
A Personalized BDMMechanism for Eficient Market

Intervention Experiments

IMANOL ARRIETA-IBARRA, Stanford University, USA

JOHAN UGANDER, Stanford University, USA

The BDM mechanism, introduced by Becker, DeGroot, and Marschack in the 1960’s, employs a second-price

auction against a random bidder to elicit the willingness to pay of a consumer. The BDM mechanism has

been recently used as a treatment assignment mechanism in order to estimate the treatment efects of policy

interventions while simultaneously measuring the demand for the intervention. In this work, we develop a

personalized extension of the classic BDM mechanism, using modern machine learning algorithms to predict

an individual’s willingness to pay and personalize the łrandom bidderž based on covariates associated with

each individual. We show through a mock experiment on Amazon Mechanical Turk that our personalized

BDM mechanism results in a lower cost for the experimenter, provides better balance over covariates that are

correlated with both the outcome and willingness to pay, and eliminates biases induced by ad-hoc boundaries

in the classic BDM algorithm. We expect our mechanism to be of use for policy evaluation and market

intervention experiments, in particular in development economics. Personalization can provide more eicient

resource allocation when running experiments while maintaining statistical correctness.

CCS Concepts: · Computing methodologies → Machine learning; · Applied computing → Econom-

ics; Psychology;

Additional Key Words and Phrases: personalization; BDM; second price auctions; causal inference

1 INTRODUCTION

Measuring the success of a market intervention, where a new product or service is introduced
to an existing market, requires evaluating the convolved causal efects of both the product itself
and the efects of the price at which the product is introduced, while also estimating the market
demand for the product at diferent prices. The BDM mechanism [9] provides an elegant method
for evaluating market interventions, and it has been recently employed in ield experiments by
development economists to simultaneously evaluate causal treatment efects as well as market
demand [10].

Imagine that we want to estimate the average treatment efect of a water ilter on a household’s
health. A simple way to estimate the efect is to run a randomized controlled trialÐrandomly give
away water ilters to some households and not to othersÐand measure the treatment efect by
comparing the health of the households. However, this experiment would produce no information
about the demand for the product, since we’d be giving the product away. It would also prevent us
from studying the interaction efect of the price on the water ilter’s efectiveness, where previous
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ield experiments have shown that price paid for a product can have a signiicant efect on its
adoption [6]. As another approach, we could propose a (random) price to the treatment households
where we randomly ofer the product, applying the so-called łtake it or leave itž mechanism. But this
approach would tell us relatively little about the willingness of the household to pay for the product
at other prices, and the households that purchase the product would skew towards wealthier homes,
creating a diference between the treatment and control population that would be hard to discern.
The BDM mechanism, meanwhile, gathers the willingness to pay of the households in an

incentive compatible way, allowing us to derive demand curves for the product while also making it
possible to exactly compute the household’s probability of treatment when bidding against the BDM
mechanism’s random bidder. The mechanism can therefore be viewed as performing a randomized
controlled trial with heterogeneous but known probabilities of assignment to treatment or control
(known once the willingness to pay has been elicited). In addition to the average treatment efect
(ATE), we can use BDM to estimate the conditional average treatment efect (CATE) conditional on
willingness to pay which is key to making policy decisions about an intervention.

In this work we observe that the BDM mechanism can be improved upon using personalization
to provide less volatile causal efect estimates at a lower expected cost for researchers, all while
maintaining the incentive compatibility of traditional BDM. In particular, we can use personalization
to reduce (1) the variance of efect estimators, (2) the budget regret of running the experiment, all
while (3) maintaining incentive compatibility. The variance is reduced by balancing the treatment
probabilities so individuals are more equally likely to land it both treatment and control based on
what we know about them a priori. The budget regret is reduced by essentially avoiding situations
where we would be giving away the product for much less than what the person is willing to pay
for it, again based on what we know about them a priori. In order to perform our personalization
we employ standard tools from machine learning, taking care to maintain incentive compatibility.

We evaluate our personalized BDM (PBDM) mechanism under diferent simulation speciications
and run a small ield experiment on Amazon Mechanical Turk as a demonstration. The experiment
consists of a data-labelling task where we simultaneously evaluate both the causal efect of and
demand against time constraints during the task. How much better or worse are subjects at labelling
when there are tight time constraints? How much would they be willing to pay to remove time
constraints? The results of this ield experiment suggest that a personalized BDM mechanism can
provide large eiciency gains during market intervention experiments, where the personalization
can also enable statistically eicient estimation of heterogeneous efects that would otherwise be
infeasible to estimate reliably.

2 BACKGROUND

The BDM mechanism has been previously utilized as an assignment instrument in [10], which
compared it against a łtake it or leave itž mechanism for the provision of water ilters in Ghana. The
BDM mechanism is particularly convenient in such settings because of its double randomization,
both of treatment and of prices paid, whereby it is possible to estimate both price efects as
well as treatment efects conditioned on willingness to pay. Using BDM as an assignment tool
thus improved over [27], which used a two-step intervention in order to achieve this double
randomization. Furthermore, eliciting user’s willingness to pay allows for the estimation of demand
curves for the ofered product or service. This capability can be of great use in circumstances where
a clean randomized control trial can’t be performed, or where there is both the need to estimate
the demand for a product as well as its potential beneits.

The efectiveness of the BDMmechanism as an elicitation mechanism has been thoroughly tested
in auction theory: for lotteries [19, 26, 40], applied to environmental commodities [12], and in
comparison to łtake it or leave itž mechanisms and Vickrey auctions and against other individuals
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[10, 34]. However, many of these studies report some practical problems with BDM. One problem
that we focus on is that, in practice, setting and announcing the bounds for the bidding distribution
of the BDM mechanism has been found to introduce bias in individual bids in empirical settings
[11], meaning that the mechanism is not łbehaviorally incentive compatible.ž One consequence of
our personalized mechanism is that it solves this issue by not requiring the speciication of these
bounds, which makes the BDM mechanism distribution independent [31]. For our personalized
mechanism, the proposal distribution is learned as users make bids.

This work is aligned with a larger efort to design adaptive experiments that optimize resources.
Similar endeavors include adaptive designs to elicit time preference from subjects [23] and the
adaptation of experiments to subpopulations to increase the precision of estimators [4]. Most broadly
this research question sits between machine learning and economics, where other recent work
[1, 7, 8, 21, 28, 39] has started to bridge the gap between the two ields. Our proposed methodology
exempliies a clear case where the statistical methods for policy evaluations can be improved by the
powerful predictive capacities of modern artiicial intelligence and machine learning techniques.

3 ESTIMATING CAUSAL EFFECTS

The idea of estimating causal efects was irst formalized into the potential outcomes framework
by Neyman [33], but it was Fisher [16], some years later, who commented on the importance of
randomization in order to be able to make causal claims. The ield has since then been expanded to
include controlled as well as observational studies through work by Rubin [36], who was the irst
to formalize how causal statements could still be made even when researchers were not in total
control of the assignment mechanism. See also the recent textbook by Imbens and Rubin [24]. We’ll
begin this section with a brief review of causal inference in the potential outcomes framework,
presenting four diferent estimators commonly used for estimating average treatment efects [5].
The potential outcomes framework assumes that users present diferent outcomes depending

on whether they are assigned to a treatment condition or a control condition. Let Ti represent
whether the observation unit i is assigned to treatment (Ti = 1) or control (Ti = 0), for example
if a water ilter was given to a household (with possibly impacting health) or if an individual
received paid legal counsel (possibly impacting court trial outcomes). Let Yi (Ti ) be the outcome of
interest for unit i , e.g. the number of times members of the household became sick during a year or
the outcome of a trial. We use Yi (1) and Yi (0) to denote the potential outcomes when the unit is
assigned to treatment or control, respectively. We make the standard Stable Unit Treatment Value
Assumption (SUTVA) that the potential outcomes for one unit is not afected by the treatments of
other units, and the potential outcomes are ixed in that there are no diferent forms or versions
of each treatment level. Under these conditions we denote the Average Treatment Efect (ATE) as
τ = N −1

∑N
i=1 Yi (1) − Yi (0), taken over the whole population of N units. We are interested in this

average, but for each individual we can only observe one of Yi (0) or Yi (1).
One way to estimate the ATE τ is to simply take an average of the given quantity from a sample

of observed values. The most commonly used estimator of the ATE is the diference in means (DM)
estimator, where we let NC be the number of units assigned to the control group while NT are
assigned to the treatment group:

τ̂DM =
1

NT

N
∑

i=1

Yi (1)Ti −
1

NC

N
∑

i=0

Yi (0) (1 −Ti ). (1)

In order for this estimator to be unbiased we need to make three more assumptions: that each unit
has positive probability of being treated or controlled, that the treatment of each unit is independent

Session 8a: Market Experiments ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

465



from the treatment of the rest, and that conditional on observables, the assignment to treatment or
control is random [24].
If the probability of assignment to treatment depends on observables, the diference in means

estimator would be biased, but this bias can be corrected by inverse probability weighting. Let
e (Xi ) be the propensity score or the probability of unit i being treated given a vector of covariates
Xi , i.e. e (Xi ) = P (Ti = 1|Xi ). Generally a great deal of attention is given to conditions under which
these propensities can be estimated. However, in this work we are in control of the assignment
mechanism and we’ll be dealing with known true probabilities of assignment. We still call them
propensities by convention.

Given these propensity scores, the Horvitz-Thompson estimator (HT) [22] is an unbiased estima-
tor that employs inverse probability weighting:

τ̂HT =
1

N


N
∑

i=1

1

e (Xi )
Yi (1)Ti −

N
∑

i=1

1

1 − e (Xi )
Yi (0) (1 −Ti )

 . (2)

Although the HT estimator is unbiased, it tends to be very volatile in practice. The reason is that the
probability of being treated for some units may be very close to zero or one, making for very high
variance. The Hajek estimator [20] is a reinement of the HT estimator where instead of dividing
by N , one divides by the sum of the propensity weights (the expected value of which is N ). This
causes the normalizing denominator to move with the same magnitude as the weights; for this
reason the Hajek estimator is sometimes called the self-normalizing estimator [38]. The Hajek
estimator is deined as:

τ̂Hajek =

N
∑

i=1

1
e (Xi )

Yi (1)Ti

N
∑

i=1

1
e (Xi )

Ti

−

N
∑

i=1

1
1−e (Xi )

Yi (0) (1 −Ti )

N
∑

i=1

1
(1−e (Xi ))

(1 −Ti )

. (3)

A inal family of estimators we consider is that of blocking estimators that employ stratiication.
These estimators recognize that, for populations with close propensity scores, we have an almost
random assignment to treatment or control. We can then estimate the ATE using post-stratiication
techniques assuming some smoothness in the efects as follows:

(1) ChooseM points q1, ...,qM from the domain of e (Xi ).
(2) Given an ϵ > 0, for each point qj select all units i whose propensity score is close to this

point, {Xi : |e (Xi ) − qj | < ϵ }.

(3) For each j = 1, . . . ,M , compute the Horvitz-Thompson estimator for those units, τ̂
j

HT
.

(4) Compute τ̂block =
M
∑

j=1

Nj

N
τ̂
j

HT
as the post-stratiied weighted average of the HT estimators,

where Nj = |{Xi : |e (Xi ) − qj | < ϵ }| is the number of units near qj .

For this estimator it is often recommended to do some trimming beforehand to improve its
variance; for indications about how to perform this trimming without falling into involuntary
p-hacking, see [24].

Beyond average treatment efects, there has been a growing interest in the estimation of so-called
heterogeneous treatment efects in contexts where treatment efects are thought to difer widely
for diferent subpopulations [7]. In these contexts, one aims to estimate the conditional average
treatment efect (CATE), τ (x ) = 1

| {i :xi=x } |

∑

i ∈{i :xi=x }
Yi (1) −Yi (0).We estimate the CATE conditional

on willingness to pay, making it possible to investigate how the treatment efect varies with revealed
wealth.
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4 A PERSONALIZED BDMMECHANISM

In this section we propose a way of personalizing the BDM mechanism that we call simply person-
alized BDM (or PBDM for short). We irst show how BDM achieves incentive compatibility, but
can produce high variance estimators with high budget regret. By contrast a simple łrandomized
controlled trial mechanismž (randomization without any willingness to pay component) would
minimize the variance of the treatment efect estimators, but at the same time it would only be
weakly incentive compatible and it would also achieve the upper bound of budget regret. Person-
alized BDM can be incentive compatible, produce estimators with lower expected variance, and
achieves lower budget regret than both the BDM and RCT mechanisms. As a concrete summary,
we will discuss how personalization can deliver a mechanism that is superior to BDM in three
speciic aspects:

(1) PBDM results in lower variance than BDM for the HT and Hajek estimators.
(2) PBDM has a smaller budget regret than BDM (the ex-post cost from treated units is smaller).
(3) Under PBDM, elicited valuations are distribution independent.

It is important to note that the types of interventions that have been analyzed in this context,
and the ones we experiment with, involve giving out subsidies, e.g. water ilters to households
or legal representation to accused defendants, that would normally cost C on the open market.
Then, because of the nature of the problem, we are interested only in units with a willingness to
payW < C . However, not all market interventions have an easily knowable upper bound for the
population of interest, and indeed that is a diiculty highlighted by the work by Bohm et al. [11].
And even knowingC , a researcher could run an ineicient implementation of the BDM mechanism.
Imagine, for example, that a vaccine costsC dollars to produce, but the maximum people are willing
to pay for it is C

10 . Every treated user would be very expensive to subsidize, but we won’t know if the
medical beneits of the vaccine outweigh the cost of the subsidy without a controlled experiment.

Let Φ be the randomized price ofered by BDM’s phantom bidder. At the heart of our personalized
mechanism is a choice of conditional price distributionΦ|Xi , whereXi are observable characteristics
of i that can not be manipulated. Given a choice of Φ|Xi , the mechanism is carried out in the
following manner:

(1) Ofer a product with cost C to a subject with Xi observable characteristics,
(2) Draw a price ϕ from Φ|Xi without showing it to the subject,
(3) Ask the subject to report her willingness to paywi , which we assume is drawn fromW |Xi ,
(4) If ϕ < w the user gets the product and pays ϕ. Otherwise there is no exchange.

How should we design Φ|Xi? It is clear that we want to make our choice using estimated
properties ofW |Xi , the willingness to pay of previous subjects conditional on their covariates. The
problem is made easier by assuming thatW |Xi has support in [0,C] for all Xi for a ixed outside
costC , as discussed above. We will now describe our choice of Φ|Xi before elaborating on why this
choice embodies favorable tradeofs between the three objectives at the start of this section.
The conditional price distribution Φ|Xi we propose consists of two point masses of probability

ϵ/2 at the lower and upper bounds of the price range (0 andC) combined with a uniform distribution

over a range [a,b], where a andb are quantiles ofW |Xi given byb = F−1
W |Xi

(1− δ
2 ) and a = F−1

W |Xi
( δ2 ).

The cumulative distribution function FΦ |Xi
(w ;a,b, ϵ ) is then:

FΦ |Xi
(w ) =

ϵ

2
+ (1 − ϵ )

wI{a ≤ x ≤ b}

b − a
+

ϵ

2
I{w ≥ C}. (4)

In practice a and b must be estimated from observed willingness to pay data, furnishing estimates

â and b̂. We leave the estimation of ϵ for future work, and choose to set it before the experiment
begins based on simulations. For diferent speciications of the data generating process, we ind
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that ϵ = 0.05 is a conservative value that balances cost and variance while maintaining incentive
compatibility1.

We propose the above family of distributions for two reasons. First, we want a mechanism that
in the absence of any signal from the covariates reverts to BDM, which the mechanism clearly does
(when ϵ = 0). Second, if ϵ = 0 there may be cases where the probability of assignment will either be
zero or one (if someone bids outside the range of [a,b]), so the point masses of ϵ/2 serve to bound
the variance of our estimates (which is unbounded if any of the treatment probabilities reach 0 or
1).

Given that we estimate F̂W |Xi
for user i from the dataset {(x1,w1), ..., (xi−1,wi−1)}, the probability

of being treated depends heavily on the history of users that have come before user i . This means
that, contrary to BDM (where conditional onW the assignment to treatment is random), for PBDM
one needs to condition on all the previous history. However all the previous history is summarized
by the choice of FΦ |Xi

so that

P (Ti = 1|{(x1,w1), ..., (xi−1,wi−1)}) = FΦ |Xi
(wi )

for the realizedwi . In order to compute the HT or Hajek estimators of the average treatment efect,
it suices to save FΦ |Xi

(wi ) at the point when it was computed.
There are three immediate beneits from this setup. First as [31] conclude, not making the exact

distribution explicit to users prevents distribution-dependence bids. Second, in the case where there
is little predictive power of Xi onW , the mechanism reverts to a well-centered BDM. Third, the
point masses at the boundaries of this distribution help bound the variance of the ATE estimators.
The following sub-sections show how the objectives speciied in the introduction (low variance,
low budget regret, and incentive compatibility) help inform the choice of this distribution for our
mechanism. We detail how PBDM is superior to BDM in terms of lower variance, lower budget
regret, and superior to a pure RCT in terms of stronger incentive-compatibility and lower budget
regret. An RCT that gives away water ilters can be thought of as randomizing people to either get
a price of 0 (treatment) or C (control) since they could possibly still buy it on the open market.

4.1 HT estimator variance

One can use the BDM mechanism to compute the Average Treatment Efect (ATE) of a particular
intervention [10] as explained in the previous section, utilizing the probabilities of treatment and
control as łpropensitiesž (conditional on the willingness to pay they are true probabilities, not
estimates). Post-stratiication can be used for populations that are unbalanced in terms of their
willingness to pay. However, since the probability of treatment depends fully onW , these estimates
may be highly volatile. Equation (5) makes evident how the variance of the HT estimator can grow
to ininity if the probability of treatment is close to 0 or 1. The variance of the Horviz-Thompson
estimator is [5]:

Var (τ̂HT ) =
1

N 2
*,

N
∑

i=1

1 − e (Xi )

e (Xi )
Yi (1)

2
+

e (Xi )

1 − e (Xi )
Yi (0)

2+- . (5)

In the event of unavoidable extreme propensity scores close to 0 or 1, one could restrict the
population of interest (change the estimand) to a subset of the propensity scores through trimming
[24], though this can quickly turn into an invitation for łp-hackingž if not preconceived as part of
the experimental design. Therefore we would like to have better balance of treated and control
individuals for every willingness to payw . This achieves two goals. First, both the ATE and CATE
estimates would have lower variance. Second, by reducing the łproitž of the treated consumers (the

1This is consistent with notions of trimming speciied in [24].

Session 8a: Market Experiments ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

468



diference between their willingness to pay and the price they paid), researchers would have less
regret about their subsidy of the product as will be explained in more detail in the next subsection.

The Hajek estimator’s variance can be related to the HT variance. The standard approach here is
to linearize the Hajek estimator around the HT estimator and then take the variance and truncate
higher order terms. We thus concentrate on the HT estimator for comparing variance across
mechanisms; the results presented in this section apply for the Hajek estimator asymptotically2.
How should we design the conditional price distribution, Φ|X , to balance the treatment and

control? The variance in equation (5) can be modiied by replacing the propensities with FΦ |X , the
(true) probability of being treated by our personalized mechanism:

Var (τ̂HT ) =
1

N 2
*,

N
∑

i=1

1 − FΦ |Xi
(Wi )

FΦ |Xi
(Wi )

Yi (1)
2
+

FΦ |Xi
(Wi )

1 − FΦ |Xi
(Wi )

Yi (0)
2+- . (6)

Under a (rather strong) null hypothesis of no individual treatment efect (Fisher’s null, see [15])
where Yi (1) − Yi (0) = 0 ∀i , meaning Yi (1) = Yi (0) = αi , we can write the variance as:

Var (τ̂HT ) =
1

N 2

N
∑

i=1

αi

(

1 − FΦ |Xi
(Wi )

FΦ |Xi
(Wi )

+

FΦ |Xi
(Wi )

1 − FΦ |Xi
(Wi )

)

. (7)

This expression is minimized when FΦ |Xi
(Wi ) =

1
2 for allWi , for any realization ofw1, ...,wN . If

we are only interested in minimizing Var (τ̂HT ) under the null, there is a simple solution: we can
just place half of the probability mass of Φ on 0 and the other half on the upper bound forWi . This
provides an intuition for why randomized control trials are the gold standard for estimating causal
efects. Yet, our objective is not only the estimation of an ATE: we are also interested in estimating
the demand for the product and reducing the regret over our spent budget. Deploying an RCT
actually achieves the upper bound for the budget regret (for any subject treated, they would pay 0
and we would lose the full value of the product, C). With respect to estimating the demand, RCTs
provide no incentive to users for revealing their true willingness to pay, making the mechanism
only weakly incentive compatible.

Guaranteeing minimum variance for any realization ofW is a very strong condition. We instead
focus on the expected variance, conditional on the observed characteristics Xi , with the expectation
being taken over realizations ofW1, ...,WN . Using a Taylor expansion of Equation (6) around the
mean and taking a irst degree approximation, we then are interested in minimizing:

E[Var (τ̂HT ) |X1, ...XN ] ≈
1

N 2

N
∑

i=1

(

1 − FΦ |Xi
(E[Wi |Xi ])

FΦ |Xi
(E[Wi |Xi ])

Yi (1)
2
+

FΦ |Xi
(E[Wi |Xi ])

1 − FΦ |Xi
(E[Wi |Xi ])

Yi (0)
2

)

. (8)

Again assuming the Fisher null of no individual efect, this expected variance is minimized whenever
FΦ |Xi

(E[Wi |Xi ]) =
1
2 , meaning that the median from the price distribution thus needs to be equal

to the conditional expectation of the willingness to pay distribution.
One of the biggest advantages of PBDM over BDM is that it łsmoothsž the probability of a unit

to be treated or controlled, depending on the distribution ofW |Xi . This is, if the distribution of
W |Xi is skewed to the right, where users would be rarely treated, PBDM would łfocusž in this part
of the distribution and would increase the probability of treatment. On the other hand ifW |Xi is
skewed to the left then PBDM could diminish the probability of łhigh spendersž to be treated. Our
objective however is clearly underspeciied in that there is an ininite number of distributions that
achieve this goal. We can therefore target additional goals within this space of distributions.

2See [37], pages 172ś176.
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In particular, we would like for the variance of our estimator to be bounded. In order to achieve
this, it is enough to require for

P (FΦ |Xi
(Wi ) > 1 −

ϵ

2
) = 0, (9)

P (FΦ |Xi
(Wi ) <

ϵ

2
) = 0. (10)

These conditions can be achieved by placing a probability mass of ϵ
2 at both 0 andC as PBDM does.

If we assume thatW |Xi is symmetric, this price distribution achieves the minimum expected
conditional variance while at the same time bounding the probability of it escalating to ininity. It
is important to note that BDM also achieves these two principles, but only in the case where the
lower and upper bounds are chosen appropriately andW is independent from Xi . For any other
case BDM would provide a higher variance in expectation than PBDM.

4.2 Budget Regret

If we knew in advance a user’s willingness to pay, the optimal pricing mechanism would be to
randomize the price uniformly betweenwi − ϵ andwi + ϵ for some small value of ϵ . This would
mean that every user efectively pays their willingness to pay for the product or service and would
result in the estimator with minimal variance. However, due to the uncertainty inW we incur some
level of regret every time we assign someone to treatment.
We deine budget regret as:

BR (X ,W ) = EΦ [(W − Φ) |Φ <W ,X ,W ] , (11)

and expected budget regret as:

br (FΦ) = EX ,W [BR (X ,W )]. (12)

Expected budget regret is the expected subsidy paid when assigning a unit to treatment. For any
realization ofW , an RCT price mechanism achieves the upper bound for br (Φ) among all possible
price distributions: when I{Wi > Φi } = 1 it must be that Φi = 0.
Meanwhile, for BDM we have that the budget regret is equal to:

brBDM (FΦ) = E

[
W

2

]
. (13)

For PBDM, if b̂ = F−1
W |Xi

(1 − δ
2 ) and â = F−1

W |Xi
( δ2 ) and ϵ = 0 (assume an asymptotic setting where

â, b̂ have converged on a, b):

brPBDM (FΦ) = E

[
W − â

2

]
. (14)

These budget regret expressions mean that less variance inW |X translates to less regret on average.

4.3 Balancing Cost and Variance

The choice of ϵ and δ for the PBDM mechanism is equivalent to choosing a trade-of between
experiment cost and estimator variance, where larger values of ϵ or smaller values of δ correspond
to lower variance and higher costs. On the other hand, a good reason to want to decrease the cost
of treating an individual is to be able to treat more people and thereby have lower variance for the
experiment at a given budget (or for the same variance, have lower costs). We propose a way to
summarize this trade-of under a single minimization problem. We’ll assume that sending people
to control is costless and that there is no information in X aboutW . Let the expected number of
treated units under no budget constraints be Nu and the expected number of treated units under
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budget constraint be Nb , taking the expectation over both willingness to pay and the random draws.
It is evident that Nu ≥ Nb . Let N be the maximum number of units that can be treated.

We can write Nu as:

Nu =

N
∑

i=1

I{Wi > Φi } ≈ Np (ϵ,δ ), (15)

where we deine p (ϵ,δ ) = P (W > Φ). Meanwhile in the setting with a budget B we want to
approximately spend the full budget:

B ≈

N
∑

i=1

(Ci − Pi )I{Wi > Pi } ≈ Nbc (ϵ,δ ) (16)

where c (ϵ,δ ) = E [(C − P ) |W > P].
We then have that

Nu ≥ Nb ⇒ Np (ϵ,δ ) ⪆
B

c (ϵ,δ )
⇒ N ⪆

B

p (ϵ,δ )c (ϵ,δ )
. (17)

From Equation (7) we get that the variance for this simpliied case is

Var (τ̂HT |W ) ∝
1

N 2
*,

N
∑

i=1

p (ϵ,δ ,Wi )

1 − p (ϵ,δ ,Wi )
+

1 − p (ϵ,δ ,Wi )

p (ϵ,δ ,Wi )
+- (18)

⪅

(

p (ϵ,δ )c (ϵ,δ )

B

)2 *,
N
∑

i=1

p (ϵ,δ ,W )

1 − p (ϵ,δ ,W )
+

1 − p (ϵ,δ ,W )

p (ϵ,δ ,W )
+- . (19)

For a given budget B we would like to minimize E[Var (τ̂HT |W )]. For the purposes of this work,
we chose to ix ϵ to preserve incentive compatibility (otherwise, the variance would be minimized
with ϵ = 1, corresponding to an RCT). We ran simulations to select δ by minimizing the expectation
of Equation (19) over our prior belief of the distribution ofWi . We chose δ after some robustness
checks prior to running the experiment. In practice, δ could be personalized by being calculated
at every point in time after having better estimates of the distribution ofW . We believe there is
ample room to ine tune these parameters but leave this as future work.

4.4 Incentive Compatibility

Finally, for BDM and PBDM if a user is an expected-utility maximizer she gains nothing by providing
a wrong valuation of the product ofered. Let’s say that the user has a valuation ofvi for the product.
If she were to report vi − ϵ as her valuation for all those prices between vi − ϵ and vi she would
lose the product, which is still more valuable than the price she would have to pay. If she were to
ofer vi + ϵ she would have to pay more than her valuation with ϵ probability.
For an RCT mechanism the user is indiferent between reporting her true valuation or not.

This is because she would always be ofered 0 or C as the price. This could happen in PBDM if
the user’s willingness to pay is between 0 and F−1

W |Xi
( ϵ2 ), but this would only happen with small

probability. Even if users know PBDM is being used, they don’t know their order of arrival. As a
result they would be uncertain about the distribution from which prices are being sampled. And as
Mazar et al. [31] show, as long as users don’t know the underlying distribution, their ofers will be
distribution-independent.
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4.5 Why not use the predicted median as the price?

We have thus far described a personalized mechanism that outperforms BDM in all of the described
dimensions. One may ask however why not just predict the medianWi |Xi and use this as the
ofered price. This was actually the original mechanism we envisioned for this problem, running a
simple median regression onWi |Xi . If the covariates are highly predictive ofWi we would achieve
a 50-50 split and achieve close to minimum budget regret. However, we would not be able to
assume thatWi is ixed (but previously unknown) for every user, since doing so would make the
probability of being assigned to treatment conditional onWi either 0 or 1, losing randomness in
the conditional assignment and breaking the assumption that treatment needs to be assigned at
random in order to make causal interpretations. Even if we assumed that the randomness comes
from some probabilistic process in how people elicit their willingness to pay, one could have an
unobserved variable correlated with both the willingness to pay and the outcome which would
complicate causal interpretations.

5 EMAIL CLASSIFICATION MOCK EXPERIMENT

In order to test our method we designed a Mechanical Turk task where users performed email
spam classiication [17]. After performing several rounds of classiication, the users were ofered
the opportunity to spend part of their wages in order to forgo a time restriction on their work.
The time restriction made the task signiicantly more diicult, and they experienced the task both
with and without the time restriction before being ofered the opportunity to remove it. The ofer
to pay to remove the restriction was formulated as a willingness to pay experiment. Users were
randomly assigned to either the standard BDM mechanism or our PBDM mechanism. The objective
in this mock experiment was thus to estimate both the demand for time freedom (the willingness
to pay for it) and the causal efect of being time-restricted on performance (better or worse spam
classiication).
We conducted our experiment on Amazon Mechanical Turk for its convenience and simplicity

for running experiments. Mechanical Turk compares favorably to traditional ways of conducting
behavioral experiments [13]; see [30, 35] for discussions of best practices for behavioral research
using Mechanical Turk.

We collected a range of covariates as the basis for our personalization under the PBDMmechanism.
First, our task was hosted on a server that allowed us to gather browser-level features of the web
users. Second, we included two surveys at the onset of the task: a demographic survey in order to
compare our population with that of Mechanical Turk [25] and a risk survey, adapted from [18].
For computing the risk proile of users from this survey we used the index for general risk aversion
as in [29]. Lastly, we also collected additional covariates from the behavior of users during the early
tutorial phase of our task.

The users were not made aware that their browser coniguration or survey responses impacted
the phantom bidder of the PBDM mechanism. We had no true way of verifying the validity of the
demographic survey responses or the risk survey responses, and it is important to be clear that
these responses ultimately impacted the price at which these users were ofered the time freedom.
As a result, in settings where the subject may realize the connection between their responses to
early questions and the price ofered in a later stage of an experiment, it may be appropriate to only
use survey questions for which answers can be validated. Examples of questions from development
economics ield experiments used in similar contexts include łHow many members are there in
your household?ž or łHow many rooms do you have in your home?ž [2]. Note, however, that even
if the users are able to impact their ofer distribution in their favor, it is still in their interest to
bid their true willingness to pay, regardless of how much they’ve been able to manipulate the
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BDM PBDM

Number of participants 71 71

Percentage treated 31% 52%

Total cost (credits) 5469 6146

Cost per person treated (credits) 237 161

Average budget regret 65 45

HT ATE
-0.63 12.09

(-38,36) (2.09,22.09)

Hajek ATE
2.23 4.26

(-4.55,9.03) (2.78,5.73)

Block ATE
5.19 3.8

(3.56,6.81) (1.91,5.70)

Table 1. PBDM improves on BDM in terms of cost per person, budget regret, and variance of the average

treatment efect estimators.

prediction algorithms such as Gradient Boosting Decision Trees, Adaboost, and Lasso post-fact3.
We observe that none of these algorithms did a good job of predicting the personalized willingness
to pay from the covariates we gathered for our mock application, with all the models reverting
to the population mean to predictW . This highlights an important basic beneit of PBDM: for all
BDM experiments there is a basic population-level personalization problem of what the population
of responses will look like. A PBDM mechanism that simply learns the population of bids with
reasonable idelity therefore delivers signiicant improvements over BDM, as our results show.
Figure 2 shows the estimated intervals as well as the PBDM phantom bid for every user.

6 RESULTS

We use the email classiication task in the previous section to evaluate our PBDM mechanism in
contrast with an ordinary BDM mechanism. Our evaluation is ive fold: we examine the cost of
running our experiment, the cost per person treated, the variance of the average treatment efect
(ATE) estimators, the CATE conditional onW , and the expected budget regret. Table 1 summarizes
these diferences. For costs, the credits we pay to user i is 10 times the diference between the
number of correct answers, Yi , and the number of incorrect answers (out of 20), 20 − Yi , minus the
amount paid in case of treatment: 10(Yi − (20 − Yi )) − Φi I{Wi > Φi }.

For the variance of the average treatment efect estimators, we focus on the variance of the
Horvitz-Thompson estimator and the consistent estimator of this variance [4]:

V̂ ar (τ̂HT ) =
1

N 2
*,

N
∑

i=1

Ti (1 − e (Xi ))

[
Yi (1)

e (Xi )

]2
+ (1 −Ti ) (e (Xi ))

[
Yi (0)

1 − e (Xi )

]2+- . (20)

Here e (Xi ) is the probability of assignment to treatment, which we can compute exactly given
the known distribution of Φi |Xi at every stage of the experiment. As detailed in Section 4.1, we
can obtain Hajek variances estimates from HT variance estimates by linearization and Taylor

expansion to obtain V̂ ar (τ̂Hajek). We use this estimate V̂ ar (τ̂Hajek) to construct conservative Wald-

type conidence intervals for the ATE, τ̂Hajek ± z1−α

√

V̂ ar (τ̂Hajek). Furthermore, we build bootstrap

conidence intervals for V̂ ar (τ̂Hajek) under Fisher’s null (no individual treatment efect [15]). We

3In practice, researchers can run a variety of prediction algorithms at runtime (rather than post-fact) and make predictions

with the one with the best performance under a pre-speciied metric.
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of the estimate. As a more advanced matter, we designed our PBDM mechanism to be able to
tailor the mechanism to the known covariates of each individual, learningW |Xi . That said, in our
practical demonstration using a spam labelling task, we found that no covariates that we collected
were able to meaningfully predict individual willingnesses to pay.

In terms of personalization, we believe there are further improvements to be made. Recent
work in the estimation of conidence intervals for machine learning techniques (see [7] would
allow more sophisticated algorithms to be used as predictors ofW ’s distribution. Furthermore, a
more sophisticated characterization of the phantom bidder distribution could yield better results
in contexts where the distributional properties of the demand may be known a priori, as in well
established markets.
Even with the simple representation of the phantom bidder used in this work we have high

conidence that a personalized BDMmechanism can result in substantial savings in experimentation
costs as well as improvements in statistical eiciency for a broad class of willingness to pay
experiments.
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