. 6, the γ -strength functions for all four Sm isotopes,
A = 147, 149, 151, 153, are shown with the GDR component
subtracted. Thus, only the upbend and the scissor components
are present in the plots. The fit to the upbend, with uncertain-
ties as listed in Table II, is also shown. It can be seen that
the strength of the scissors mode at about 3 MeV increases
with the mass number. This is consistent with the deformation
of the Sm isotopes in this region, which increases with the
increasing number of neutrons. The 147Sm isotope is nearly
spherical, thus the scissors mode is not present.

Within the uncertainty of the fit to the upbend region of
the γ SF it is difficult to assess the trend of the γ SF as a
function of N . However, for comparison with Ref. [30], the
total B(M1) strength in the Eγ region of 0–5 MeV is obtained
from a numerical integration of the strength function:

B(M1)tot =
9

16π
(h̄c)3

∑
fM1(Eγ )�Eγ . (10)

The resulting strengths are listed in Table III for all four
Sm isotopes. The uncertainties listed in the table represent
the maximum error in the B(M1)tot and were calculated by
integrating the upper and lower limits of the fits to the upbend
and scissors components based on the uncertainties in the fit
parameters listed in Table II. The total strengths for all of the
Sm isotopes are comparable and deviate by less than 13%
from the average value of 8.27+11.2

−4.7 . This result is in a very
good agreement with the predictions from [30].

IV. SHELL-MODEL CALCULATIONS

The experimental results for the γ SFs of all four Sm
isotopes were compared to predictions of shell-model cal-
culations. The calculations were carried out in the jj56pn
model space with the jj56pna Hamiltonian using the
code NUSHELLX@MSU [45]. The model space included
the (1g7/2, 2d5/2, 2d3/2, 3s1/2, 1h11/2) proton orbits and the
(1h9/2, 2 f7/2, 2 f5/2, 3p3/2, 3p1/2, 1i13/2) neutron orbits rela-
tive to a 132Sn core. In the present calculations, two protons
were allowed to be lifted to the 2d3/2, 3s1/2, and 1h11/2 orbits,
and two neutrons could be excited to the 2 f7/2, 3p3/2, and
2 f5/2 orbits. The calculations of M1 strengths included the
lowest 60 states each with spins of Ji, J f = 1/2 to 13/2.
The range of spins populated in the reaction is based on
the results from Cooper et al. [46]. Effective g factors of
geff

s = 0.7gfree
s were applied. The reduced transition strengths

B(M1) were calculated for all transitions from initial to fi-
nal states with energies Ei > E f and spins Ji = J f , J f ± 1.
This resulted in more than 28 000 M1 transitions for each
parity.
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FIG. 7. Level density functions for all four Sm isotopes. Solid symbols: data extracted using the Oslo method. Solid line: level density

from shell-model calculations. Dashed line: known levels.
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Strength functions were deduced according to

fM1(Eγ , Ei, Ji, π )

=
16π

9
(h̄c)−3B(M1, Ei → E f , Ji, π )ρ(Ei, Ji, π ), (11)

where Eγ = Ei − E f , B(M1) are averages in considered
(Ei, E f ) elements for given Ji, π , and ρ(Ei, Ji, π ) are level
densities from the present calculations. The strength functions
fM1(Eγ ) were obtained by averaging step by step over Ei, Ji,
and π .

The calculated level densities are included in Fig. 7. In
contrast to the steadily increasing experimental NLD, the
restricted number of levels causes a cutoff of the calculated
NLD above about 3 MeV, which is the approximate energy of
the highest of the 60 levels taken into account for each spin. As
a consequence the theoretical curves saturate and bend over at
2.5, 1.5, 1.2, 1.2 MeV for N = 85, 87, 89, 91, respectively,
which is the signal of the missing levels. Only below these
energies can the calculated level densities be compared with
the experimental ones. There, the calculations follow the
CT expression (6) with TCT ≈ 0.5 MeV, in good agreement
with the experimental values TCT in Table II. The average
scale of the experimental level densities is well reproduced
for N = 85, 89, 91. It is overestimated by a factor of 2 for
N = 87. The calculations do not account for the details of the
Ex dependence of the level density, nor are they capable of
reproducing the energies of the observed lowest levels.

The calculated strength functions are included in Fig. 6.
Because of the high level density of the Sm isotopes, the
highest of the included 60 levels at each spin appear around
3 MeV, and consequently the γ -ray energies reach up to
about 2.5 MeV only. For 149,151,153Sm, the calculated strength
functions reproduce the experimental ones in the range of
1 < Eγ < 2.5 MeV. They account for the development of the
dip between the decreasing upbend and the starting scissors
component with increasing deformation. The present calcu-
lations affirm the findings in Ref. [30] that the shell-model
calculations indicate the appearance of the scissors mode in
deformed nuclei. The calculations substantially underestimate
the strength below 1 MeV. In contrast to earlier calculations
for lighter nuclei [27,28,30,47,48] the shape deviates from the

exponential form seen in the experiment. We attribute this
discrepancy as well as the deviations of the calculated from
experimental level densities to the restrictions enforced by the
numerical effort. The missing strength for low energy γ rays
may signal that calculations do not account for transitions
between closely spaced levels above the highest calculated
ones.

V. SUMMARY

Level densities and γ -ray strength functions were extracted
from particle-γ coincidence data for 147,149Sm nuclei using
the Oslo method. As in the previous study of the Sm nuclei,
the low-energy upbend in the γ SF has been observed at
energies below 2 MeV. No structure that could be attributed
to the scissors mode has been observed, which is consistent
with the lack of deformation of the studied nuclei. The results
of this work are consistent with the previous measurements
of the statistical properties of the Sm nuclei [31]. Moreover,
the total M1 strength in the γ -ray energy range of 0–5
MeV remains fairly constant across the isotopic chain, as
predicted by Schwengner et al. [30]. Shell model calculations
for the lowest 60 levels for spins 1/2 to 13/2 were carried
out, which reproduce the gross structure of the experimental
level densities (exponential increase with excitation energy)
and of the γ -ray strength functions (development of a min-
imum at a transition energy of about 1.7 MeV caused by
the emergence of a scissors resonance with the onset of
deformation).
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