The Thoralf Plugin
For Your Fancy Type Needs

Divesh Otwani
Haverford College
Haverford, PA, USA
dotwani@haverford.edu

Abstract

Many fancy types (e.g., generalized algebraic data types, type
families) require a type checker plugin. These fancy types
have a type index (e.g., type level natural numbers) with an
equality relation that is difficult or impossible to represent
using GHC’s built-in type equality. The most practical way
to represent these equality relations is through a plugin that
asserts equality constraints. However, such plugins are difficult
to write and reason about.

In this paper, we (1) present a formal theory of reasoning
about the correctness of type checker plugins for type in-
dices, and, (2) apply this theory in creating Thoralf, a generic
and extensible plugin for type indices that translates GHC
constraint problems to queries to an external SMT solver.
By “generic and extensible”, we mean the restrictions on
extending Thoralf are slight, and, if some type index could
be encoded as an SMT sort, then a programmer could extend
Thoralf by providing this encoding function.

CCS Concepts - Software and its engineering — Func-
tional languages; Constraints;

Keywords GHC, constraint solver, type checker plugin,
SMT

ACM Reference Format:

Divesh Otwani and Richard A. Eisenberg. 2018. The Thoralf Plugin:
For Your Fancy Type Needs. In Proceedings of the 11th ACM SIGPLAN
International Haskell Symposium (Haskell ’18), September 27-28,
2018, St. Louis, MO, USA. ACM, New York, NY, USA, 13 pages. https:
//dOi.Org/10.1 145/3242744.3242754

1 Introduction

As Haskellers, we want to use our type system to verify
that our programs run correctly. Yet, despite the amazing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Haskell 18, September 27-28, 2018, St. Louis, MO, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5835-4/18/09...$15.00
https://doi.org/10.1145/3242744.3242754

Richard A. Eisenberg
Bryn Mawr College
Bryn Mawr, PA, USA
rae@cs.brynmawr.edu

progress GHC has made recently in supporting fancy types,
some paradigms remain out of reach.

Specifically, there are certain kinds of type level data with
equality relations that are difficult or impossible to support
in GHC. Take, for example, the canonical length-indexed
vector. It depends upon the type index of a natural number.
Practical uses of length-indexed vectors require arithmetic
expressions for vector lengths. Yet, GHC is not equipped
to reason about equalities between such expressions. For
instance, GHC cannot deduce n+ m ~ m + n for type level
naturals n, m. Or, consider type level finite maps; we will see
that we can support extensible records using a finite map
index. Yet, GHC cannot decide equality between finite maps.

One common approach in dealing with type indices with
fancy equality relations is to use type families [2, 7]. A type
family is, essentially, a type-level function, allowing for com-
putation in types. Because type family applications perform
p-reduction, where the unreduced type is considered equal
to the reduced type, they can be used to model certain sets
with non-trivial equality relations. Type families can be quite
effective and have supported type level data that allows for
a type which tracks physical units-of-measure in the type
system [13]. However, this approach is limited. Not all equal-
ity relations have the property that two terms can be tested
for equality by following some deterministic procedure to
produce unique normal forms. For example, type families
cannot represent addition in a way so that GHC knows a+ b
equals b + a (and writing proofs is tedious).

When type families fail, we have two options: an open
heart surgery of GHC’s constraint solver and equality mech-
anisms or a type checker plugin [5, 9]. Undoubtedly, the most
practical option is the plugin. A type checker plugin is a
small constraint solver. If it can deduce more equality rela-
tionships than GHC’s constraint solver, it can create equality
axioms for GHC to use when type checking. Yet, even this
option is difficult:

e GHC'’s type checker plugin interface does not provide
a precise, tight specification of its behavior: there is no
clear abstraction for how this interface interacts with
GHC'’s internal solver. This means a plugin-writer is
often guessing how their solving translates to type
checking source code.

e A plugin writer must consider many annoying de-
tails about GHC’s internals. Take, for example, GHC’s

106

https://doi.org/10.1145/3242744.3242754
https://doi.org/10.1145/3242744.3242754
https://doi.org/10.1145/3242744.3242754

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

type variables. There are essentially two forms of type
variables: skolem variables and unification variables.
Skolems are abstract type variables that behave as
type constants: these are the type variables brought
into scope when you are checking, say, the body of
id :: a — a and cannot assume that a is /nt. On the
other hand, unification variables stand for unknown
types not present in the source code; each one contains
a mutable cell GHC fills in with a type without skolem
variables. Since GHC represents both of these as type
variables, a plugin writer could easily conflate them
and write an unsafe plugin. Of course, a plugin writer
has to consider many other similar challenges.

e The correctness condition for a plugin that supports
some type-level data is non-trivial. How do we provide
a specification for some type level data using its equal-
ity relation? How does this translate to a correctness
condition on the plugin? How do you know your plugin

is type safe?

Contributions So, our only feasible option for type level
data, a type checker plugin, is painful. In this paper, we
contribute

e A theory of reasoning about the correctness of type
checker plugins that solve equality constraints without
unification variables (which we will see is a sensible
restriction). (Section 3)

e A translation of constraint solving to SMT satisfiability
based on Diatchki [5]. (Section 4)

e A generic and extensible plugin for type level data
called Thoralf' that implements our SMT translation.
By "generic and extensible” we mean (1) despite Tho-
ralf’s restrictions, a vast collection of type level data
(e.g., naturals, row types) could be supported via Tho-
ralf extensions and (2) Thoralf can be extended by
providing a function that “encodes” some type level
data into a SMT sort. We provide examples of using
Thoralf in Section 2 and discuss our two claims in
Section 4.

Getting Thoralf Thoralf is available here:

https://github.com/Divesh-Otwani/the-thoralf-plugin

2 Examples of Using Thoralf

We start by looking at concrete examples of what Thoralf
does and how to use Thoralf. In addition to concretely illus-
trating the problem we are solving, these examples serve as
springboards for anyone who wants to use Thoralf to build
fancy types.

I This is named after the logician Thoralf Skolem.

107

Divesh Otwani and Richard A. Eisenberg

2.1 Natural Numbers with Arithmetic

We return to our canonical example: concatenation of length-
indexed vectors.” We define length-indexed vectors to use
GHC’s built-in Nat type from GHC.TypelLits. This Nat type
is convenient: we can use numerals in types at kind Nat, and
we do not have to redefine basic arithmetic operations:

{-# OPTIONS_GHC -fplugin ThoralfPlugin.Plugin #-}
data Vec :: Nat — Type — Type where

VNil :: Vec 0 a
(:>) ma—> Vecna— Vec(1+n)a
infixr 5 :>

concatVec :: Vec na — Vec ma — Vec (n+ m) a
concatVec VNil ys=ys
concatVec (x :> xs) ys = x :> (concatVec xs ys)

To use Thoralf, we write the options pragma at the top
of the file.* With this pragma, this code can compile or load
into a REPL successfully.

To see the problem that Thoralf solves, we can remove the
pragma and inspect the resulting type error:

* Could not deduce: (1 + (n1 + m)) ~ (n + m)
from the context: n ~ (1 + n1)
Expected type: Vec (n + m) a
Actual type: Vec (1 + (n1 + m)) a

Under the assumption that n ~ (1+ n7), we want to prove
1+ (n14+ m) ~ (n+ m). Even though this is straightforward
with middle-school algebra, GHC’s constraint solver cannot
solve this problem on its own. Thoralf solves this problem
by translating it to an SMT solver call.

2.2 Row Types and Extensible Records

Now that we’ve seen a basic example, we turn to a much
more powerful and practical example: we use the API Thoralf
provides for finite maps to create a row type. We use this row
type to index a record type and build an extensible record
type. We also build a tiny polymorphic function over our
extensible record. In the process we will gain a stronger
intuition for the constraint solving problem that Thoralf
solves and any type-equality plugin encounters.

Thoralf comes with full support for type-level finite maps
via the API in Figure 1. In our API, a type-level map from
keys of kind k to values of kind v has kind Fm k v. Finite
maps fm are generated from the following grammar:

fm = Nil | Alter fm k v | Delete fm k

where Nil is an empty map, Delete fm k deletes the key k
from fm, and Alter fm k v changes fmto map k to v, updating
the key k if it it already mapped in fm. However, our API
exports only Nil and FromList elts, which builds a finite map

2This code snippet, among others, uses Type (from Data.Kind, GHC >=
8.0) as the kind of types with values, as opposed to x which could mean
multiplication.

30f course, calling ghc or ghci with that option would work as well.

https://github.com/Divesh-Otwani/the-thoralf-plugin

The Thoralf Plugin: For Your Fancy Type Needs

data Fm k v where { }

-- Exported interface:
type family Nil :: Fm k v where { }
type family FromList (list :: [(k,v)]) :: Fm k v where { }
type Has fm k v = fm ~ Alter fm k v
type Omits fm k = fm ~ Delete fm k
type AddField fmy fmy k v = fmy ~ Alter fmy k v
type DelField fmy fmy k = fmy ~ Delete fmy k

-- Not exported:

type family Alter (fm:: Fm k v) (key :: k) (val::v) = Fm kv
where { }

type family Delete (fm:: Fm k v) (key :: k) :: Fm k v
where { }

Figure 1. Thoralf finite map API

from an association list by repeatedly applying Alter to Nil.

Alter and Delete are not directly exported, because doing so

would violate the design principles laid out in Section 4.4.
Thoralf exports four constraints on maps:

e Has fm key value asserts that the map fm maps key to
value.

e Omits fm key asserts that fm does not map key.

o AddField fmy fmy k vasserts that fm, ~ Alter fmy k v.
Note: fim; could map k to some value not equal to v.

o DelField fmy fmy k asserts that fm, ~ Delete fm; k.
Note: fm; might not map key; in this case frm; = fm;.

2.2.1 Using Thoralf’s Finite Maps to Build
Extensible Records

What are Extensible Records? There are two defining fea-
tures of extensible records. First, unlike Haskell’s usual records
whose members and types are fixed at a declaration site, we
can add field-value pairs to an extensible record. Second, we
can write polymorphic functions that work over any extensi-
ble record with a few required fields. For example, we could
write a getName function that retrieves the "name" field of
an extensible record, as long as that field exists and has type
String. The other fields are irrelevant. Note that, of course,
users can look up and update fields like they would with an
ordinary record (though with different syntax).

Thoralf’s Extensible Record This is how we build exten-
sible records using Thoralf:

data Record :: Fm Symbol Type — Type where
EmptyRec :: Record Nil
AddField :: AddField m m’ field valty
= Record m — SSymbol field — valty
— Record m’

108

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

Record is indexed by a row type. In our system, a row type
is a type level finite map from GHC’s type-level strings, called
Symbols, to Types. The finite map holds the field names and
types of the values stored in the record.

The datatype has two constructors. The first holds no
data, and correspondingly has an empty finite map index.
The AddField constructor takes an existing finite map, a
singleton string, and a value; it constructs a new Record
indexed by a finite map with that modified field, via the
AddField constraint.

AddField takes a singleton string argument. Singletons [8]
are a well-known technique for simulating dependent types
in a non-dependent programming language [12]. A singleton
type has exactly one inhabitant. For example, with singleton
strings, the data of type SSymbol "name" will store the string
"name" at runtime; the data of type SSymbol "price" will
store the string "price" at runtime. In general, when we
learn that the runtime data in a SSymbol str is, say, "hi", we
also learn that the type index str is "hi" and vice versa.

We need this correspondence for the AddField constructor.
Consider what would happen if we provided a String instead
of a SSymbol str. The finite map type index would have no
way to store the name of the field that was just added. With
a field name of SSymbol str we can store the str with our
AddField constraint from the API.

A Polymorphic Record Function In this example we tra-
verse a Record m, looking to extract the "price" field. This
function is polymorphic in that it works on any Record m
that has a "price" field which holds /nts. That is, it works
on any Record m where the constraint Has m "price" Int
is satisfied.

getPrice :: Has m "price" Int = Record m — Int
getPrice (AddField rec fld val) =
case scomp fld (SSym @"price") of
Refl
DisRefl — getPrice rec

— val

This function is accepted by GHC when running the Tho-
ralf type checker plugin. Though it seems simple, there is a
lot going on here! The first step to explaining this function
is understanding the function scomp.

How Does scomp Work? The scomp function decides equal-
ity on SSymbols, returning either a proof that s7 equals s2
via Refl or that s7 is different from s2 via DisEquality.

scomp :: SSymbol s1 — SSymbol s2 — s1:~?~: 52
data a :~?~: b where

Refl a:~?~:a

DisRefl :: DisEquality a b = a :~?~: b
class DisEquality (x :: k) (y :: k) where {}

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

The DisEquality class is meaningless to GHC but is used
within Thoralf to represent that two types are distinct*

The implementation of scomp converts its input singleton
SSymbols to regular strings and checks string equality. It
uses this term-level information to deduce that the types
s7and s2 must match or cannot match and unsafeCoerces
the appropriate result. In general, this is how DisEquality
constraints are created—through singleton comparisons and
judicious uses of unsafeCoerce.

How Does getPrice Work? The one equation of getPrice
matches on the AddField constructor. From this, the equality
constraint AddField m1 m field valty is brought into scope
where

e rec:: Record mi1,

e fld :: SSymbol field,

e val :: valty, and,

o AddField rec fld val :: Record m.

The function pattern matches on the result of compar-
ing fld with the singleton version of "price". In the first
case, the singleton strings are the same. At the type level,
we learn field ~ "price" from the Refl. Then, we make a
deduction. If (1) Has m "price" Int, or, equivalently, m ~
Alter m "price" Int and (2) m ~ Alter m1 "price" valty
(substituting "price" for field), then valty must be Int. In
other words, since m maps "price" to Int and "price" to
valty, by the definition of finite maps, /Int ~ valty. So, re-
turning val :: valty is a well-typed return value of type Int.

In the latter case, the singleton strings are different. At
the type level, we now learn field » "price" from the
DisRefl match. As before, we make a deduction. Since (1)
m ~ Alter m "price" Int, (2) m ~ Alter m1 field valty,
and (3) field + "price", we reason that the inner finite map
must map "price" to Int: Has m1 "price" Int. Thatis, since
the map m must map "price" to Int and m7and m share the
same mappings except for field—which is not "price"—we
must have m7 mapping "price" to Int. Consequently, the
record indexed by the m7 map should have a "price" field
with an /nt value, and hence our recursive call getPrice rec
is sensible. Thoralf confirms our reasoning and convinces
GHC to accept this code.

Note that mimicking the string equalities and disequalities
at the type level with with matches on Refl and DisRefl was
essential. It is insufficient to simply reason at the term level.

The Type Error Thoralf Resolves Again, to concretely il-
lustrate the problem Thoralf solves, we observe one of the
type errors without Thoralf. As expected, this matches our
second deduction:

* Could not deduce: ml ~ (Alter ml "price" Int)
from the context: m ~ (Alter m1 field val)

4We view DisEquality as a closed class, with no instances. An alternative
design could represent this with a closed type family.

109

Divesh Otwani and Richard A. Eisenberg

or
or from

m ~ Alter m "price" Int
DisEquality "price" field

3 A Theory of Type-Equality Plugins
Having seen Thoralf at work, we take a step back and present
the theory behind what Thoralf does and how to reason
about Thoralf’s correctness.

However, before we can discuss correctness we need to
understand the type checking process with a type-equality
plugin. Then, our first concern is the bare-minimum require-
ment: how do we know a type-equality plugin, and specif-
ically Thoralf, is type safe? Beyond the bare minimum, we
want some correctness with respect to our idea of some type
level data. For example, type level finite maps should be-
have like finite maps. Toward this end, how do we specify
some type level data? How does this specification translate
to a specification for the constraint solver of a type-equality
plugin?

We answer these questions in this section and provide a
correctness condition for a sensibly restricted form of type-
equality plugin that, like Thoralf, does not solve problems
with unification variables.

3.1 Type Checking with a Type-Equality Plugin
We start by generalizing how GHC type-checked the exam-
ples we saw. The plugin asserted type equalities that allowed
our code to type check. Well, what does it mean to “assert
type equalities to GHC"?

Concretely, it means a type-equality plugin resolves type
errors of the form:

Main.hs: error:
* Could not deduce:
from the context:

<tyl> ~ <ty2>
<gl> ~ <gl'>

or <g2> ~ <g2'>
or <gn> ~ <gn'>
or <h1> /~ <h1'>
or <hk> /~ <hk'>

This type error says that GHC is unable to deduce some
wanted type equality under the assumption of other type
equalities and disequalities.

When a plugin resolves this type error, it asserts to GHC
(without needing to provide a proof), that <ty1> and <ty2>
are in fact equal. GHC unquestioningly accepts this fact as
an axiom and continues type checking.

How does type checking proceed after a plugin asserts
a type equality? Either (1) some code type-checks or (2)
GHC uses this equality to deduce other equalities. For an
example of (1), consider the two case matches of getPrice. In
the first match, Thoralf asserted valty ~ Int and the return
value val type checked. In the second match, to type check
the recursive call getPrice rec, GHC needed to satisfy the

The Thoralf Plugin: For Your Fancy Type Needs

constraint m7 ~ Alter m1 "price" Int, which was exactly
what the plugin produced.

For our purposes a specific form of (2) occurs: equali-
ties between type indices, such as 1 + (n7+ m) ~ (n+ m)
from concatVec, determine equalities on the type they index
via GHC’s assumption of congruence. When GHC knows
71 ~ Ty, it can deduce T 7; ~ T 7. Continuing with our
concatVec example, GHC could deduce Vec (1+(n1+m)) a ~
Vec (n+ m) a. GHC then applies the casting rule

T're:ny Tk ~1n
T'rte:ny
to say (x:> (concatVec xs ys)) :: Vec (n+m) aand type check
the return value of the second equation of concatVec.

All in all, this is the type checking process with a type-

equality plugin:

Conv

e GHC’s constraint solver sends the plugin problems it
is unable to solve. These are problems that produce
type errors of the general form we have presented:
deducing a wanted equality from some given equalities
and disequalities.

o The type-equality plugin sometimes asserts the wanted
equality it is given.

e GHC uses the equality axiom from a plugin as it nor-
mally would to type check code, sometimes using con-
gruence to deduce other type equalities.

3.2 Type Safety

If a plugin is injecting new axioms into GHC’s type equality
relation, how can we be sure not to break type safety? That
is, how do we know when we have accidentally equated /nt
with Bool — Bool, allowing a user to call 5 as a function and
jump to arbitrary memory? Let’s first consider the axioms
produced by the plugin itself and then look at what GHC
does with those axioms.

Equality on type-level data Without the help of a plugin,
GHC implements equality on types. If, according to the rules
of GHC’s type equality (for example, as explained by Breitner
et al. [1]), two types can be considered equal, GHC will prove
this. As such, the primary work of a plugin is not to compute
equality on proper types like /nt and Bool, but instead to
compute equality on type-level data or type indices.

While Haskellers casually refer to all subtrees of a type as
types—that is, if we have v:: Vec (n+ m) Bool, then we might
say that the subtree (n + m) is a type—this is not quite true:
(n+ m) is a number, not a type. It happens to be used within
a type and syntactically at the type level, but that does not
make it a type. By contrast, Int, Bool, and Maybe Double
are types. Maybe and Either are type constructors, which
become types when given appropriate arguments. Instead of
calling (n+ m) a type, we propose calling it type-level data.

These bits of type-level data are frequently used to index a
type, such as in Vec (n+ m) Bool. Because of the congruence
of equality, proving equality relationship on type indices can

110

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

indeed induce equalities on types themselves. Thus, while
asserting new equalities on types is generally unnecessary
for a plugin, proving equalities on type indices, declared at
kinds other than Type, is more sensible.

If a plugin is working in a given domain (such as the
natural numbers), we generally do not wish for GHC to in-
terfere with the plugin’s work. For example, suppose we
somehow know that m + n, but we are trying to prove
(n+ m) ~ (m+ n). It would be a shame if GHC decom-
posed this equality and tried to prove n + m (the left-hand
arguments) and m ~ n (the right-hand arguments). These
equality checks would (rightly) fail. Instead, we need to keep
GHC away from concepts it knows nothing about (like num-
bers,’ or finite maps). Happily, GHC refuses to look under
type family applications, as type families are neither injec-
tive nor generative [6]. If we make + a closed type family [7]
with no equations, then GHC will not interfere, giving our
plugin the full opportunity to solve the equalities [9].

We thus have some design principles:

e Plugins should proof equalities over type-level data,
of kinds different from Type.

o All operations in a plugin’s theory should be written
as empty closed type families.

Another way of stating this is that we want a kind-indexed
equality relation. While GHC is free to use its internal equal-
ity relation (essentially, structural equality with a-equivalence)
on proper types, we want to impose a different equality rela-
tion on our type indices.

Wonky plugins Having stopped GHC from meddling with

our plugin’s theory, the plugin is free to produce equality

axioms as necessary. Interestingly, if all a plugin does is to

produce axioms over type indices, there is no way to break

type safety. The design principles above are important in

leading to this conclusion. Let us explore via an example.
We start with the following definitions:

data Number :: Type

type family N (n:: Nat) :: Number where { }

type family (a:: Number) +. (b :: Number) :: Number
where { }

type family (a:: Number) —. (b :: Number) :: Number
where { }

Here, we have declared a new type Number, which will serve
as the kind of our new type-level data. The N empty type
family converts built-in Nats to Numbers, and we have de-
fined addition and subtraction over these numbers. Let us
further define length-indexed vectors with these numbers:

SGHC actually ships with a rudimentary ability to deduce natural-number
relationships when using its built-in Nat kind. This solver is quite simplistic,
and we can safely pretend it does not exist.

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

data Vector :: Number — Type — Type where
VVNil :: Vector (N 0) a
(:>) =a— Vector na— Vector (n+.N 1) a

Now, let us suppose that the plugin giving meaning to
these numbers equated all numbers. That is, the following
would be accepted:

silly :: Vector (N 2) a — Vector (N 3) a
silly VVNil = VVNiIl
silly (o> v) =v

Accepting this requires proving N 0 ~ N3andn ~ N3
(where we assume n+.N 1 ~ N 2), both of which our plugin
handily provides. One might easily think that our Vector
type is now unsafe, but there is no type safety problem here.
Instead of defining a length-indexed vector, we have defined
a type functionally identical to the regular old list type, [].
If [] is type safe, then so is Vector.

What if we equated only some numbers some of the time?
What if our plugin non-deterministically equates Numbers,
even changing its mind about the same query if posed mul-
tiple times? These deficiencies, too, cannot cause GHC to
lose type safety. Critically, GHC makes almost no use of a
failed check for equality. It tracks no disequality constraints,
and lack of equality does not imply apartness (used in the
reduction of closed type families and well explored by Eisen-
berg et al. [7]). A wonky plugin might cause type inference
to become unpredictable or otherwise off-kilter, but it will
not launch the rockets.

Despite not launching any rockets, two problems may
surface with a wonky plugin:

Pattern-match warnings Above, we said that GHC
makes almost no use of failure to solve an equality
check. The one place it does use failure is in deciding
whether a pattern match is complete. Consider silly
again. If the plugin flatly refused to allow N 2 to equal
n+. N 1 (the resulting index in :>>), then the pattern-
match completeness checker [10] would say that the
second clause is redundant. Note that this drawback
does not break type safety—instead, it means that a
wonky plugin could lead a programmer to erroneously
believe that an incomplete pattern match is complete.
This problem might cause an unexpected exception at
runtime, but it cannot cause other arbitrary behavior.

Reliability of specifications When we write, say,
reverse :: Vector n a — Vector n a, we understand
that to mean that reverse preserves lengths of vectors.
However, with our wonky plugin, this type is no more
informative than [a] — [a]. Thus, a wonky plugin
might not break type safety, but it very well might vio-
late invariants that the programmer intends to encode.

For our wonky plugin to break type safety, there would
have to be some way to branch on different members of
Number. That is, we would need a way of treating them as

111

Divesh Otwani and Richard A. Eisenberg

distinct types in GHC’s type equality reasoning. However,
all members of Number are stuck empty closed type families,
and there is no way to branch on these. We are thus safe.

Note that GADTs, by themselves, do not allow this kind
of branching, as we always look at a runtime constructor in
a GADT pattern match, never solely type-level data.

Equalities on types can break type safety The discus-
sion above all assumes that the plugin “keeps to itself”—
injecting equality proofs only on type-level data of some
kind other than Type. However, it is also possible, of course,
for a plugin to introduce an equality between types. Indeed,
the finite maps example (Section 2.2) does this to good effect.
The key step there is that, from

fmy ~ fmy, Has fmy "x" Bool, Has fmy "x" ty

we can conclude ty ~ Bool. This conclusion is an utterly
different beast than what we have considered before: it is an
equality on types. If the plugin did not faithfully implement
a theory of finite maps, this equality might be bogus. We
thus have another design principle:

e Equality axioms relating GHC types (and only those)
must be correct.

By correct here, we mean that there must exist a consistent
model in which the assumptions entail the desired equal-
ity. Owing to the soundness of the theory of arrays [15]
(readily used to model finite maps), we can be confident that
concluding Bool ~ ty above is type-safe.

3.3 The Formal Type-Equality Constraint Solving
Problem

Naturally, type safety is not the only property we would
like to have. For example, in the case of Vector, we really
want the index on the types to be the length of the linked list
stored at runtime. We present here a formal framework for
how to develop a plugin that is not wonky—that is, respects
the desired semantics of the type-level data in question.

3.3.1 Building the Grammar

The first step, as usual in a formal system, is to define the
grammar of the data under consideration. For example, re-
call the grammar of finite maps: fm. It depends upon the
grammars for the key and value sets, K and V, respectively,
which we leave abstract. We assume that k € Kand v € V.

fm == Nil | Alter fm k v | Delete fm k

That is, a finite map is either Nil, the addition to an existing
map, or the restriction of an existing map. More generally:
Definition 3.1 (Type Index & Equational Theory Sets).

e Let Ty,...,T, be a list of sets (not necessarily distinct)
which we call background theories.

e Let Ey,- -+ ,E, be a corresponding list of background
equivalence relations (that is, Vi,E; C (T; x T;)) with

The Thoralf Plugin: For Your Fancy Type Needs

the property that no background theory has two equiv-
alences’: if T; = Tj then E; = E;.

Let T be an operator that takes in n background theo-
ries and produces a grammar. That is, T(Ty,- - ,T,) is
a grammar where metavariables can be drawn from
input sets Ty, - - ,T,. This grammar gives rise to a set
of terms; we conflate the notation of the grammar and
the set of terms it gives rise to. Let

I =T(T, - ,In)

be the type index set.
Similarly, we say

8 = E(Ela' o ,En)
is the equational theory of the type index set: & C (I X
T).
e Define
f:]u(Tlu---uTn)
and

E:Su(Elun-uEn)
to represent the set of all literals and the equational
theory of literals. We use the word “literal” because the
types mentioned here lack abstract variables, which
we add later.

Let us unpack that definition. We motivate these by look-
ing at the sets defined for the finite maps. The background
theories of finite maps are the sets of keys and values: K
and V. These have corresponding equational theories Ej, Es.
The grammar of finite maps is defined in terms of these sets:
I = fm (where fm is from above). The equational theory of
finite maps is defined in terms of the equational theories of
the key and value sets. For example, the equational theory
of fm satisfies the following inference rule:

k ~ k
Alter (Alter fm k vy) k’ vy ~ Alter fm k v,

Note that this rule uses the premise k ~ k’, drawn from
the equivalence relation over K (which we have called E,).

We write & = E(Ey, E,) for the equational theory of finite
maps. The set of all literal types includes all the finite maps,
keys and values: T = fm U K U V. The equational theory of
the literal types is E = E(E;,E;) U E; U E,.

3.3.2 Adding Skolem Variables

Having defined literal type-level data (expressions such as
3+4or Alter Nil "x" Bool without variables), we can extend
this definition to include what we actually see in type errors.
These include variables. As noted previously, these variables
come in two flavors: skolem variables and unification vari-
ables. In the errors we have seen so far, only skolems have
been present; this is by design. We discuss this design and
the distinction between these type variables in Section 4.3.

%A theory, like natural numbers, should have only one equivalence relation.

112

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

For now, we add only skolem variables to our grammar for
type-level data.

Here, we formalize the type-level data we see in type
errors and call such types abstract data.
Definition 3.2 (Abstract data).

e Declare pairwise disjoint enumerable sets of variable
names X, Xi,...,X, where XN7T =0and X; NT; = 0.
e For any grammar A and set Y, we define the augmented

grammar
A[Y] ::= (- - -production rules of A---) | y
wherey € Y.
e Define
T; = Ti[Xi],
I =T1[X],
and

T:IU(UTi).

Here, T represents the abstract data, the set of types
that could appear in the type errors we encounter.

All we are doing here is augmenting each set with the
ability to hold variable names, where each set has its own
distinguished set of names to choose from.

3.3.3 Equality Constraint Solving

Now that we have a set which models the types we see in
our type errors, we can describe the inputs and outputs to
the constraint solving problem we encounter.

All our type errors try to deduce a single wanted equality
71 ~ 7, from a set of given equalities and disequalities in
the context, ; ~ 7/ and g; » 0'].’ . Here, we can concretely
view each equality constraint and disequality constraint as
an element of the set T X T.
Definition 3.3 (Equality Constraint Inputs and Outputs).

e The inputs are a set of wanted equality constraints,
W Cc(TxT)

and givens, comprising a set of equalities and a set of
disequalities

(Ge,Gg) where G,,Gg € (T X T).

e The output is one of three outcomes:
1. A result of L means that the context of given equal-
ities is inconsistent or nonsensical.
2. The set W represents that all the wanted equalities
can be deduced from the givens.
3. 0 indicates that at least one of the wanted equalities
cannot be deduced.

Now that we can precisely describe the constraint solving
problems the plugin sees, we can specify the correctness
condition for its constraint solver.

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

3.3.4 Equality Constraint Solver Specification

At a high level, we wish to deduce a wanted equality from a
set of givens if the wanted is true in any model where the
given equalities and disequalities are true. We unpack this
high level intuition. First, what is a model, exactly?
Definition 3.4 (Models).

e Afunction ¢ : T — T isa model on T if it homomorphi-
cally substitutes all skolem variables in its argument
with literals. That is, ¢ leaves literals untouched but
substitutes the variables according to some substitu-
tion functions

(r: X >T),(m: X1 = Th),....(Xn > Tp).

o If G = (G.,Gy) is the set of givens, the set of G-
consistent models on T is the set of models &5 where

@6 = {¢ | (Ve € Ge,p(e) € E) A (Vd € Gg,0(d) ¢ E)}

What is going on here? A model is a function ¢ that
chooses literal values for each free variable of some type-
level data. Building from there, ®¢ is the set of models that
are consistent with assumptions G—that is, applying a ¢ € ®
to the components of a given equality yields two literals
considered equivalent by E; doing the same to a given dise-
quality yields two distinct literals. Now, we define the set of
models where the givens are true:

Definition 3.5 (Deductive closure). The deductive closure
of givens G is defined to be

DC(G)={eeTXT |Yp e Dg,p(e) € E}.

According to this definition, DC(G) is the set of pairs of
data where the first member of the pair equals the second in
all models consistent with the givens G. We can now define
concretely what a plugin solver does and how to judge its
correctness, naming the solver PLUGINSOLVE.

Definition 3.6 (The PLucIiNSOLVE Correctness Condition).
Let 7 be a description of type-level data with background the-
ories Ty, -+ ,T,. Let & and Ey, - - - ,E, be the corresponding
equivalence relations. We define T,E,T as before.
Inputs: G = (G.,Gy4), W where W,G,,Gy C T X T.
Output: One of L, @ or W.
Correctness condition:
o The output is L iff &g = 0.
e The output is W iff &g # 0 and W C DC(G).
e The output is @ iff &g # @ and W € DC(G).

34

This theory is all well and good, but GHC defines the inter-
face to a type checker plugin. Does that interface correspond
with our theory? We explore the relationship here.

A GHC type checker plugin is essentially one function,
tcPluginSolve. We (1) introduce this function, (2) explain how
GHC'’s constraint solver uses it and (3) connect this function
to the PLUGINSOLVE correctness condition.

Correspondence Between Theory and Code

113

Divesh Otwani and Richard A. Eisenberg

3.4.1 Type Checker Plugin Interface

A type checker plugin writer implements a small constraint
solver via the function fcPluginSolve. It is packed into a
TcPlugin package, with the following type signature.”

data TcPluginResult = Problem [Ct]
| Ok [Ct][Ct]
data TcPlugin = Vs. TcPlugin

{tcPlugininit = TcPluginM s
,tcPluginSolve = s — [Ct] — [Ct] - [Ct]

— TcPluginM TcPluginResult
, tcPluginStop ;s — TcPluginM ()}

The Ct type represents constraints. For our purposes,
these will either be equalities or disequalities.

The monad TcPluginM allows for looking up information
from the environment and wraps /O. A plugin writer chooses
the instantiation for the existential variable s (for “state”)
and can save custom information there. Because TcPluginM
wraps the /O monad, a plugin writer can use, e.g., /ORef's to
store information that needs to be updated between runs of
the solver. This state can be initialized in tcPlugininit, which
is called before any solving is done.

The first [Ct] in the type of tcPluginSolve is the set of
given constraints and the next two [Ct]s are wanted con-
straints.® The output Problem xs means that the given con-
straints are contradictory; xs is a subsequence of the input
list of given constraints that is contradictory on its own. The
output Ok ys zs indicates that the subsequence of wanted
constraints ys can be deduced from the input list of given
constraints. The second list of constraints zs are new con-
straints for GHC to consider in its own solver algorithm.
We will not make use of these, but see Section 4.3 for more
discussion.

Now, with a basic understanding of this function, when
does GHC’s solver call this?

3.4.2 GHC'’s Solver

At a broad level, GHC walks through user-written source
code and generates an implication tree of constraints. The
interior nodes are givens (these correspond to places in the
source code where GHC learns assumptions, such as a GADT
pattern-match or a function with a type signature), and the
leaf nodes are wanteds. Recall getPrice from Section 2.2.1:

getPrice :: Has m "price" Int = Record m — Int
getPrice (AddField rec fld val) =
case scomp fld (SSym @"price") of
Refl
DisRefl — getPrice rec

— val

"We have made several simplifications throughout for readability.

8The second argument is actually a list of derived constraints. The difference
between these constraints and wanted constraints is a technical detail, a
full coverage of which would derail our discussion.

The Thoralf Plugin: For Your Fancy Type Needs

Consider the type checker state when checking the recursive
getPrice rec call. There are three’ givens, stored in differ-
ent interior nodes in this branch of the implication tree:
the Has m "price" Int assumption from the type signa-
ture, the AddField m1 m field valty constraint from the
AddField pattern-match, and the field » "price" fact from
the DisRefl pattern-match. Under all these interior nodes is
the leaf wanted constraint Has m1 "price" Int, required in
order to call the getPrice function.

GHC’s constraint solver traverses this constraint tree and
solves what it can. After doing its own solving, if there are
unsolved wanteds, GHC traces every downward path from
the root to a node of wanted constraints accumulating givens
along the way and then calls tcPluginSolve with its accumu-
lated given constraints and the wanted constraints at the
destination node.

3.4.3 Correspondence Between tcPluginSolve and
PLUGINSOLVE

Input The constraints we handle are of one of two forms.
Either we have an equality constraint or a disequality con-
straint. The constraints in the input to tcPluginSolve have
the type Ct. The details of that type are not germane here,
but it is easy to extract the nature of a constraint from a Ct,
classifying it into either an equality or disequality constraint.

Once we do this, we are left with two types, ty; and ty;.
These correspond to our abstract data set T.

Now that we can break down constraints we can connect
the inputs of this function to our abstract correctness con-
dition. Considering a call to tcPluginSolve state xs ys zs, we
can say the first input list xs :: [Ct] corresponds to the given
pair G = (Ge,Gg4) where

e every constraint e € xs that is an equality between ty;
and ty;, corresponds to a pair (ty;,tys) € Ge, and

e every constraint d € xs that is a disequalities between
ty; and ty, corresponds to a pair (tyy,tys) € Gy.

Call the sublist of xs that are either equalities or disequalities
xs’, and let ws = ys # zs. Then, ws is the list of wanted
constraints. For every e € ws is classified as an equality
corresponds to a pair (ty;,tys) € W. Call the sublist of ws
that are equality or disequality constraints ws’.

Output Now, we can easily connect the output TcPlugin-
Result to the output of our abstract solver PLuGINSOLVE. For
our purposes, tcPluginSolve should either return Problem xs,
Ok ws’ [] or Ok [] []. The output Problem xs corresponds
to L. (We have not identified a minimal set of contradictory
givens, just returning them all.) In our case, this would mean
there are no models of the abstract data we are dealing with,
T, that are consistent with our givens. The output Ok ws’ []
corresponds with the output W, and the output Ok [] []
corresponds with the output 0.

The given from the Refl pattern match is not in this branch of the tree.

114

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

Now we have a correctness condition for
tcPluginSolve state xs ys zs: it should return either Problem xs,
Ok [][], or Ok ws’ [] where ws’ is the set of relevant con-
straints from the list ys + zs. The choice of return value is
as specified under the definition of PLUGINSOLVE.

4 Thoralf: Building a Generic and
Extensible Plugin with SMT

We have developed a deep understanding of the type-equality
constraint solving problem. We apply this understanding to
develop a plugin that uses an SMT solver in order to check
whether a particular wanted is in the deductive closure of a
set of givens.

SMT stands for “satisfiability modulo theory”. An SMT
solver, at its core, tries to find a model—that is, a concrete
instantiation for unknowns—that is consistent with a set of
assertions. Different SMT solvers support different theories
on top of this core, where they can reason about, for example,
numbers, strings, or (in our case) arrays. In our work toward
Thoralf, we used the Z3 solver [3].

4.1 Examples
4.1.1 Natural Number Arithmetic

Suppose we wanted stripPrefix for length-indexed vectors:

stripPrefix :: Eq a =
Vec na— Vec ma— Maybe (Vec (m— n) a)
stripPrefix VNil ys = Just ys
stripPrefix _ VNil = Nothing
stripPrefix (x :> xs) (y :> ys) =
if x ==y then (stripPrefix xs ys) else Nothing

Without a plugin, we get a type error:
* Could not deduce: (n2 - n1) ~ (m - n)

from the context: n ~ (1 + n1)

or from: m ~ (1 + n2)

From our work in the previous section, we know this is
just an equality problem for some givens G and wanteds W:

e G=({(n,1+ n1),(m,1+ n2)},0)
e W= {(n2-ni,m-n)}

We encode this problem for an SMT solver like this:

(declare-const n Int)
(declare-const m Int)
(declare-const n1 Int)
(declare-const n2 Int)

; Assert all givens.

(assert (= n (+ 1 n1)))

(assert (= m (+ 1 n2)))

(check-sat) ; check if givens are consistent

; Assert at least one wanted is false.
(assert (not (= (- n2 n1) (- mn))))
(check-sat) ; we want "unsat"

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

First, we introduce the type variables in the constraints as
constants to the solver. We then introduce the givens to the
solver via the assert directive.'’ Then, following Diatchki
[5], we assert the negation of our wanted and seek an unsat
result. An SMT solver’s main purpose is to find some model
that supports all the facts in its database. If we asserted the
unnegated wanted and ran (check-sat), the solver would
see if the wanted is consistent with the givens. This is not
good enough—we need to verify that the wanted is entailed
by the givens. The way to see this is to ensure (1) that the
givens themselves have at least one model, and (2) that no
model exists containing the givens and the negation of the
wanted. This corresponds directly with Definition 3.5, where
we seek to ensure that all models of the givens contain the
wanteds, not just some of them.

To be more formal, the solver is proving here that

=(dn,m,nl,n2 | (n=1+n1)A(m=1+n2) A(n2-nl+ m-n))

A little algebra reduces this to

VYn,mnl,n2=(n=1+n1Am=1+n2)V (n2—nl=m-n)

VYn,mnl,n2(n=14+niAm=1+4+n2) = n2—-nl=m-n

which is exactly what we wanted.

4.1.2 Finite Maps

The last example was simple enough that we did not notice
we were encoding a Haskell type into a SMT expression. In
this example we revisit getPrice:

getPrice (AddField rec fld val) =
case scomp fld (SSym @"price") of
DisRefl — getPrice rec

Suppose that rec :: Record m1. We want to deduce the
wanted equality m7 ~ Alter m1 "price" Int from the given
equalities m ~ Alter m1 field val (learned from the pattern-
match on AddField), m ~ Alter m "price" Int (learned
from the type signature of getPrice), and "price" + field
(learned from the pattern-match on DisRefl). Translated into
our formal specification, we have givens and a wanted set
G = (G¢,Gg), W where

Gg = {("price", field)}
Ge = {(m, Alter m "price" Int)
(m ,Alter m1 field val)}
W = {(m1, Alter m1 "price" Int}
We translate this as follows.

(declare-datatypes (T)
((Maybe nothing (just (fromJust T)))))

(declare-const m (Array String (Maybe String)))
(declare-const m1 (Array String (Maybe String)))
(declare-const field String)

(declare-const val String)

10This is SMT-LIB syntax, which works with a range of solvers. See http:
//smtlib.cs.uiowa.edu/.

115

Divesh Otwani and Richard A. Eisenberg

; Assert Givens

(assert (not (= "price" field)))

(assert (= m (store m "price" (just "Int"))))
(assert (= m (store ml field (just val))))
(check-sat)

; Assert at least one wanted is false.
(assert (not (= ml (store ml1 "price" (just "Int")))))
(check-sat)

As before, we get the desired result of unsat. Our plugin
thus returns W, which resolves the type error.

Encoding The only difference between this example and
the last is that the finite maps are encoded according to the
theory of arrays in the SMT solver. The standard theory of ar-
rays [11, 15] describes an array as a total mapping from keys
to values that supports the select and store operations.
However, we wish to model finite, partial maps from keys
to values. We thus use a sturdy, well-worn trick: we map
our desired keys to optional (Maybe) values. Accordingly,
we translate abstract data like Alter m1 "price" Int) into
(store m1 "price" (just "Int")) and use the constant
array that maps all keys to nothing as an empty finite map.

While this translation is straightforward, the fact that
Thoralf works with finite maps shows that it supports some
level of translation from the desired theory (finite maps) to
one supported by the solver (arrays).

The Encoding Property While we can see at a high level
how this translation is working, it is helpful to have a formal
treatment of the interaction with the SMT solver.

Let S be the set of well-formed SMT expressions, and
let =C S X S be the SMT solver’s equivalence relation. As
usual, we denote the set of abstract data with T—this includes
keys, values and finite maps; E is our equivalence relation
on these types (i.e., the union of our equality relations of the
keys, values and finite maps). Our encoding is a function is
f : T — S. The encoding property states that

Vi’ e T,(t,t') e E &= f(t) = f(t').

Our encoding of finite maps indeed satisfies this property,
by appeal to the similarity of the theory of finite maps and
the theory of arrays.

4.2 Extending Thoralf

If we look back at these two examples, we see that the overall
structure is remarkably similar: Thoralf asserts the givens
and the negation of the wanted, and then checks for a model.
In fact, the only difference between natural number arith-
metic and finite maps is the encoding function (f, above). It
is thus remarkably easy to extend Thoralf into new domains:
just provide an encoding function, and off you go.

http://smtlib.cs.uiowa.edu/
http://smtlib.cs.uiowa.edu/

The Thoralf Plugin: For Your Fancy Type Needs

Encoding functions have to translate from abstract data—
which are encoded as types within GHC—to SMT expres-
sions. Morally, an encoding function looks like this:

encode :: Type — Maybe SExpr

Here, Type is not the kind of types with values (formerly
known only as %), but an ordinary datatype declared in the
GHC API that forms GHC’s internal AST for types. A SExpr
is a representation of a s-expression to be given to an SMT
solver. The encode function is partial because a given encod-
ing will handle only certain constraints for one type index.

In the real implementation, however, the type of encode
is not this simple. The Type encode is passed is a representa-
tion of abstract data. This data might have other translatable
abstract data inside it. Take, for example, a finite map from
Symbols to natural numbers, or even to other finite maps. So,
as encode is translating to an SExpr, it will need to recur on
these inner pieces. Because the inner pieces may belong to
different theories, it is awkward to make this function both
recursive and extensible. Thus, the real version of encode
returns a list of sub-components (Types) that need to be con-
verted, and a continuation function that takes the converted
data (SExprs, now) and builds a SExpr from these pieces. Fur-
ther, when declaring variables in SMT, we need to determine
the sort of those variables. For this, we have an analogous
encodeKind :: Kind — Maybe SExpr function that returns a
list of Kinds and a continuation.

4.3 Type Variables

When translating data from GHC’s representation to an
SExpr, we have to also translate variables that occur in the
data. The theory we worked out in Section 3 includes the
possibility of skolem variables, but we studiously left out the
possibility of dealing with unification variables. We explain
that design decision here.

To recap: a skolem variable is a rigid, abstract variable. It
equals no other type (except by explicit assumption from,
say, a Refl pattern match). If we write

length :: [a] — Int
length [True, False] = 2

our program is rejected because the skolem a is not Bool.

In contrast, a unification variable is a placeholder for some
other not-yet-known type. When we apply the function
length, we do not yet know what type a should become.
If we say length [’x’], a becomes Char. GHC models this
uncertainty by instantiating the a with a unification variable,
often written with a Greek letter such as a. Then, as type
checking proceeds, GHC can learn what « should really be
and set it accordingly. (Recall that unification variables are
implemented with mutable cells, under the hood.)

In practice, both skolem variables and unification variables
may appear in the abstract data encoded in GHC’s types.

116

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

However, Thoralf’s approach will not work with unification
variables.

Essentially, unification with SMT solvers is difficult. Re-
call that PLUGINSOLVE is looking to see whether the wanted
constraint holds in all possible models consistent with the
givens. For skolem variables (translated into the SMT solver
using the variable’s unique identifier and making it an unin-
terpreted function), this is the correct behavior. However, for
unification variables, type checking must end with a concrete
assignment for the variable. While an SMT solver can furnish
this through the model it builds, the model is arbitrary, lead-
ing unification variable choices to be capricious. Diatchki [5,
Section 4.6], describes a possible way forward here, but it
requires, in the general case, O(n?) calls to the solver for n
unification variables, and so we have not implemented this
idea.

Given that unification variables may appear in GHC’s
types, does this limitation mean we are unexpressive? Hap-
pily, no. Though we have not proved it formally, we conjec-
ture that every construction that yields unification variables
can be rewritten to avoid them. In an application length [...],
a unification variable arises, as we need to know the element
type of the list. However, a simple change to length’s type
avoids this. We can declare length :: IsList x = x — Int,
where /sList x holds for any x that is a list type. Now, when
applying length, we simply have to infer the type of its ar-
gument and use that for x—a much simpler process than
needing to find a, which lives under a type constructor.

Perhaps length was easy; let us try map :: (a — b) —
[a] — [b]. This case is indeed harder, but it still succumbs
to this general trick, if we write

map :: (IsFunc f, EltType list1 ~ ArgType f
,Uist2 ~ [ResType 1) = f — list1 — list2

Once again, we simply have to infer the types of map’s argu-
ments and then solve constraints. There is no need to create
unification variables that might live under type constructors.

Therefore, our task now is to use this technique to de-
sign an API for a given theory we wish Thoralf to consider
that avoids unification variables. The API in Figure 1 is just
such an API, where all the statements about finite maps
are expressed as constraints, not, say, as type families that
could occur in the middle of types, giving rise to unification
variables.

4.4 Finite Maps

We now look at the details of how the finite maps are encoded
as an example of how to extend Thoralf with a new theory.

data Fm (k :: Type) (v :: Type) :: Type where { }
type family Nil :: Fm k v where { }

type family Alter (m:: Fm k v) (key :: k) (val :: v)
i Fm k v where {}

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

type family Delete (m:: Fm k v) (key :: k)
= Fm k v where { }

The Fm type is an empty datatype, and all its inhabitants are
empty closed type families, following the design criterion
of Section 3.2. The library offers three primitive operations
on maps: Nil creates the empty map, Alter changes or adds
a new entry to the map, and Delete removes an entry (if
it exists). While Nil is exported to clients, the other type
families are not, as they can induce the plugin to encounter a
unification variable. For example, consider if we had declared
the AddField constructor of our Record like this:

data Record :: Fm Symbol Type — Type where
AddField :: Record r — SSymbol field — valty
— Record (Alter r field valty)

A use of AddField could now have a unification variable
standing in for r that the solver could not handle.
Instead, we export constraints such as Has:

type Has (m:: Fm k v) (key :: k) (val :: v)
= (Alter m key val ~ m)

A use of Has asserts that adding a new entry into m will not

change it—in other words, m already must have that entry.

Because this constraint will not be decomposed, we can be

sure its use will not induce unification variables.
Therefore, we have two design principles:

e Represent the type with abstract closed type families.
e Only export constraints and constants.

4.5 Why SMT: Limitations and Advantages

We consider here the limitations and advantages of our
choice to use SMT over a custom solver.

The chief advantage, of course, is that we do not have to
write our own solver. In our experience, a critical application
of type checker plugins is to support finite maps, the need for
which has come up several times in unrelated projects. Given
that Z3 supports the theory of arrays [4], it seems redundant
to write our own solver. Relatedly, by taking advantage of
the expertise that has gone into creating and optimizing the
Z3 solver, we could hope to be confident that the solver is
efficient and correct.

Modern SMT solvers support many theories: integers, bit-
vectors, datatypes, etc. With all these theories, a key benefit
of using SMT is composibility. Finite maps are parameterized,
and we want the value type to range over any type. This
means we might have a finite map as the value type, or some
other type with an SMT-supported theory. Translating the
equality problem into SMT leverages the composibility built
into the theories of SMT solvers.

Not all is rosy, however. GHC’s type language is much
richer than the language that SMT-LIB supports, which lacks,
for example, polymorphism in functions. Solvers also have no
ability to perform type inference, which makes polymorphic

117

Divesh Otwani and Richard A. Eisenberg

datatype constants (which are allowed) sometimes difficult
to use in practice. SMT solvers’ architecture makes working
with unification variables nearly impossible. Further, we
were surprised to learn that the implementation of Z3 was
sometimes erroneous, having witnessed some segmentation
faults (among other misbehavior) along the way. We have
not tried other solvers, but we learned afresh in this project
how taking a dependency can be painful. Lastly, using an
SMT solver limits the quality of the type errors'!.

Our hunch is that the future lies in SMT and generic
solvers. As these solvers get more and more advanced (and
stable) they will surely surpass custom solvers. Right now,
however, the call remains close.

5 Related Work

Diatchki’s SMT Solver Plugin Our work here builds most
directly on that of Diatchki [5]. He described the technique
we adopted here of asserting the negation of the wanted and
then checking for unsatisfiability. His work also discusses
the possibility of improvement, wherein a unification vari-
able gets filled in, perhaps only with partial information.
Diatchki’s approach does not scale, however. Our approach
here of eliminating unification variables by design is novel
and should have no trouble scaling. Our work focuses more
on the theory of a type checker plugin and on correctness
than on implementation.

Units-of-measure Gundry [9] has also described GHC’s
plugin interface, focusing more on its integration with GHC’s
OuTsIpElN algorithm [16] and on writing his own solver for
units-of-measure. Gundry’s work does not consider correct-
ness of plugins in the way we do here. We have a proof-of-
concept that there is a valid encoding function for Gundry’s
type-level data and believe Thoralf can subsume his plugin.

Extensible Records There are a solid handful of implemen-
tations of heterogeneous maps (of which Record is an exam-
ple), including HMap [14], CTRex, and row-types. These all
use closed type families and thus all suffer from the inherent
limitations of that approach: closed type families tend to
work well on concrete data, but get stuck when polymor-
phism comes in. By contrast, our work with an SMT solver
means that we are not relying on type families and can have
more flexible equality relations.

Acknowledgments

The authors thank Kenny Foner for his collaboration during
early explorations into this idea and Lennart Augustsson,
whose conversation sparked the idea for this work. This ma-
terial is based upon work supported by the National Science
Foundation under Grant No. 1704041.

Though, it seems possible for a plugin to explore which assertions cause
issues and reverse engineer helpful error messages.

The Thoralf Plugin: For Your Fancy Type Needs

References

[1] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and

Stephanie Weirich. 2016. Safe Zero-cost Coercions for Haskell. J.
Funct. Program. 26 (2016), 1-79.

Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyon Jones.
2005. Associated Type Synonyms. In International Conference on Func-
tional Programming (ICFP °05). ACM.

Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 337-340.

Leonardo de Moura and Nikolaj Bjerner. 2009. Generalized, efficient
array decision procedures. In 2009 Formal Methods in Computer-Aided
Design. 45-52.

Tavor S. Diatchki. 2015. Improving Haskell Types with SMT. In Pro-
ceedings of the 2015 ACM SIGPLAN Symposium on Haskell (Haskell °15).
ACM.

[6] Richard A. Eisenberg and Jan Stolarek. 2014. Promoting Functions to

Type Families in Haskell. In ACM SIGPLAN Haskell Symposium.

[7] Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and

Stephanie Weirich. 2014. Closed Type Families with Overlapping
Equations. In Principles of Programming Languages (POPL ’14). ACM.

[8] Richard A. Eisenberg and Stephanie Weirich. 2012. Dependently Typed

Programming with Singletons. In ACM SIGPLAN Haskell Symposium.

[9] Adam Gundry. 2015. A Typechecker Plugin for Units of Measure:

Domain-specific Constraint Solving in GHC Haskell. In Proceedings of

118

[10]

[11]
[12]

[13]

[14]

[15]

[16]

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

the 2015 ACM SIGPLAN Symposium on Haskell (Haskell ’15). ACM.
Georgios Karachalias, Tom Schrijvers, Dimitrios Vytiniotis, and Si-
mon Peyton Jones. 2015. GADTs meet their match. In International
Conference on Functional Programming (ICFP °15). ACM.

John McCarthy. 1962. Towards a mathematical science of computation.
In IFIP Congress. 21-28.

Stefan Monnier and David Haguenauer. 2010. Singleton types here,
singleton types there, singleton types everywhere. In Programming
languages meets program verification (PLPV ’10). ACM.

Takayuki Muranushi and Richard A. Eisenberg. 2014. Experience
Report: Type-checking Polymorphic Units for Astrophysics Research
in Haskell. In ACM SIGPLAN Haskell Symposium.

Atze van der Ploeg, Koen Claessen, and Pablo Buiras. 2016. The Key
Monad: Type-safe Unconstrained Dynamic Typing. In Proceedings of
the 9th International Symposium on Haskell (Haskell 2016). ACM, New
York, NY, USA.

Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy Levitt. 2001. A
decision procedure for an extensional theory of arrays. In Proceedings
16th Annual IEEE Symposium on Logic in Computer Science. 29-37.
https://doi.org/10.1109/L1CS.2001.932480

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin
Sulzmann. 2011. OuTsIDEIN(X): Modular Type Inference with Local
Assumptions. Journal of Functional Programming 21, 4-5 (Sept. 2011).

https://doi.org/10.1109/LICS.2001.932480

	Abstract
	1 Introduction
	2 Examples of Using Thoralf
	2.1 Natural Numbers with Arithmetic
	2.2 Row Types and Extensible Records

	3 A Theory of Type-Equality Plugins
	3.1 Type Checking with a Type-Equality Plugin
	3.2 Type Safety
	3.3 The Formal Type-Equality Constraint Solving Problem
	3.4 Correspondence Between Theory and Code

	4 Thoralf: Building a Generic and Extensible Plugin with SMT
	4.1 Examples
	4.2 Extending Thoralf
	4.3 Type Variables
	4.4 Finite Maps
	4.5 Why SMT: Limitations and Advantages

	5 Related Work
	Acknowledgments
	References

