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We introduce StrictCheck: a property-based random testing framework for observing, specifying, and testing
the strictness of Haskell functions. Strictness is traditionally considered a non-functional property; StrictCheck
allows it to be tested as if it were one, by reifying demands on data structures so they can be manipulated and
examined within Haskell.

Testing strictness requires us to 1) precisely specify the strictness of functions, 2) efficiently observe the
evaluation of data structures, and 3) correctly generate functions with random strictness. We tackle all three of
these challenges, designing an efficient generic framework for precise dynamic strictness testing. StrictCheck
can specify and test the strictness of any Haskell function—including higher-order ones—with only a constant
factor of overhead, and requires no boilerplate for testing functions on Haskell-standard algebraic data types.
We provide an expressive but low-level specification language as a foundation upon which to build future
higher-level abstractions.

We demonstrate a non-trivial application of our library, developing a correct specification of a data structure
whose properties intrinsically rely on subtle use of laziness: Okasaki’s constant-time purely functional queue.
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1 INTRODUCTION

Lazy evaluation gives great power to functional programmers, enabling them to program with
infinite data structures [Abel et al. 2013], transparently and efficiently memoize computations [Hinze
2000], and decompose programs into modular pipelines [Hughes 1989]. However, programming
with laziness can come with its own unique frustrations. Incorrect use of laziness can result in
subtle bugs: if a program is too lazy, it may suffer from memory leaks; if it is too strict, it may fall
victim to asymptotic performance degradations and even infinite loops.

In practice, such bugs are often quite difficult to detect and diagnose. Seemingly trivial changes
to one function can break the strictness of another function far away in a codebase. Moreover, a
program with undesired strictness properties is often very similar to a program with the correct
ones. They may differ from the desired implementation only when tested on infinite or diverging
input data, or may be semantically equivalent but inferior in performance. Unfortunately, neither
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semantic divergence nor poor performance are necessary results of a strictness bug—so neither
conventional property-based testing nor benchmarking are sufficient to fully diagnose these issues.
How, then, can we test and prevent these bugs during development? In this paper, we present
StrictCheck: a property-based random testing framework extending QuickCheck [Claessen and
Hughes 2000] to catch arbitrarily complex strictness bugs in Haskell programs.
StrictCheck allows the programmer to

e Specify strictness precisely, describing exactly what portion of its inputs a function is meant
to evaluate,

e Observe the strictness of a function and reify this into a Haskell data structure using only a
constant factor of overhead, and

o Test whether a function matches its strictness specification, reporting a minimal reproducible
counterexample if it does not.

StrictCheck can test any function—including higher-order ones—defined over any data type, re-
quiring no boilerplate for any Haskell 2010 algebraic data type. Moreover, StrictCheck is general
enough to test functions over abstract types, existential types, and GADTs, given the appropriate
typeclass instances.

1.1 Strictly Defining Our Terms

In a lazy language like Haskell, a value-yielding computation—a thunk—is executed only when that
value is itself needed for some further computation. Consider the following program, where f and
g are some existing functions:

list = [1, 2, 3, ..] -- Infinite lazy list
main = print (f (g list))

The program above prints all of f’s result. To produce all of f’s result, we need to evaluate some
portion of g’s result. In turn, to produce that portion of g’s result, we need to evaluate some portion
of list. Lazy evaluation proceeds by tracing the transitive dependencies of a series of such nested
evaluation contexts.

A demand is the portion of a value required by some context. One possible demand on the list
[1, 2, 3, ..1aboveis (_ : 2 : _).This notation says that some context evaluated the first two
(:) constructors, as well as the second element of the list (the integer 2). The underscores indicate
that neither the first element of the list nor the tail of the list were evaluated by the context. For our
purposes, a demand represents a portion of a particular value, describing what actually happened
to that value in one specific evaluation context. At a high level, you could view a demand as a
pattern to match against: the pattern (_ : 2 : _) evaluates the first two cons cells of a list, its
second element, and nothing else.

The strictness of a function is a description of the demand that function exerts on its inputs, given
a particular demand on its output and the particular values of its inputs. Strictness is not a mere
boolean—evaluated or not—but a large spectrum of possible behaviors. For instance, some function

f :: Bool — Bool — ()

could have one of nine different strictness behaviors, given a non-trivial demand on its result. Some
of these include: evaluating neither argument; evaluating only the second argument; evaluating
the first argument and evaluating the second if the first was was True; etc. Notice that any imple-
mentation of f must be functionally equivalent to the constant function \x y — (), modulo its
behavior on undefined inputs. That is, two functions which are equivalent for all total inputs may
have distinguishable strictness.
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1.2 Describing Strictness, and Testing It!

A strictness specification is a precise characterization of a function’s strictness. Such a specification
is a function itself, taking as input a particular demand on some function’s output as well as a list
of the function’s inputs, and returning a list of predicted demands on those inputs. For example, if
we have some function

f:ra—>b-> ... 52z > result

then we might specify its demand behavior using another function

spec_f :: Demand result -- demand on function result
— (a, b, ..., 2) -- input values to function
— (Demand a, Demand b, ..., Demand 2z) -- demands on inputs

The structure of a specification suggests a natural flow for our testing framework, whose
architecture is shown below in Figure 1.

Random //;\\ R Random
Input \\_// Context
T T
Observe : Observe :
Demand 1 Demand 1
h 4 h 4
Actual Actual
Input { Ooutput
Demand Demand
Predicted
Input
Demand

VAN
<

Fig. 1. Architecture of StrictCheck

In order to check whether a specification spec_f correctly predicts the demands on the inputs of

a function f, we will

e generate random input(s) to f: (a, b, ..., 2z),

e generate a random evaluation context ¢ for the result of f,
evaluate f in the context c by forcing evaluation of (¢ (f a b ... z)),
observe the demand d which the context c exerted on the result of f,
observe the demands (da, db, ..., dz) induced upon the inputs (a, b, ..., z),and
compare the actual observed demands (da, db, ..., dz) with the predictions of the specifi-
cation (pda, pdb, ..., pdz) =spec fdab ... z

repeating this until we've convinced ourselves that the specification holds.
In the next section we show how StrictCheck concretely represents specifications, using as an
example the function take :: Int — [a] — [a].
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In the rest of the paper, we present our technical contributions:

e We develop a method for observing the strictness of a function at runtime, and describe how
we use generic programming to apply this mechanism to all algebraic data types (Section 3).
Our technique uses only a small constant factor of overhead compared to the cost of evaluating
a function without observing its strictness.

e We introduce a precise approach for specifying the strictness of functions. Such specifications
are expressive enough to capture exactly how much evaluation occurs within a data structure
during the evaluation of a function (Section 4). The current specification framework is
relatively low-level, but crafted to allow future higher-level abstractions to build upon it,
without the need to modify the core StrictCheck library.

e We work through a more complex example, Okasaki’s purely functional queues [Okasaki
1995], demonstrating some of the difficulties of programming with laziness and how our
approach can be used to alleviate them (Section 5).

e As a side contribution, we identify a limitation of QuickCheck’s technique for generating ran-
dom functions: namely, it only generates strict functions. We develop an alternate technique
to generate functions with arbitrary strictness (Section 6).

e We implement StrictCheck, a Haskell framework for automatically testing functions against
such specifications, available today at https://hackage.haskell.org/package/StrictCheck.

Section 7 discusses related work. We conclude and draw directions for future work in Section 8.

2 STRICTNESS SPECIFICATIONS, CONCRETELY

For concreteness, suppose we want to specify the function take, which returns the first n elements
of a given list, or the entire list if n is greater than its length:

take :: Int — [a] — [a]
take n | n<1-=1/]]
take [1 =11

take n (x : xs) x : take (n-1) xs

In StrictCheck, a value of the Spec type represents a strictness specification for some function. The
specification of take has the type

take spec :: Spec '[Int, [a]] [al

This tells us that take_spec specifies a function with take’s type signature, taking two arguments
of types Int and [a] and returning a list of type [a].

2.1 Writing Specs in a Curry

In general, the Spec type can represent specifications for functions of any arity, with arguments and
results of any type, including higher-order ones. Our first draft of the Spec type used heterogeneous
lists to generalize over the arity of the function being specified. While this worked, the syntactic
overhead of pattern-matching and constructing such lists made specifications more difficult to
read. StrictCheck simplifies this syntax using arity-polymorphic currying. We briefly describe this
technique before moving on with our example.

2.1.1  Arity-Polymorphic Currying. To generalize currying to any arity, we define the type family
(args - - — result) to compute a curried function type taking args as inputs and returning result.

type family (args :: [Typel) --— (result :: Type) where
"1 -+ — result = result
(a : args) :--— result = a — (args --— result)
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In the inverse direction, we define two type families Args and Result to compute respectively the
list of arguments to a curried function, and its (non-function-type) result. For any type f, observe
that f ~ (Args f --— Result f).

type family Args (f :: Type) :: [Type] where
Args (a — rest) = a : Args rest
Args x = '[l]

type family Result (f :: Type) :: Type where
Result (a — rest) Result rest
Result r =r

To actually curry functions, we need to pick some particular concrete type of heterogeneous lists
(List :: [Typel — Type). In terms of this type, we define the Curry typeclass to curry/uncurry
with our List data type:

class Curry (args :: [Type]) where
uncurry :: (args --— result) — (List args — result)
curry :: (List args — result) — (args --— result)

instance Curry '[] where ...
instance Curry xs = Curry (x : xs) where ...

StrictCheck uses this machinery in several ways, including its specification interface.

2.1.2  Variadic Curried Specs. Because StrictCheck’s Specs are defined in terms of variadic curried
functions, the test author does not need to explicitly manipulate heterogeneous lists. Instead, they
work within the context of a Spec, indexed by the argument and result types of the function it is
meant to correspond to:

newtype Spec (args :: [Typel) (result :: Type)

= Spec (forall r. (args --— r) — result — (args --— r))

A Spec contains a specification function like those in Section 1.2, whose number of arguments is
determined by the arity of the function f it specifies. The wrapped specification function takes, in
order:

e a curried continuation we will name predict, accepting all of f’s argument types in order,

e an implicit representation of a demand on f’s result (as described in Section 2.1.4), and

e all of f’s original argument types in order.

The specification function will call predict on a representation of the demands which the
specification author predicts f will exert on its inputs, given the demand exerted on f’s output. In
Section 2.2, we’ll see examples of such specifications in action.

2.1.3  Another Flavor of Curry. As we saw above, a Spec is indexed by two types: a list of
arguments to the function specified, and the result type of that function. We might assume that a
function type like (A — B — C), with more than one argument, corresponds to multiple equivalent
Spec types: (Spec '[A, B] C),or (Spec '[A] (B— (C)).

Perhaps surprisingly, a useful Spec type should never have a function as its result type. Recall
from Section 1.2 that a strictness specification maps from a demand on a function’s result, as well
as a list of its inputs, to a predicted demand on those inputs. Suppose we tried to specify the curried
function

zip :: [al -- first argument
— ([bl — [(a, b)]) -- result (partially applied function)
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in terms of a mapping

zip spec
: Demand ([b] — [(a, b)]) -- demand on (partially applied) result
— [a] -- first argument
— Demand [a] -- demand on first argument

Any such specification would not be able to precisely express zip’s strictness. Why? There are
only two possible demands on a function: evaluated, or not evaluated. Yet the shape of the demand
on zip’s first argument [a] depends on how much of its result [(a, b)] is evaluated by some
context. A specification like this can be predicated only on whether or not the result function
[b] = [(a, b)] is itself evaluated—which isn’t enough information to make an exact prediction of
the demand on zip’s input [a].

Extending this reasoning, any exact specification of a curried function with non-trivial strictness
is only expressible by uncurrying that function. In StrictCheck, types like (Spec '[A] (B — C))
are prohibited in favor of the strictly more expressive form (Spec '[A, B] C). This conversion
is handled automatically by the library; the user doesn’t need to manually uncurry functions to
specify them.

2.1.4 Demands as Ordinary Values? In the executable examples to follow, notice that we will
overload a value of some type t as both an ordinary value and also as a representation of a demand
on some value of that type. This might be surprising—as discussed in Section 1.1, there are more
demands on values of a type than there are mere values of that type!

We will fully resolve this apparent paradox in in Section 4, but it’s worth defusing some of the
suspense now: when writing a specification, we embed in some value of type t a representation of
(Demand t) on that same type by stubbing out portions of that value with the specially “tagged”
bottom value (thunk :: forall a. a).In the context of a Spec, a total value of type t corresponds
to the fully strict demand on that value, while a partial value containing one or more thunks
corresponds to some non-strict demand on that value.

2.2 Let’s Check Some Specs

We’re now ready to write a strictness specification for take. But what should that specification say?
A good first guess might be that take will always evaluate its integer argument n regardless of the
demand on its result, and that it will evaluate its list argument xs to the same degree as whatever
demand is placed upon its result. Let’s put these words into code (with type annotations for clarity):
take spec first attempt :: Spec '[Int, [a]] [al
take spec first attempt =

Spec $ \(predict :: Int — [a] — r) -- called upon predicted demands on inputs
(resultDemand :: [a]) -- given demand on result
(n :: Int) -- given input value
(xs :: [a]) — -- given input value
predict n resultDemand -- prediction of demands on inputs

Is this specification right? Using QuickCheck [Claessen and Hughes 2000] as its backend,
StrictCheck generates random inputs to the function (integers n and lists xs), as well as ran-
dom contexts in which to evaluate its result. It observes whether the evaluation induced upon the
inputs to take exactly matches the prediction of the specification. Then, it shrinks any found coun-
terexamples to a minimal form and reports them. To check our specification, we invoke StrictCheck
from within GHCi:!

Like QuickCheck, StrictCheck cannot test polymorphic functions, so we need to instantiate any type variables before
testing them. Usually, the quickest way to do this is with explicit type application—as we do here to specialize take to Int.
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ghci> strictCheckSpecExact take spec first attempt (take @Int)

StrictCheck quickly informs us that our specification does not match the actual behavior of take,
printing a diagram to illustrate the mismatch (Figure 2).

*** Failed! Falsifiable (after 1 test and 1 shrink):

Inputs —— Demand on result

0 [1

e [1

NN

Actual input demands Spec's input demands
« 0 « 0

. e 1]

Fig. 2. Counterexample for take under the incorrect specification take_spec_first_attempt

This counterexample tells us that when we evaluated (take 0 []) and fully demanded its result, [],
our specification predicted that take would place that same demand, [], on the input list. However,
take placed no demand on the input list, because if n is zero, take immediately returns [] without
evaluating the list at all.

While StrictCheck can’t tell us whether a test failure indicates a bad specification or a bad
implementation, in this case it is our specification is incorrect. To fix it, we need to account for
what happens when take runs n down to zero before it gets to the end of the list. In that case, it
doesn’t evaluate the rest of the list, so the end of the demand on xs ought to be a thunk, not []. We
can correct the Spec to account for this:

take spec correct :: Spec '[Int, [a]l] [a]
take spec correct =
Spec $ \predict resultDemand n xs —
predict n (if n > length xs
then resultDemand
else resultDemand ++ thunk)

This specification passes StrictCheck’s battery of random tests:

ghci> strictCheckSpecExact take spec correct (take @Int)
+++ OK, passed 100 tests.

Our correct specification of take can be used to catch a variety of errors. Suppose that instead of
our original definition of take, we had written the seemingly equivalent function take':

take' :: Int — [a] — [a]

take' _ [1=11]

take' n (x : xs)
| n>20 = x : take' (n-1) xs
| otherwise = []

Under ordinary property-based testing, there is no way to distinguish between take and take'.
They both compute the same function, but take' has different strictness than take in a fairly subtle
way. Can you spot how?

Testing take' against the correct specification for take reveals that its behavior does differ from
the specification (Figure 3).
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*** Failed! Falsifiable (after 1 test and 1 shrink):

Inputs —— Demand on result

-0 [1

e [1

il

Actual input demands Spec's input demands
.« e 0

e 11 .

Fig. 3. Counterexample for take' under the correct specification take_spec_correct

This counterexample illustrates the strictness bug in take'. The function take evaluates n first,
conditionally evaluating xs if n is positive; by contrast, the function take' always evaluates the
beginning of xs, conditionally evaluating n if xs is non-empty. This means that take' evaluates one
more constructor of its input list than take does.

While this bug might seem trivial, it is representative of a large class of errors, many of which can
be quite serious. Accidental strictness like this can lead to arbitrary extra amounts of computation.
Indeed, using an overly-strict function to define a self-referencing data structure can lead to non-
termination—the too-strict function can cause a thunk within the structure to depend on its own
value, forming a cyclic evaluation loop.

3 OBSERVING STRICTNESS IN HASKELL

In order to run the above tests, StrictCheck needed to compare the predictions of a Spec with
its own observation of how much input was actually evaluated by a function. In this section, we
provide an efficient mechanism to record this runtime behavior.

3.1 Getting Our Data in Shape

In Section 1.1, we saw that a demand on a value of some type is a sub-shape—specifically, a prefix—of
that value. If we were to write down the types of demands on various ordinary types, we’d find
ourselves repeating a pattern. The type D of demands on the values of some ordinary type S:

e has the same number of constructors as S does,
e has the same number of fields in each constructor as S does, and
e each field in D is either empty, or contains some demand on values of that field’s type in S.

To actually represent such types, we define the type Thunk, to represent the possibility that some
portion of a data structure has not been evaluated:

data Thunk a
=T
| Ea
deriving (Functor)

Using this type, we can say: the type of demands on values of some type is the same shape as
the original type, but interleaving the Thunk type at every field, recursively throughout the entire
type’s shape.

Knowing this pattern, we could define the types of demands on our favorite data types, like this
demand type for lists:
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data ListDemand a
= NilDemand
| ConsDemand (Thunk a) (Thunk (ListDemand a))

If we were to do this, though, we’d quickly be overwhelmed with the amount of boilerplate
required to define such types. What’s more, we’d have to write still more boilerplate to allow the
demand observation mechanism to manipulate these values. We already understand the relationship
between these demand types and the ordinary types to which they correspond—we ought to use
this knowledge to unify these ad-hoc definitions.

To do this, we take as inspiration the concept of recursion schemes, first described by [Meijer et al.
1991] and now implemented as the modern Haskell library recursion-schemes [Kmett 2017]. This
work observes that any (regular) recursive data type is isomorphic to the explicit fixed-point of
some corresponding non-recursive Functor. The shape of the correct such Functor should mirror the
outermost layer of the original data type, with that Functor’s type parameter substituted wherever
the original data type contains a recursive occurrence of itself. By factoring out the recursive
structure of the original data type, the authors are able to define once and for all a suite of folds
and unfolds for any data type that implements this isomorphism.

While this approach is elegant and useful, it is nevertheless not quite what we need. In particular,
it is limited to expressing folds over the outermost recursive structure of the data type in question.
In StrictCheck, we need to observe the evaluation of an entire data structure, into its innermost
parts. The demand representation of a data type needs to interleave a Thunk at every field, not
merely those which are a recursive occurrence of the original data structure.

To accomplish this, we will develop a new flavor of recursion scheme which works with structures
shaped like some data type, but with a Functor (like Thunk) interleaved at every field. Our variation
will let us express folds and unfolds across the entire structure of a data type, regardless of the
types of its intermediate fields.

As in the original account of recursion schemes, we define a relationship between some possibly
recursive type and some non-recursive type whose fixed point is shaped like the original type. We
say that the Shape of a type S, parameterized by some Functor f, is the same shape as a value of S,
but with f wrapped around every field in every constructor of S.

class Shaped a where
type Shape a :: (Type — Type) — Type
project :: (forall x. Shaped x = x —» f x) —» a — Shape a f
embed :: (forall x. Shaped x = f x —» x) — Shape a f — a

We also require every Shaped type to define projection and embedding functions to witness the
relationship between the original type and its Shape. To put all this together, let’s consider the data
type D and a valid corresponding Shape, DShape:

data D x y
= A x Int

| By

data DShape x y (f :: Type — Type)
= AS (f x) (f Int)
| BS (f vy)

To project out the outermost layer of some D out, revealing its Shape, we take some polymorphic
projection function

p :: forall x. Shaped x = x —» f x
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and call it on each field of the original value. Similarly, to embed an outer Shape back into the
original type D, we take some polymorphic embedding function

e :: forall x. Shaped x = f x — X
and call it on each field of the given Shape:

instance Shaped (D x y) where
type Shape (D x y) = DShape x y
project p d = case d of
Axi— AS (p x) (p 1)
By — BS (py)
embed e ds = case ds of
AS fx fi — A (e fx) (e fi)
BS fy — B (e fy)

All of the above is non-recursive, dealing with only one layer of a value’s structure at a time. We
re-introduce recursion with an explicit fixed-point to recover the structure of our initial type. For
some functor f, a value of type f % a is Shaped like a value of type a, but with an f interleaved at
every field (and around the outside of the entire value as well):

newtype (f :: Type — Type) % (a :: Type) where
Wrap :: f (Shape a ((%) f)) —» f % a

Unlike the isomorphism in [Meijer et al. 1991], though, there may be more (or fewer) values of this
fixed-point type than of the original type, depending on the functor f we interleave.

The methods of Shaped can be used to lift project and embed to operate recursively over entire
interleaved structures. We call these functions interleave and fuse, respectively:

interleave :: (Functor f, Shaped a) = (forall x. x - f x) —» (a —» f % a)
fuse :: (Functor f, Shaped a) = (forall x. f x —» x) — (f $a — a)

These are special cases of more general derived folds and unfolds.
As we noted before, a Demand recursively interleaves Thunks into the Shape of the original data
type. We represent this as the type synonym

type Demand = (%) Thunk

Using the generic programming framework Generics.SOP [de Vries and Loh 2014], we provide a
default definition for the entire Shaped class which works for any Haskell 2010 algebraic data type.
A user of StrictCheck who wishes to test a function on their own data type T need only ensure that
it implements the Generic typeclass, then declare an empty instance of Shaped:

instance Shaped T

An instance of Shaped for some data type is sufficient to derive observation, shrinking, and
pretty-printing of demands upon its values. In the next section, we’ll see how to use it for the most
vital of these: observation.

3.2 Observation, Shapefully

Without privileged access to the runtime system, how can a Haskell program observe the evaluation
of a piece of data? The “safe” subset of Haskell won’t allow us to do that, so we’ll need to use unsafe
primitives which break referential transparency.” In the end, we will very carefully wrap up these
unsafe pieces to define a pure function observe which reports the precise demands exerted during

2We must take care to prevent compiler optimizations—many of which assume referential transparency—from breaking the
functionality of these operations. For legibility, we elide these compiler hints.
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some function’s evaluation. To illustrate this safety boundary, we’ll typeset referentially opaque
operations in red.

Internally, we observe evaluation by mutating reference cells during the course of a thunk’s
evaluation. We use the referentially opaque primitive

unsafePerformIO :: I0 a — a

to convert an (I0 a) action into a thunk which secretly runs that action and returns its result—if
and when it happens to be evaluated. This operation lets us create data whose value depends on its
own order of evaluation.

entangle :: a — (a, Thunk a)
entangle a =
unsafePerformIO0 $ do
ref « newIORef T
return ( unsafePerformIO $ do
writeIORef ref (E a)
return a
, unsafePerformI0 $ readIORef ref )

Calling entangle on some value of type A returns a pair: a copy of the original A, and a (Thunk A).
The copy of the value returned by entangle is instrumented so that if and when it is evaluated, it
will write its own value to a newly allocated reference cell. When the Thunk returned by entangle
is evaluated, it reads from that same reference cell and returns whatever it contains at that moment.
The effect of all this: if the returned A is evaluated before the corresponding Thunk, that Thunk will
contain a copy of that value; if the Thunk is evaluated first, it will merely be an empty T. We can see
this behavior by experimenting with entangle in GHCi:

ghci> x = "ab" ++ "cd"
ghci> (x', tx) = entangle x
ghci> x'

"abcd"

ghci> tx

E "abcd"

Here, because we evaluated x' first (by printing it), its value was written to the Thunk tx. If instead
we evaluate the Thunk first, its value will forever be T:

ghci> y = "wx" ++ "yz"
ghci> (y', ty) = entangle y
ghci> ty

T

ghci> y'

"wxyz"

ghci> ty

T

Instead of entangling just one value and a corresponding Thunk, we can use generic folds derived
from Shaped to produce an instrumented copy of some value and an entire Demand reflecting the
exact shape of its evaluated prefix.

To define this operation, we need to introduce one more fold, a generalized unzipWith:

unzipWith
(ALl Functor [f, g, h], Shaped a)
= (forall x. f x — (g x, h x))
— (f%a—> (g%a, h%sa))
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Using unzipWith as well as the fuse and interleave functions described in Section 3.1, we can
recursively entangle every piece of a value.

entangleShape :: Shaped a = a — (a, Demand a)
entangleShape =
first (fuse runIdentity)
. unzipWith entangle’
. interleave Identity
where
entangle’ :: Identity x — (Identity x, Thunk x)
entangle’ =
first Identity . entangle . runIdentity

In the above, we use the Identity type

data Identity a
= Identity { runldentity :: a }
deriving (Functor)

The entangleShape operation recursively unzips the structure of a value to create a mutable
shadow of it. Evaluating any thunk within the resultant instrumented value triggers the update
of a mutable pointer at the corresponding location in the returned Demand. When we evaluate the
entangled Demand, we implicitly freeze this pointer structure, creating a reified representation of
whatever sub-shape of the original value happens to be evaluated by the time the Demand itself was
evaluated.

Although entangleShape is still referentially opaque, we can use it to define observel, a pure
function which observes the evaluation of a unary function on an input in a given context. We
specify that context as a function context :: b — (). This function will evaluate some part of the
function’s result before returning (). The caller of observel can choose what context function to
provide, thus determining what demand will be placed on the function’s result during observation.

observel :: (Shaped a, Shaped b)
= (b — ()) -- evaluation context for the result
— (a — b) -- function to be observed
— a -- input to the function
— (Demand b, -- demand exerted by the context
Demand a) -- demand induced upon the input

To observe the evaluation of a function on some input and in some context, observel:

(1) entangles the input to the function, yielding an instrumented input' and an observation of
the demand upon it, inputDemand;

(2) entangles the result of the function when applied to that input, yielding an instrumented
result' and an observation of demand upon it, resultDemand;

(3) evaluates the instrumented result result' in the evaluation context; and

(4) returns the demand on the result and the demand this has induced upon the inputs.

observel context function input =
let (input', inputDemand) =

entangleShape input -- (1)
(result', resultDemand) =

entangleShape (function input') -- (2)

in let !() = context result' -- (3)

in (resultDemand, inputDemand) -- (4)
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For example, observel can show us that reverse is spine-strict in its input list when its result is
evaluated to weak-head normal form:
ghci> (resultDemand, inputDemand) = observel (\x — seq x ()) reverse "abc"
ghci> printDemand inputDemand

[1

The printed demand shows us that when we demanded only the first constructor of the reversed
list, every (:) and [] constructor in the spine of the list was evaluated, but none of the elements
were.

To observe the evaluation of functions with more than one argument, StrictCheck provides the
more general function observe which uses the variadic currying machinery in Section 2.1.

observe :: (All Shaped (Args function),
Shaped (Result function),
Curry (Args function))
= (Result function — ())
— function
— Args function
--— (Demand (Result function), NP Demand (Args function))

Recall that (args -+ — result) calculates the curried function type with arguments args, returning
result. The type (NP Demand (Args function)) is a heterogeneous list, each of whose elements is
the induced demand observed on the function’s corresponding argument. To extract these individual
input demands, we pattern-match on its constructors (:*) and Nil .
Using observe, let’s examine the strictness of a function with multiple arguments. Consider the
function productZip:
productzZip :: [Int] — [Int] — [Int]
productZip xs ys =
zipWith (*) xs ys
From GHCIi, we observe that in the fully strict evaluation context normalize,’ the function productzip
is asymmetrically strict:

ghci> (result, (xs :* ys :* Nil)) = observe normalize productZip [10, 20] [30, 40]

ghci> printDemand result

300 : 800 : []

ghci> printDemand xs

10 : 20 : []

ghci> printDemand ys

30 ¢ 40
This tells us that zipWith is stricter on the left than the right: it lets the right-hand input list go
untouched after it exhausts the left-hand input list.

Performance of observe. We claimed in the introduction that observing the strictness of a function
has the same asymptotic performance as the original function. Previously described methods for
strictness observation feed partially-undefined inputs to a function until observing that its result
is not undefined [Anders Danielsson and Jansson 2004]. That method requires re-evaluating the
function on many partial inputs. In the worst case, determining the function’s exact strictness on
some input may require evaluating it an exponential number of times (relative to the size of that
input). By contrast, observe uses entangleShape to capture the exact evaluated shape of its input

3StrictCheck defines normalize as a generic operation in terms of the Consume typeclass from Section 6.2. In the context
above, it suffices to think of normalize as the function foldr seq ().
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and result using only one invocation of the observed function. Exploring the resultant observed
demand structure requires the same work to be done as would evaluating the function’s ordinary
result, plus a slight extra overhead to manage the mutable shadow copy of the inputs.

Purity of observe. While entangle and entangleShape are referentially opaque, observe is ref-
erentially transparent. As we saw, entangle’s results are dependent on the order in which you
evaluate them. On the other hand, observe takes an evaluation context as input and crucially, does
not return the instrumented result of the observed function—it returns just the reified Demands. This
means that any evaluation of the result of the function occurs within observe, prior to it returning
any observation of demand. As such, all the updates to the mutable shape have concluded prior to
our exploration of the resultant (and now frozen) demands. Because of this, the order of evaluation
outside observe does not influence the value of its output.We can safely expose observe to the
outside world, and fear not that it will cause untoward side effects.

4 MANIPULATING DEMANDS IN SPECIFICATIONS

StrictCheck specifications need to manipulate demand values in order to produce their predictions.
Section 3 introduced the type (Demand :: Type — Type), which maps types to their demand types,
and described how to obtain demand values by observing the evaluation of a function in some
context. Now we focus on how to manipulate these values to craft precise specifications.

The writer of any kind of formal specification deserves a well-developed library for writing those
specifications. If strictness specifications are to be phrased in terms of reified demands what tools
will we have to manipulate these values as we build our specifications?

Take for example Haskell’s standard Data.List module. Each of its many operations could be
given an analogue which works over demands on lists, and each of these analogous operations
might be useful to manipulate values of type Demand [a] in some specification. In principle, we
could tediously implement each of these analogous operations from Data.List for Demands on lists.
However, this places tremendous overhead on us, the library designers—and that’s only considering
specifications concerning demands on lists! We cannot reasonably expect to re-implement the rich
Haskell ecosystem for our new landscape of demands.

Instead, it would be excellent if we could reuse existing functions to manipulate their correspond-
ing demand values. However, demand values inhabit a different type. What’s more, this difference
in type is more than merely a difference in name: for almost all types a, there are many more
inhabitants of (Demand a) than there are of a. How, then, could we automatically lift an existing
function over some type a to work over the structurally distinct type (Demand a)?

4.1 Embedding Demands in Values

Our inspiration comes from realizing a combinatorial connection between demand types and lifted
values. At every point in a Demand where a Thunk could be equal to T, there is a corresponding
point in a corresponding non-total value where some sub-part could be undefined. If we count the
elements of a type (taking into account that lazy values may contain embedded bottoms), we find
that there are the same number of partial inhabitants of a type as there are total inhabitants of its
type of demands.

Our specifications so far have already made use of the term thunk. As alluded to in Section 2.1.4,
this term is a bottom value which, when evaluated, throws a pure exception:

thunk :: forall a. a
thunk = throw Unevaluated

data Unevaluated = Unevaluated
deriving (Show, Exception)
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Consider the demand value (_ : 2 : _) on lists of integers. Using thunk, we can represent this
demand as itself a partial inhabitant of the type [Int]: (thunk : 2 : thunk). Here the first thunk
represents the unevaluated Int, and the second thunk represents the unevaluated tail of the list. We
can manipulate this embedded demand representation with existing list operations; for example,
applying (take 1) to this list would return the singleton list [thunk] containing the first thunk.
As we might now expect, StrictCheck can losslessly translate between these new “implicit”
demands and the explicit demands we’ve seen already. In the forward direction, it converts from a
(Thunk a) to a partial value of type a by throwing the Unevaluated exception at each T we encounter:

fromThunk :: Thunk a — a
fromThunk (E a) = a
fromThunk T = thunk

In the reverse direction, it converts back from a partial value of type a to a (Thunk a) by catching
the Unevaluated exception and converting it into a T:

toThunk :: a — Thunk a
toThunk a = unsafePerformIO $

catch
(Let ! = a in return (E a))
(\(_ :: Unevaluated) — return T)

These functions are inverses, provided that every reified demand value is non-partial—that is, it
contains no embedded exceptional values.

Within specifications, we may need to test whether a particular implicit demand is a thunk or
not. Using toThunk, we define isThunk to detect this:

isThunk :: a — Bool
isThunk a =
case toThunk a of
T — True
~ — False

Much as entangleShape lifts entangle to operate recursively over entire demands, we can lift the
above pair of inverse functions to convert entire data structures between the two representations:

toDemand :: Shaped a = a — Demand a
fromDemand :: Shaped a = Demand a — a

Given the current Spec interface to StrictCheck, most specification authors will never need to use
these conversions between demand representations. During testing, explicit demands expressed
in terms of Shapes are converted to implicit demands embedded in values and back again at the
boundaries of a Spec.

4.2 Writing Specs Using Embedded Demands

Specifications written with the Spec type are provided partial values produced by fromDemand by
default. In all of the examples shown in Section 5, we manipulate demand values on lists with
authentic functions from Data.List, and in these examples this approach is significantly more
convenient than explicit manipulations of Demand [a] values.

When programming with these partial list values, we must be mindful of where thunk may occur.
As we have seen, thunk is a divergent term. If a computation tries to evaluate thunk, its entire result
becomes equal to thunk. For example, if we apply length to the partial value (1 : 2 : thunk), we
would get back a thunk of type Int since length needs to keep evaluating the list until it reaches
the [] constructor. Because of this, our examples will use the function (cap :: [a] — [a]), which
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replaces a thunk at the tail of a list with []. This can help us prevent spine-strict functions from
behaving incorrectly when lifted to implicit demands. We will see details of cap in Section 5.

We acknowledge that this design makes writing specifications more error prone than they would
be if instead they explicitly manipulated Demand values and explicitly handled at every pattern-
match the possibility of encountering a thunk. However, we believe this weakness to be outweighed
by the expressive benefit of manipulating Demand values with any available function defined over
the original data type. However, if the specification author wishes, parts of a Spec can also work
with explicit Demands—the author merely needs to invoke the toDemand and fromDemand functions.

5 CASE STUDY: PURELY FUNCTIONAL QUEUES

In Section 2.2, we wrote a specification for the simple function take. Now, let’s work through a more
complex example: a specification for purely functional queues. Such queues are often implemented
with two lists: a front list holding the queue elements in first-in-first-out order, and a back list
holding the rest of the elements in reversed order. When the front list is empty, a dequeue operation
must reverse the back list to refill the front list, which takes O(n) time to finish. While an amortized
analysis shows that the expected time for dequeueing is constant, this is not true if the queue is
used persistently, since this O(n) operation could be repeated arbitrarily many times if references
to old values of the queue are re-used. In his work on purely functional data structures [Okasaki
1998], Okasaki improves upon this design using a clever application of laziness. Instead of reversing
the back list all at once, Okasaki’s queue incrementally performs the reversal of the back list, at the
same time incrementally appending that reversed list to the end of the front list [Okasaki 1995].
Okasaki’s queue relies on a function called rot:

rot :: [a] — [a] — [a]

For any front and back lists, the expression (rot front back) is functionally indistinguishable from
(front ++ reverse back). However—unlike this naive implementation—a queue implemented with
rot avoids the occasional O(n) reversal, cleverly using laziness to distribute the cost of reversing the
back list across each pattern-match on the front list. We’ll soon see how this works in Section 5.2.

When implementing such a queue, we might accidentally break Okasaki’s invariants—yet because
the two implementations differ only in their strictness, we would fail to discover the mistake through
traditional property testing. Fortunately, we can use StrictCheck to write a specification that lets
us automatically test the strictness invariants of rot.

Before working through the tricky example of Okasaki’s queue, let’s first build some intuition
by understanding and specifying the naive reverse-and-append implementation of queue rotation.

5.1 Warmup: Naive Queues
As earlier, there’s an easy way to implement the rotate function, though this naive version’s
strictness properties leave something to be desired:

rot naive :: [a] — [a] — [a]
rot naive fs bs = fs ++ reverse bs

Before writing down a complete specification for it, it’s easier to build up a picture of our
predictions by considering several possible cases we could encounter while evaluating its result.

Notating Demands. Below, we’ll continue to use the demand notation presented in Section 1.1.
Additionally, we’ll use metavariables D; to name either a thunk or an evaluated field. For instance,
we will allow the list demand (D1:Dy:_) to denote several simultaneous possibilities, including the
above 2-cons demand (_: : ), a similar demand where first two values are evaluated (1:2: ), or
a mix of both. This notation is useful to illustrate the relationship between two different demands.
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For instance, we could represent that some list demand is the reversal of another list demand by
writing the first as (D;:D3:D3:[]) and the second as (D3:D,:Dy:[1).

We will show the relationship of several sets of possible demands to rot_naive by arranging them
into a table, using metavariables D1, Dy, etc. to show how they are connected. For example, consider
what happens when we make some demand (D;1:D,: ) upon the result of calling rot naive on
the lists [1,2,3] and [6,5,4]:

Inputs ‘ Output ‘ Demand On Output ‘ Demand On Inputs
fs = [1,2,3] . fs = Dy1:Dy:_
bs = [6,5,4] [1,2,3,4,5,6] D1:Da:_ bs =

In this table, the first column shows the input lists fs and bs: here, they are [1,2,3] and [6,5,4]
respectively. The second column shows the result of (rot_naive fs bs) when fully evaluated: here,
[1,2,3,4,5,6]. By using the metavariables D; and D, we represent several possible observations
in a single table: the third column shows the demand exerted on the output, while the last column
shows the demands on the inputs induced by that output demand. In this first example, where the
output demand is smaller than the input list fs, the demand on the first argument fs is equal to the
demand on the output, while the demand on the second list bs is the empty demand. For example,
if the output demand is (1:2: ), only the first two (:) constructors of fs will be evaluated, and
both will have their integer fields evaluated.

On the other hand, if the output demand is larger than the first list, then the entire spine of the
second argument has to be evaluated, since determining the value of the first element of a reversed
list requires reversing the entire list, all at once:

Inputs ‘ Output ‘ Demand On Output ‘ Demand On Inputs
fs = [1,2,3] . . . . fs = D1:D2:D3:[]
bs = [6,5,4] [11213141516] Dl'DZ'D3'D4'_ bs = 7:7:D4:[]

In this case, our specification should predict that the demand on the first list will be the prefix of
the output demand equal in length to fs. It should also predict that the demand on the second list
will be the reverse of the remaining demand on the result, prefix-padded with thunks if necessary.

There is one last case we need to consider: when the demand on the result is equal in size to the
first list, and the second list is empty:

Inputs ‘ Output ‘ Demand On Output ‘ Demand On Inputs
fs = [1,2,3] N fs = Dy1:Dz:D3:[]
N [1,2,3] D1:D7:D3:[] be — (]

In this case, since the demand requires the result to be fully evaluated, we need to also evaluate the
back list to ensure it is indeed empty. As such, our specification should predict that the back list
will be fully evaluated, and that the demand on the front list will be identical to the demand on the
result of the function.

5.1.1  Specifying Naive Queues. Let’s translate this careful case-wise analysis to write a StrictCheck
specification. We use the two functions

isCapped :: [a] — Bool
cap i1 [a] — [a]

to, respectively, check if the tail of the list demand is a thunk, and replace that thunk with an empty
list if so.
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rot naive spec :: Spec '[[Int], [Int]] [Int]
rot naive spec =
Spec $ \predict resultDemand fs bs —
let demandOnFs
| length (cap resultDemand) > length fs =
take (length fs) resultDemand
| otherwise = resultDemand
demandOnBs
| length (cap resultDemand) > length fs ||
null bs isCapped fs =
reverse $ take (length bs)
$ drop (length fs) (cap resultDemand)
++ repeat thunk
| otherwise = thunk
in predict demandOnFs demandOnBs

Just like the specifications of take in the introduction, this specification uses the constructor Spec
applied to a function. That function has as arguments a continuation predict, the result demand
resultDemand represented implicitly as a value of type [Int], (per Section 4), as well as the actual
input lists fs and bs.

This specification correctly predicts the demand on fs and bs. In English, it says: “If we don’t
demand more from the output of rot_naive than the length of fs, then the demand on fs is just the
result demand itself, while bs is left completely unevaluated. On the other hand, if we do demand
more from the output than the length of fs, only the first piece of the demand is actually relevant
to fs, while the rest constitutes the demand on bs after being appropriately padded with thunks
and reversed”

5.2 A Trickier Spec: Okasaki’s Persistent Queues

Now, let’s specify the strictness of Okasaki’s rot. The function rot is defined in terms of the more
general rotate:

rot :: [a] — [a] — [a]
rot fs bs = rotate fs bs []

rotate :: [a] — [a] — [a] — [a]

rotate [1 [1 as = as
rotate [T (b : bs) as = rotate [] bs (b : as)
rotate (f : fs) [1 as = f : rotate fs [] as

rotate (f : fs) (b : bs) as = f : rotate fs bs (b : as)

Each element taken from the result of (rot front back) requires both the front and back lists
to be evaluated more deeply by one constructor. As a result, the “effort” of reversing the back list is
distributed across each dequeue operation, so that by the time the front list has been notionally
exhausted, the back list has already been reversed and appended to it.

It’s worth noting that rotate is neither stricter nor lazier than the naive reverse-and-append
operation rot_naive. It is stricter in the back list up until the point when the front list has been
exhausted—and then, it is much lazier, as there is no more work to do upon the back list.

Now, let’s move on to specify the more complex rot function from Okasaki. Once again, let’s
build up intuition about its strictness by looking at usage examples. First, let’s consider the same
examples as with rot_naive.
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Inputs ‘ Output ‘ Demand On Output ‘ Demand On Inputs
fs = [1,2,3] . fs = Dq1:Dy:_
bs = [6,5,4] | [1r230450] Pr:Dz:_ bs = : i

When we demand the first two elements from the result of rot, the demand propagates to a
corresponding demand on the front list fs. In fact, the demand behavior of the front list is identical
to the one of rot_naive. The difference between the two functions lies only in the incremental
strictness when reversing the back list bs. In this example, rot_naive didn’t evaluate the back list at
all, since we demanded fewer elements than exist in the front list. On the other hand, rot evaluates
the same number of (:) cells in bs as it evaluated in fs. This is precisely the intuition behind
Okasaki’s queues: we do more work incrementally, at each step, to avoid costly O(n) operations.
In our second example, the demand was larger than both lists:

Inputs ‘ Output ‘ Demand On Output ‘ Demand On Inputs
fs = [1,2,3] . . . . fs = D1:D2:D3:[]
be — [6.5.4] | [1:2:3:4.56] D1:D2:03:Dai_ | o -

The demands in this case are identical to the ones we saw in rot_naive: they require that the spines
of both lists be fully evaluated.

5.2.1 Specifying Okasaki’s Queues. From this reasoning, we might write the following spec
for rot by making the modifications to the specification for rot_naive which correspond to the
observations above:

rot spec :: Shaped a = Spec '[[a], [al] [a]
rot spec =
Spec $ \predict resultDemand fs bs —
let demandOnFs
| length (cap resultDemand) > length fs
take (length fs) (cap resultDemand)
| otherwise = resultDemand
demandOnBs
| numCtrForced resultDemand > length fs
reverse $ take (length bs)
$ drop (length fs) (cap d)
++ repeat thunk
| otherwise =
(reverse $ drop (length fs) (cap resultDemand)
++ replicate (length (cap resultDemand)) thunk)

++ thunk
in predict demandOnFs demandOnBs

In addition to the cap helper function we saw above, this code uses another, nunCtrForced, that
just counts the number of evaluated constructors in the list demand, including both (:) and []
constructors in its total. This function is implemented using the length function over lists and the
previously introduced cap function that replaces the tail thunk in a list demand with an empty list.

When we test this specification using StrictCheck, it presents us with a counterexample. Repeat-
edly running this test reveals that all such counterexamples occur when the length of bs is greater
than the length of fs. However, this indicates a bug in our testing procedure, not in rot: Okasaki’s
queue implementation maintains the invariant that length fs >= length bs, and so this case does
not arise in any actual invocation of rot. However, since we didn’t specify that precondition,
StrictCheck identified a counterexample. The full version of the specification, including coverage
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for the case that violates the invariant, is shown in Figure 5, side-by-side with the full spec of
rot_naive for easy comparison.

To conclude this section, we use StrictCheck to test the reverse and append implementation
against the rot_spec specification, which immediately produces a counterexample (Figure 4).

**x Fajled! Falsifiable (after 11 tests and 2 shrinks):

Inputs —— Demand on result

« 0 : [] o

e [1

Ll

Actual input demands Spec's input demands
S -1

Fig. 4. Counterexample for rot_naive under rot_spec

As expected, the incremental rot specification requires the second list to be evaluated when
rot_naive is in fact lazy. The specification rot_spec correctly distinguishes the incremental laziness
behavior from that of rot_naive. A precise and executable specification for rot both serves both
as live documentation of its intended strictness, and delivers high degree of confidence in the
correctness of rot since users can easily verify its strictness behavior at the push of a button.

6 TESTING HIGHER-ORDER FUNCTIONS

So far, we’ve seen how StrictCheck can test demand specifications for first-order functions like
take. Haskell is a higher-order language, though, and it would be a shame if we could only test the
strictness of first-order functions. However, testing the strictness of higher-order functions comes
with its own challenges. For example, consider the standard map function:

map :: (a — b) — [a] — [b]
map _ [] =[]
map f (a : as) = f a : map f as

Just as with any other function, testing a strictness specification for map requires us to generate
random inputs for it. In this case, we need both to generate a list of elements [a], as well as a
random function (a — b). Readers familiar with QuickCheck might think to reach for its built-in
CoArbitrary class, which indeed allows the user to generate random functions. As we will see,
however, CoArbitrary is capable of generating only fully strict functions. This uniform strictness is
fine for testing ordinary functional correctness properties, but it’s a deal-breaker for StrictCheck. If
we accidentally wrote a function map' that unconditionally evaluated every element of the input list,
it would behave identically to the ordinary map for all fully strict function arguments. StrictCheck
would only be able to distinguish it from a correct implementation of map by testing it with a
non-strict function argument. If we want to use StrictCheck to test higher-order functions, we will
need to generate functions with randomly varied strictness.
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6.1 Generating (Strict) Functions with QuickCheck’s CoArbitrary

In order to understand how StrictCheck generates random non-strict functions, it’s helpful to first
understand how QuickCheck generates its own random strict functions. Let’s start at the beginning,
by investigating its generator monad Gen.

Most users of QuickCheck only encounter Gen as an abstract type. To construct a random gener-
ator (Gen A) for a value of type A, a user combines QuickCheck’s library of generator combinators
(choose, elements, etc.) using Gen’s monadic operations. For example, the generator below returns
pairs whose first element is in the range 0-10, and whose second element is a random boolean:

genMyPair :: Gen (Int, Bool)
genMyPair = do
i < choose (0, 10)
b <« elements [False, Truel
return (i, b)

This interface lets a user describe how to build a random value without worrying about how the
randomness is supplied to their generator and its component primitives. The Arbitrary typeclass
defines a sensible “default” generator, meant to statistically cover every possible value in a type:

class Arbitrary a where
arbitrary :: Gen a

This approach works wonderfully for generating first-order data types. What’s less clear is how
to generate higher-order types like functions and data structures containing them. How might we
randomly sample from a function type (A — B)?

One easy but unsatisfying answer: if we have an Arbitrary instance for B, we can generate
constant functions, each of which always returns some pre-generated value of B:

genConst :: Arbitrary b = Gen (a — b)
genConst = do

result « arbitrary

return (\_ — result)

This is unsatisfying indeed: constant functions represent only a sliver of the type (A — B). There are
many errors QuickCheck would never discover if it used only constant functions as higher-order
inputs, as most useful tests would require us to generate functions with input-dependent results. To
see how QuickCheck does this, let’s peek under the hood of the Gen type to see how it really works.

In essence, a value of type (Gen A) is a function from a (pseudo-)random seed to some value of
type A. When a program invokes a generator to actually create a random A, QuickCheck picks a
random seed and feeds it into this function, thus returning a random A. As we’ve seen, the Monad
instance for Gen lets users combine primitive generators to produce generators for larger data types.
The monadic bind operation for generators

(>>=) @Gen :: Gen a — (a — Gen b) — Gen b

creates a generator (Gen b) which, when given an initial random seed r:

(1) splits r into two statistically independent random seeds s and t,

(2) feeds s to the generator (Gen a) to produce an a, and

(3) produces a b by calling the (a — Gen b) function, feeding the resultant generator with the
second seed t.

In this way, QuickCheck ensures that different generators are not correlated.
Splitting is also the key to generating random functions with input-dependent results. To generate
such functions, we need to take a generator for the function’s output, and feed it with a different
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random seed depending on the value of the function’s input. As a result, the function will produce
different random output when given different inputs.

How might this work? For example, let’s make a generator for functions (Gen (Bool — Int)).
Our generator, when given an initial random seed r, splits r into the seeds s and t. It then picks
one of s or t, choosing based on whether the function’s input Bool is True or False. Finally, it feeds
that particular seed into the output generator (Gen Int).Because the choice of seed for generating
the function’s output is dependent on the value of the function’s input, this approach generates
useful non-constant functions.

Instead of asking the user to explicitly manipulate random seeds, QuickCheck provides the
CoArbitrary abstraction to simplify generating random functions.

class CoArbitrary a where
coarbitrary :: a — (Gen b — Gen b)

An instance of CoArbitrary for some type A describes how to use some A to perturb the random
seed of some other unknown generator (Gen b) in a way that depends on the value of that A. To aid
in writing these instances, QuickCheck exports a function called variant, which takes an integer
argument and a generator, and alters the generator by perturbing its random seed in a way that
depends on that integer.

variant :: Int —» (Gen b — Gen b)

To write a proper instance of CoArbitrary for A, the user should call variant at a different inte-
ger index for each different constructor of A, and compose the resultant perturbation function
(Gen b — Gen b) with those produced recursively from the fields of that constructor. For example,
here is the CoArbitrary instance for (Maybe a):
instance CoArbitrary a = CoArbitrary (Maybe a) where
coarbitrary Nothing = variant 0
coarbitrary (Just a) = variant 1 . coarbitrary a

QuickCheck uses generic programming to follow this same pattern, providing a default CoArbitrary
instance for most data types. Note that all correct CoArbitrary instances should destruct the entirety
of their input, so that every part of an input value has a chance to perturb an output generator’s
random seed.

Given a CoArbitrary instance for some input type A and an Arbitrary instance for some output
type B, QuickCheck can generate random functions (A — B). To do this, it uses the internal function

promote :: (a — Gen b) — Gen (a — b)

This operation takes a function returning generators (a — Gen b), and transforms it into a generator
returning functions (Gen (a — b)). The generator returned by promote captures its initial random
seed and returns a closure (a — b) which has access to that seed. When that closure is given an
input a, it calls the original function (a — Gen b) to produce a generator (Gen b). It then feeds the
captured random seed to this generator to return its output b.

The function promote is the final piece enabling QuickCheck to generate random functions from
anything CoArbitrary to anything Arbitrary:

instance (CoArbitrary a, Arbitrary b) = Arbitrary (a — b) where
arbitrary =
promote $ \a —
(coarbitrary a) arbitrary

Unfortunately for StrictCheck, this approach generates only fully strict functions. Evaluating even
the smallest piece of this function’s result means feeding some initial random seed to its call to
arbitrary. Computing this seed requires evaluating the perturbation function defined by the call
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to coarbitrary, which—if the instance of CoArbitrary is correctly defined—forces the entire input
a to be fully evaluated.

Worse, even if a CoArbitrary instance didn’t evaluate some of its input, we would still be unable
generate functions with arbitrary strictness. Since all the random perturbation extracted from an
input value is collected into a single atomic seed, evaluating that seed in turn evaluates anything
that influences its value all at once. Therefore, functions generated this way exert the same demand
on their input, regardless of the demand on their output.

6.2 Generating Non-Strict Functions for StrictCheck

To solve this problem, let’s look at non-strict functions from a different perspective. We call a
function productive if evaluating any finite prefix of its output requires the evaluation of only a
finite prefix of its input. Consider the function zip:

zip :: [a]l — [b] — [(a, b)]
2ip [1 B =1
zip _ [1] =[]

zip (a : as) (b : bs) = (a, b) : zip as bs

This function is productive, because evaluating a finite part of its output list requires evaluating
only the corresponding pieces of its input lists. An example of a non-productive function is sum:

sum :: [Int] — Int
sum [] =0
sum (n : ns) = n + sum ns

This function is not productive, because evaluating its output Int requires its entire input list to be
evaluated. If its input is an infinite list, any non-trivial demand on the result of sum will cause it to
diverge, as it attempts to consume all of that infinite input.

We can view a productive function as a procedure which alternates between evaluating some
finite amount of input and producing some finite amount of output, until it has produced its entire
output. Functions generated by StrictCheck explicitly follow this pattern, randomly alternating
between consuming pieces of input and producing pieces of output. At each step, the value of some
piece of input can influence both the value of some future piece of output, as well as future choices
about which pieces of input to consume next.

We generate functions using two complementary typeclasses: Consume and Produce. While the
CoArbitrary typeclass collapses an input all at once into a random perturbation, the Consume
typeclass transforms it into a tree of individual random perturbations. As we produce pieces of
input, we’ll compose and apply these pieces of randomness incrementally.

We represent an individual random perturbation with the type Variant, which wraps a universal
transformation on generators just like the result from QuickCheck’s own variant function.

newtype Variant
= Variant { vary :: forall a. Gen a — Gen a }

This type is is a Monoid: its identity and combination function are id and (. ), respectively, lifted
over the newtype. We assemble individual Variants into a rose tree called an Input:

data Input
= Input Variant [Input]

The Consume typeclass, our equivalent to CoArbitrary, maps a value to an Input. The functions
we’ll generate will incrementally use the random perturbations it contains while producing their
outputs.
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class Consume a where
consume :: a — Input

Instances of Consume create Inputs whose tree structures match those of the consumed values, with
a Variant at each node corresponding to the randomness derivable from the corresponding value
constructors. Just as CoArbitrary provides the function variant for writing its instances, we provide
the function constructor for writing instances of Consume:

constructor :: Int — [Input] — Input
constructor i = Input (Variant (variant i))

Instances of Consume are defined in a similar manner to their corresponding CoArbitrary instances.
For example, the Consume instance for (Maybe a) is:

instance Consume a = Consume (Maybe a) where
consume Nothing = constructor 0 []
consume (Just a) = constructor 1 [consume a]

Importantly though, instances of Consume must be precisely the right strictness: evaluating the
top-most Input constructor should require evaluating the top-most constructor of the consumed
value, and nothing more. That is: as we evaluate an Input, the value from which it was created
should be evaluated to precisely the same degree as that Input. In this way, evaluating an Input
can act as a proxy for evaluating the original value to which it corresponds—a property StrictCheck
relies upon for its own correctness. This rule implies that the consume method for functions must
evaluate them, even though it will always return the trivial Input:

instance Consume (a — b) where
consume ! = constructor 0 []

Just like CoArbitrary instances, Consume instances have exactly one correct implementation. In
StrictCheck, we derive these instances automatically using generic programming.
To complement Consume, we define the Produce typeclass:

class Produce b where
produce :: [Input] — Gen b

Like arbitrary, produce generates a random output value in the Gen monad. However, it also is
given a list of Inputs, each of which represents a “leaf” of some still-unevaluated value. As we’ll
see shortly, when produce needs to recursively generate some part of its output, it destructs some
of these leaves and uses the Variants they contain to further randomize its output.

For types with no fields, an instance of Produce should be equivalent to that type’s Arbitrary
instance. For example, the instance of Produce for Bools is merely:

instance Produce Bool where
produce = elements [False, True]

However, a function producing a data type with fields needs the opportunity to consume a random
part of its input before it produces the value of a field. To enable this, we define a function draws,
which randomly destructs some part of a list of Inputs. It collects the Variants from each Input
node it traverses, returning their composition alongside the remaining leaves of the Inputs.

draws :: [Input] — Gen (Variant, [Input])

We could implement draws in many ways, each of which would give a different statistical distribution
to the strictnesses of our generated functions. In StrictCheck, draws uses a geometrically bounded
depth first random traversal, which biases generated functions so that demanding different pieces
of output tends to evaluate different pieces of input. We detail our implementation in Appendix B.
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Using draws, we implement a function recur, which generates an output value whilst randomly
consuming Inputs:

recur :: Produce b = [Input] — Gen b
recur inputs = do

(v, inputs') « draws inputs

vary v $ produce inputs'

When recur is called on some list of Inputs, it invokes draws to partially consume some of those
inputs. Using the random perturbation collected from the consumed Input nodes, it calls produce
on the still-unconsumed leaves of Input. If produce is always mutually recursive with recur, then
before a function produces a piece of output, it might randomly consume some input.

Using recur, writing a Produce instance is directly analogous to writing an Arbitrary instance.
Where the user would previously have used arbitrary to produce a sub-field of a value, they
substitute (recur inputs).For example, here are the Produce instances for Either a b,and (a, b):

instance (Produce a, Produce b) = Produce (Either a b) where
produce inputs =
oneof [ Left <$> recur inputs
, Right <$> recur inputs ]

instance (Produce a, Produce b) = Produce (a, b) where
produce inputs =
(,) <$> recur inputs
<*> recur inputs

Now, let’s finally use produce to generate random functions. Here, as in QuickCheck, we use
promote to transform a function returning generators into a generator returning functions.

instance (Consume a, Produce b) = Produce (a — b) where
produce inputs =
promote $ \a —
recur (consume a : inputs)

To produce a function, we consume its argument and add it to the given list of unevaluated Inputs,
calling recur on those Inputs to generate its result.

We generate anything with a Produce instance in exactly this way. When testing with StrictCheck,
we generate all arguments (including first-order ones) using the polymorphic generator nonStrict:

nonStrict :: Produce a = Gen a
nonStrict = produce []

This generator is equivalent to arbitrary for first-order arguments, but as we’ve seen, generates
higher-order arguments of arbitrary strictness.

6.3 Specifying Higher-Order Functions

Now that we can properly generate random non-strict functions, let’s test the strictness properties
of higher-order functions. For example, let’s specify and test the strictness of map:

map :: (a —» b) — [a] — [b]

map _ [1] =[]

map f (x : xs) = f x : map f xs

In order to specify map, we need to introduce a new specification combinator, specifyl, which
derives a trivially correct specification for a unary function:
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specifyl :: (Shaped a, Shaped b) = (a - b) —» (b —» a — a)
specifyl function resultDemand input =
let (_, inputDemand) = observel context function input
in fromDemand inputDemand
where
context = toContext (toDemand resultDemand)

This function takes a function, an implicitly-represented demand on its result, and its input, using
observel to see what it actually does under the context corresponding to that demand. It uses the
function (derived from Shaped)

toContext :: Shaped b = Demand b — (b — ())

to convert a demand into an evaluation context suitable for observation.

We'll use specifyl to reify the strictness behavior of a generated higher-order argument, so
our specification can depend on it. Consider the difference in strictness between the functions
(map (const 1)) and (map id)—a correct specification of map needs to depend on the strictness of
map’s argument, as this will determine how strict map is as a whole on its input list. With specifyl
in hand, we can correctly specify map:

map_spec :: (Shaped a, Shaped b) = Spec '[a — b, [al] [b]
map_spec =
Spec $ \predict resultDemand f xs —
predict
(if all isThunk (cap d) then thunk else f)
(zipWith (specifyl f) resultDemand xs)

This specification predicts that the function given to map will be evaluated only if the demand
on map’s result evaluates at least one element of the list. Additionally, each element of the input
list is evaluated to precisely the degree required by map’s function argument, under the particular
demand placed on the corresponding element of the result list. This specification passes all tests.

7 RELATED WORK

StrictCheck is the first framework in Haskell for property-based testing of strictness with exact
specifications. There is a rich body of work on property-based testing, observing lazy programs, and
working with partial values in Haskell. We discuss their relationship to StrictCheck, and comment
on StrictCheck’s novelty compared to existing work.

Property-based testing. QuickCheck [Claessen and Hughes 2000] focuses on testing functional
properties of Haskell programs through user-provided property specifications. StrictCheck uses
QuickCheck’s type-based random generator as its backend for generating random inputs, but focuses
on testing strictness (traditionally considered a non-functional property) against user-provided
specifications. StrictCheck also provides a more flexible variant of the CoArbitrary typeclass from
QuickCheck, capable of generating functions with random strictness.

SmallCheck and Lazy SmallCheck [Runciman et al. 2008] are similar to QuickCheck, and provide
property-based testing of functional properties against a specification. They differ from QuickCheck
by exhaustively checking properties on inputs up to a certain depth instead of, as QuickCheck does,
randomly sampling from a large space of values. Lazy SmallCheck allows property-based testing
by generating partial values as inputs, but there the purpose is to verify functional properties
on partial inputs. Lazy SmallCheck does not provide exact strictness specification in the style of
StrictCheck.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 102. Publication date: September 2018.



Keep Your Laziness in Check 102:27

Observing Haskell programs. In [Gill 2001], Gill develops an (unnamed) library for observing the
evaluation of Haskell values. Gill’s work uses a similar technique of injecting effectful code into
values through unsafePerformIO, but his work only records the evaluated values as strings, while
StrictCheck uses a typed approach that fully reifies the evaluated structure as a first class value
which may be manipulated by other Haskell programs. Gill’s library provides programmers with
runtime information to aid in manual debugging of lazy functional programs, whereas StrictCheck
provides automated testing of strictness on such programs.

Haskell libraries such as ghc-heap-view [Breitner 2014] and Vacuum [Morrow and Seipp 2009]
provide functions for inspecting the heap representation of Haskell values at runtime. These libraries
can reify pointer graphs describing the current heap state of the inspected value. StrictCheck’s
observation mechanism is different from these libraries: we observe the strictness of a function
rather than the evaluation structure of a data value. StrictCheck’s observe mechanism is referentially
transparent, whereas these libraries operate in the 10 monad.

Programming with partial values. Danielsson et al. developed the ChasingBottoms library in
Haskell in order to study program verification under the context of partial and infinite values [An-
ders Danielsson and Jansson 2004]. The ChasingBottoms library provides a set of functions to test
whether a Haskell value is divergent. StrictCheck uses similar techniques to convert reified demand
values to and from partial values.

Testing strictness. Chitil published a framework for testing the strictness of Haskell functions
also named StrictCheck [Chitil 2011]. Chitil’s work develops a notion of “least-strictness”, and
tests whether a function is least-strict by feeding partial values as inputs to the function. This
only tests a very specific strictness property of Haskell functions, while our work allows users to
precisely specify and test a broader category of strictness property. StrictCheck also generalizes to
higher-order functions, a domain not addressed in this prior work.

8 CONCLUSION AND FUTURE WORK

In this paper, we identified a class of dynamic properties typically considered out of scope for
traditional property-based testing: strictness properties. We described an approach to specify,
observe, and automatically test such properties and implemented it in an openly available Haskell
library called StrictCheck.

Since this approach is somewhat new, there is a lot of space for improvement. In particular, the
specification language is relatively low-level. A more declarative and general specification language
could be constructed atop StrictCheck’s foundations, and we anticipate exploring this design space
in future work. Even without a high-level specification language, StrictCheck can be used to test
whether a function has the same strictness as a reference implementation. Additionally, the same
technique could be used to identify buggy compiler optimizations that break strictness. Further,
taking inspiration from [Claessen et al. 2010], we would like to synthesize strictness specifications
for functions based upon dynamic observations of their behavior.
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A  COMPARING THE SIMPLE AND FULL SPECIFICATIONS OF QUEUE ROTATION

rot_simple spec :: Spec '[[Int], [Int]] [Int]
rot simple spec =
Spec $ \predict resultDemand fs bs —
let demandOnFs
| length (cap resultDemand) > length fs =
take (length fs) resultDemand
| otherwise = resultDemand
demandOnBs
| length (cap resultDemand) > length fs
|| null bs isCapped fs =
reverse $ take (length bs)
$ drop (length fs) (cap resultDemand)
++ repeat thunk

| otherwise = thunk

in predict demandOnFs demandOnBs

rot_spec :: Spec '[[Int], [Int]] [Int]
rot spec =
Spec $ \predict resultDemand fs bs —
let demandOnFs
| length (cap resultDemand) > length fs
take (length fs) (cap resultDemand)
| otherwise = resultDemand

demandOnBs
| numCtrForced resultDemand > length fs
-- Identical to rot simple case
reverse $ take (length bs)
$ drop (length fs) (cap resultDemand)
++ repeat thunk

-- Only needed when length bs > length fs
| length (cap resultDemand) > length bs =
reverse $ drop (length fs) (cap resultDemand)
++ replicate (length bs) thunk
-- Force part of bs even if not demanded
| otherwise =
(reverse $ drop (length fs) (cap resultDemand)
++ replicate (length (cap resultDemand)) thunk)
++ thunk
in predict demandOnFs demandOnBs

Fig. 5. StrictCheck specifications of rot_simple and rot side by side, as described in Section 5.2
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B IN DETAIL: INTERLEAVING RANDOM EVALUATION INTO GENERATION

The function draws described in Section 6.2 evaluates a random sub-forest of some [Input] in a
random depth-first order. In the end, it returns a Variant storing the combined entropy from all the
nodes of the Inputs it traversed, as well as a new forest of the yet-to-be-consumed “leaves” of the
original Inputs. The number of nodes of Input consumed by a call to draws is given by a geometric
distribution with expectation 1. Below we list the full implementation of draws, presented alongside
a selection of the Produce and Consume APIs for reference.

newtype Variant
= Variant { vary :: forall a. Gen a — Gen a }

instance Monoid Variant where
mempty = Variant id
mappend v w = Variant (vary v . vary w)

data Input
= Input Variant [Input]

class Consume a where
consume :: a — Input

class Produce b where
produce :: [Input] — Gen b

recur :: Produce b = [Input] — Gen b
recur inputs = do

(v, inputs') <« draws inputs

vary v $ produce inputs'

draws :: [Input] — Gen (Variant, [Input])
draws inputs = go [inputs]
where
-- Mutually recursive, traverse a tree-zipper 'levels' into a forest of inputs:
go, inwardFrom :: [[Input]] — Gen (Variant, [Input])

go levels =
oneof -- uniform choice between:
[ return (mempty, concat levels) -- flatten 'levels' into a list of untouched leaves
, inwardFrom levels ] -- keep traversing input

inwardFrom levels =
case levels of

[ 1 — return mempty -- 1f no more input: stop
[ 1 : outside — inwardFrom outside -- 1f nothing here: backtrack up a level
here : outside — do -- 1f something here:
(Input v inside, here') « pick here -- pick a subfield (forcing corresponding thunk)
vary v $ do -- let future traversal path depend on its value
(entropy, levels') « go (inside : here' : outside) -- maybe traverse even deeper
return (v <> entropy, levels') -- add this node to the collection of entropy

-- Pick a random list element: return it, and the remaining list
pick :: [a] — Gen (a, [a])
pick as = do

index <« choose (0, length as - 1)

let (before, picked : after) = splitAt index as

return (picked, before ++ after)
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