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1 MOTIVATION

Many modern, interactive datacenter applications have tight

latency requirements due to stringent service-level agree-

ments (e.g., under 200 ms for Web Search). TCP-based dat-

acenter networks significantly lengthen the application la-

tency. Remote Direct Memory Access (RDMA) substantially

reduces latencies compared to TCP by bypassing the operat-

ing system via hardware support at the network interface

(e.g., RDMA over InfiniBand and RDMA over Converged

Ethernet (RoCE) can cut TCP’s latency by 10x [8]). As such,

RDMA may soon replace TCP in datacenters.

Employing RDMA in datacenters, however, poses a chal-

lenge. RDMA provides hop-by-hop flow control and rate-

based end-to-end congestion control [4]. However, RDMA’s

congestion control is suboptimal for the well-known dat-

acenter congestion problem, called incast, where multiple

flows collide at a switch causing queuing delays and long

latency tails [1] despite good network design [7]. Though

such congestion affects only a small fraction of the flows

(e.g., 0.1%), datacenter applications’ unique characteristics

imply that the average latency is worsened. For example,

because Web Search aggregates replies from thousands of
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nodes, the 99.9th percentile reply latency affects the average

response time; or alternatively, dropping the slowest replies

worsens the response quality. In TCP, incasts cause delays

due to packet drops and re-transmissions [1]. Though the

lossless RDMA does not incur packet drops, incast-induced

queuing delays lengthen RDMA’s latency tail [10].

InfiniBand uses Early CongestionNotification (ECN)marks

to infer imminent congestion and cuts back the sending

rates [4]. While DCQCN proposes a similar scheme for RoCE,

TIMELY [9] uses round-trip times (RTT) measurements, in-

stead of ECN marks, for rate control in user-level TCP. Un-

fortunately, because ECN marks and RTT measurements

need many round-trips to converge to the appropriate send-

ing rates (e.g., 50 RTTs in TIMELY), the schemes are too

slow for the applications’ predominantly short flows each

of which lasts only a handful of round-trips. During conver-

gence, the schemes also lose throughput due to over- and

under-shooting the sending rates.

2 OUR PROPOSAL

To speed up convergence, we leverage the result in several

papers and reports from large datacenter operators such

as Facebook, Google and Microsoft [6]: even under typical

oversubscription most congestion in datacenter networks

occurs at the network edge (i.e., at the link from top-of-rack

(ToR) switch to the receiver) as opposed to within the net-

work. Our simulations confirm this result which is due to

high-bandwidth network core [7] and incast at the receiver.

We make the key observation that while general conges-

tion is complex and may require iterative convergence, the

simpler and common case of receiver congestion can be

addressed quicker via specialization.Without isolating this

case, previous schemes apply their iterative throttling to the

general case. Instead, our proposal, called Blitz, employs a

divide-and-specialize approach to isolate receiver congestion

and significantly speeds up the convergence. Blitz sub-divides

the remaining case of in-network congestion into the simpler

spatially-localized case and the harder spatially-dispersed

case. For the former where the network capacity is not under

pressure (e.g., due to imperfect ECMP hashing), Blitz avoids
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