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ABSTRACT

Graph smoothing methods are an extremely popular family of

approaches for semi-supervised learning. The choice of graph used

to represent relationships in these learning problems is often a more

important decision than the particular algorithm or loss function

used, yet this choice is less well-studied in the literature. In this

work, we demonstrate that for social networks, the basic friendship

graph itself may often not be the appropriate graph for predicting

node attributes using graph smoothing. More speciically, standard

graph smoothing is designed to harness the social phenomenon of

homophily whereby individuals are similar to łthe company they

keep.ž We present a decoupled approach to graph smoothing that

decouples notions of łidentityž and łpreference,ž resulting in an

alternative social phenomenon of monophily whereby individuals

are similar to łthe company they’re kept in,ž as observed in recent

empirical work. Our model results in a rigorous extension of the

Gaussian Markov Random Field (GMRF) models that underlie graph

smoothing, interpretable as smoothing on an appropriate auxiliary

graph of weighted or unweighted two-hop relationships.
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1 INTRODUCTION

Graph-based learning describes a broad class of problems in which

response values are observed on a subset of the nodes of a graph, and

the learning objective is to infer responses for the unlabeled nodes.

Inference methods for graph-based learning nearly unanimously

derive their success from an assumption that connected nodes are

correlated in their responses, akin to the social phenomenon of

homophily whereby łbirds of a feather lock togetherž [22]. Many

varieties of models derived from this assumption have been studied

and successfully applied. The most popular methods include the

work of Zhu, Ghahramani, and Laferty (ZGL) on semi-supervised
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learning using Gaussian Markov Random Fields [33], Zhou et al.’s

related method for random walk smoothing [31], and Xu, Dyer,

and Owen’s work connecting the former two methods to methods

for kriging from spatial statistics [30]. See [32] for a survey of

semi-supervised learning methods on graphs.

While presented as graph-based methods, the graphs that under-

lie the typical applications of these methods are often synthetic in

nature. For example, they may be derived from high-dimensional

text or image data. These typical applications begin with a semi-

supervised learning problem studying high-dimensional data points

xi ∈ R
D associated with response values yi ∈ R (such as images xi

associated with quality scores yi ) and then induce a graph between

the data points by taking a k-nearest neighbor graph in the space

R
D to obtain a sparse similarity graph. Despite the synthetic nature

of these graphs, graph-based learning methods have been highly

efective for solving machine learning problems.

In this work, we focus on graph-based learning problems on

social networks, where the relationship between the graph and the

response variables can be quite diferent than the basic similarity

relationship between responses on synthetic graphs produced by

standard inductionmethods such ask-nearest neighbors.We rely on

the recent observation that there are contexts where the fundamen-

tal assumption of correlation that drives graph-based learningÐthat

connected nodes are correlated in their responsesÐmay not be true

or necessary for inference to succeed [1, 25]. The work in [1], which

focused on the social structure of gender, observed a fundamental

diference between similarities with łthe company you keepž and

łthe company you’re kept inž in social networks. That work found

that the two-hop similarities implied by the latter can exist in the

complete absence of any one-hop similarities. In the present work,

we develop these difering social assumptions into an alternative

semi-supervised learning problem, where correlations on the social

networks are based on a decoupling of separate łrealž and łtargetž

responses of individuals corresponding to separated notions of so-

cial identity and social preference. The key principle is to allow

the outcomes of an individual to be possibly diferent from the

outcomes with which the individual prefers to associate.

The consequences of this decoupling between real and target

responses is that individuals connected in the graph are only cor-

related in their responses if the real and target responses of the

individuals are correlated with each other. But even if they are

entirely uncorrelated, a subtler correlation is nonetheless induced,

as pointed out in [1], which can be particularly useful for inference:

even if an individual is not correlated with their graph neighbors,

the fact that they have preferences for a target response will still

imply that their neighbors are correlated with each other. As a
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result, individuals can be similar to their friends-of-friends without

necessarily being similar to their friends.

In this work we show that the above decoupling can be modeled

in a very natural semi-supervised learning problem for an appro-

priately constructed auxiliary similarity matrix encoding two-hop

similarities. The two-hop similarity matrix that we consider is de-

rived from previously unrelated literature on combining estimators

[8, 11, 12, 19, 23, 26], since the łrealž and łtargetž state of each node

must be estimated from the dispersed evidence surrounding them

in the graph. By making this connection, our work also introduces

an iterative procedure for the combining estimators problem when

data is being collected on a graph.

As a byproduct of our investigation, we also strengthen the

known connections between random walk-based methods (such as

ZGL) and Kriging-based methods, introduce a procedure that maps

any Kriging problem to a ZGL problem. This connection between

the methods enables us to take a łdecoupledž view of either problem

class, and also allows us to use computationally expedient iterative

solvers for standard ZGL-type problems to solve Kriging problems,

coupled or decoupled.

2 GRAPH SMOOTHING PRELIMINARIES

In this section we review two standard formulations of graph

smoothing, the semi-supervised learning problem of [33], which

we refer to here simply as smoothing, and the graph regulariza-

tion approach involving noisy observations that we refer to as soft

smoothing. We review the closed form solutions, and later give

recurrences that converge on the closed form solutions for both

problems.

We assume that we observe a social network of n people with

connections represented by an undirected, unweighted graph G =

(V ,E). We let A and D denote the adjacency matrix and degree

matrix of the graph, respectively, whereD has diagonal entries di =
∑

j Ai j . We denote the neighborhood of node i byNi = {j : Ai j > 0}.

Each person i has a outcome value of interest θi ∈ R; we write

θ ∈ Rn for the vector of response values. We only observe the labels

θi for a subset of the nodes; we denote the set of labeled nodesV0 and

the set of unlabeled nodesV1 = V \V0. LetN
0
i = {j : Ai j > 0, j ∈ V0}

be the set of neighbors of i for which the labels are observed, and

N 1
i = {j : Ai j > 0, j ∈ V1} be the set of neighbors of i for which

the labels are unobserved. Correspondingly deine d0i = |N
0
i | and

d1i = |N
1
i |, the łlabeled degreež and łunlabeled degree,ž respectively.

The vectors θ0 ∈ R
|V0 | and θ1 ∈ R

|V1 | represent the restriction of

the response vector θ to the observed and unobserved node sets. In

general, we reserve the subscripts 0 and 1 for subsetting on labeled

and unlabeled nodes, respectively.

2.1 Smoothing

The standard formulation of graph smoothing, proposed in [33], is

to solve the optimization problem

min
θ

∑

(i, j )∈E

Ai j (θi − θ j )
2, subject to θ |V0

= θ0. (1)

The loss function in Equation (1) is θ⊤Lθ , where L = D −A is the

graph Laplacian.

If we deine the transition matrix P = D−1A and identify blocks

of P according to the labeled nodes V0 and unlabeled nodes V1, the

closed-form solution to Equation (1) for the unlabeled nodes is then:

θ̂1 = (I − P11)
−1P10θ0, where P =

(

P00 P01
P10 P11

)

. (2)

This solution has a Bayesian interpretation [20, 30]. Suppose

we place a Gaussian Markov Random Field (GMRF) on the node

set by placing a prior θ ∼ N
(

0,τ 2 (D − γA)−1
)

on θ . This prior is

the conditional autoregressive (CAR) model popular in the spatial

statistics literature [5, 6], and has the property that θi conditional

on the other values of θ follows the distribution

θi |(θ1, . . . ,θi−1,θi+1, . . . ,θn ) ∼ N
*.
,
γ

di

∑

j ∈Ni

θ j ,
τ 2

di

+/
- . (3)

Under this GMRF prior, the Bayes estimator of θ , conditional on

having observed the labels θi , i ∈ V0, is the solution to Equation (1),

when γ → 1. The parameter γ < 1 is a correlation parameter that

is necessary for the distribution to be non-degenerate. In practice

it is common to add a small ridge to the diagonal of the Laplacian

when solving Equation (1) for numerical stability, which achieves a

similar purpose.

2.2 Soft smoothing

A second approach to graph smoothing has its origins in graph-

based regularization, as studied in [4]. In this problem, we no

longer observe θ0 directly but rather observe y0 = θ0 + ε where

ε ∼ N (0, ζ 2I ). We will refer to this problem as soft smoothing, to

emphasize the close relationship to ordinary smoothing. Consider

the estimator

θ̂ = argmin
θ

∥y0 − θ0∥
2
2 + λθ

⊤ (D −A)θ . (4)

Under the prior assumption θ ∼ N (0,τ 2 (D − γA)−1), which is

equivalent to the conditional speciication of the GMRF on the

node set in Equation (3), the estimator θ̂ in Equation (4) is the Bayes

estimator for this model with λ = ζ 2/τ 2 and γ → 1. This estimator

θ̂ has the following closed form solution when λ > 0:

θ̂ = (J + λL)−1 Jy∗, where J =

(

I 0

0 0

)

, (5)

and y∗ is a vector that agrees with the labeled points and takes on

any value on the unlabeled points. If ζ 2 = 0 (whereby λ = 0) then

the optimization problem in Equation (4) reduces to the noiseless

graph smoothing problem in Equation (1) [30]. Later, we will show

that even when ζ 2 > 0 there is a direct mapping between soft and

łhardž smoothing problem instances.

3 DECOUPLED GRAPH SMOOTHING

Crucial to the performance of graph smoothing estimators like

Equation (2) is a smoothness assumption positing that the response

values vary smoothly across the topology of the graph. This assump-

tion in often appropriate in synthetic graph applications like those

constructed for image segmentation and changepoint detection

problems, and smooth kernel edge weights are often assumed in the-

oretical studies of semi-supervised learning performance [13, 24].
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However, this assumption can fail to hold in social networks.

Indeed, [1] shows that even when homophily is minimal or nonex-

istent, additional variation known as monophily among friend-of-

friend (two-hop) relations can be exploited to predict outcomes.

Intuitively, if an unlabeled individual i is friends with person j who

tends to befriend a high proportion of female individuals, then we

might be more certain that the unlabeled individual i is female as

well. In this case, what matters for classifying individual i is not

the label of individual j , but rather individual j’s preferences in her

friends. In this work we propose decoupling the true parameter of

interest θ j from a target parameter ϕ j that captures the true param-

eters of the neighbors of j . We now study a model that gives rise to

such a decoupling.

Suppose we have a weight matrixW , and denote the row sums

by zi =
∑

jWi j and the column sums by z′j =
∑

iWi j . Our approach

is to relate the real θi and target ϕi viaW as follows:

θi ≈
1

zi

n
∑

j=1

Wi jϕ j , (6)

ϕ j ≈
1

z′j

n
∑

i=1

Wi jϕi . (7)

Note thatW need not be symmetric. The choice ofW is to be set

by the researcher and may depend on the particular problem being

solved. For example, ifW is set to be the adjacency matrix A, then

ϕi and θi become unweighted averages of peer values. Section 5

contains a discussion of alternative options for settingW , where

we argue that more complex choices ofW may indeed be desirable.

Expressions (6) and (7) are to be understood in an łaveragež and

informal sense. Formally, we consider the Gaussian Markov random

ield model

θi |ϕ ∼ N
*.
,
γ

zi

n
∑

j=1

Wi jϕ j ,
τ 2

zi

+/
- , ϕ j |θ ∼ N *

,
γ

z′j

n
∑

i=1

Wi jθi ,
τ 2

z′j

+
- , (8)

where γ and τ 2 are constants. We now establish that this model is

equivalent to marginally specifying the joint Gaussian distribution

for θ and ϕ as follows. A proof of this equivalence is found in the

appendix.

Theorem 3.1. Let W be a weight matrix with row sums zi =
∑

jWi j and column sums z′j =
∑

iWi j . Let τ
2 > 0 and γ ∈ (0, 1).

Then the conditional speciications

θi |ϕ ∼ N
*.
,
γ

zi

n
∑

j=1

Wi jϕ j ,
τ 2

zi

+/
- , ϕ j |θ ∼ N *

,
γ

z′j

n
∑

i=1

Wi jθi ,
τ 2

z′j

+
-

deine a valid, non-degenerate probability distribution over θ and ϕ

with marginal distribution

(

θ

ϕ

)

∼ N (µ, Σ), where µ = 0 and

Σ = τ 2
(

Z −γW

−γW ⊤ Z ′

)−1

, (9)

where Z = diag(z1, . . . , zn ) and Z
′
= diag(z′1, . . . , z

′
n ).

Because our goal is to obtain predictions for the real attributes

θ , we view the target attributes ϕ as nuisance parameters and

marginalize them out. By studying the precision matrixM = Σ−1

and applying the standard 2 × 2 block matrix inversion Schur com-

plement

(M−1)11 = (M11 −M12M
−1
22 M21)

−1,

we ind the marginal prior for θ is then Gaussian with mean 0 and

covariance matrix τ 2
(

Z − γ 2WZ ′−1W ⊤
)−1
. Therefore, minimiz-

ing the posterior log-likelihood conditional on observing values θi
for i ∈ V0 reduces to the optimization problem

min
θ

θ⊤L′θ , subject to θ |V0
= θ0 (10)

for the modiied Laplacian

L′ = (Z − γ 2WZ ′−1W ⊤). (11)

We call this modiied Laplacian the decoupled Laplacian, to empha-

size the decoupling between the real responses θ and the target

responses ϕ in the underlying model.

From this expression for the decoupled Laplacian we can view

Ã = WZ ′−1W ⊤ as a weighted adjacency matrix for an auxiliary

graph that is essentially connecting nodes to their two-hop neigh-

bors with appropriately weighted edges. With this modiied auxil-

iary matrix, the solution to the decoupled smoothing objective is

then

θ̂1 = (I − P11)
−1P10θ0, (12)

as before in Equation (2), but now with P = Z−1 (Z −γ 2WZ ′−1W ⊤).

The closed form solution to the soft decoupled smoothing objective,

as in Equation (5), becomes

θ̂ = (J + λ(Z − γ 2WZ ′−1W ⊤))−1 Jy∗. (13)

We have intentionally kept the weight matrixW generic in these

derivations. In Section 5, we use ideas from the literature on expert

aggregation to motivate our choice ofW .

3.1 Coupling θ = ϕ reduces to the standard
smoother

Here we further motivate the sense in which the above decoupled

smoothing problem is strongly connected to the basic smoothing

problem: by conditioning the distribution of the GMRF upon θ = ϕ,

we recover the basic smoothing objective.

Under the transformation ν = θ − ϕ, the log-likelihood of the

vector (θ ,ν ) is

p (θ ,ν ) ∝ exp
{

−
1

2τ 2

(

θ⊤ (Z + Z ′ − 2γW )θ

− 2θ⊤ (Z ′ − γW )ν + ν⊤Z ′ν
)

}

.

If we let the weight matrixW be equal to the adjacency matrix

A, so that the row and column sums reduce to the degree matrix

Z = Z ′ = D, then the joint parameters (θ ,ν ) have the covariance

matrix

τ 2
(

2(D − γA) −(D − γA)

−(D − γA) D

)−1

.

The upper left block, 2τ 2 (D −A), is the precision matrix of θ con-

ditional on ν , which shows that θ follows the ordinary smoother

distribution in Section 2.1 with τ 2 replaced by 2τ 2.
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4 ITERATIVE PERSPECTIVE ON SMOOTHING

In this section we outline how the closed form solutions to the

smoothing problems discussed in this work can be formulated as

the solutions to the iterative application of recurrence relations.

We irst review the known iterative formulation of smoothing. We

then contribute a reduction which shows that any soft smoothing

problem can be written as a hard smoothing problem, and can

thus be written iteratively as well. We formulate the recurrence

relation that underlies the decoupled smoothing problem studied

in this work. In the next section, Section 5, we will show how this

recurrence can be interpreted in the language of expert opinion

aggregation, giving us an intuition for how to choose the previously

unspeciied weight matrixW in the recurrence we derive here.

4.1 Iterative formulation of smoothing

The closed form solution to the smoothing objective in Equation (1)

is known to arise from a repeated application of majority vote [7, 21]

in the following sense: deine the time 0 estimate θ̂0 to agree with

the true labels on V0. Take the transition matrix P = D−1A and

perform the updates

θ̂ t1 = P10θ0 + P11θ̂
t−1
1 , θ̂ t0 = θ0, (14)

where P =

(

P00 P01
P10 P11

)

has been partitioned into labeled and unla-

beled blocks, as before. In other words, the time t estimate is the

majority vote estimate using the time t − 1 predictions, where after

each step we replace the labeled predictions by their original, true

labels. In the limit,

θ̂1 = lim
t→∞

θ̂ t1 = (I − P11)
−1P10θ0, (15)

which is the solution to Equation (1) given in Equation (2).

4.2 Iterative formulation of soft smoothing

We now contribute an iterative algorithm for soft smoothing by

showing that a soft smoothing solution is equivalent to a hard

smoothing solution on an appropriate auxiliary graph. Consider

an augmented graph G̃ formed by attaching a degree-one node to

each labeled node on the original graph, with edge weight α > 0.

The vertex set of the resulting graph contains a copy of the labeled

nodes, denoted Ṽ0, in addition to the original labeled node set V0
and unlabeled node set V1.

This new graph has adjacency matrix

Ã =
*.
,
0 αI 0

αI A00 A01

0 A10 A11

+/
- ,

where the irst block corresponds to Ṽ0, the second block corre-

sponds to V0, and the third block corresponds to V1. If we compute

the hard smoothing solution on this augmented graph treating Ṽ0 as

the labeled set and the entire original vertex set V as the unlabeled

set, the corresponding random walk transition matrix is

P̃ = D̃−1Ã =
*..
,

0 I 0

D̃−10 A10 D̃−10 A00 αD̃−10
D−11 A10 D−11 A11 0

+//
-
,

where D1 is the degree matrix of the original graph restricted to

the unlabeled node set V1, and D̃0 = D0 + αI is the degree matrix

restricted to the labeled node set V0, adjusted to account for the

new auxiliary nodes.

The hard smoothing solution in Equation (15) is θ̂ = (I−P11)
−1P10θ0.

Applying this solution to the above problem, we have

P11 = (D + α J )−1A,

P10θ0 = α (D0 + αI )
−1θ0 = α (D + α J )−1 Jy∗,

which results in the estimator

θ̂ = (I − (D + α J )−1A)−1α (D + α J )−1 Jy∗

= (α J + D −A)−1α Jy∗

= (J + α−1L)−1 Jy∗.

This estimator is precisely the soft smoothing closed-form solution

in Equation (5) when α = λ−1. Notice the non-equivalence between

this solution and the solution in the case of ζ 2 = 0 (for which λ = 0).

For soft smoothing, the iterative update, Equation (14), then

amounts to

θ̂ t = α (D + α J )−1 Jy∗ + (D + α J )−1Aθ̂ t−1 (16)

= (D + α J )−1 (α Jy∗ +Aθ̂ t−1),

where D + α J is diagonal and therefore easily invertible, making

for an expedient computational procedure for solving soft smooth-

ing problems. This interpretation of soft smoothing connects to a

related used of łshadow nodesž in the adsorption method of graph

smoothing [3].

4.3 Iterative formulation of decoupled
smoothing

Examining the decoupled Laplacian in Equation (11) alongside the

iterative smoothing formulation provides an iterative algorithm for

the decoupled smoother. We deine an auxiliary weighted, directed

graph with weighted adjacency matrix Ã =WZ ′−1W ⊤, which has

edge weight Ãi j =
∑

k
WikWjk

z′
k

. The out-degree of node i reduces

to
∑

j Ãi j = zi , where zi is the same row sum deined in Section 3.

Hence the degree matrix of Ã is Z , and the solution to the decou-

pled smoothing problem in Equation (10) results from performing

the iterative one-hop majority vote updates, Equation (14), on the

auxiliary, directed graph.

By employing the update equations in Equation (14) with the

transition matrix P = Z−1WZ ′−1W ⊤, we can see that decoupled

smoothing amounts to an iterative update of a weighted two-hopma-

jority vote. The reduction from soft smoothing to ordinary smooth-

ing in Section 4.2 also gives an iterative formulation of soft decou-

pled smoothing.

4.4 Improving majority vote with local
regularization

The iterative perspective is not only useful for computational pur-

poses but also gives insights into how to improve the basic iter-

ated majority vote. Here we describe an improvement to the basic

smoothing algorithm, inspired by the details of implementing the
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iterative algorithm, which can be applied in either the standard,

soft, or decoupled setting.

Limiting noise in early steps. Since iterative majority vote is

recursively deined, it relies on deining an initial set of guesses

for the unlabeled nodes; when t = 1, equation (14) requires a value

for θ̂01 which can be safely set to random initial labels without

compromising the limiting result. Then, equation (14) can also be

written element-wise as

θ̂ ti =
1

|Ni |

∑

j ∈Ni

θ̂ t−1j . (17)

for every unlabeled node i ∈ V1. From here, one sees that the

performance of the irst few iterations can be quite unsatisfactory,

because it depends strongly on the initial noise input θ̂01 .

An alternative strategy is to set the irst iteration of the unlabeled

nodes to be the average value of friends labelled at the previous

time-step only. For t = 1 this technique gives:

θ̂1i =
1

|N 0
i |

∑

j ∈N 0
i

θ j , (18)

for i ∈ V1. Recall that N
0
i is the set of neighbors of i for which a

label was observed. For nodes i ∈ V1 with no labelled neighbors,

we do not update θ̂1i . More generally, we can postpone making

assignments θ̂ ti until a node has some neighbor with an estimate

at time t − 1. If using θ̂ t to make predictions, for missing values

we then guess randomly with the class proportions of the training

sample.

This strategy, which sidesteps dependence on random initial θ̂01 ,

tends to lead to a slight bump in performance in early iterations;

see Section 6 for example illustrations.

Local regularization towards true labels. We can further gen-

eralize this idea of upweighting the true labels when they should

be trusted more than haphazard (random) guesses. Consider the

convex combination update

θ̂ ti = λti
1

d0i

∑

j ∈N 0
i

θ j + (1 − λti )
1

d1i

∑

j ∈N 1
i

θ̂ t−1j , (19)

where λti ∈ [0, 1] are weight parameters that control the amount

of trust to place in the guesses of previous iterations. This places

weight λti on the true labels and weight 1 − λti on the predicted

values for iteration t − 1. Most generally λti may be indexed by both

the unit i and the time step t , as it is reasonable to expect that this

weight should be personalized to individuals (e.g., vary based on

degree) and that estimates of later iterations should be trusted more

(which would have λti decreasing in time t ).

Decomposing the sum in equation (17) as

θ̂ ti =
1

di


∑

j ∈N 0
i

θ j +
∑

j ∈N 1
i

θ̂ t−1j


,

we see that we recover equation (19) from equation (17) when

λti = d
0
i /di , which is constant in t .

The search space of weights λti is quite large and we leave a

formal analysis of this space to future work, restricting ourselves

here to providing intuition for choices of λti that appear to work

well in our empirical experiments. The goal is to place more weight

on labeled nodes in the early stages and less weight on labeled

nodes at later iterations, which suggests λti decaying in t . Diferent

choices of λti will lead to diferent limiting values limt→∞ θ̂ t , some

of which appear to outperform the basic version of majority vote.

Consider parameterizing λti = fi (t ) for a function fi (·) that re-

duces the number of parameters. For example one may consider

the choice λti = (d0i /di )
t , which represents exponential decay in t .

This extension can be written in matrix-vector form as follows.

Let D1 = diag(d1i ) and D0 = diag(d0i ) be diagonal degree matrices

restricted to the unlabeled and labeled node sets, respectively. Con-

sider the transition matrices T10 = (D−11 A)10 and T11 = (D−10 A)11.

Then we may write the update rule as

θ̂ t1 = λtT10θ0 + (1 − λt )T11θ̂
t−1
1 ,

where λt ∈ [0, 1]U is a vector of penalty parameters for time t .

Depending on the form of λt , this recursion may not reduce cleanly

to a power series that can be written in closed form.

This approach is a form of regularization in the sense that it

constrains the complexity of the itting function θ and restricts how

far it can deviate from the observed values θ0.

The choice of weight λti = (d0i /di )
t is related to the sequence

of weights commonly used on the popular personalized PageRank

difusion kernel for community detection [2], although it is used

in a diferent way. While personalized PageRank uses the kernel

to model decaying inluence as a function of graph distance, here

we use this kernel to deine how much to regularize the solution

towards labeled values as a function of time, thus representing

the amount of trust placed in labeled nodes. The limiting solution,

therefore, will not be the same as the personalized PageRank dif-

fusion, but this conceptual link can be instructive for suggesting

analogs of other difusion kernels that may be used as well [17, 18].

While the discussion of this regularization has centered on stan-

dard (one-hop) graph smoothing, the same ideas can be applied to

decoupled smoothing as well.

5 AGGREGATING EXPERT INFORMATION

In this section we suggest possible ways of selecting the weightsW

for the method described in Section 3. Recall that in the decoupled

smoothing model, equation (8), we view the target attributes ϕ j as

capturing information from the true responses in the neighborhood

Nj , which are useful for estimating θi . As a thought experiment,

supposing the target parameters ϕ are known. Then the conditional

mean (when γ = 1) is

E[θi |ϕ] =
1

zi

n
∑

j=1

Wi jϕ j . (20)

Most simply, it may be reasonable in many cases to takeW = A to

agree with the network structure so that θ̂i is just an unweighted

average of the estimated target parameters of the neighbors unit i .

More generally, however, the row {Wi j : j = 1, . . . ,n} of weights

should be chosen in a way that highlights the nodes j where ϕ j
is most useful for prediction θi . In many graph contexts there are

highly-skewed degree distributions, and as a result we expect some

friends of i to provide more accurate estimates than others of i’s

true state. Notice thatWi j may be asymmetric in general because
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Figure 1: (a) An illustration of how an undirected graph can be decoupled into a bipartite graph with real responses θi and

target responses ϕi . (b) An illustration of how two hop information can be used to estimate the expert opinions ϕ j , which in

turn inform the estimate of the unknown value θ1.

the information provided by ϕi for estimating θ j may not be the

same as the information provided by ϕ j for estimating θi , which is

one of the key insights of the decoupled approach.

In this section we discuss how one may use an otherwise unre-

lated literature on expert opinion aggregation in the graph smooth-

ing context. In this discussion we assumeW has the same spar-

sity pattern as the adjacency matrix A, so thatWi j , 0 whenever

Ai j , 0, although this need not generally be true; sometimes not

being friends with someone can be highly informative as well.

The overall procedure of how a network is converted into a

decoupled graph of real and target responses is illustrated schemat-

ically in Figure 1(a), and a schematic illustration of how the expert

opinion aggregation pulls in information to a single node is illus-

trated in Figure 1(b).

5.1 Combining independent estimators

Consider that the information contributed by each expert (friend)

j for estimating θi is in the form of the łobservationsž {θk : k ∈

Nj }, which are values located two steps away from unit i . One

way to think about combining this information has been studied

extensively in the statistics literature in the context of estimating a

common location parameter from samples of varying precision [8,

11, 12, 14, 19, 23, 26].

Explicitly, suppose the variables in the set {θk : k ∈ Nj } follow a

distribution with mean θi and variance σj . That is, all observations

contribute unbiased information for estimating θi , but they have

varying precisions which are modulated by unit j (the łexpertž).

Then the weight matrix entry reduces toWi j = Ai j/σ
2
j , with row

sum zi =
∑

ℓ∈Ni σ
−2
ℓ

and column sum z′j = dj/σ
2
j . In this case, we

now show that we obtain a concise recurrence recognizable as a

particular weighting of 2-hop majority vote.

From Section 3, the auxiliary graph with this diagonal covariance

speciication has an adjacency matrix with entries

Ãi j =
∑

k

AikAjk/(dkσ
2
k
), (21)

with the smoothing update rule being θ̂ t = Z−1Ãθ̂ t−1. For an

unlabeled node i , if we employ the weights derived here we obtain

the recurrence:

θ̂ ti = (Z−1Ãθ̂ t−1)i =
1

zi

n
∑

j=1

Ãi j θ̂
t−1
j

=

1
∑

ℓ∈Ni σ
−2
ℓ

∑

k ∈Ni

1

dkσ
2
k

∑

j ∈Nk

θ̂ t−1j . (22)

By viewing the aggregation as performed on a graph, we can in fact

turn this standard estimation procedure into an iterative procedure,

linking to smoothing as shown in Section 4.

As a generic problem of aggregating estimators, if we observe

X jk ∼ N (θ , ζ 2j ), k = 1, . . . ,dj , then the minimum variance, linear

unbiased estimator (MVLUE) of θ when the ζ 2j are known is θ̂ =
∑

j w j X̄ j with weights given by w j = (dj/ζ
2
j )/

∑

k (dk/ζ
2
k
). Our

formulation of expert aggregation aligns with this view, where the

expert variances are σ 2
= ζ 2i /di and higher degree nodes therefore

having appropriately more precise information.

In order to estimateσ 2
j we can notice that it essentially represents

the standard error for the expert estimate. Hence we can use the

regular standard error estimate for the Gaussian sample mean,

σ̂ 2
j = S2j /dj , where

S2j =
1

d0j

∑

k ∈N 0
j

*
,θk −

1

d0j

∑

ℓ∈N 0
j

θℓ+-
2

is the sample variance of the labeled nodes in the neighborhood of

j (recall that N 0
j is the labeled neighborhood and d0j = |N

0
j | is the

labeled degree). We then use σ̂ 2
j as a plugin estimate in the update

rule in Equation (22), giving

θ̂ ti =
1

∑

ℓ∈Ni (S
2
ℓ
/dℓ )

−1

∑

k ∈Ni

1

S2
k

∑

j ∈Nk

θ̂ t−1j . (23)

Alternatively, we can directly impose homogeneous standard

errors, σ 2
i = σ 2/di , in which case the normalization term reduces to

1/
∑

ℓ∈Ni σ
−2
ℓ
= 1/

∑

ℓ∈Ni dℓ , the number of nodes in the two-step

neighborhood of i , and we obtain the update rule

θ̂ ti =
1

∑

ℓ∈Ni dℓ

∑

k ∈Ni

∑

j ∈Nk

θ̂ t−1j . (24)

For exposition here we have let dℓ represent the total graph

degree of unit ℓ, which disregards the number of labeled nodes. The

shortcomings of this choice discussed in Section 4.4 still hold, and

the improvements discussed in that section can be applied here.
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APPENDIX

1 PROOF OF GMRF EQUIVALENCE

Theorem 3.1. Let W be a weight matrix with row sums zi =
∑

jWi j and column sums z′j =
∑

iWi j . Let τ
2 > 0 and γ ∈ (0, 1).

Then the conditional speciications

θi |ϕ ∼ N
*.
,
γ

zi

n
∑

j=1

Wi jϕ j ,
τ 2

zi

+/
- , ϕ j |θ ∼ N *

,
γ

z′j

n
∑

i=1

Wi jθi ,
τ 2

z′j

+
-

deine a valid, non-degenerate probability distribution over θ and ϕ

with marginal distribution

(

θ

ϕ

)

∼ N (µ, Σ), where µ = 0 and

Σ = τ 2
(

Z −γW

−γW ⊤ Z ′

)−1

, (9)

where Z = diag(z1, . . . , zn ) and Z
′
= diag(z′1, . . . , z

′
n ).

Proof. We use Brook’s lemma [9], which states that for any

distribution such that p (x ) > 0 for all x , then for any x and x ′,

p (x )

p (x ′)
=

n
∏

i=1

p (xi |x1, . . . ,xi−1,x
′
i+1, . . . ,x

′
n )

p (x ′i |x1, . . . ,xi−1,x
′
i+1, . . . ,x

′
n )
.

Applying Brook’s lemma with x = (θ ,ϕ) and x ′ = 0, we see that

p (θ ,ϕ) ∝

n
∏

i=1

(

p (θi |θ1, . . . ,θi−1, 0i+1, . . . , 02n )

p (0i |θ1, . . . ,θi−1, 0i+1, . . . , 02n )
×

p (ϕi |θ1, . . . ,θn ,ϕ1, . . . ,ϕi−1, 0i+1, . . . , 02n )

p (0i |θ1, . . . ,θn ,ϕ1, . . . ,ϕi−1, 0i+1, . . . , 02n )

)

=

n
∏

i=1

p (θi |ϕ = 0)

p (θi = 0|ϕ = 0)

p (ϕi |θ )

p (ϕi = 0|θ )

where we have indexed the 0s for clarity. Substituting in the likeli-

hood from the conditional models in Theorem 3.1,

p (θ ,ϕ) ∝
exp

{
−

zi
2τ 2 θ

2
i

}
1

exp

{

−
z′i
2τ 2

(

ϕi −
γ
z′i

∑

jWjiθ j

)2
}

exp

{

−
z′i
2τ 2

(

γ
z′i

∑

jWjiθ j

)2
}

= exp

−

1

2τ 2

n
∑

i=1

*.
,ziθ

2
i + z

′
iϕ

2
i − 2γϕi

∑

j

Wjiθ j
+/
-


= exp
{

−
1

2τ 2

(

θ⊤Zθ + ϕ⊤Z ′ϕ − 2γθ⊤Wϕ
)

}

,

which is the likelihood corresponding to a mean zero Gaussian

random vector with covariance given by Equation (9). □
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