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Abstract

Objectives. The law of crime concentration states that half of the cumulative crime in a
city will occur within approximately 4 percent of the city’s geography. The law is demonstrated
by counting the number of incidents in each of N spatial areas (street segments or grid cells)
and then computing a parameter based on the counts, such as a point estimate on the Lorenz
curve or the Gini index. Here we show that estimators commonly used in the literature for
these statistics are biased when the number of incidents is low (several thousand or less). Our
objective is to significantly reduce bias in estimators for the law of crime concentration.

Methods. By modeling crime counts as a negative binomial, we show how to compute
an improved estimate of the law of crime concentration at low event counts that significantly
reduces bias. In particular, we use the Poisson-Gamma representation of the negative binomial
and compute the concentration statistic via integrals for the Lorenz curve and Gini index of the
inferred continuous Gamma distribution.

Results. We illustrate the Poisson-Gamma method with synthetic data along with homicide
data from Chicago. We show that our estimator significantly reduces bias and is able to recover
the true law of crime concentration with only several hundred events.

Conclusions. The Poisson-Gamma method has applications to measuring the concentration
of rare events, comparisons of concentration across cities of different sizes, and improving time
series estimates of crime concentration.

1 Introduction

The law of crime concentration states that a large percentage of crime falls within a small
fraction of all the locations across the urban landscape [36]. The law of crime concentration
at place is a derivative of three decades of scholarly attention to the spatial patterning of
crime [9,34,39,41]. The law is a quantitative estimation based on historical events. In his
discussion of the law and through the use of crime data from cities of various sizes, Weisburd [36]
established what he refers to as “spatial bandwidths” that account for disproportionately high
volumes of cumulative crime within a city’s geography. Specifically, he found that 50 percent of
crime is confined to only 4.2 — 6.0 percent of the street segments, or a bandwidth of roughly four
percent of city geography. He found that 25 percent of crime was confined to 0.8 — 1.6 percent
of street segments, or a bandwidth of less than one and a half percent. Empirical patterning
consistent with the law has been documented in a number of studies [4, 15,19, 25, 36|, though
the specific bandwidths identified vary based on whether the spatial units of analysis are street
segments [35,42], addresses [34], or city grid cells (ranging 250 to 1,000 square feet) [19,25].
From a theoretical perspective the law lends guidance to better understand the nature of crime
and disorder across environmental [7,8| and community structural factors [29,30]. From an
intervention and policy perspective, the law can be leveraged to allocate police resources [6] and
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serves as a foundation to forecast crime [21,24]. Indeed, the law provides a model on how crime
concentration can be realized into crime prevention benefits.

Despite a wealth of promising evidence, refined methods to improve the validity and reli-
ability of estimates of crime concentration are needed to maximize the intervention potential
of this law, and to generalize the law to other measures of social problems across varying en-
vironmental, social, and political contexts. Weisburd [36, 37] articulates this demand in his
solicitation of further research and improved analytical methods to identify where the law of
crime concentration at place does, and does not, apply. Moreover, Bernasco and Steenbeek [4]
draw attention to challenges of method fidelity when determining crime concentration. Indeed,
the law of crime concentration at place is an axiom, and not a prescriptive set of guidelines for
measurement outside of the expected cumulative crime and cumulative place bandwidths.

In its most simple form, the law of crime concentration at place is demonstrated by calcu-
lating the percentage of total crimes falling within % of the city over an observation window
(typically x = 25% or 50%) [36]. Commonly used estimators of crime concentration produce
valid estimates when the number of crimes is large and exceeds the number of places. How-
ever, when crime counts are low and are exceeded by the number of places, biased estimates
are produced. Specifically, crime concentration is estimated as higher, given low crime counts
compared to high crime counts, when we expect them to be equivalent. This estimation bias
is discussed in detail below, though this concern is broached here as this issue has gone largely
unaddressed in research to date and is the focus of the present study.

In this article we introduce an estimator for the Lorenz curve and Gini index with significantly
reduced bias for all data set sizes when the crime counts follow a negative binomial distribution.
We first model crime counts as a negative binomial random variable, which has the benefit of
having a Poisson-Gamma representation. Secondly, we provide analytic formulas for the Lorenz
curve and the Gini index given a continuous probability density. We then combine these facts to
provide an inference methodology where 1) the parameters of a negative binomial are estimated
from the empirical count data and 2) the Lorenz curve and Gini index are then computed
via numerical integration or through simulation from the fitted Gamma density. We illustrate
the methodology with synthetic data generated by a stationary Poisson process, a self-exciting
point process, and real homicide data from Chicago. We show that our estimator can correctly
identify the law of crime concentration with just a few hundred events, whereas the empirical
estimator commonly used in practice requires several thousand. This has implications for crime
concentration analyses over time where event counts may be low in each time window. In our
example, we show that yearly homicide concentrates at less than half the level of the estimator
used in [36].

2 Need for Improved Concentration Estimation Meth-
ods for Low Event Counts

Many studies to date have avoided the estimate bias issue because their event counts far exceed
the number of places given their unit of analysis. However, a few notable studies have made
substantive contributions to the crime concentration literature based upon low count event
data. Recently, Andresen et al. [2] examined assault, burglary, robbery, theft from vehicle,
theft, motor vehicle theft, and other crime across 16 years in Vancouver. Street segments and
intersections, their spatial units of analysis (18,445), exceeded the number of crime incidents,
with the exception of theft, theft from vehicle, and burglary within beginning years of data. In
another study using Vancouver data from years 1991, 1996, and 2001, Andresen and Malleson [3]
estimate the spatial concentration of assault, burglary, robbery, sexual assault, theft, theft
from vehicle, and motor vehicle theft across census tracts (110), dissemination areas (1,011),
and street segments (11,730). Their reported crime counts indicate that assaults (in 1996 and
2001), theft (in 2001), and for all years robbery, sexual assault, and theft of vehicle all had
lower frequencies than the total number of street segments. In some crime cases the number
of incidents was quite small, such as sexual assault (between 440-672) and robbery (between
1,251-1,893).



Macbeth and Ariel [23] investigated cumulative crime and crime harm concentration in
Northern Ireland from 2012-2014 using street segments. Though they found 50 percent of
cumulative crime to concentrate in 2.5 percent of street segments, the total number of street
segments (19,217) exceeded the number of total crime events in all study years; 2012 (18,269),
2013 (16,183), and 2014 (15,769). In their test of the spatial concentration of drug activity
at Seattle street segments (a total of 24,023), Hibdon and Groff [18] leveraged call for service
data from both emergency medical services (1,706 incidents) and police (3,716 incidents) in
2004. Their overall results suggested half of all drug activity events concentrated within just
1.11 percent of street segments. Lastly, Braga and colleagues [5] estimated the concentration of
7,359 firearm incidents on 28,530 street units across 29 years in Boston. Speaking directly to the
issue at hand, the authors note “The fact that each year, on average, there are fewer than 254
ABDW-Firearm incidents among nearly 28,530 street units suggests that even a purely random
distribution might produce the observed clustering” (p. 42).

Discussing these studies is not to suggest criticism, but to illustrate a need for methods
improvement. This estimation bias issue is also likely to become a more common challenge
given the rapid growth of crime concentration studies generally and a growing focus on more
crime-specific estimates of spatial crime concentration [17,33]. Studies of crime concentration
within smaller cities are also expected to grow in coming years [36]. Thus, this estimation bias
issue has direct implications as smaller cities exhibit lower crime counts than urban areas, and
the most common unit of analysis — street segments — are often larger in small cities compared to
urban areas. For example, in his study of crime concentration in multiple cities, Weisburd [36]
reports descriptive statistics in his Table 2 that show that an average violent crime rate and
street segment length of the five large cities is 6.62 violent crimes per 1,000 residents and a
street segment length of 364 feet, compared to an average violent crime rate of 3.13 per 1,000
residents and a street segment length of 615 feet for the three small cities. Thus, not only do
smaller cities have fewer incidents of crime, but the unit of analyses to capture these incidents
are also larger and possibly further exacerbate estimate bias. When the concentration of crime
over time is analyzed, event counts in spatial units over shortened time windows may have a
larger frequency of zeros that inflate the estimate of crime concentration.

Lastly, an improved method for estimating the spatial concentration of crime for low event
counts will help scholars and practitioners apply the law of crime concentration to event types
beyond traditional crime counts. Common estimation methods used for crime concentration
are also employed by scholars investigating patterns of offending and victimization [4]. Scholars
are also beginning to estimate the concentration of events related to public health [40,43] and
social harm [23]. Accurately estimating low count events may also help inform the theoretical
understanding of crime concentration as it would enable models to account for environmental
factors that shape high-crime places [14]. Perhaps most importantly, accurate estimation of
low event concentrations will help tailor more effective interventions. If improved estimates
can generate more informative place-identification, police are better positioned to engage in hot
spots policing. Moreover, low event counts can be better incorporated into problem-oriented
approaches to reduce crime, disorder, and public health challenges — an approach proven to be
an effective strategy within hot spots [6].

3 Commonly Used Estimators for the Law of Crime
Concentration

The two common estimators used in criminology to empirically test the law are 1) points on
the Lorenz curve [19,25,36] and 2) the Gini index [4,15]. For ordered (greatest to least) crime
counts y(;) in spatial units ¢ = 1,..., N, the statistic used to estimate a point on the Lorenz

curve is, S
7 _ 2ui=1 Y

L , 1
®) Zi\;l Yi) W



where p = r/N is the fraction of cells or street segments flagged as hotspots. The estimator for
the Gini index is given by,
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While both of the above estimators are consistent, they suffer from severe bias for low event
counts. In the extreme case of observing one crime event over a short observation window, then
100% of crime is captured in 1/N cells on that day (L(1/N) =1 and G = 1). However, if the
observation window is expanded, then other cells will start to contain crime and L(1/N) and
G will decrease (for example, they will decrease to 1/N and 0 for a spatially uniform Poisson
process).

Recent attempts have been made to address this problem. Curiel et al. [11] propose a method
for addressing the small sample size problem by modeling the rate of crime as a function of
population in each spatial unit. However, population estimates are often not available at the
street segment and grid cell level (where the law of crime concentration is typically measured).

Curiel and Bishop [10] suggest modeling crime counts as a Poisson mixture ¢i A1 + ... + g Ak
where g; are the mixture weights and A; are the Poisson means. They then provide a “rare event
concentration coefficient" (RECC) for estimating the Gini index,
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A statistic is not given for points on the Lorenz curve in [10], however we show in Section 5.2
how their method can be extended for this purpose. We find the Poisson-Gamma model is a
better fit for Chicago homicide concentration, however in other situations the Poisson mixture
may be a good alternative. Our point in this paper is that, for low to medium event counts, a
model for the data needs to be used instead of the non-parametric estimators given by Equation
1 and Equation 2.
An adjusted Gini coefficient [4] has been proposed for small event counts,

N
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where M is the total number of crimes, IV is the total number of spatial locations, and z(;) is
the rank order (greatest to least) proportion of crimes occurring in place i. We will show that
this estimator, like Equation 2, also suffers from bias, albeit in the direction towards under-
representing concentration. In particular, for low event counts the adjusted Gini estimator
under-estimates the value of the Gini index.

There also has been work outside of criminology to improve estimators of the Gini index.
An estimator for the Gini coefficient and its standard error may be obtained through OLS [16]
and in [22] a simple method for approximating variance is given. In [22] the authors also review
the literature on estimation of the Gini index, highlighting how results have been republished
multiple times. Our hope here is to bring to light these issues in criminology, without claim
that we are the first to tackle these problems.

4 Estimating Crime Concentration from a Poisson-Gamma
Model of Crime Counts

4.1 Poisson-Gamma representation of the Negative Binomial

Let yi, ¢ = 1,..., N, denote crime counts in each of N spatial units over an observation window

of time [0,¢], containing a total of M crimes. We assume the rate of crime in each unit ¢ is

stationary with Poisson rate A;. Therefore, the probability of observing y; = y is given by:
(t)‘i)y —t\
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For large sample sizes (large ¢t) when the majority of the y; are non-zero, the non-parametric
estimators in the previous section can be used. For small sample sizes we need a parametric
model that can extrapolate into the zero-count cells. Therefore, we assume that \; themselves
are random variables with continuous probability density f(A) defined on [0, 00). It is from this
density f()\) that the law of crime concentration arises as f captures the heterogeneity of crime
risk across space. Our results that follow extend to general f(\), but here we further assume
that the density is Gamma: .
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Then it follows [20] that the counts y; are negative binomial and that
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where 8 = kt/u. Here k is the size or dispersion parameter that controls how over-dispersed
the negative binomial counts are and p is the mean of the negative binomial.

4.2 Integral formulas for the Lorenz curve and Gini index

Let f(\) be a continuous density on [0,c0) with mean v and cumulative distribution function
F(X). Then the Lorenz curve L(p) is defined by,
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and the Gini index is given by [44],

G = 2/0 L(p)dp — 1. 9)

We argue that the law of crime concentration should be defined in terms of Equations (8) and
(9). Note specifically that Equation (8) and (9) are not directly based off of crime counts y;, but
rather the underlying distribution of intensities f(XA). However, Equations (1) and (2) provide
consistent estimators of (8) and (9) that converge as ¢ — oo in Equation (5). This is because,
as ¢ gets large, the strong law of large numbers states that almost surely [13],

lim 2 = \,. (10)

Thus for large ¢ we may replace Equation (1) and (2) with,
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which are themselves estimators of (8) and (9). However, new methods of estimation are needed
for small t. Specifically, the intensities are not directly observed, and must be estimated from
crime counts. The problem we then consider is estimation of (8) and (9) from a finite, and likely

small, sample of crime counts that follows a negative binomial distribution.

One important property of the Lorenz curve to note is that in the case of the Gamma
distribution the Lorenz curve only depends on the dispersion parameter k [28]. Thus the time
parameter ¢ in Equation (5) that also appears in the scale parameter 8 does not play a role.
Also, the Gamma density Equations (8) and (9) do not have analytic solutions, but they can be
approximated via simulation or numerical integration.

(11)

and




4.3 Estimation of the law of crime concentration for small ¢

When ¢ is small enough in Equation (5), the majority of the empirical counts y; will be zero,
yielding a biased estimate of the law of crime concentration if employing Equations (1) and (2)
directly. However, we can use Equations (8) and (9) to estimate the Lorenz curve and Gini
index for small ¢, so long as we can accurately estimate the parameters k and 8 of the Gamma
distribution of intensities from our event counts y;. Given count data defined on grid cells or
street segments our general procedure then is as follows:

Estimation Procedure
1. Estimate negative binomial size k£ and mean p from the count data.
2. Define a Gamma distribution with shape k and rate kt/pu.

3. Compute the law of concentration using numerical integration or simulation from Equa-
tions (8) and (9).

In step 1 above, the parameters of the negative binomial can be estimated via maximum
likelihood where the log-likelihood is given by,

L= 21::1 |:log(l—‘(yi + k) — log(y:!) — log(I(k)) + K log (ﬁ) +yilog (ﬁ)] C13)

After taking the partial derivative of £ with respect to p and setting equal to zero, one finds that
the maximum likelihood estimate is i = M/N. A similar procedure for finding k unfortunately
does not provide an analytical solution, but Newton’s method can be used to solve for the
parameter (in the MASS library of R the function fitdistr can be used and we provide example
code in the appendix).

In step 3 above, either simulation or numerical integration can be used to compute statistics
related to the law of crime concentration. In the case of simulation, a Gamma random variable
g; is simulated in each of the N spatial units (the R function rgamma can be used and we
provide example code in the appendix). Then Equation (1) or Equation (2) are estimated using
the g;. For example, a point on the Lorenz curve is estimated as,
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and the Gini index is estimated as,
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It should be noted that the small sample size zero count issue is no longer a problem in Equation
14. This is because the Gamma distribution is continuous and the g; are all non-zero.

Alternatively, numerical integration can be used to estimate statistics related to the law of
crime concentration. For example, the integral in Equation 8 can be approximated as,
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and the integral in Equation 9 can be approximated as,
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for some small parameter h.
Note that in step 2 we technically need the value of t. But, as we pointed out above, the
shape parameter k is what determines the Lorenz curve for a Gamma distribution, and 8 plays



no role. Hence, in practice we simply use a value 8 = 1 without loss of generality. In the
Appendix at the end of the paper, we provide R code for estimating the Lorenz curve and Gini
index from negative binomial count data using simulation (as used in Figure 7 ) and numerical
integration (as used in Figure 8); we find both work equally well in practice. We note that
Equation (8) and (9) are general and do not apply only to the Gamma distribution (thus this
methodology would apply to other Poisson mixture models). In the experiments that follow,
we will show that even for small ¢ corresponding to a few hundred events this procedure works
well in recovering the correct law of crime concentration.

5 Results
5.1 Simulation study

In our first experiment we simulate a Poisson-Gamma random variable with shape k£ = 0.82
and rate 8 = 1/7.28 for N = 1000 cells and varying ¢. To generate a synthetic data set we first
simulate N = 1000 Gamma random variables \; representing the Poisson parameter in each cell
i. Next we generate a Poisson process in cell 7 on ¢t € [0, 4] by first drawing a Poisson random
number E; with mean 4); and then distributing E; event times uniformly on [0,4]. We then
compute each estimator on the data set for increasing ¢ (using all data up to time t). We repeat
this simulation for 50 synthetic data sets.

In Figure 1 we plot our Poisson-Gamma estimator (using simulation) against the estimator
given by Equation (1) for 5% of cells flagged (L(0.05) ~ 0.22 on the Lorenz curve) as the data
set size increases. We see that the empirical concentration estimator approaches 1 at small
event sizes and only approaches the correct value for several thousand events. For even a few
hundred events the Poisson-Gamma estimator is close to the true value of ~ 0.22. We point out
here that the inaccuracy of the empirical non-parametric estimators given by Equation 1 and
Equation 2 are due to bias rather than variance, as every curve is above the true value of the
statistic being estimated.

In Figure 1 we repeat the same experiment for the Gini index. We also include the adjusted
Gini estimator proposed in [4]. We note that the adjusted Gini index is biased downward,
under-estimating crime concentration at low events, then eventually converges to the empirical
Gini estimator and over-estimates crime concentration before converging to the correct value.

5.2 Study of homicide counts in Chicago (2001-2017)

Next we apply our methodology to homicide count data in Chicago. The data is an open data
set that can be downloaded at the Chicago open data portal [1]. There are 8911 homicides in
the data set in the years spanning 2001 to 2017. We divide Chicago into a grid of 6524 cells,
each of size 1000x1000 ft.

First we generate multiple homicide data sets by shuffling the event times in the original data
set (this step allows for the quantification of uncertainty and also enforces stationarity of the
process). Note that this procedure will not change the number of events in each cell, only when
those events occurred. Further, if the intensity A; of each cell is stationary, then all events are
uniformly distributed in time, and shuffling the times of events will retain this characteristic.
Hence, each shuffled dataset will retain the same distribution of intensities f()), and should
yield the same crime concentration. Next we repeat the same exercise as above, computing the
estimators for the law of crime concentration as the data set size increases. In Figure 2 we
plot the estimates for L(0.05) and G as we did for the simulation study in the previous section.
We note that the Poisson-Gamma estimator is stable, predicting concentration at about 15% of
crime in 5% of the city, even for a few hundred events. After 6000 events the empirical estimator
qualitatively appears to match the Poisson-Gamma estimator in Figure 2. However, for the Gini
index the empirical and adjusted Gini estimators still have not converged to our Gini estimate
that is consistently less than 0.75.

To understand when the empirical estimator would converge, we perform a simulation anal-
ogous to that of the previous section, but with parameters chosen to match the Chicago dataset.
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Figure 1: Simulated Poisson-Gamma process on 1000 cells. Left: Empirical concentration (fraction
of events in top 5% of cells) vs number of events included in the analysis in red. Poisson-gamma
estimator in blue. True value in black. Right: Empirical Gini index vs number of events included in
the analysis in red. Adjusted Gini index in green and Poisson-gamma estimator in blue. True value
in black.

In particular, we estimate the Poisson-Gamma model on the entire Chicago data set, yielding
estimates of .334 and 4.1256 for the shape and scale. In Figure 3 we see that over 20,000 events
are needed for the empirical Gini index simulation curves to match those of the Poisson-Gamma
estimator.

In Figure 4 we plot the best fit negative binomial curve against the empirical density (nor-
malized histogram) of homicide counts to verify that the Poisson-Gamma model is providing
a good fit. The Chicago data is not perfectly fit by a negative binomial, however the fit is
sufficient to accurately estimate parameters related to the law of crime concentration.

5.2.1 Comparison to a Poisson mixture

We also compare the Poisson-Gamma method to the Poisson mixture model proposed in [10].
As suggested in [10] we use the CAMAN R package [32] to estimate the Poisson mixture weights
¢i and means \;. To estimate a point on the Lorenz curve given these parameters, we again
assume crime is stationary and that the number of events in a grid cell is given by a Poisson
process with intensity A over time t, where \ is generated by the Poisson mixture model. To
estimate the Lorenz curve we use simulation rather than numerical integration. In particular,
we use a sufficiently large ¢ to avoid the zero-count cell issue and simulate the estimated Poisson
mixture process until the total number of events is as large as necessary to reach convergence in
the empirical Lorenz estimator; this is very similar to the simulation approach for the Poisson-
gamma model.

In Table 1 we compare the mean absolute percent error (MAPE) for estimation of Chicago
homicide concentration in the top 5% of cells vs. number of events used to estimate the Poisson-
mixture model (CAMAN) and the Poisson-Gamma model. The empirical concentration of
Equation 1 using all M = 8911 events is used as ground truth, and the MAPE is calculated
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Figure 2: (Left) empirical concentration of homicides in Chicago vs. number of sampled homicides
in red. Poisson-gamma estimator in blue. (Right) empirical Gini index vs number of sampled
homicides in red, adjusted Gini index in green, Poisson-gamma estimator in blue.

for 200 bootstrap samples of the Chicago data wherein event times are randomly shuffled as
described above. Here we see that for low event counts (less than 200), the Poisson-Gamma
model yields a better estimator in terms of MAPE, however the Poisson-mixture and Poisson-
Gamma are both significantly more accurate than using Equation 1 when M is low. The
performance of a method will likely depend on the dataset in question (and sample size), so
model selection, for example via the AIC, could be used.

5.2.2 Analysis of concentration over time

Next we illustrate our methodology on Chicago homicide concentration time series. This type
of analysis is typically conducted to illustrate the stability of crime concentration over time
[19,25,36]. However, in such an analysis the time window is shortened (i.e. small ¢) and thus
there is greater risk of over-estimating crime concentration. In Figure 5 we plot the Lorenz
and Gini estimators applied to homicide counts for each year from 2001 to 2017. Here we
see that the Poisson-Gamma estimator is stable, not only in time, but in comparison to the
estimator on the entire data set (both around 15%). However the empirical estimator puts
crime concentration per year at around 35%, a significant over-estimate. Similarly, the adjusted
Gini index under-estimates crime concentration by a factor of 2.

5.3 Estimating crime concentration for a Hawkes process

The method established in this work has very specific assumptions underlying it - that the
process is stationary and that the crime counts are distributed according to a negative binomial.
However, there is abundant empirical evidence that the space-time patterns of many types of
crime can be described by self-exciting point processes (see for example [24] and the references
within). Here, we relax the assumptions used in Section 4 by performing a simulation study in
which the individual location’s rates are not stationary Poisson processes, but are rather Hawkes



Table 1: Mean absolute percent error (MAPE) for estimation of Chicago homicide concentration in
the top 5% cells vs. number of events in the data set. Empirical concentration with all M = 8911
events used as ground truth. MAPE calculated for 200 bootstrap samples.

M (# events) Empirical CAMAN Poisson-Gamma

a0 585.42 213.80 72.27
100 585.42 108.12 38.23
150 384.52 65.57 25.05
200 279.23 40.57 20.72
250 219.01 25.49 18.06
300 180.85 13.87 15.34
350 156.05 9.33 13.07
400 139.36 7.58 11.36
450 127.70 8.49 9.87
500 120.12 10.93 9.12
550 114.80 11.51 8.54
600 111.40 12.09 7.98
650 109.74 11.27 7.57
700 108.18 11.54 7.14
750 103.27 11.61 6.69
800 95.14 10.88 6.61
850 87.43 10.81 6.13
900 80.89 10.35 6.10
950 75.38 9.94 5.75
1000 70.70 10.03 5.39
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Figure 3: Simulated Poisson-Gamma process with MLE Poisson-Gamma parameters (shape .334
and scale 4.1256) estimated from Chicago homicide data (with 1000x1000 ft* cells). Empirical Gini
index vs number of events in red. Adjusted Gini index in green and Poisson-gamma estimator in
blue. True value in black.
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Figure 4: Log-log plot of the empirical density (normalized histogram) of Chicago homicide counts
(black circles) and best fit negative binomial (red).

processes [24]. The Hawkes process is self-exciting, in that every event may excite further events
to occur, such that all events can be classified as either background events, which are not caused
by any prior event, or daughter events, which are events that are directly caused by some other
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Figure 5: (Left) Concentration of homicides in Chicago in top 5% of hotspots in each year for the
empirical estimator (red) and Poisson-Gamma estimator (blue). (Right) Gini index of homicides in
Chicago in each year for the empirical Gini estimator (red), adjusted Gini estimator (green) and
Poisson-Gamma estimator (blue).

event, referred to as its parent. Here, the intensity at location 7, A;(¢) is given by

Ait) = pi+ Y Owe ) (18)

tij <t

where ¢;; is the time of the 4" event at location 4, u; is the rate of background events at location
i, 0 is the excitation parameter that measures how many daughter events in expectation are
triggered by any other event, and w sets the timescale over which these excited events will occur
following their parent. We point out that here we consider specifically a case in which each
location may have its own background intensity w;, but that all locations share the same 6 and
w parameters.

While certainly Eq. 18 generally causes nonstationary intensities at each location, it is also
true [12,31] that the steady-state expected intensity for the Hawkes process is given by u;/(1—6),
while the steady-state variance of the intensity is given by w6?p;/2(1 — 6)2. This fact motivates
our numerical experiment. Specifically, we simulate 50 realizations of a Hawkes process with
0 = 0.7 and a chosen w, and where the background rates p; are Gamma distributed with shape
k = 0.82 and rate 8 = 1/7.28 for N = 1000 locations; these parameters are identical to those
used in Section 5.1. Then, the steady-state expected intensities of the Hawkes processes will
also be Gamma distributed, and the variance of that distribution will be proportional to w.
We would therefore expect that for small values of w, our estimation procedure should still
work quite well for the Hawkes process, as each location will have an approximately stationary
intensity that is drawn from a Gamma distribution. In fact, for w = 0.5, the results are nearly
identical to those of Fig. 1, and the estimation procedure presented here gives a significantly
less biased estimator than the alternatives considered for the Hawkes process.

However, for w = 50, none of the methods presented here gives a very good estimate until the
total number of events M is quite large; see Fig. 6. This is to be expected, as the Hawkes process
with this w value has a very large variance, and so is not well approximated by a stationary
process, so that many events must be considered before the asymptotic true value is achieved for
the various estimators. However, this particular obstacle is surrmountable in this case by pre-
processing the event data before attempting the estimation via the methods above. Specifically,
we can use stochastic declustering [45] to probabilistically identify which of the events in the
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Figure 6: Simulated Hawkes process on 1000 cells. Empirical concentration (fraction of events in
top 5% of cells) vs number of events in red. Poisson-Gamma estimator in blue.

Table 2: Estimation of L(.05) with Poisson-Gamma estimator along with Declustered Poisson-
Gamma Estimator for Hawkes process with 2500 and 5000 events. For comparison we include the
empirical concentration estimator applied to the Hawkes events along with the empirical estimator
applied to the declustered events.

# Events True L(.05) Poisson-Gamma PG Declust. Empirical Emp. Declust.
2500 0.219 0.517 + 0.032 0.286 £ 0.036  0.565 £ 0.034 0.388 £ 0.041
5000 0.219 0.427 + 0.023 0.203 £ 0.013 0.462 £ 0.025 0.271 £ 0.013

dataset are background events, whose intensities are indeed the stationary pu;, then run the
concentration estimators on those background events alone. More specifically, the stochastic
declustering technique involves estimating the parameters of the Hawkes process along with a
probabilistic indicator py for each event as to whether it is a background event (and probabilistic
indicators as to which event each event may be the daughter of); for our purposes we simply
threshold these p, so that any event with p, > 1/2 is considered background, while all others
are not. This process is computationally intensive, so we only present results for a small number
of total event values M in Tables 2 and 3. The results show that the declustering technique
allows for estimates that are significantly closer to the true value than for the non-declustered
data, and that the Poisson-Gamma estimator in this case shows less biased estimates than the
other methods considered.

Table 3: Estimation of Gini index with Poisson-Gamma estimator along with Declustered Poisson-
Gamma Estimator for Hawkes process with 2500 and 5000 events. For comparison we include the
empirical Gini estimator applied to the Hawkes events along with the empirical estimator applied
to the declustered events.

# Events True Gini Poisson-Gamma PG Declust. Empirical Emp. Declust.
2500 0.544 0.842 + 0.014 0.643 + 0.044 0.864 + 0.012 0.778 £+ 0.021
5000 0.544 0.789 + 0.013 0.511 + 0.027 0.809 + 0.011 0.673 £+ 0.014
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6 Discussion and Conclusion

That a small fraction of locations in an urban landscape typically accounts for a large fraction
of crime is widely observed and potentially warrants a claim for law-like status. A law of crime
concentration implies that universal causal mechanisms are at play and general crime prevention
measures might work across temporal or geographic contexts. Thus a law of crime concentration
is of great theoretical and practical importance [36].

While crime concentration is widely observed, the two most common measurement methods
fail to correctly estimate crime concentration for low crime counts. The concentration of crime is
variously overestimated (Lorenz, Gini) or underestimated (adjusted Gini), depending upon the
estimator in question, given small M (crime) and large N (segments or cells). Such estimation
errors can significantly impede the ability to conduct comparative research. Crime concentra-
tion estimated from small M large N settings cannot be compared without bias. Thus, crime
concentration from small cities, or low crime rate sub-areas of larger cities, cannot be readily
compared with that from large cities. This is a problem given that of the 9,579 cities reporting
to the FBI in the U.S. in 2016 for Part I crimes, 88.2% (8448) of them reported <1000 com-
bined property and violent crimes [26]. Also, crime concentration estimated at fine spatial and
temporal scales cannot be readily compared with that estimated at coarser scales.

An inability to compare settings without bias may impact how we model crime causation,
as well as what policy decisions are made in response to crime. For example, the importance
of micro-spatial crime attractors might be overstated (understated) given an overestimate (un-
derestimate) of crime concentration computed for small temporal windows. Community or
policing resources might be overallocated (underallocated) to certain places or times given an
overestimate (underestimate) of crime concentration.

To address these concerns we introduced a method for estimation of parameters arising in
the law of crime concentration with significantly reduced bias. The method has applications to
measuring the concentration of rare events and also to improving time series estimates of crime
concentration. We restricted our attention to the negative binomial distribution. In this case
the estimation procedure is simplified because of the Poisson-Gamma representation and the
law of concentration can be estimated from the inferred Gamma using numerical integration or
simulation.

In the existing crime concentration literature, there are often underlying assumptions on the
distribution of the data (for example stationarity) that are not explicitly stated. In our work
we have made our mathematical assumptions explicit in terms of stationarity of the process
generating crime and the distribution of counts (negative binomial). Whether these assumptions
hold or are violated in different data sets will have implications for the law of crime concentration.
Our method will work for any type of spatial unit (place, segment, grid cell, etc.) if the
assumptions of iid counts, stationarity, and negative binomial hold. In situations where the
data is not negative binomial, a Poisson mixture model may still be employed with an arbitrary
prior f(A). Depending on the form of f(A) parametric methods may still be used, though if
f(A) is multi-modal then non-parametric methods may be needed.

We have also not provided a rigorous mathematical analysis of the bias and variance of the
estimators detailed in this paper, instead relying on simulation. We believe that the accuracy
of each method is a function of the number of events and the number of spatial units and it
would be interesting to develop a theoretical understanding for the relationship. The size of
the spatial unit also plays a role in the calculation of statistics related to the law of crime
concentration [27,38]. The smaller the spatial unit, the greater the concentration as measured
by the empirical estimators given by Equation 1 and 2. However, this higher concentration is at
least in part due to the large number of zero-count units of measurement and our methodology
will be useful in the analysis of concentration in these small areas.

Another consideration is the near-repeat or self-exciting phenomena observed in certain
types of crime events. Here we have only addressed one specific case of this type of process,
showing through simulation that our method can still be used directly in some cases with good
results, while in other cases it can only be used after a further data pre-processing step has been
completed. Of course, many other types of self-exciting or near-repeat processes could also be
explored, and more advanced estimators may need to be developed for inference of the law of
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crime concentration in these scenarios. These are directions for future research.
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8 Appendix: R Code for estimation of the law of crime
concentration

# Simulation Rcode for Poisson—Gamma estimator of law of concentration L(p) and G
# inputs: counts (vector of counts in each cell)

# Ntotal (number of cells)
# Nflag (number of cells used as the top p fraction)
library (MASS)

pars=fitdistr (counts,"negative_binomial")$estimate #estimate parameters mu, k
simulated gam-rgamma(Ntotal ,shape=pars[1],rate=1)

sorted gam=sort (simulated gam,decreasing=T)
concentration=sum(sorted gam|1:Nflag|) /sum(sorted gam)

normalized gam=sorted gam/sum(sorted gam)
gini=(1/Ntotal)*(2*sum(cumsum(normalized gam))—Ntotal —1)

Figure 7: R code for Poisson-Gamma estimator via simulation.
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# Integration Rcode for Poisson—Gamma estimator of law of concentration L(p) and G
# inputs: counts (vector of counts in each cell)

# Ntotal (total number of cells)
# Nflag (number of cells used as the top p fraction)
library (MASS)

pars=fitdistr (counts,"negative_binomial")$estimate #estimate parameters mu, k

concentration=1-sum(ggamma(seq(.0001,1 — Nflag/Ntotal ,by=.0001),
shape=pars[1],rate=1))*.0001/pars|[1]

p=seq(.025,.975 ,by=.05)

Fp=numeric (length(p))

for (i in 1l:length(p)){Fp[i]=qggamma(seq(.0001,1—p[i],by=.0001),
shape=pars[1],rate=1))*.0001/pars|[1]}

gini=2%sum(Fp)=*.05—1

Figure 8: R code for Poisson-Gamma estimator via numerical integration.
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