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Abstract. A Generative Adversarial Network (GAN) is an unsu-
pervised generative framework to generate a sample distribution
that is identical to the data distribution. Recently, mix strategy
multi-generator/discriminator GANs have been shown to outperform sin-
gle pair GANs. However, the mixed model suffers from the problem of
linearly growing training time. Also, imbalanced training among genera-
tors makes it difficult to parallelize. In this paper, we propose a balanced
mix-generator GAN that works in parallel by mixing multiple disjoint
generators to approximate the real distribution. The weights of the dis-
criminator and the classifier are controlled by a balance strategy. We also
present an efficient loss function, to force each generator to embrace few
modes with a high probability. Our model is naturally adaptive to large
parallel computation frameworks. Each generator can be trained on mul-
tiple GPUs asynchronously. We have performed extensive experiments on
synthetic datasets, MNIST1000, CIFAR-10, and ImageNet. The results
establish that our model can achieve the state-of-the-art performance (in
terms of the modes coverage and the inception score), with significantly
reduced training time. We also show that the missing mode problem can
be relieved with a growing number of generators.

Keywords: Deep learning · Generative adversarial networks
Parallelization

1 Introduction

Generative Adversarial Networks were proposed by [8], where two neural net-
works, the generator and the discriminator, are trained to play a minimax game.
The generator is trained to fool the discriminator while the discriminator is
trained to distinguish fake data from real data. When Nash Equilibrium is
reached, the generated distribution PG will be identical to the real distribution
Preal. Unlike Restricted Boltzmann Machine or Variational Auto-encoder that
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explicitly approximate data distribution, the approximation of GAN is implicit
[7]. Training a GAN is challenging due to various potential problems such as gra-
dient vanish [1], missing mode [5,10,11,15,16], mode collapse [2,7], equilibrium
[3,4], etc.

Recently, the authors of [3,9] have used a set of generators to replace a single
complex generator. Each generator only captures a part of the real distribution.
In this case, the distance between the mix-generated distribution and the real
distribution should be minimized. A new classifier is added to separate each pair
of generators. The generated image using this approach obtained the highest
score (Inception Score of about 15% better than the average of the second and
the third competitors). Note that the overlapping penalty from the classifier
and an unrealistic penalty from the discriminator may conflict during training.
More specifically, we observe two problems in practice: (1) competition: multiple
generators try to capture one mode, but are hampered by a strict boundary. The
competition happens when the total number of generators K is greater than the
actual number of modes of Preal. (2) One beats all: One or a few of the generators
are too strong to capture all the modes, while the other generators are forced
to move away from the data distribution since the penalty of the classifier is
stronger than the penalty of the discriminator. In this paper, we offer novel and
efficient techniques to solve the imbalance problems and effectively parallelize
the multi-generator model.

Our idea is to dynamically balance between two penalties, based on the stage
where each generator stands. To control this competition, we propose a balance
term β, where all the training information from all the generators are collected,
the current progress of each generator is evaluated, and a decision is made based
on the overall stage of all the generators. To further improve and speed up the
model, we propose a reverse KL divergence loss function instead of JS Diver-
gence as the generator loss, to avoid mode collapse and improve the generator’s
ability to capture all the modes. Moreover, our model can allow parallelized
training among generators, with synchronized or asynchronized updates for the
discriminator, which significantly reduces the training time. Another advantage
of our parallelization framework is robustness and extensibility. Increasing or
decreasing the number of processors will not hamper the training process. The
framework can dynamically adapt to the change. Experimental results show that
our model can solve the missing mode problem and generate diverse images by
adding generators into the model.

2 Related Works

Recently, many researchers have started focusing on designing a mixture of gen-
erators to beat the discriminator. The authors of [13] train different generators
to capture different granularities of the image and generate a high-resolution
image. The paper [17] uses the idea of Adaboost, where the weight of the mis-
classified data is increased, and the final model is a mixture of all the weak
learners trained in previous steps. A mixture model where multiple generators
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are trained to play against the discriminator is given in [3]. Given enough num-
ber and complexity of generators, a Nash Equilibrium can also be achieved, and
the discriminator tends to lose the game. The authors of [9] follow this idea and
achieve the state-of-the-art generated quality (inception score). However, these
two methods suffer from the imbalance and competition problems mentioned in
the previous section. Our method extends this idea in a novel manner. We exploit
the fact that given enough generators, with balance control, all the modes can
be captured and the mixed generators can finally win.

To understand and solve the missing mode problem, [1] proves that any
proxy loss function that contains the reverse Kullback Leibler divergence (KL
divergence [12]) term tends to capture a single or few modes of Pdata, while
ignoring the other modes. It has been claimed that an imbalance in data points
for different modes may cause the missing mode problem [5]. The generation
manifold tends to move to modes with dominating data points while ignoring
modes with only a few data points. Chey et al. [5] propose to use an autoencoder
to map the data points back to the prior distribution z, and let the generator
sample from the mapped distribution prior instead of a simple Gaussian. This
paper also introduces an evaluation metric to measure both the generated quality
and the ability to handle the missing mode problem, which is not highlighted in
the traditional Inception Score measurement ([15]). Unrolled GAN, where copies
of the discriminators are made, and back-propagation is done through all of the
discriminators, while the generator is updated based on the gradient update of
those discriminators has been presented in [10]. In [6], the authors propose a
multi-discriminator model, where weak discriminators are trained using parts
of the data, and the gradients from all the discriminators are passed to the
generator. The authors of [16] have used another reconstructor network to learn
the reverse mapping from generated distribution to prior noise. If the support
of the mapped distribution is aggregated to a small portion, then the missing
mode problem is detected. A dual discriminator model where KL and reverse KL
divergence are controlled by two discriminators is offered in [11]. In this model,
the weights of the two discriminators are controlled by a neural network.

3 Our Method

The original generative adversarial network was first proposed in [8], and can be
formulated as a minimax game between a discriminator D and a generator G,
where the loss function can be defined as:

J D
θD = Ex∼Pdata

[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))]

J G
θG = Ez∼pz(z)[log(D(G(z)))]

θG = argmin
θG

max
θD

J D
θD

(1)

For the generator, the optimal discriminator at each step is D∗ = Pdata

Pdata+Pg
.

When convergence is reached, we can obtain Pg = Pdata. The procedure is
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equivalent to minimizing the Jensen Shannon Divergence JSD(Pg||Pdata). As
discussed in [1], the zero sum loss results in the gradient vanish problem where
generator can learn nothing since the gradient is zero. Thus heuristic/proxy loss
for the generator G is proposed. As is proved in [1], the gradient of the heuristic
loss is equivalent to the gradient ∇θG [KL(Pg||Pdata) + JSD(Pg||Pdata)].

3.1 Loss Functions

In our work, we design a multi-player game by dividing one generator into K
generators, and adding another classifier to the original minimax game. The loss
function for every single generator is:

J D(G,D) = Ex∼Pdata
[log D(x)] + Ex∼PG

[log(1 − D(x))]

J C(G,C) = Ex∼Pg−k
[log C(x)] + Ex∼Pgk

[log(1 − C(x))]

J Gk(Gk, C,D) = Ex∼Pgk
[1 + log D(x) − log(1 − D(x))]

− βk Ex∼Pgk
[log(1 − C(x))]

(2)

Since the loss function J Gk(Gk, C,D) is not bounded, we need to truncate J Gk

if D > t to avoid the gradient explosion problem, where t is a threshold value.
The goal is to solve the multi-player minimax game. If we take a closer look at
the loss functions, we will notice that: (1) The discriminator loss J D is nothing
but the loss from the original GAN paper, which minimizes the Jensen-Shannon
Divergence (JSD) between the mixture of generators and Preal; (2) the classifier
loss J C is actually another discriminator that treats G−k as real samples, Gk

as fake samples, and separates each generator Gk from all the other generators
G−k maximizing JSD(Gk||G−k). The output of the classifier C is a softmax
layer with size K; and (3) each generator is trained according to the gradient
provided by both the discriminator D and a weighted classifier C.

We can show that the distance we are minimizing is DKL(Pgk
||Pdata) and

−DJSD(Pgk
||Pg−k

). From [8], the optimal discriminator, given the current gen-
erator G, has a close form D∗

G = Pdata(x)
Pdata(x)+Pg(x)

. Since the loss function of C

is fairly close to D, we can obtain the optimal C given that the current G is
C∗

G =
PG−k

(x)

PG−k
+Pg(x)

. Next, we will analyze the loss of the generator when we fix
D = D∗ and C = C∗.

Proposition 1. Given optimal D∗ and C∗, minimizing the loss for generator
in Eq. 2 is equivalent to minimizing:

D(Pgk
, Pdata, Pg−k

) = DKL(Pgk
||Pdata) − βDJSD(Pgk

||Pg−k
).

Proof. We first show that minimizing the first term is equivalent to minimizing
DKL(Pgk

||Pdata). If we take the partial derivative of the reverse KL divergence:

∂

∂θ
DKL(Pgk

(θ)||Pdata) =
∂

∂θ

∫
Pgk

(θ) log
Pgk

(θ)
Pdata

dx.
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We can use Leibniz integral rule to switch integral and derivative, if we assume
that the function inside the integral satisfies: 1. continuity, 2. continuous deriva-
tive, and 3. limx→∞ f(x) = 0. We obtain:

∂

∂θ
DKL(Pgk

(θ)||Pdata) =
∫

∂Pgk
(θ)

∂θ
log

Pgk

Pdata
+ Pgk

∂Pgk
(θ)

∂θ
dx.

Substituting D with optimal D∗, J Gk(Gk, C,D) can also be rewritten as:

J Gk(Gk, C,D∗) = Ex∼PG
[1 + log(

1 − D∗

D∗ )] = Ex∼PG
[1 + log

Pgk
(θ)

Pdata
]

=
∂

∂θ

∫
log

Pgk

Pdata
Pgk

(θ)+Pgk
(θ) dx =

∫
log

Pgk

Pdata

∂Pgk
(θ)

∂θ
+Pgk

∂ log Pgk
(θ)

∂θ
dx,

which is equivalent to the gradient of the reverse KL divergence. Note that we
assume that Pgk

Pdata
is a constant when optimal D∗ is obtained. The second term

in the generator loss is the same as the zero-sum loss, which is equivalent to
minimizing the Jensen Shannon Divergence DJSD(Pgk

||Pg−k
). �

3.2 The Balance Term

For the loss function in the previous section, both the discriminator and the
classifier provide gradient to the generator, i.e., the unrealistic error and over-
lapping error. Note that the two directions may conflict in practice. Based on the
information gathered from all the other generators, one should decide whether
to focus on minimizing the unrealistic error, or the overlapping error. The infor-
mation includes: how the generator k performs against all the other generators;
how the generator k performs against an ideal generator; and how much overlap
is detected by the classifier C. We define these three terms as relative perfor-
mance w , absolute bias d, and absolute overlap c for the generator k, assuming
the total number of generators is K:

wk =
expJ D

k∑K
i=1 expJ D

i

, dk = σ(J D
k ), ck = J C

k (3)

The balance term β is constructed based on w, d and c, considering the intuition:

1. ck and dk are both high or both low, the generator k is either in the initial
stage or in a stable stage, and there is no need to increase or decrease β.

2. ck is low but dk is high, the generator k runs outward in a wrong direction,
β needs to be reduced to pull PGk

back to Pdata.
3. ck is high but dk is low, the generator k captures a certain mode of Pdata

while conflicting with another generator. β has to be increased to separate
the two joint generators.

Synthesizing all the criteria above, we can construct β as:

βk = wk exp(−(
c

d
− λ)) =

exp J D
k∑K

i=1 exp J D
i

exp(−(
J C

k

σ(J D
k )

− λ)) (4)
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The final β will be renormalized using βk = exp βk∑K
i=1 exp βi

. Note that the sigmoid in

the expression is to map the discriminator loss to R(0,1). λ can be interpreted as
’diversity factor’ to control the separation among the generators. β will decrease
sharply if c/d > λ. A higher λ will cause a higher penalty from overlapping error
which results in a higher generated diversity.

In practice, we also multiply an extra term t decaying with time, where t =
exp(−αt), if the expected number of modes is small or the number of generators
is high. Adding the term t forces the overlapping error shrink over time, and
reduces the three players game back to two players game, where the convergence
is guaranteed.

3.3 Structure of PMGAN

The structure of PMGAN is shown in Fig. 1. All generators and the classifier are
connected by shared memory. The communication among them only happens
through the shared memory. The shared memory has K slots, where K is the
number of generators. Each slot contains three subslots: a sample part where
the samples generated by the generator k are stored, a validation part where the
value of the classifier is stored, and a progress part where the loss of the generator
is stored. Thus the total size of the shared memory is k(batchsize + 3). During
training, generator k will store its generated sample in the sample part of kth

slot, and continue training. Once the validation or progress slot is updated, the
generator will recalculate the overlapping loss or βk. Classifier C will update once
all the sample slots are updated, and store the softmax output to validation slots
for each k. Note that it is not necessary that the generator should stop and wait
for the response from the classifier or progress from the others since the generator
will not go far away from the previous update, and the training process is totally
distributed and asynchronized.

Classifier

G1 G2 GK

D1 D2 DK

Shared Memory

(a) structure of PMGAN

Sample G1 C1 P1Sample G1 C1 P1 Sample G2 C2 P2Sample G2 C2 P2 ......

Generator lossClassifier loss

(b) structure of shared memory

Fig. 1. Illustration of our proposed PMGAN
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4 Experiments

In this section, we demonstrate the practical effectiveness of our algorithm
through experiments on synthetic datasets and real datasets. The set up for
all the experiments is: (1) Learning rate = 0.0002, (2) Minibatch size = 128
for the generator, the discriminator, and the classifier, (3) Adam optimizer with
first-order momentum = 0.5, (4) β is set to 1 at the beginning, with decay
β = exp−λt, and (5) Activation function is LeakyReLU, weight initialization is
from DCGAN [14]. All the codes have been implemented in Pytorch (Inception
Score in Tensorflow).

4.1 Synthetic Datasets

Synthetic datasets are a mixture of 8 Gaussians without any overlaps. We have
used two settings: 8 generators and 10 generators. First, we train exactly 8
generators with random initialization. In Fig. 2, we show the results for every
5 K steps (discriminator steps).

Fig. 2. Evaluation on synthetic datasets. Top: 8 generators, 8 modes. Bottom: 10 Gen-
erators, 8 modes

From the results, we see that all the generators are spread out at the begin-
ning. The overlapping penalty and the generators proceeding in the same direc-
tion will be divided after certain number of steps. Since the number of modes is
exactly the same as the number of generators, the property of the reverse KL
divergence will keep each generator stay stationary. When competition happens,
the other generators will be pushed to other un-captured modes. Finally, all the
8 modes are captured by different generators.

We have then increased the number of generators to 10. The result is shown
in Fig. 3. In the beginning, the situation is the same as in the previous set-
ting, but the strong penalty will hamper the mode captured by two generators.
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The two generators are competing for the same mode. This illustrates that the
function of the balance term with decay is to ‘mediate’ the competition among
the generators. Two or more generators can collapse to the same mode and reach
final convergence after several epochs(determined by the decay factor).

4.2 Real World Data

In this section, we use three popular datasets, MNIST1000, CIFAR-10 and Ima-
genet. Note that the difference between MNIST and MNIST1000 is that the
latter one is constructed using 1, 000 channels to evaluate the missing mode of
the model. To evaluate the quality of the generated samples, we use the Incep-
tion Score proposed in [15], where the score is calculated by the expectation of
KL divergence E[DKLp(y|x)||p(y)], where we calculate the distance between the
conditional label and the real label.

MNIST1000 Dataset: The MNIST dataset contains 1, 000 classes. We ran
our model with different numbers of generators ranging from 1 to 16. The result
is shown in Tables 1 and 2. Note that by increasing the number of generators, the
modes captured by the mixed generator increased, while the distance between
generators decreased. Comparing to other models, our model captures all the
1, 000 modes, and obtains the lowest distance between the generated distribution
and the real data distribution.

Table 1. MNIST-1000 results for different models

Missing mode evaluation

Model GAN UnrolledGAN DCGAN PMGAN

Modes covered 628.0 ± 140.9 817.4 ± 37.9 849.6 ± 62.7 1,000

DKL(model||data) 2.58 1.43 0.73 0.06

Table 2. MNIST-1000 results for different numbers of generators

Num of generator 1 4 8 12 16

Mode covered 140 488 732 977 1,000

CIFAR-10 and ImageNet Dataset: We trained 1 to 20 generators for
CIFAR-10 and ImageNetdataset. From the results, we can conclude that the
inception score increases with the number of generators, while it gradually gets
saturated. From our observation, the threshold depends on the complexity of the
dataset, model capacity, and the classifier. The highest score we get is 8.17 and
9.08, with more than 12 generators, which is very close to the sequential MGAN
model. See Table 3.
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4.3 Training Time

The training time for the sequential mix generator model for CIFAR-10 dataset
is 115.4 min in our setting. To obtain around the same score, the PMGAN with
4 generators takes 54% of the time, 8 generators takes 42%, 12 generators takes
37%, and 16 generators takes 35%. The inception scores are 7.02, 8.03, 8.73, 9.01,
and 9.08, respectively. From Fig. 3(d), we can observe that with the significantly
reduced training time, the inception scores remain unchanged(only with slightly
decrease).

Table 3. Real world data results

Inception score

Model CIFAR-10 ImageNet

Real data 11.24 ± 0.16 25.78 ± 0.47

Wasserstein GAN [2] 3.82 ± 0.06

MIX+WGAN [3] 4.04 ± 0.07

DCGAN [14] 6.40 ± 0.05 7.89

D2GAN [11] 7.15 ± 0.07 8.25

MGAN [9] 8.33 ± 0.10 9.22

PMGAN(Our work) 8.19 ± 0.16 9.08

(a) MNIST

(b) CIFAR-10 (c) ImageNet (d) Runtime

Fig. 3. (a): Random pick from the mix generator for MNIST dataset. (b): Random pick
from the mix generator for CIFAR-10 dataset. (c):Inception score for mix generators
and single generator for both datasets. (d): Runtimes and Inception Scores for different
numbers of machines
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5 Conclusions

In this paper, we propose a novel balanced mixed generator GAN. Our algorithm
is parallelizable and can be scaled to large platforms. To resolve the competition
and one-beat all problems in the mix generator model, we have designed the
reverse KL divergence loss function, and a carefully designed balance term to
produce a stable, converging, and fast training method. Experimental results
show that we can handle the situation when the generators compete for the
same mode even when the number of generators is greater than the number of
modes. The empirical results reveal that our method achieves the state-of-the-
art performance on the quality of the generated distribution (in terms of the
inception score). Also, we show that our model solves the missing mode problem
on the MNIST1000 dataset.

More works have to be done in this multi-player game. First, the balance
method can also be improved if we can have a better heuristic for β. We can
also train to learn β, and to achieve a balance between competition and con-
vergence. The parallelization scheme that we propose can be utilized with other
multi-generator models such as the one in [13], to generate better resolution and
complex images.
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