Decoupled Smoothing on Graphs

Alex Chin

Stanford University
ajchin@stanford.edu

Kristen M. Altenburger
Stanford University
kaltenb@stanford.edu

ABSTRACT

Graph smoothing methods are an extremely popular family of
approaches for semi-supervised learning. The choice of graph used
to represent relationships in these learning problems is often a more
important decision than the particular algorithm or loss function
used, yet this choice is less well-studied in the literature. In this
work, we demonstrate that for social networks, the basic friendship
graph itself may often not be the appropriate graph for predicting
node attributes using graph smoothing. More specifically, standard
graph smoothing is designed to harness the social phenomenon of
homophily whereby individuals are similar to “the company they
keep.” We present a decoupled approach to graph smoothing that
decouples notions of “identity” and “preference,” resulting in an
alternative social phenomenon of monophily whereby individuals
are similar to “the company they’re kept in,” as observed in recent
empirical work. Our model results in a rigorous extension of the
Gaussian Markov Random Field (GMRF) models that underlie graph
smoothing, interpretable as smoothing on an appropriate auxiliary
graph of weighted or unweighted two-hop relationships.
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1 INTRODUCTION

Graph-based learning describes a broad class of problems in which
response values are observed on a subset of the nodes of a graph, and
the learning objective is to infer responses for the unlabeled nodes.
Inference methods for graph-based learning nearly unanimously
derive their success from an assumption that connected nodes are
correlated in their responses, akin to the social phenomenon of
homophily whereby “birds of a feather flock together” [22]. Many
varieties of models derived from this assumption have been studied
and successfully applied. The most popular methods include the
work of Zhu, Ghahramani, and Lafferty (ZGL) on semi-supervised
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learning using Gaussian Markov Random Fields [33], Zhou et al’s
related method for random walk smoothing [31], and Xu, Dyer,
and Owen’s work connecting the former two methods to methods
for kriging from spatial statistics [30]. See [32] for a survey of
semi-supervised learning methods on graphs.

While presented as graph-based methods, the graphs that under-
lie the typical applications of these methods are often synthetic in
nature. For example, they may be derived from high-dimensional
text or image data. These typical applications begin with a semi-
supervised learning problem studying high-dimensional data points
x; € RP associated with response values y; € R (such as images x;
associated with quality scores y;) and then induce a graph between
the data points by taking a k-nearest neighbor graph in the space
RP to obtain a sparse similarity graph. Despite the synthetic nature
of these graphs, graph-based learning methods have been highly
effective for solving machine learning problems.

In this work, we focus on graph-based learning problems on
social networks, where the relationship between the graph and the
response variables can be quite different than the basic similarity
relationship between responses on synthetic graphs produced by
standard induction methods such as k-nearest neighbors. We rely on
the recent observation that there are contexts where the fundamen-
tal assumption of correlation that drives graph-based learning—that
connected nodes are correlated in their responses—may not be true
or necessary for inference to succeed [1, 25]. The work in [1], which
focused on the social structure of gender, observed a fundamental
difference between similarities with “the company you keep” and
“the company you’re kept in” in social networks. That work found
that the two-hop similarities implied by the latter can exist in the
complete absence of any one-hop similarities. In the present work,
we develop these differing social assumptions into an alternative
semi-supervised learning problem, where correlations on the social
networks are based on a decoupling of separate “real” and “target”
responses of individuals corresponding to separated notions of so-
cial identity and social preference. The key principle is to allow
the outcomes of an individual to be possibly different from the
outcomes with which the individual prefers to associate.

The consequences of this decoupling between real and target
responses is that individuals connected in the graph are only cor-
related in their responses if the real and target responses of the
individuals are correlated with each other. But even if they are
entirely uncorrelated, a subtler correlation is nonetheless induced,
as pointed out in [1], which can be particularly useful for inference:
even if an individual is not correlated with their graph neighbors,
the fact that they have preferences for a target response will still
imply that their neighbors are correlated with each other. As a



result, individuals can be similar to their friends-of-friends without
necessarily being similar to their friends.

In this work we show that the above decoupling can be modeled
in a very natural semi-supervised learning problem for an appro-
priately constructed auxiliary similarity matrix encoding two-hop
similarities. The two-hop similarity matrix that we consider is de-
rived from previously unrelated literature on combining estimators
[8, 11, 12, 19, 23, 26], since the “real” and “target” state of each node
must be estimated from the dispersed evidence surrounding them
in the graph. By making this connection, our work also introduces
an iterative procedure for the combining estimators problem when
data is being collected on a graph.

As a byproduct of our investigation, we also strengthen the
known connections between random walk-based methods (such as
ZGL) and Kriging-based methods, introduce a procedure that maps
any Kriging problem to a ZGL problem. This connection between
the methods enables us to take a “decoupled” view of either problem
class, and also allows us to use computationally expedient iterative
solvers for standard ZGL-type problems to solve Kriging problems,
coupled or decoupled.

2 GRAPH SMOOTHING PRELIMINARIES

In this section we review two standard formulations of graph
smoothing, the semi-supervised learning problem of [33], which
we refer to here simply as smoothing, and the graph regulariza-
tion approach involving noisy observations that we refer to as soft
smoothing. We review the closed form solutions, and later give
recurrences that converge on the closed form solutions for both
problems.

We assume that we observe a social network of n people with
connections represented by an undirected, unweighted graph G =
(V,E). We let A and D denote the adjacency matrix and degree
matrix of the graph, respectively, where D has diagonal entries d; =
2.j Aij. We denote the neighborhood of node iby N; = {j : A;j > 0}.
Each person i has a outcome value of interest 6; € R; we write
0 € R™ for the vector of response values. We only observe the labels
0; for a subset of the nodes; we denote the set of labeled nodes V) and
the set of unlabeled nodes V; = V\Vj. Let Nl.O ={j:Aij >0,j €V}
be the set of neighbors of i for which the labels are observed, and
Ni1 = {j : Ajj > 0,j € V1} be the set of neighbors of i for which
the labels are unobserved. Correspondingly define d(l.) = |Ni0| and
d} = |N}!|, the “labeled degree” and “unlabeled degree,” respectively.
The vectors 8y € RIY! and 6, € RI"1! represent the restriction of
the response vector 6 to the observed and unobserved node sets. In
general, we reserve the subscripts 0 and 1 for subsetting on labeled
and unlabeled nodes, respectively.

2.1 Smoothing

The standard formulation of graph smoothing, proposed in [33], is
to solve the optimization problem

rngin Z Aij(0; - 9]')2,
(i.J)€E

subject to O]y, = 0. (1)

The loss function in Equation (1) is 8T L8, where L = D — A is the
graph Laplacian.
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If we define the transition matrix P = D~!A and identify blocks
of P according to the labeled nodes Vj and unlabeled nodes Vi, the
closed-form solution to Equation (1) for the unlabeled nodes is then:
Poo Po1)

@)

6; = (I - P11)"'Pip6y, where P =
1=( 11)" P106o, where (P1o Py

This solution has a Bayesian interpretation [20, 30]. Suppose
we place a Gaussian Markov Random Field (GMRF) on the node
set by placing a prior 6 ~ N (0, 2(D - yA)_l) on 0. This prior is
the conditional autoregressive (CAR) model popular in the spatial
statistics literature [5, 6], and has the property that 6; conditional
on the other values of § follows the distribution

Y e
061, 011,051, 0n) ~ N[ > 0. — | (3)

Under this GMREF prior, the Bayes estimator of 6, conditional on
having observed the labels 6;, i € Vjp, is the solution to Equation (1),
when y — 1. The parameter y < 1 is a correlation parameter that
is necessary for the distribution to be non-degenerate. In practice
it is common to add a small ridge to the diagonal of the Laplacian
when solving Equation (1) for numerical stability, which achieves a
similar purpose.

2.2 Soft smoothing

A second approach to graph smoothing has its origins in graph-
based regularization, as studied in [4]. In this problem, we no
longer observe 6y directly but rather observe yo = 6y + ¢ where
£ ~ N(0,2I). We will refer to this problem as soft smoothing, to
emphasize the close relationship to ordinary smoothing. Consider
the estimator

0 = argmin |lyo — OolIZ + 20T (D — A)6. (4)
0

Under the prior assumption § ~ N(0,7%(D — yA)~!), which is
equivalent to the conditional specification of the GMRF on the
node set in Equation (3), the estimator fin Equation (4) is the Bayes
estimator for this model with A = {?/7% and y — 1. This estimator
0 has the following closed form solution when A > 0:

6= +AL)""Jy*, where J = (é 8) , (5)
and y* is a vector that agrees with the labeled points and takes on
any value on the unlabeled points. If {? = 0 (whereby A = 0) then
the optimization problem in Equation (4) reduces to the noiseless
graph smoothing problem in Equation (1) [30]. Later, we will show
that even when {? > 0 there is a direct mapping between soft and
“hard” smoothing problem instances.

3 DECOUPLED GRAPH SMOOTHING

Crucial to the performance of graph smoothing estimators like
Equation (2) is a smoothness assumption positing that the response
values vary smoothly across the topology of the graph. This assump-
tion in often appropriate in synthetic graph applications like those
constructed for image segmentation and changepoint detection
problems, and smooth kernel edge weights are often assumed in the-
oretical studies of semi-supervised learning performance [13, 24].



However, this assumption can fail to hold in social networks.
Indeed, [1] shows that even when homophily is minimal or nonex-
istent, additional variation known as monophily among friend-of-
friend (two-hop) relations can be exploited to predict outcomes.
Intuitively, if an unlabeled individual i is friends with person j who
tends to befriend a high proportion of female individuals, then we
might be more certain that the unlabeled individual i is female as
well. In this case, what matters for classifying individual i is not
the label of individual j, but rather individual j’s preferences in her
friends. In this work we propose decoupling the true parameter of
interest 0; from a target parameter ¢; that captures the true param-
eters of the neighbors of j. We now study a model that gives rise to
such a decoupling.

Suppose we have a weight matrix W, and denote the row sums
by z; = 3. W;j and the column sums by zj’. = i Wjj. Our approach
is to relate the real 6; and target ¢; via W as follows:

1 n
O~ Z Wijéj, (©)
j=1
1 n
dj~—= ) Wijdi. (7
zZ. £
J i=1

Note that W need not be symmetric. The choice of W is to be set
by the researcher and may depend on the particular problem being
solved. For example, if W is set to be the adjacency matrix A, then
¢i and 6; become unweighted averages of peer values. Section 5
contains a discussion of alternative options for setting W, where
we argue that more complex choices of W may indeed be desirable.

Expressions (6) and (7) are to be understood in an “average” and
informal sense. Formally, we consider the Gaussian Markov random
field model

V< 2 V< 2
91|¢~N(Z_ij21vvl]¢]s Z_,)’ ¢]|0~N<Z_J'.;VVI]9“ Z_J,>s (8)
where y and 72 are constants. We now establish that this model is
equivalent to marginally specifying the joint Gaussian distribution
for 0 and ¢ as follows. A proof of this equivalence is found in the
appendix.

THEOREM 3.1. Let W be a weight matrix with row sums z; =
Xj Wij and column sums z]’. = X Wjj. Let 2 > 0andy € (0,1).
Then the conditional specifications

12>
7
%j

n 2 n
Y T 4
9i|¢~N(Z—iZwij¢j,z—i), ¢j|9~N<;Zw,~jei,
j=1 J i=1
define a valid, non-degenerate probability distribution over 6 and ¢

Z) ~ N(p,X), where i = 0 and

with marginal distribution (

Z

-1
¥ee (—yWT _YW) ’ ©

Z/

where Z = diag(z1, . . .,zn) and Z' = diag(z{, ..., zp).

Because our goal is to obtain predictions for the real attributes
0, we view the target attributes ¢ as nuisance parameters and
marginalize them out. By studying the precision matrix M = 3!
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and applying the standard 2 x 2 block matrix inversion Schur com-
plement
(M M11 = (My1 — MMy, May) ™,
we find the marginal prior for 6 is then Gaussian with mean 0 and
-1

covariance matrix 72 (Z -y2wz ’_IWT) . Therefore, minimiz-
ing the posterior log-likelihood conditional on observing values 6;
for i € V) reduces to the optimization problem

m@in 07L’0, subject to O]y, = 6y (10)
for the modified Laplacian
L'=Z-y*wz’7'wT). (11)

We call this modified Laplacian the decoupled Laplacian, to empha-
size the decoupling between the real responses 6 and the target
responses ¢ in the underlying model.

From this expression for the decoupled Laplacian we can view
A=WZ"'WT asa weighted adjacency matrix for an auxiliary
graph that is essentially connecting nodes to their two-hop neigh-
bors with appropriately weighted edges. With this modified auxil-
iary matrix, the solution to the decoupled smoothing objective is
then

61 = (I - P11)"'P1obo, (12)

as before in Equation (2), but now with P = Z=1(Z - y2wz'~1wT).
The closed form solution to the soft decoupled smoothing objective,
as in Equation (5), becomes

O=J+MZ-y*WZ''wTy) "Ly (13)

We have intentionally kept the weight matrix W generic in these
derivations. In Section 5, we use ideas from the literature on expert
aggregation to motivate our choice of W.

3.1 Coupling 6 = ¢ reduces to the standard
smoother

Here we further motivate the sense in which the above decoupled
smoothing problem is strongly connected to the basic smoothing
problem: by conditioning the distribution of the GMRF upon 0 = ¢,
we recover the basic smoothing objective.

Under the transformation v = 6 — ¢, the log-likelihood of the
vector (6, v) is

1
p(0,v) < exp { - F(GT(Z+Z' - 2yW)0
-207(Z —yW)v + vTZ'v)}.

If we let the weight matrix W be equal to the adjacency matrix
A, so that the row and column sums reduce to the degree matrix
Z = 7' = D, then the joint parameters (0, v) have the covariance
matrix

2 (Z(D - vA)

~(D- yA))‘l
-(D-yA) '

D

The upper left block, 27%(D — A), is the precision matrix of § con-
ditional on v, which shows that 6 follows the ordinary smoother
distribution in Section 2.1 with 72 replaced by 272.



4 ITERATIVE PERSPECTIVE ON SMOOTHING

In this section we outline how the closed form solutions to the
smoothing problems discussed in this work can be formulated as
the solutions to the iterative application of recurrence relations.
We first review the known iterative formulation of smoothing. We
then contribute a reduction which shows that any soft smoothing
problem can be written as a hard smoothing problem, and can
thus be written iteratively as well. We formulate the recurrence
relation that underlies the decoupled smoothing problem studied
in this work. In the next section, Section 5, we will show how this
recurrence can be interpreted in the language of expert opinion
aggregation, giving us an intuition for how to choose the previously
unspecified weight matrix W in the recurrence we derive here.

4.1 Iterative formulation of smoothing

The closed form solution to the smoothing objective in Equation (1)
is known to arise from a repeated application of majority vote [7, 21]
in the following sense: define the time 0 estimate 6° to agree with
the true labels on V;. Take the transition matrix P = D71A and
perform the updates

élt = P96 +P11é1t_1, éé = 0y, (14)

Poo  Po1
Py Pn1
beled blocks, as before. In other words, the time t estimate is the
majority vote estimate using the time ¢ — 1 predictions, where after
each step we replace the labeled predictions by their original, true
labels. In the limit,

where P = ( ) has been partitioned into labeled and unla-

61 = lim 0f = (I - Pu1) "' Profo, (15)
t—00
which is the solution to Equation (1) given in Equation (2).

4.2 Iterative formulation of soft smoothing

We now contribute an iterative algorithm for soft smoothing by
showing that a soft smoothing solution is equivalent to a hard
smoothing solution on an appropriate auxiliary graph. Consider
an augmented graph G formed by attaching a degree-one node to
each labeled node on the original graph, with edge weight o > 0.
The vertex set of the resulting graph contains a copy of the labeled
nodes, denoted V;, in addition to the original labeled node set V;
and unlabeled node set V.
This new graph has adjacency matrix

0 al 0
A=|al AOO AOI .
0 A An

where the first block corresponds to VO, the second block corre-
sponds to Vp, and the third block corresponds to V;. If we compute
the hard smoothing solution on this augmented graph treating Vy as
the labeled set and the entire original vertex set V as the unlabeled
set, the corresponding random walk transition matrix is

0 I 0
P=D"'A=[D; Ay Dy'Ag aDy'|.
Dl_lAl() D1_1A11 0
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where Dj is the degree matrix of the original graph restricted to
the unlabeled node set V;, and Dy = Dy + «I is the degree matrix
restricted to the labeled node set Vj, adjusted to account for the
new auxiliary nodes.

The hard smoothing solution in Equation (15) is H= (I=P11)~1P196p.
Applying this solution to the above problem, we have

Pu = (D+a)) A
P190y = a(Do + al) "6y = a(D + a)) 'y,
which results in the estimator
6=U-D+a)) A a(D+a)) Yy
=(aJ+D-A)laJy’
=(J+a L) y"

This estimator is precisely the soft smoothing closed-form solution
in Equation (5) when a = A~1. Notice the non-equivalence between
this solution and the solution in the case of {2 = 0 (for which A = 0).

For soft smoothing, the iterative update, Equation (14), then
amounts to

0! = a(D + a]) " Jy* + (D + aJ)LAG! (16)
= (D+a)) N (aJy* + A",

where D + ] is diagonal and therefore easily invertible, making
for an expedient computational procedure for solving soft smooth-
ing problems. This interpretation of soft smoothing connects to a
related used of “shadow nodes” in the adsorption method of graph
smoothing [3].

4.3 Iterative formulation of decoupled
smoothing

Examining the decoupled Laplacian in Equation (11) alongside the
iterative smoothing formulation provides an iterative algorithm for
the decoupled smoother. We define an auxiliary weighted, directed
graph with weighted adjacency matrix A=WZ"'WT, which has
edge weight Aij =2k W+;‘:ij The out-degree of node i reduces
to 3 Aij = z;, where z; is the same row sum defined in Section 3.
Hence the degree matrix of A is Z, and the solution to the decou-
pled smoothing problem in Equation (10) results from performing
the iterative one-hop majority vote updates, Equation (14), on the
auxiliary, directed graph.

By employing the update equations in Equation (14) with the
transition matrix P = Z"'WZ’~1WT, we can see that decoupled
smoothing amounts to an iterative update of a weighted two-hop ma-
jority vote. The reduction from soft smoothing to ordinary smooth-
ing in Section 4.2 also gives an iterative formulation of soft decou-
pled smoothing.

4.4 Improving majority vote with local
regularization

The iterative perspective is not only useful for computational pur-

poses but also gives insights into how to improve the basic iter-

ated majority vote. Here we describe an improvement to the basic
smoothing algorithm, inspired by the details of implementing the



iterative algorithm, which can be applied in either the standard,
soft, or decoupled setting.

Limiting noise in early steps. Since iterative majority vote is
recursively defined, it relies on defining an initial set of guesses
for the unlabeled nodes; when ¢ = 1, equation (14) requires a value
for é? which can be safely set to random initial labels without
compromising the limiting result. Then, equation (14) can also be
written element-wise as

jt 1 jt—1
0t = N .2,91‘ . 17)
JEN;
for every unlabeled node i € Vj. From here, one sees that the
performance of the first few iterations can be quite unsatisfactory,
because it depends strongly on the initial noise input é?
An alternative strategy is to set the first iteration of the unlabeled

nodes to be the average value of friends labelled at the previous
time-step only. For ¢ = 1 this technique gives:

N 1
0! = T Z 0;, (18)
iljeNy?

for i € Vj. Recall that Nl.O is the set of neighbors of i for which a
label was observed. For nodes i € V; with no labelled neighbors,
we do not update 911 More generally, we can postpone making
assignments élf until a node has some neighbor with an estimate
at time ¢ — 1. If using 6! to make predictions, for missing values
we then guess randomly with the class proportions of the training
sample.

This strategy, which sidesteps dependence on random initial 60,
tends to lead to a slight bump in performance in early iterations;
see Section 6 for example illustrations.

Local regularization towards true labels. We can further gen-
eralize this idea of upweighting the true labels when they should
be trusted more than haphazard (random) guesses. Consider the
convex combination update

R 1 1 o
e{:agd—QZej+(1—A§)dTZGj , (19)
i jeN? i jeN}

where /llt. € [0, 1] are weight parameters that control the amount
of trust to place in the guesses of previous iterations. This places
weight Af on the true labels and weight 1 — Af on the predicted
values for iteration ¢ — 1. Most generally Af may be indexed by both
the unit i and the time step t, as it is reasonable to expect that this
weight should be personalized to individuals (e.g., vary based on
degree) and that estimates of later iterations should be trusted more
(which would have )Llf decreasing in time ¢).

Decomposing the sum in equation (17) as

we see that we recover equation (19) from equation (17) when
Af. = d?/di, which is constant in ¢.

The search space of weights /15. is quite large and we leave a
formal analysis of this space to future work, restricting ourselves
here to providing intuition for choices of A that appear to work
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well in our empirical experiments. The goal is to place more weight
on labeled nodes in the early stages and less weight on labeled
nodes at later iterations, which suggests Af decaying in t. Different

choices of A¢ will lead to different limiting values lim; e 0*, some
of which appear to outperform the basic version of majority vote.

Consider parameterizing /11? = fi(t) for a function f;(-) that re-
duces the number of parameters. For example one may consider
the choice )Lf = (d?/ d;)?, which represents exponential decay in t.
This extension can be written in matrix-vector form as follows.
Let Dy = diag(d}) and Dg = diag(d?) be diagonal degree matrices
restricted to the unlabeled and labeled node sets, respectively. Con-
sider the transition matrices Tyg = (Dl_lA)lo and T11 = (D} LA .
Then we may write the update rule as

0! = A¢Tiobo + (1= AT 6471,

where 1; € [0,1]Y is a vector of penalty parameters for time .
Depending on the form of A;, this recursion may not reduce cleanly
to a power series that can be written in closed form.

This approach is a form of regularization in the sense that it
constrains the complexity of the fitting function 0 and restricts how
far it can deviate from the observed values 6.

The choice of weight /1? = (d?/ d;)! is related to the sequence
of weights commonly used on the popular personalized PageRank
diffusion kernel for community detection [2], although it is used
in a different way. While personalized PageRank uses the kernel
to model decaying influence as a function of graph distance, here
we use this kernel to define how much to regularize the solution
towards labeled values as a function of time, thus representing
the amount of trust placed in labeled nodes. The limiting solution,
therefore, will not be the same as the personalized PageRank dif-
fusion, but this conceptual link can be instructive for suggesting
analogs of other diffusion kernels that may be used as well [17, 18].
While the discussion of this regularization has centered on stan-
dard (one-hop) graph smoothing, the same ideas can be applied to
decoupled smoothing as well.

5 AGGREGATING EXPERT INFORMATION

In this section we suggest possible ways of selecting the weights W
for the method described in Section 3. Recall that in the decoupled
smoothing model, equation (8), we view the target attributes ¢; as
capturing information from the true responses in the neighborhood
Nj, which are useful for estimating 0;. As a thought experiment,
supposing the target parameters ¢ are known. Then the conditional
mean (when y = 1) is

E{614] = — > Wiy (20)
i3

Most simply, it may be reasonable in many cases to take W = A to
agree with the network structure so that 6; is just an unweighted
average of the estimated target parameters of the neighbors unit i.
More generally, however, the row {W;; : j = 1,...,n} of weights
should be chosen in a way that highlights the nodes j where ¢;
is most useful for prediction 6;. In many graph contexts there are
highly-skewed degree distributions, and as a result we expect some
friends of i to provide more accurate estimates than others of i’s
true state. Notice that W;; may be asymmetric in general because



Figure 1: (a) An illustration of how an undirected graph can be decoupled into a bipartite graph with real responses 6; and
target responses ¢;. (b) An illustration of how two hop information can be used to estimate the expert opinions ¢;, which in

turn inform the estimate of the unknown value 0;.

the information provided by ¢; for estimating 6; may not be the
same as the information provided by ¢; for estimating 6;, which is
one of the key insights of the decoupled approach.

In this section we discuss how one may use an otherwise unre-
lated literature on expert opinion aggregation in the graph smooth-
ing context. In this discussion we assume W has the same spar-
sity pattern as the adjacency matrix A, so that Wj; # 0 whenever
Ajj # 0, although this need not generally be true; sometimes not
being friends with someone can be highly informative as well.

The overall procedure of how a network is converted into a
decoupled graph of real and target responses is illustrated schemat-
ically in Figure 1(a), and a schematic illustration of how the expert
opinion aggregation pulls in information to a single node is illus-
trated in Figure 1(b).

5.1 Combining independent estimators

Consider that the information contributed by each expert (friend)
j for estimating 6; is in the form of the “observations” {6 : k €
Nj}, which are values located two steps away from unit i. One
way to think about combining this information has been studied
extensively in the statistics literature in the context of estimating a
common location parameter from samples of varying precision [8,
11, 12, 14, 19, 23, 26].

Explicitly, suppose the variables in the set {0y : k € N;} follow a
distribution with mean 0; and variance ¢;. That is, all observations
contribute unbiased information for estimating 0;, but they have
varying precisions which are modulated by unit j (the “expert”).
Then the weight matrix entry reduces to W;; = A;;/ Jj‘?, with row
SUM zj = Y re N, 0[_2 and column sum z]'. = dj/ajz. In this case, we
now show that we obtain a concise recurrence recognizable as a
particular weighting of 2-hop majority vote.

From Section 3, the auxiliary graph with this diagonal covariance
specification has an adjacency matrix with entries

Ajj = ZAikAjk/(dko'i), (21)
3

with the smoothing update rule being 6! = Z71A9'1. For an
unlabeled node i, if we employ the weights derived here we obtain
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the recurrence:

- 1 . -
t -1 55t-1y, _ pt-1
0; = (Z77A0" )= p jilAU@j

Z o1 (22)

-2 2
2eeN: 97" Ken, Wk jem

1 1

By viewing the aggregation as performed on a graph, we can in fact
turn this standard estimation procedure into an iterative procedure,
linking to smoothing as shown in Section 4.

As a generic problem of aggregating estimators, if we observe
Xjk ~ N(®, g“]?), k =1,...,d;, then the minimum variance, linear
unbiased estimator (MVLUE) of 6 when the { J.Z are known is 6 =
2 w;X; with weights given by w; = (dj/§J?)/ zk(dk/glf). Our
formulation of expert aggregation aligns with this view, where the
expert variances are o2 = { 12 /d; and higher degree nodes therefore
having appropriately more precise information.

In order to estimate 62 we can notice that it essentially represents
the standard error for the expert estimate. Hence we can use the

regular standard error estimate for the Gaussian sample mean,
[7].2 = sz./dj, where

2
-3 % (05 % o

j 0 j 0
J keNj J feNj

is the sample variance of the labeled nodes in the neighborhood of
Jj (recall that /\/J.O is the labeled neighborhood and d;.) = Nj 0 is the

labeled degree). We then use ?rjz as a plugin estimate in the update

rule in Equation (22), giving

~ 1 1 ~
A S <R T o T F
DY SACH k;Vi s jg‘,k !

Alternatively, we can directly impose homogeneous standard
€rrors, 0'1.2 = ¢2/d;, in which case the normalization term reduces to
1/ Xeen; 0{?_2 =1/ X ¢eN; de, the number of nodes in the two-step

neighborhood of i, and we obtain the update rule
A 1 A
0! = S Z Z o1, (24)
Leen; A KEN; jeNi
For exposition here we have let dy represent the total graph
degree of unit £, which disregards the number of labeled nodes. The

shortcomings of this choice discussed in Section 4.4 still hold, and
the improvements discussed in that section can be applied here.



We thus see how iterating a simple two-hop majority vote update
can be motivated for graph smoothing, despite initial appearances
as defining a “non-physical” process whereby information bypasses
individuals. The simple recurrence in equation (24) emerges as the
MVLUE under the assumption that expert friends contribute inde-
pendent opinions, an assumption which appears to be reasonable
for the graph-based learning problems we study.

5.2 Risk analysis and Bayesian interpretation

This idea of combining information from different expert sources
is also related to methods developed in the risk analysis litera-
ture [10]. Here we discuss graph analogs of the model and analysis
of Halperin [15], later derived independently by Winkler [29]. In
this model, expert opinions ¢; are viewed as unbiased samples from
the true unknown response ;. That is, the expert predictions have
the form

gf)Ni =0;1+ EN;

where ¢, € R% is the restriction of the target vector ¢ to the neigh-
borhood N, 1 s the ones vector of length d;, and ep;, ~ N(0,2 ;)
is Gaussian noise. The covariance matrix Xy, € RAixd; captures
the variance and dependencies among the expert opinions, and
is a generalization of the discussion in Section 5.1 in that expert
opinions may be correlated with each other. Under this model and
a flat prior on 8;, the posterior distribution of 9; given ¢, with

known covariance 2. 5, is given by

Ty-1
1 ZNL¢N1 1
17311 717201

Oilpn, ~ N

The Bayes estimator is then the posterior mean,
0= dn,)/ATEQ ).

From comparing to the conditional mean in Equation (20), the
Bayes estimator suggests taking the weight Wj; to be element of the
vector (ITZ;\}_) that corresponds to node j if i is connected to j, and

i

Wij = 0 otherwise. The normalization z; = }jen, Wij = ITZ/_VIJ
then falls out naturally.

More general covariance structures. A principal outstanding
question is determining which assumptions to place on each X ,,
which are unknown in practice. We notice that determining the
Y n; is equivalent to defining a single covariance matrix for the
expert opinions 3 € R for the entire graph, where 3 rep-
resents the covariance between the expert opinions provided by
individuals j and k. The weight matrix results by taking W = AX™1.
The specification of the covariance matrix ¥ is crucial for the form
of the resulting decoupled smoothing estimator.

In practice on social networks, dependencies between expert
opinions are bound to occur due to intersecting friendship neigh-
borhoods. if the estimation target is i, and two neighbors j and k of
i share many mutual friends other than i, then their estimates of 0;
will be dependent. The presence of such correlations indicates that
aggregation and smoothing methods that are able to harness these
arbitrary covariance matrices may yield a powerful tool for node
classification in some application areas, and we leave a detailed
study of such extensions to future work.

269

10 10

soft: a = 10
soft: a = 100
soft: a = 1000

soft: a = 10
soft: a = 100

soft: a = 1000

08 08

soft: a = 1000000
PR .ul 154
L B =

hard smoothing

ii"i'"*'-l---i=:i=;;i,;=i...i1

soft: a = 1000000
o hard smoothing
=2
£

e
06 o 0.6

04+
o

04+
100 o

25 50 75 25 50 75
Percent of Nodes Initially Labeled Percent of Nodes Initially Labeled

(a) Swarthmore (b) Reed

10 10

soft: a = 10

soft: a = 100

soft: a = 1000
soft: a = 1000000

hard Sm::::i—r:a" _*sﬁla;.;;:#::*:::‘:l

soft: a = 10

soft: a = 100

soft: a = 1000
soft: a = 1000000
hard smoothing

_‘,44--=i==.*=:1::;*:::ﬁiit‘

08 08

AUC
AUC

06 06

100

04+
o 25 50 75 100 o

Percent of Nodes Initially Labeled

25 50 75
Percent of Nodes Initially Labeled

(c) Amherst (d) Haverford

Figure 2: Predicting gender based on soft smoothing. Hor-
izontal axis displays initial proportion of unlabeled nodes
and vertical axis displays AUC scores. Soft smoothing is es-
sentially identical in performance to hard smoothing for the
gender classification task.

6 EMPIRICAL ILLUSTRATIONS

We perform experiments on a sample of undergraduate college
networks collected from a single-day snapshot of Facebook in Sep-
tember 2005 [27, 28]. We focus on the task of gender classification
in these networks, restricting our analyses to the subset of nodes
that self-reported their gender to the platform. We use the largest
connected components from four medium-sized colleges, Amherst,
Reed, Haverford, and Swarthmore. Amherst has 2032 nodes and
78733 edges, Reed has 962 nodes and 18812 edges, Haverford has
1350 nodes and 53904 edges, and Swarthmore has 1517 nodes and
53725 edges.

We varied the percentage of initially labelled nodes by selecting
a labelled sample uniformly at random. We trained our models
varying the percentage of initially labelled nodes in the network.
For a given fixed percent of labelled individuals (training dataset),
we measure classification performance (by AUC) on the remaining
unlabelled nodes (testing dataset), using the same train/test splits
across the different inference methods. For all plots in this section
we attempt classification 10 times based on different independent
labelled subsets of nodes using stratified sampling (stratified based
on gender). We show the average AUC with error bars denoting the
standard deviation across the 10 runs. We also provide results for
synthetic networks generated from the stochastic block model [16]
and the overdispersed stochastic block model [1].

6.1 Soft smoothing

We first run our soft smoothing algorithm on the four Facebook
networks. As shown in Section 4, soft smoothing is equivalent
to hard smoothing on a modified graph in which each originally
labeled node has its label removed and is instead connected to a
new degree-one node via an edge with weight @ > 0. Here we

100



choose a range of different & values to study its influence on the
performance of soft smoothing method. The baseline algorithm
is the hard smoothing approach of [33], which is the solution to
Equation (15). Observe that a quantifies the impact of the new
attached nodes on the original labeled nodes; therefore, the larger
the value of «, the closer the soft smoothing result resembles the
hard smoothing result.

In our experiments we observe that the outputs from soft smooth-
ing are essentially identical to those from hard smoothing. As Fig-
ure 2 shows, since our goal is to classify gender, which is self-
reported as a binary variable, adding a “noise” term to the labeled
nodes has relatively little effect. Our hypothesis is that the soft
smoothing method may achieve better performance when applied
to real-valued outcomes.

6.2 Decoupled smoothing

In Figure 3 we see our experiments with decoupled smoothing,
which indicate that the two-hop majority vote update given by
Equation (24) outperforms both the standard 1-hop majority vote
estimator and the corresponding (ZGL) smoothing estimator in
terms of AUC, regardless of the percentage of initially labeled nodes.
Meanwhile we also observe that decoupled smoothing performs
slightly worse than the much simpler 2-hop majority vote estimator
in some situations (namely Amherst and Haverford). Recall from
Section 4.4 that decoupled smoothing can be interpreted as iterated
2-hop majority vote, but with randomly initialized guesses. We
suspect that the better performance of the plain 2-hop majority
vote is due to the fact that local information is more pertinent for
this particular task (gender prediction) than global information,
and the smoothing algorithms are inappropriately synthesizing in-
formation from local and global sources. This hypothesis motivates
the improvements discussed in Section 4.4, the results for which
are discussed in the following section.

6.3 Regularized iterations

In Section 4.4 we considered a modified iterated majority vote al-
gorithm that includes a local regularization 1 = (dL /d;)* for each
unlabeled node i. This modification was 1nsp1red by the empirical
observation that 2-hop majority vote outperforms the limiting it-
erated smoother. As a secondary inspiration, using equation (18)
as the first iteration’s update rule instead of (17) greatly reduces
the number of iterations needed for convergence. In this section,
we present experimental results from applying these modifications
for both hard smoothing and decoupled smoothing on a synthetic
stochastic block model graph as well as the on the Facebook net-
works.

6.3.1 Improved iterative hard smoothing. We first display results
on a graph sampled from a stochastic block model (SBM). The par-
ticular SBM we use has two blocks with 500 nodes in each block,
representing 500 male and 500 female individuals. The expected
average degree is 42, so as to achieve the same edge density as
used in [1]. In Figure 4 we plot the AUC corresponding to the pre-
dictions given by equation (14) for each iteration, t = 1,2,3,....
Interestingly, in Figure 4(a), we see that some early iterations (in
this case, iteration 2) actually outperform the limiting ZGL/hard
smoothing solution. This suggests that improvements can be made
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Figure 3: Predicting gender based on decoupled smoothing,
compared with hard smoothing (ZGL) and 1-hop and 2-hop
majority vote. The estimators based on two-step neighbor-
hood information clearly outperform those based on one-
step information, but 2-hop majority vote sometimes out-
performs decoupled smoothing.

by teaching the classifier to hone in on these successful iterations
and give them more weight, which is what the regularizer seeks
to do. We next compare the original and regularized versions of
the hard smoothing iterations. As shown in Figure 4(b), the regu-
larization proposed in Section 4.4 improves the overall prediction
accuracy for hard smoothing under the stochastic block model. The
method is essentially converged after five iterations.

Results are more mixed on empirical networks; in Figure 4(c-d)
we display performance for the Amherst Facebook network. We see
that regularization does not significantly improve the performance
over hard smoothing for gender prediction on this network.

6.3.2 Improved iterative decoupled smoothing. Our regularization
ideas can also be applied to the decoupled smoother. We first test our
modification in an overdispersed stochastic block model (0SBM), an
extension of the stochastic blockmodel that contains an additional
parameter to model monophily. It is thus designed to capture aspects
of the network that are particularly well suited for 2-hop estimators.
Again, we use two blocks with 500 nodes in each block representing
500 males and 500 females. The expected average degree is 42 and
dispersion rate is 0.004, giving the same edge density and dispersion
rate as in [1]. Here we compare the iterative method results for
the original decoupled smoothing method against the regularized
iterative decoupled smoothing method. As shown in Figure 5b,
the regularization improves the overall prediction accuracy for
decoupled smoothing under the overdispersed stochastic block
model.

On the Facebook Amherst network we use the regularization

= (d?/ (rd;))*~1, where r is the initial percent of labeled nodes.
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Figure 4: Hard smoothing iterations, with and without reg-
ularization, for classifying gender on an SBM graph and the
Amherst dataset. Regularization mostly improves the predic-
tive performance.

This choice is motivated by the fact that the relative importance
of local to global information should depend on the proportion of
labeled nodes; if there is little local information available, then it
makes sense to pull in information from farther away. We can see
that with this particular regularization term, the smoother modestly
improves the overall prediction accuracy for decoupled smoothing.
It is encouraging that from pure intuition we can see better results;
with a more careful optimization over the way A! is parameterized,
it is possible that performance can be further improved.

7 DISCUSSION

In this work we investigate the use of graph-based smoothing for
node attribute prediction on social networks, where a thoughtful
understanding of social forces that underlie network formation
can help inform the choice of the smoothing model. Our work is
motivated by the investigation into empirical observations in [1],
which highlights the distinction between "the company you keep”
and "the company you’re kept in" We develop a model for what we
call decoupled graph smoothing that links this empirical observa-
tion to graph smoothing, semi-supervised learning, and diffusion
algorithms popularly used for node classification tasks. We provide
a Bayesian viewpoint of this model which is related to the literature
on expert opinion aggregation.

As a part of our analysis, we contribute an iterative algorithm
for soft smoothing, which allows us to solve soft smoothing prob-
lems efficiently on large datasets. We find that a close examination
into the form of iteration is not only crucial for computational effi-
ciency but also for efficacy of predictive performance, as the basic
iterated majority vote algorithms make suboptimal choices in the

regularized hard
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Figure 5: Decoupled smoothing iterations, with and without
regularization, for classifying gender on an 0SBM and the
Amherst network. Regularization mostly improves the pre-
dictive performance.

initial iterations. We contribute a generalization that allows one
to place greater weight on and regularize toward labeled values.
This method displays improved performance on some simulated
and real datasets. This generalization is flexible enough that the
practitioner has a lot of control over the resulting algorithm. The
best choices for regularization has yet to be fully explored and may
well vary depending on the particular domain of application.

Graph-based semi-supervised learning is broadly applied to clas-
sification and prediction problems on derived graphs, typically
from the nearest-neighbor graphs of point clouds in R". In this
work, we observe that classification and prediction problems in-
volving explicit graph structure, such as predicting node attributes
in social networks, can benefit from a careful consideration of how
the prediction target quantity and the graph structure may be re-
lated. While our evaluation only touches gender, other attribute
prediction tasks in social networks such as predicting abusive or
spam accounts could also benefit from similar careful considera-
tion. While our empirical improvements for gender are modest, our
results on synthetic graphs suggest that decoupled graph smooth-
ing has the potential to offer considerable improvements in other
diverse network prediction tasks.

Code availability. Notebooks and code available online:
https://github.com/YatongChen/decoupled_smoothing_on_graphs.
All code was run using Python version 3.6.2.
Acknowledgements. This work was supported in part by NSF
grant IIS-1657104 and an ARO Young Investigator Award. KMA was
supported in part by a National Defense Science and Engineering
Graduate Fellowship.
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APPENDIX
1 PROOF OF GMRF EQUIVALENCE

THEOREM 3.1. Let W be a weight matrix with row sums z;
2j Wij and column sums zj’. = 2. Wij. Let 2 > 0andy € (0,1).
Then the conditional specifications

n
y T
;ZWijgi,_

n 2

T
0ilp ~ N ﬁ§ Wigi. —|.  gjlo~N
Zi i Zi j =1

2
Zl
J
define a valid, non-degenerate probability distribution over 6 and ¢

with marginal distribution 9) ~ N(u,X), where i = 0 and

¢

-1
VA -yW
= (_YWT J ) : ©
where Z = diag(z1,...,2zn) and Z' = diag(z], . . ., z,).

Proor. We use Brook’s lemma [9], which states that for any
distribution such that p(x) > 0 for all x, then for any x and x’,

plx) ﬁ PXilX1, . X1, X[ s Xp)
p(e) 1 pOeflxn . xien XX

Applying Brook’s lemma with x = (0, #) and x” = 0, we see that
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,0i-1,0i41,...,02
1 13 n)x

i1 \p(0il01, . ... 0i1,0it1, . ... 02n)
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where we have indexed the 0s for clarity. Substituting in the likeli-
hood from the conditional models in Theorem 3.1,

’ 2
Zi b~ XS W.0;
T el ek A
1 ’ 2
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n
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(0, 9) «

1
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P 272

1
exp {—— (0720+¢72'¢ - 2y9TW¢)} ,
272
which is the likelihood corresponding to a mean zero Gaussian
random vector with covariance given by Equation (9). O
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