
The Thoralf Plugin

For Your Fancy Type Needs

Divesh Otwani

Haverford College

Haverford, PA, USA

dotwani@haverford.edu

Richard A. Eisenberg

Bryn Mawr College

Bryn Mawr, PA, USA

rae@cs.brynmawr.edu

Abstract

Many fancy types (e.g., generalized algebraic data types, type

families) require a type checker plugin. These fancy types

have a type index (e.g., type level natural numbers) with an

equality relation that is difficult or impossible to represent

using GHC’s built-in type equality. The most practical way

to represent these equality relations is through a plugin that

asserts equality constraints.However, such plugins are difficult
to write and reason about.

In this paper, we (1) present a formal theory of reasoning

about the correctness of type checker plugins for type in-

dices, and, (2) apply this theory in creating Thoralf, a generic
and extensible plugin for type indices that translates GHC

constraint problems to queries to an external SMT solver.

By “generic and extensible”, we mean the restrictions on

extending Thoralf are slight, and, if some type index could

be encoded as an SMT sort, then a programmer could extend

Thoralf by providing this encoding function.

CCS Concepts • Software and its engineering→ Func-

tional languages; Constraints;

Keywords GHC, constraint solver, type checker plugin,

SMT

ACM Reference Format:

Divesh Otwani and Richard A. Eisenberg. 2018. The Thoralf Plugin:

For Your Fancy TypeNeeds. In Proceedings of the 11th ACM SIGPLAN
International Haskell Symposium (Haskell ’18), September 27–28,
2018, St. Louis, MO, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3242744.3242754

1 Introduction

As Haskellers, we want to use our type system to verify

that our programs run correctly. Yet, despite the amazing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5835-4/18/09. . . $15.00

https://doi.org/10.1145/3242744.3242754

progress GHC has made recently in supporting fancy types,

some paradigms remain out of reach.

Specifically, there are certain kinds of type level data with
equality relations that are difficult or impossible to support

in GHC. Take, for example, the canonical length-indexed

vector. It depends upon the type index of a natural number.

Practical uses of length-indexed vectors require arithmetic

expressions for vector lengths. Yet, GHC is not equipped

to reason about equalities between such expressions. For

instance, GHC cannot deduce n +m ∼ m + n for type level

naturals n, m. Or, consider type level finite maps; we will see

that we can support extensible records using a finite map

index. Yet, GHC cannot decide equality between finite maps.

One common approach in dealing with type indices with

fancy equality relations is to use type families [2, 7]. A type

family is, essentially, a type-level function, allowing for com-

putation in types. Because type family applications perform

β-reduction, where the unreduced type is considered equal

to the reduced type, they can be used to model certain sets

with non-trivial equality relations. Type families can be quite

effective and have supported type level data that allows for

a type which tracks physical units-of-measure in the type

system [13]. However, this approach is limited. Not all equal-

ity relations have the property that two terms can be tested

for equality by following some deterministic procedure to

produce unique normal forms. For example, type families

cannot represent addition in a way so that GHC knows a+ b
equals b + a (and writing proofs is tedious).

When type families fail, we have two options: an open

heart surgery of GHC’s constraint solver and equality mech-

anisms or a type checker plugin [5, 9]. Undoubtedly, the most

practical option is the plugin. A type checker plugin is a

small constraint solver. If it can deduce more equality rela-

tionships than GHC’s constraint solver, it can create equality

axioms for GHC to use when type checking. Yet, even this

option is difficult:

• GHC’s type checker plugin interface does not provide

a precise, tight specification of its behavior: there is no

clear abstraction for how this interface interacts with

GHC’s internal solver. This means a plugin-writer is

often guessing how their solving translates to type

checking source code.

• A plugin writer must consider many annoying de-

tails about GHC’s internals. Take, for example, GHC’s

106

https://doi.org/10.1145/3242744.3242754
https://doi.org/10.1145/3242744.3242754
https://doi.org/10.1145/3242744.3242754

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Divesh Otwani and Richard A. Eisenberg

type variables. There are essentially two forms of type

variables: skolem variables and unification variables.
Skolems are abstract type variables that behave as

type constants: these are the type variables brought

into scope when you are checking, say, the body of

id :: a → a and cannot assume that a is Int . On the

other hand, unification variables stand for unknown

types not present in the source code; each one contains

a mutable cell GHC fills in with a type without skolem

variables. Since GHC represents both of these as type

variables, a plugin writer could easily conflate them

and write an unsafe plugin. Of course, a plugin writer

has to consider many other similar challenges.

• The correctness condition for a plugin that supports

some type-level data is non-trivial. How do we provide

a specification for some type level data using its equal-

ity relation? How does this translate to a correctness

condition on the plugin? How do you know your plugin
is type safe?

Contributions So, our only feasible option for type level

data, a type checker plugin, is painful. In this paper, we

contribute

• A theory of reasoning about the correctness of type

checker plugins that solve equality constraints without

unification variables (which we will see is a sensible

restriction). (Section 3)

• A translation of constraint solving to SMT satisfiability

based on Diatchki [5]. (Section 4)

• A generic and extensible plugin for type level data

called Thoralf 1 that implements our SMT translation.

By "generic and extensible" we mean (1) despite Tho-
ralf’s restrictions, a vast collection of type level data

(e.g., naturals, row types) could be supported via Tho-
ralf extensions and (2) Thoralf can be extended by

providing a function that “encodes” some type level

data into a SMT sort. We provide examples of using

Thoralf in Section 2 and discuss our two claims in

Section 4.

Getting Thoralf Thoralf is available here:

https://github.com/Divesh-Otwani/the-thoralf-plugin

2 Examples of Using Thoralf
We start by looking at concrete examples of what Thoralf
does and how to use Thoralf. In addition to concretely illus-

trating the problem we are solving, these examples serve as

springboards for anyone who wants to use Thoralf to build

fancy types.

1
This is named after the logician Thoralf Skolem.

2.1 Natural Numbers with Arithmetic

We return to our canonical example: concatenation of length-

indexed vectors.
2
We define length-indexed vectors to use

GHC’s built-in Nat type from GHC.TypeLits. This Nat type
is convenient: we can use numerals in types at kind Nat , and
we do not have to redefine basic arithmetic operations:

{-# OPTIONS_GHC -fplugin ThoralfPlugin.Plugin #-}

data Vec :: Nat → Type → Type where
VNil :: Vec 0 a
(:>) :: a→ Vec n a→ Vec (1 + n) a

infixr 5 :>

concatVec :: Vec n a→ Vec m a→ Vec (n +m) a
concatVec VNil ys = ys
concatVec (x :> xs) ys = x :> (concatVec xs ys)

To use Thoralf, we write the options pragma at the top

of the file.
3
With this pragma, this code can compile or load

into a REPL successfully.

To see the problem that Thoralf solves, we can remove the

pragma and inspect the resulting type error:

* Could not deduce: (1 + (n1 + m)) ~ (n + m)
from the context: n ~ (1 + n1)
Expected type: Vec (n + m) a

Actual type: Vec (1 + (n1 + m)) a

Under the assumption that n ∼ (1+n1), we want to prove
1+ (n1+m) ∼ (n+m). Even though this is straightforward

with middle-school algebra, GHC’s constraint solver cannot

solve this problem on its own. Thoralf solves this problem
by translating it to an SMT solver call.

2.2 Row Types and Extensible Records

Now that we’ve seen a basic example, we turn to a much

more powerful and practical example: we use the API Thoralf
provides for finite maps to create a row type. We use this row

type to index a record type and build an extensible record

type. We also build a tiny polymorphic function over our

extensible record. In the process we will gain a stronger

intuition for the constraint solving problem that Thoralf
solves and any type-equality plugin encounters.

Thoralf comes with full support for type-level finite maps

via the API in Figure 1. In our API, a type-level map from

keys of kind k to values of kind v has kind Fm k v . Finite
maps fm are generated from the following grammar:

fm ::= Nil | Alter fm k v | Delete fm k

where Nil is an empty map, Delete fm k deletes the key k
from fm, andAlter fm k v changes fm to map k to v , updating
the key k if it it already mapped in fm. However, our API
exports only Nil and FromList elts, which builds a finite map

2
This code snippet, among others, uses Type (from Data.Kind , GHC >=

8.0) as the kind of types with values, as opposed to ⋆ which could mean

multiplication.

3
Of course, calling ghc or ghci with that option would work as well.

107

https://github.com/Divesh-Otwani/the-thoralf-plugin

The Thoralf Plugin: For Your Fancy Type Needs Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

data Fm k v where { }

-- Exported interface:

type family Nil :: Fm k v where { }
type family FromList (list :: [(k,v)]) :: Fm k v where { }
type Has fm k v = fm ∼ Alter fm k v
type Omits fm k = fm ∼ Delete fm k
type AddField fm1 fm2 k v = fm2 ∼ Alter fm1 k v
type DelField fm1 fm2 k = fm2 ∼ Delete fm1 k

-- Not exported:

type family Alter (fm :: Fm k v) (key :: k) (val :: v) :: Fm k v
where { }

type family Delete (fm :: Fm k v) (key :: k) :: Fm k v
where { }

Figure 1. Thoralf finite map API

from an association list by repeatedly applying Alter to Nil.
Alter and Delete are not directly exported, because doing so

would violate the design principles laid out in Section 4.4.

Thoralf exports four constraints on maps:

• Has fm key value asserts that the map fm maps key to

value.
• Omits fm key asserts that fm does not map key .
• AddField fm1 fm2 k v asserts that fm2 ∼ Alter fm1 k v .
Note: fm1 could map k to some value not equal to v .
• DelField fm1 fm2 k asserts that fm2 ∼ Delete fm1 k.
Note: fm1 might not map key ; in this case fm1 = fm2.

2.2.1 Using Thoralf’s Finite Maps to Build

Extensible Records

What are Extensible Records? There are two defining fea-

tures of extensible records. First, unlikeHaskell’s usual records

whose members and types are fixed at a declaration site, we

can add field-value pairs to an extensible record. Second, we

can write polymorphic functions that work over any extensi-

ble record with a few required fields. For example, we could

write a getName function that retrieves the "name" field of

an extensible record, as long as that field exists and has type

String. The other fields are irrelevant. Note that, of course,
users can look up and update fields like they would with an

ordinary record (though with different syntax).

Thoralf’s Extensible Record This is how we build exten-

sible records using Thoralf:

data Record :: Fm Symbol Type → Type where
EmptyRec :: Record Nil
AddField :: AddField m m’ field valty

⇒ Record m→ SSymbol field → valty
→ Record m’

Record is indexed by a row type. In our system, a row type

is a type level finitemap fromGHC’s type-level strings, called

Symbols, to Types. The finite map holds the field names and

types of the values stored in the record.

The datatype has two constructors. The first holds no

data, and correspondingly has an empty finite map index.

The AddField constructor takes an existing finite map, a

singleton string, and a value; it constructs a new Record
indexed by a finite map with that modified field, via the

AddField constraint.

AddField takes a singleton string argument. Singletons [8]

are a well-known technique for simulating dependent types

in a non-dependent programming language [12]. A singleton

type has exactly one inhabitant. For example, with singleton

strings, the data of type SSymbol "name"will store the string
"name" at runtime; the data of type SSymbol "price" will
store the string "price" at runtime. In general, when we

learn that the runtime data in a SSymbol str is, say, "hi", we
also learn that the type index str is "hi" and vice versa.

We need this correspondence for the AddField constructor.

Consider what would happen if we provided a String instead
of a SSymbol str . The finite map type index would have no

way to store the name of the field that was just added. With

a field name of SSymbol str we can store the str with our

AddField constraint from the API.

A Polymorphic Record Function In this example we tra-

verse a Record m, looking to extract the "price" field. This

function is polymorphic in that it works on any Record m
that has a "price" field which holds Ints. That is, it works
on any Record m where the constraint Has m "price" Int
is satisfied.

getPrice :: Has m "price" Int ⇒ Record m→ Int
getPrice (AddField rec fld val) =

case scomp fld (SSym @"price") of
Refl → val
DisRefl → getPrice rec

This function is accepted by GHC when running the Tho-
ralf type checker plugin. Though it seems simple, there is a

lot going on here! The first step to explaining this function

is understanding the function scomp.

HowDoes scompWork? The scomp function decides equal-
ity on SSymbols, returning either a proof that s1 equals s2
via Refl or that s1 is different from s2 via DisEquality .

scomp :: SSymbol s1→ SSymbol s2 → s1 :∼?∼: s2
data a :∼?∼: b where

Refl :: a :∼?∼: a
DisRefl :: DisEquality a b ⇒ a :∼?∼: b

class DisEquality (x :: k) (y :: k) where { }

108

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Divesh Otwani and Richard A. Eisenberg

The DisEquality class is meaningless to GHC but is used

within Thoralf to represent that two types are distinct
4

The implementation of scomp converts its input singleton

SSymbols to regular strings and checks string equality. It

uses this term-level information to deduce that the types

s1 and s2 must match or cannot match and unsafeCoerces
the appropriate result. In general, this is how DisEquality
constraints are created—through singleton comparisons and

judicious uses of unsafeCoerce.

How Does getPrice Work? The one equation of getPrice
matches on the AddField constructor. From this, the equality

constraint AddField m1 m field valty is brought into scope

where

• rec :: Record m1,
• fld :: SSymbol field ,
• val :: valty , and,
• AddField rec fld val :: Record m.

The function pattern matches on the result of compar-

ing fld with the singleton version of "price". In the first

case, the singleton strings are the same. At the type level,

we learn field ∼ "price" from the Refl. Then, we make a

deduction. If (1) Has m "price" Int , or, equivalently, m ∼
Alter m "price" Int and (2) m ∼ Alter m1 "price" valty
(substituting "price" for field), then valty must be Int . In
other words, since m maps "price" to Int and "price" to

valty , by the definition of finite maps, Int ∼ valty . So, re-
turning val :: valty is a well-typed return value of type Int .
In the latter case, the singleton strings are different. At

the type level, we now learn field ≁ "price" from the

DisRefl match. As before, we make a deduction. Since (1)

m ∼ Alter m "price" Int , (2) m ∼ Alter m1 field valty ,
and (3) field ≁ "price", we reason that the inner finite map

must map "price" to Int :Has m1 "price" Int . That is, since
the mapmmust map "price" to Int andm1 andm share the

same mappings except for field—which is not "price"—we
must have m1 mapping "price" to Int . Consequently, the
record indexed by the m1 map should have a "price" field

with an Int value, and hence our recursive call getPrice rec
is sensible. Thoralf confirms our reasoning and convinces

GHC to accept this code.

Note that mimicking the string equalities and disequalities

at the type level with with matches on Refl and DisRefl was
essential. It is insufficient to simply reason at the term level.

The Type Error Thoralf Resolves Again, to concretely il-

lustrate the problem Thoralf solves, we observe one of the
type errors without Thoralf. As expected, this matches our

second deduction:

* Could not deduce: m1 ~ (Alter m1 "price" Int)
from the context: m ~ (Alter m1 field val)

4
We view DisEquality as a closed class, with no instances. An alternative

design could represent this with a closed type family.

or m ~ Alter m "price" Int
or from DisEquality "price" field

3 A Theory of Type-Equality Plugins

Having seen Thoralf at work, we take a step back and present
the theory behind what Thoralf does and how to reason

about Thoralf’s correctness.
However, before we can discuss correctness we need to

understand the type checking process with a type-equality

plugin. Then, our first concern is the bare-minimum require-

ment: how do we know a type-equality plugin, and specif-

ically Thoralf, is type safe? Beyond the bare minimum, we

want some correctness with respect to our idea of some type

level data. For example, type level finite maps should be-

have like finite maps. Toward this end, how do we specify

some type level data? How does this specification translate

to a specification for the constraint solver of a type-equality
plugin?

We answer these questions in this section and provide a

correctness condition for a sensibly restricted form of type-

equality plugin that, like Thoralf, does not solve problems

with unification variables.

3.1 Type Checking with a Type-Equality Plugin

We start by generalizing how GHC type-checked the exam-

ples we saw. The plugin asserted type equalities that allowed

our code to type check. Well, what does it mean to “assert

type equalities to GHC"?

Concretely, it means a type-equality plugin resolves type

errors of the form:

Main.hs: error:
* Could not deduce: <ty1> ~ <ty2>

from the context: <g1> ~ <g1'>
or <g2> ~ <g2'>

...
or <gn> ~ <gn'>
or <h1> /~ <h1'>

...
or <hk> /~ <hk'>

This type error says that GHC is unable to deduce some

wanted type equality under the assumption of other type

equalities and disequalities.

When a plugin resolves this type error, it asserts to GHC

(without needing to provide a proof), that <ty1> and <ty2>
are in fact equal. GHC unquestioningly accepts this fact as

an axiom and continues type checking.

How does type checking proceed after a plugin asserts

a type equality? Either (1) some code type-checks or (2)

GHC uses this equality to deduce other equalities. For an

example of (1), consider the two case matches of getPrice. In
the first match, Thoralf asserted valty ∼ Int and the return

value val type checked. In the second match, to type check

the recursive call getPrice rec, GHC needed to satisfy the

109

The Thoralf Plugin: For Your Fancy Type Needs Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

constraint m1 ∼ Alter m1 "price" Int , which was exactly

what the plugin produced.

For our purposes a specific form of (2) occurs: equali-

ties between type indices, such as 1 + (n1 + m) ∼ (n + m)
from concatVec, determine equalities on the type they index

via GHC’s assumption of congruence. When GHC knows

τ1 ∼ τ2, it can deduce T τ1 ∼ T τ2. Continuing with our

concatVec example, GHC could deduce Vec (1+ (n1+m)) a ∼
Vec (n +m) a. GHC then applies the casting rule

Γ ⊢ e : τ1 Γ ⊩ τ1 ∼ τ2
Conv

Γ ⊢ e : τ2
to say (x :> (concatVec xs ys)) ::Vec (n+m) a and type check
the return value of the second equation of concatVec.
All in all, this is the type checking process with a type-

equality plugin:

• GHC’s constraint solver sends the plugin problems it

is unable to solve. These are problems that produce

type errors of the general form we have presented:

deducing a wanted equality from some given equalities

and disequalities.

• The type-equality plugin sometimes asserts thewanted

equality it is given.

• GHC uses the equality axiom from a plugin as it nor-

mally would to type check code, sometimes using con-

gruence to deduce other type equalities.

3.2 Type Safety

If a plugin is injecting new axioms into GHC’s type equality

relation, how can we be sure not to break type safety? That

is, how do we know when we have accidentally equated Int
with Bool → Bool, allowing a user to call 5 as a function and

jump to arbitrary memory? Let’s first consider the axioms

produced by the plugin itself and then look at what GHC

does with those axioms.

Equality on type-level data Without the help of a plugin,

GHC implements equality on types. If, according to the rules

of GHC’s type equality (for example, as explained by Breitner

et al. [1]), two types can be considered equal, GHCwill prove

this. As such, the primary work of a plugin is not to compute

equality on proper types like Int and Bool, but instead to

compute equality on type-level data or type indices.
While Haskellers casually refer to all subtrees of a type as

types—that is, if we have v ::Vec (n+m) Bool, then we might

say that the subtree (n +m) is a type—this is not quite true:
(n+m) is a number, not a type. It happens to be used within
a type and syntactically at the type level, but that does not

make it a type. By contrast, Int , Bool, and Maybe Double
are types. Maybe and Either are type constructors, which

become types when given appropriate arguments. Instead of

calling (n +m) a type, we propose calling it type-level data.
These bits of type-level data are frequently used to index a

type, such as in Vec (n+m) Bool. Because of the congruence
of equality, proving equality relationship on type indices can

indeed induce equalities on types themselves. Thus, while

asserting new equalities on types is generally unnecessary

for a plugin, proving equalities on type indices, declared at

kinds other than Type, is more sensible.

If a plugin is working in a given domain (such as the

natural numbers), we generally do not wish for GHC to in-

terfere with the plugin’s work. For example, suppose we

somehow know that m ≁ n, but we are trying to prove

(n + m) ∼ (m + n). It would be a shame if GHC decom-

posed this equality and tried to prove n + m (the left-hand

arguments) and m ∼ n (the right-hand arguments). These

equality checks would (rightly) fail. Instead, we need to keep

GHC away from concepts it knows nothing about (like num-

bers,
5
or finite maps). Happily, GHC refuses to look under

type family applications, as type families are neither injec-

tive nor generative [6]. If we make + a closed type family [7]

with no equations, then GHC will not interfere, giving our

plugin the full opportunity to solve the equalities [9].

We thus have some design principles:

• Plugins should proof equalities over type-level data,

of kinds different from Type.
• All operations in a plugin’s theory should be written

as empty closed type families.

Another way of stating this is that we want a kind-indexed
equality relation. While GHC is free to use its internal equal-

ity relation (essentially, structural equalitywithα-equivalence)
on proper types, we want to impose a different equality rela-

tion on our type indices.

Wonky plugins Having stopped GHC frommeddling with

our plugin’s theory, the plugin is free to produce equality

axioms as necessary. Interestingly, if all a plugin does is to

produce axioms over type indices, there is no way to break
type safety. The design principles above are important in

leading to this conclusion. Let us explore via an example.

We start with the following definitions:

data Number :: Type

type family N (n :: Nat) :: Number where { }
type family (a :: Number) +. (b :: Number) :: Number
where { }

type family (a :: Number) −. (b :: Number) :: Number
where { }

Here, we have declared a new type Number , which will serve
as the kind of our new type-level data. The N empty type

family converts built-in Nats to Numbers, and we have de-

fined addition and subtraction over these numbers. Let us

further define length-indexed vectors with these numbers:

5
GHC actually ships with a rudimentary ability to deduce natural-number

relationships when using its built-in Nat kind. This solver is quite simplistic,

and we can safely pretend it does not exist.

110

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Divesh Otwani and Richard A. Eisenberg

data Vector :: Number → Type → Type where
VVNil :: Vector (N 0) a
(:≫) :: a→ Vector n a→ Vector (n +. N 1) a

Now, let us suppose that the plugin giving meaning to

these numbers equated all numbers. That is, the following

would be accepted:

silly :: Vector (N 2) a→ Vector (N 3) a
silly VVNil = VVNil
silly (:≫ v) = v

Accepting this requires proving N 0 ∼ N 3 and n ∼ N 3

(where we assume n+.N 1 ∼ N 2), both of which our plugin

handily provides. One might easily think that our Vector
type is now unsafe, but there is no type safety problem here.

Instead of defining a length-indexed vector, we have defined

a type functionally identical to the regular old list type, [].

If [] is type safe, then so is Vector .
What if we equated only some numbers some of the time?

What if our plugin non-deterministically equates Numbers,
even changing its mind about the same query if posed mul-

tiple times? These deficiencies, too, cannot cause GHC to

lose type safety. Critically, GHC makes almost no use of a

failed check for equality. It tracks no disequality constraints,

and lack of equality does not imply apartness (used in the

reduction of closed type families and well explored by Eisen-

berg et al. [7]). A wonky plugin might cause type inference

to become unpredictable or otherwise off-kilter, but it will

not launch the rockets.

Despite not launching any rockets, two problems may

surface with a wonky plugin:

Pattern-match warnings Above, we said that GHC

makes almost no use of failure to solve an equality

check. The one place it does use failure is in deciding

whether a pattern match is complete. Consider silly
again. If the plugin flatly refused to allow N 2 to equal

n +. N 1 (the resulting index in :≫), then the pattern-

match completeness checker [10] would say that the

second clause is redundant. Note that this drawback

does not break type safety—instead, it means that a

wonky plugin could lead a programmer to erroneously

believe that an incomplete pattern match is complete.

This problem might cause an unexpected exception at

runtime, but it cannot cause other arbitrary behavior.

Reliability of specifications When we write, say,

reverse :: Vector n a → Vector n a, we understand

that to mean that reverse preserves lengths of vectors.
However, with our wonky plugin, this type is no more

informative than [a] → [a]. Thus, a wonky plugin

might not break type safety, but it very well might vio-

late invariants that the programmer intends to encode.

For our wonky plugin to break type safety, there would

have to be some way to branch on different members of

Number . That is, we would need a way of treating them as

distinct types in GHC’s type equality reasoning. However,

all members of Number are stuck empty closed type families,

and there is no way to branch on these. We are thus safe.

Note that GADTs, by themselves, do not allow this kind

of branching, as we always look at a runtime constructor in

a GADT pattern match, never solely type-level data.

Equalities on types can break type safety The discus-

sion above all assumes that the plugin “keeps to itself”—

injecting equality proofs only on type-level data of some

kind other than Type. However, it is also possible, of course,

for a plugin to introduce an equality between types. Indeed,

the finite maps example (Section 2.2) does this to good effect.

The key step there is that, from

fm1 ∼ fm2,Has fm1 "x" Bool,Has fm2 "x" ty

we can conclude ty ∼ Bool. This conclusion is an utterly

different beast than what we have considered before: it is an

equality on types. If the plugin did not faithfully implement

a theory of finite maps, this equality might be bogus. We

thus have another design principle:

• Equality axioms relating GHC types (and only those)

must be correct.

By correct here, we mean that there must exist a consistent

model in which the assumptions entail the desired equal-

ity. Owing to the soundness of the theory of arrays [15]

(readily used to model finite maps), we can be confident that

concluding Bool ∼ ty above is type-safe.

3.3 The Formal Type-Equality Constraint Solving

Problem

Naturally, type safety is not the only property we would

like to have. For example, in the case of Vector , we really
want the index on the types to be the length of the linked list

stored at runtime. We present here a formal framework for

how to develop a plugin that is not wonky—that is, respects

the desired semantics of the type-level data in question.

3.3.1 Building the Grammar

The first step, as usual in a formal system, is to define the

grammar of the data under consideration. For example, re-

call the grammar of finite maps: fm. It depends upon the

grammars for the key and value sets, K and V , respectively,

which we leave abstract. We assume that k ∈ K and v ∈ V .

fm ::= Nil | Alter fm k v | Delete fm k

That is, a finite map is either Nil, the addition to an existing

map, or the restriction of an existing map. More generally:

Definition 3.1 (Type Index & Equational Theory Sets).

• Let T1, . . . ,Tn be a list of sets (not necessarily distinct)

which we call background theories.
• Let E1, · · · ,En be a corresponding list of background
equivalence relations (that is, ∀i,Ei ⊆ (Ti × Ti)) with

111

The Thoralf Plugin: For Your Fancy Type Needs Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

the property that no background theory has two equiv-

alences
6
: if Ti = Tj then Ei = Ej .

• Let T be an operator that takes in n background theo-

ries and produces a grammar. That is, T(T1, · · · ,Tn) is
a grammar where metavariables can be drawn from

input sets T1, · · · ,Tn . This grammar gives rise to a set

of terms; we conflate the notation of the grammar and

the set of terms it gives rise to. Let

I = T(T1, · · · ,TN)

be the type index set.
• Similarly, we say

E = E(E1, · · · ,En)

is the equational theory of the type index set: E ⊆ (I ×
I).
• Define

T̂ = I ∪
(
T1 ∪ · · · ∪Tn

)
and

Ê = E ∪
(
E1 ∪ · · · ∪ En

)
to represent the set of all literals and the equational
theory of literals. We use the word “literal” because the

types mentioned here lack abstract variables, which

we add later.

Let us unpack that definition. We motivate these by look-

ing at the sets defined for the finite maps. The background

theories of finite maps are the sets of keys and values: K
and V . These have corresponding equational theories E1,E2.
The grammar of finite maps is defined in terms of these sets:

I = fm (where fm is from above). The equational theory of

finite maps is defined in terms of the equational theories of

the key and value sets. For example, the equational theory

of fm satisfies the following inference rule:

k ∼ k’
Alter (Alter fm k v1) k’ v2 ∼ Alter fm k v2

Note that this rule uses the premise k ∼ k’, drawn from

the equivalence relation over K (which we have called E1).
We write E = E(E1,E2) for the equational theory of finite

maps. The set of all literal types includes all the finite maps,

keys and values: T̂ = fm ∪ K ∪V . The equational theory of

the literal types is Ê = E(E1,E2) ∪ E1 ∪ E2.

3.3.2 Adding Skolem Variables

Having defined literal type-level data (expressions such as

3+4 or Alter Nil "x" Bool without variables), we can extend

this definition to include what we actually see in type errors.

These include variables. As noted previously, these variables

come in two flavors: skolem variables and unification vari-

ables. In the errors we have seen so far, only skolems have

been present; this is by design. We discuss this design and

the distinction between these type variables in Section 4.3.

6
A theory, like natural numbers, should have only one equivalence relation.

For now, we add only skolem variables to our grammar for

type-level data.

Here, we formalize the type-level data we see in type

errors and call such types abstract data.
Definition 3.2 (Abstract data).

• Declare pairwise disjoint enumerable sets of variable

names X ,X1, . . . ,Xn where X ∩I = ∅ and Xi ∩Ti = ∅.
• For any grammarA and setY , we define the augmented
grammar

A[Y] ::= (· · · production rules of A · · ·) | y

where y ∈ Y .
• Define

Ti = Ti [Xi],

I = I[X],

and

T = I ∪
(⋃

Ti
)
.

Here, T represents the abstract data, the set of types
that could appear in the type errors we encounter.

All we are doing here is augmenting each set with the

ability to hold variable names, where each set has its own

distinguished set of names to choose from.

3.3.3 Equality Constraint Solving

Now that we have a set which models the types we see in

our type errors, we can describe the inputs and outputs to

the constraint solving problem we encounter.

All our type errors try to deduce a single wanted equality

τ1 ∼ τ2 from a set of given equalities and disequalities in

the context, τi ∼ τ ′i and σj ≁ σ ′j . Here, we can concretely

view each equality constraint and disequality constraint as

an element of the setT ×T .
Definition 3.3 (Equality Constraint Inputs and Outputs).

• The inputs are a set of wanted equality constraints,

W ⊆ (T ×T)

and givens, comprising a set of equalities and a set of

disequalities

(Ge ,Gd) where Ge ,Gd ⊆ (T ×T).

• The output is one of three outcomes:

1. A result of ⊥ means that the context of given equal-

ities is inconsistent or nonsensical.

2. The setW represents that all the wanted equalities

can be deduced from the givens.

3. ∅ indicates that at least one of the wanted equalities

cannot be deduced.

Now that we can precisely describe the constraint solving

problems the plugin sees, we can specify the correctness

condition for its constraint solver.

112

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Divesh Otwani and Richard A. Eisenberg

3.3.4 Equality Constraint Solver Specification

At a high level, we wish to deduce a wanted equality from a

set of givens if the wanted is true in any model where the

given equalities and disequalities are true. We unpack this

high level intuition. First, what is a model, exactly?

Definition 3.4 (Models).

• A functionφ : T → T̂ is amodel onT if it homomorphi-

cally substitutes all skolem variables in its argument

with literals. That is, φ leaves literals untouched but

substitutes the variables according to some substitu-

tion functions

(π : X → T̂), (π1 : X1 → T1), . . . , (Xn → Tn).

• If G = (Ge ,Gd) is the set of givens, the set of G-
consistent models onT is the set of models ΦG where

ΦG = {φ | (∀e ∈ Ge ,φ (e) ∈ Ê) ∧ (∀d ∈ Gd ,φ (d) < Ê)}

What is going on here? A model is a function φ that

chooses literal values for each free variable of some type-

level data. Building from there, ΦG is the set of models that
are consistent with assumptionsG—that is, applying a φ ∈ Φ
to the components of a given equality yields two literals

considered equivalent by Ê; doing the same to a given dise-

quality yields two distinct literals. Now, we define the set of

models where the givens are true:

Definition 3.5 (Deductive closure). The deductive closure
of givens G is defined to be

DC (G) = {e ∈ T ×T | ∀φ ∈ ΦG ,φ (e) ∈ Ê}.

According to this definition, DC (G) is the set of pairs of
data where the first member of the pair equals the second in

all models consistent with the givens G. We can now define

concretely what a plugin solver does and how to judge its

correctness, naming the solver PluginSolve.

Definition 3.6 (The PluginSolve Correctness Condition).

LetI be a description of type-level data with background the-

ories T1, · · · ,Tn . Let E and E1, · · · ,En be the corresponding

equivalence relations. We define T̂ , Ê,T as before.

Inputs: G = (Ge ,Gd),W whereW ,Ge ,Gd ⊆ T ×T .
Output: One of ⊥, ∅ orW .

Correctness condition:

• The output is ⊥ iff ΦG = ∅.

• The output isW iff ΦG , ∅ andW ⊆ DC (G).
• The output is ∅ iff ΦG , ∅ andW ⊈ DC (G).

3.4 Correspondence Between Theory and Code

This theory is all well and good, but GHC defines the inter-

face to a type checker plugin. Does that interface correspond

with our theory? We explore the relationship here.

A GHC type checker plugin is essentially one function,

tcPluginSolve. We (1) introduce this function, (2) explain how

GHC’s constraint solver uses it and (3) connect this function

to the PluginSolve correctness condition.

3.4.1 Type Checker Plugin Interface

A type checker plugin writer implements a small constraint

solver via the function tcPluginSolve. It is packed into a

TcPlugin package, with the following type signature.
7

data TcPluginResult = Problem [Ct]
| Ok [Ct] [Ct]

data TcPlugin = ∀s. TcPlugin
{ tcPluginInit :: TcPluginM s
, tcPluginSolve :: s → [Ct]→ [Ct]→ [Ct]

→ TcPluginM TcPluginResult
, tcPluginStop :: s → TcPluginM () }

The Ct type represents constraints. For our purposes,

these will either be equalities or disequalities.

The monad TcPluginM allows for looking up information

from the environment and wraps IO. A plugin writer chooses

the instantiation for the existential variable s (for “state”)
and can save custom information there. Because TcPluginM
wraps the IO monad, a plugin writer can use, e.g., IORef s to
store information that needs to be updated between runs of

the solver. This state can be initialized in tcPluginInit , which
is called before any solving is done.

The first [Ct] in the type of tcPluginSolve is the set of

given constraints and the next two [Ct]s are wanted con-

straints.
8
The output Problem xs means that the given con-

straints are contradictory; xs is a subsequence of the input
list of given constraints that is contradictory on its own. The

output Ok ys zs indicates that the subsequence of wanted
constraints ys can be deduced from the input list of given

constraints. The second list of constraints zs are new con-

straints for GHC to consider in its own solver algorithm.

We will not make use of these, but see Section 4.3 for more

discussion.

Now, with a basic understanding of this function, when

does GHC’s solver call this?

3.4.2 GHC’s Solver

At a broad level, GHC walks through user-written source

code and generates an implication tree of constraints. The

interior nodes are givens (these correspond to places in the

source code where GHC learns assumptions, such as a GADT

pattern-match or a function with a type signature), and the

leaf nodes are wanteds. Recall getPrice from Section 2.2.1:

getPrice :: Has m "price" Int ⇒ Record m→ Int
getPrice (AddField rec fld val) =
case scomp fld (SSym @"price") of
Refl → val
DisRefl → getPrice rec

7
We have made several simplifications throughout for readability.

8
The second argument is actually a list of derived constraints. The difference

between these constraints and wanted constraints is a technical detail, a

full coverage of which would derail our discussion.

113

The Thoralf Plugin: For Your Fancy Type Needs Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

Consider the type checker state when checking the recursive

getPrice rec call. There are three
9
givens, stored in differ-

ent interior nodes in this branch of the implication tree:

the Has m "price" Int assumption from the type signa-

ture, the AddField m1 m field valty constraint from the

AddField pattern-match, and the field ≁ "price" fact from
the DisRefl pattern-match. Under all these interior nodes is

the leaf wanted constraint Has m1 "price" Int , required in

order to call the getPrice function.
GHC’s constraint solver traverses this constraint tree and

solves what it can. After doing its own solving, if there are

unsolved wanteds, GHC traces every downward path from

the root to a node of wanted constraints accumulating givens

along the way and then calls tcPluginSolve with its accumu-

lated given constraints and the wanted constraints at the

destination node.

3.4.3 Correspondence Between tcPluginSolve and

PluginSolve

Input The constraints we handle are of one of two forms.

Either we have an equality constraint or a disequality con-

straint. The constraints in the input to tcPluginSolve have
the type Ct . The details of that type are not germane here,

but it is easy to extract the nature of a constraint from a Ct ,
classifying it into either an equality or disequality constraint.

Once we do this, we are left with two types, ty1 and ty2.
These correspond to our abstract data setT .

Now that we can break down constraints we can connect

the inputs of this function to our abstract correctness con-

dition. Considering a call to tcPluginSolve state xs ys zs, we
can say the first input list xs :: [Ct] corresponds to the given
pair G = (Ge ,Gd) where

• every constraint e ∈ xs that is an equality between ty1
and ty2 corresponds to a pair (ty1, ty2) ∈ Ge , and

• every constraint d ∈ xs that is a disequalities between
ty1 and ty2 corresponds to a pair (ty1, ty2) ∈ Gd .

Call the sublist of xs that are either equalities or disequalities
xs’, and let ws = ys ++ zs. Then, ws is the list of wanted

constraints. For every e ∈ ws is classified as an equality

corresponds to a pair (ty1, ty2) ∈ W . Call the sublist of ws
that are equality or disequality constraints ws’.

Output Now, we can easily connect the output TcPlugin-
Result to the output of our abstract solver PluginSolve. For

our purposes, tcPluginSolve should either return Problem xs,
Ok ws’ [] or Ok [] []. The output Problem xs corresponds
to ⊥. (We have not identified a minimal set of contradictory

givens, just returning them all.) In our case, this would mean

there are no models of the abstract data we are dealing with,

T , that are consistent with our givens. The output Ok ws’ []
corresponds with the outputW , and the output Ok [] []

corresponds with the output ∅.

9
The given from the Refl pattern match is not in this branch of the tree.

Now we have a correctness condition for

tcPluginSolve state xs ys zs: it should return either Problem xs,
Ok [] [], or Ok ws’ [] where ws’ is the set of relevant con-
straints from the list ys ++ zs. The choice of return value is

as specified under the definition of PluginSolve.

4 Thoralf: Building a Generic and

Extensible Plugin with SMT

Wehave developed a deep understanding of the type-equality

constraint solving problem. We apply this understanding to

develop a plugin that uses an SMT solver in order to check

whether a particular wanted is in the deductive closure of a

set of givens.

SMT stands for “satisfiability modulo theory”. An SMT

solver, at its core, tries to find a model—that is, a concrete

instantiation for unknowns—that is consistent with a set of

assertions. Different SMT solvers support different theories

on top of this core, where they can reason about, for example,

numbers, strings, or (in our case) arrays. In our work toward

Thoralf, we used the Z3 solver [3].

4.1 Examples

4.1.1 Natural Number Arithmetic

Suppose we wanted stripPrefix for length-indexed vectors:

stripPrefix :: Eq a⇒
Vec n a→ Vec m a→ Maybe (Vec (m − n) a)

stripPrefix VNil ys = Just ys
stripPrefix VNil = Nothing
stripPrefix (x :> xs) (y :> ys) =

if x == y then (stripPrefix xs ys) else Nothing

Without a plugin, we get a type error:

* Could not deduce: (n2 - n1) ~ (m - n)
from the context: n ~ (1 + n1)
or from: m ~ (1 + n2)

From our work in the previous section, we know this is

just an equality problem for some givensG and wantedsW :

• G = ({(n,1 + n1), (m,1 + n2)},∅)
• W = {(n2 − n1,m − n)}

We encode this problem for an SMT solver like this:

(declare-const n Int)
(declare-const m Int)
(declare-const n1 Int)
(declare-const n2 Int)

; Assert all givens.
(assert (= n (+ 1 n1)))
(assert (= m (+ 1 n2)))
(check-sat) ; check if givens are consistent

; Assert at least one wanted is false.
(assert (not (= (- n2 n1) (- m n))))
(check-sat) ; we want "unsat"

114

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Divesh Otwani and Richard A. Eisenberg

First, we introduce the type variables in the constraints as

constants to the solver. We then introduce the givens to the

solver via the assert directive.10 Then, following Diatchki
[5], we assert the negation of our wanted and seek an unsat
result. An SMT solver’s main purpose is to find some model

that supports all the facts in its database. If we asserted the

unnegated wanted and ran (check-sat), the solver would
see if the wanted is consistent with the givens. This is not

good enough—we need to verify that the wanted is entailed
by the givens. The way to see this is to ensure (1) that the

givens themselves have at least one model, and (2) that no

model exists containing the givens and the negation of the

wanted. This corresponds directly with Definition 3.5, where

we seek to ensure that all models of the givens contain the

wanteds, not just some of them.

To be more formal, the solver is proving here that

¬ (∃n,m, n1, n2 | (n = 1 + n1) ∧ (m = 1 + n2) ∧ (n2 − n1 , m − n))

A little algebra reduces this to

∀n,m,n1,n2 ¬(n = 1 + n1 ∧m = 1 + n2) ∨ (n2 − n1 = m − n)

∀n,m,n1,n2 (n = 1 + n1 ∧m = 1 + n2) ⇒ n2 − n1 = m − n

which is exactly what we wanted.

4.1.2 Finite Maps

The last example was simple enough that we did not notice

we were encoding a Haskell type into a SMT expression. In

this example we revisit getPrice:

getPrice (AddField rec fld val) =
case scomp fld (SSym @"price") of
DisRefl → getPrice rec

Suppose that rec :: Record m1. We want to deduce the

wanted equalitym1 ∼ Alter m1 "price" Int from the given

equalities m ∼ Alter m1 field val (learned from the pattern-

match on AddField), m ∼ Alter m "price" Int (learned
from the type signature of getPrice), and "price" ≁ field
(learned from the pattern-match on DisRefl). Translated into
our formal specification, we have givens and a wanted set

G = (Ge ,Gd),W where

Gd = {("price", field)}

Ge = {(m, Alter m "price" Int)
(m ,Alter m1 field val)}

W = {(m1, Alter m1 "price" Int}

We translate this as follows.

(declare-datatypes (T)
((Maybe nothing (just (fromJust T)))))

(declare-const m (Array String (Maybe String)))
(declare-const m1 (Array String (Maybe String)))
(declare-const field String)
(declare-const val String)

10
This is SMT-LIB syntax, which works with a range of solvers. See http:

//smtlib.cs.uiowa.edu/.

; Assert Givens
(assert (not (= "price" field)))
(assert (= m (store m "price" (just "Int"))))
(assert (= m (store m1 field (just val))))
(check-sat)

; Assert at least one wanted is false.
(assert (not (= m1 (store m1 "price" (just "Int")))))
(check-sat)

As before, we get the desired result of unsat. Our plugin
thus returnsW , which resolves the type error.

Encoding The only difference between this example and

the last is that the finite maps are encoded according to the

theory of arrays in the SMT solver. The standard theory of ar-

rays [11, 15] describes an array as a total mapping from keys

to values that supports the select and store operations.

However, we wish to model finite, partial maps from keys

to values. We thus use a sturdy, well-worn trick: we map

our desired keys to optional (Maybe) values. Accordingly,
we translate abstract data like Alter m1 "price" Int) into
(store m1 "price" (just "Int")) and use the constant

array that maps all keys to nothing as an empty finite map.

While this translation is straightforward, the fact that

Thoralf works with finite maps shows that it supports some

level of translation from the desired theory (finite maps) to

one supported by the solver (arrays).

The Encoding Property While we can see at a high level

how this translation is working, it is helpful to have a formal

treatment of the interaction with the SMT solver.

Let S be the set of well-formed SMT expressions, and

let �⊆ S × S be the SMT solver’s equivalence relation. As

usual, we denote the set of abstract data withT—this includes
keys, values and finite maps; Ê is our equivalence relation

on these types (i.e., the union of our equality relations of the

keys, values and finite maps). Our encoding is a function is

f : T → S . The encoding property states that

∀t ,t ′ ∈ T , (t ,t ′) ∈ Ê ⇐⇒ f (t) � f (t ′).

Our encoding of finite maps indeed satisfies this property,

by appeal to the similarity of the theory of finite maps and

the theory of arrays.

4.2 Extending Thoralf
If we look back at these two examples, we see that the overall

structure is remarkably similar: Thoralf asserts the givens
and the negation of the wanted, and then checks for a model.

In fact, the only difference between natural number arith-

metic and finite maps is the encoding function (f , above). It
is thus remarkably easy to extend Thoralf into new domains:

just provide an encoding function, and off you go.

115

http://smtlib.cs.uiowa.edu/
http://smtlib.cs.uiowa.edu/

The Thoralf Plugin: For Your Fancy Type Needs Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

Encoding functions have to translate from abstract data—

which are encoded as types within GHC—to SMT expres-

sions. Morally, an encoding function looks like this:

encode :: Type → Maybe SExpr

Here, Type is not the kind of types with values (formerly

known only as ⋆), but an ordinary datatype declared in the

GHC API that forms GHC’s internal AST for types. A SExpr
is a representation of a s-expression to be given to an SMT

solver. The encode function is partial because a given encod-

ing will handle only certain constraints for one type index.

In the real implementation, however, the type of encode
is not this simple. The Type encode is passed is a representa-

tion of abstract data. This data might have other translatable

abstract data inside it. Take, for example, a finite map from

Symbols to natural numbers, or even to other finite maps. So,

as encode is translating to an SExpr , it will need to recur on

these inner pieces. Because the inner pieces may belong to

different theories, it is awkward to make this function both

recursive and extensible. Thus, the real version of encode
returns a list of sub-components (Types) that need to be con-
verted, and a continuation function that takes the converted

data (SExprs, now) and builds a SExpr from these pieces. Fur-

ther, when declaring variables in SMT, we need to determine

the sort of those variables. For this, we have an analogous

encodeKind :: Kind → Maybe SExpr function that returns a

list of Kinds and a continuation.

4.3 Type Variables

When translating data from GHC’s representation to an

SExpr , we have to also translate variables that occur in the

data. The theory we worked out in Section 3 includes the

possibility of skolem variables, but we studiously left out the

possibility of dealing with unification variables. We explain

that design decision here.

To recap: a skolem variable is a rigid, abstract variable. It

equals no other type (except by explicit assumption from,

say, a Refl pattern match). If we write

length :: [a]→ Int
length [True,False] = 2

our program is rejected because the skolem a is not Bool.
In contrast, a unification variable is a placeholder for some

other not-yet-known type. When we apply the function

length, we do not yet know what type a should become.

If we say length [’x’], a becomes Char . GHC models this

uncertainty by instantiating the awith a unification variable,

often written with a Greek letter such as α . Then, as type
checking proceeds, GHC can learn what α should really be

and set it accordingly. (Recall that unification variables are

implemented with mutable cells, under the hood.)

In practice, both skolem variables and unification variables

may appear in the abstract data encoded in GHC’s types.

However, Thoralf’s approach will not work with unification

variables.

Essentially, unification with SMT solvers is difficult. Re-

call that PluginSolve is looking to see whether the wanted

constraint holds in all possible models consistent with the

givens. For skolem variables (translated into the SMT solver

using the variable’s unique identifier and making it an unin-

terpreted function), this is the correct behavior. However, for

unification variables, type checkingmust endwith a concrete

assignment for the variable. While an SMT solver can furnish

this through the model it builds, the model is arbitrary, lead-

ing unification variable choices to be capricious. Diatchki [5,

Section 4.6], describes a possible way forward here, but it

requires, in the general case, O (n2) calls to the solver for n
unification variables, and so we have not implemented this

idea.

Given that unification variables may appear in GHC’s

types, does this limitation mean we are unexpressive? Hap-

pily, no. Though we have not proved it formally, we conjec-

ture that every construction that yields unification variables

can be rewritten to avoid them. In an application length [...],
a unification variable arises, as we need to know the element

type of the list. However, a simple change to length’s type
avoids this. We can declare length :: IsList x ⇒ x → Int ,
where IsList x holds for any x that is a list type. Now, when

applying length, we simply have to infer the type of its ar-

gument and use that for x—a much simpler process than

needing to find a, which lives under a type constructor.

Perhaps length was easy; let us try map :: (a → b) →
[a]→ [b]. This case is indeed harder, but it still succumbs

to this general trick, if we write

map :: (IsFunc f ,EltType list1 ∼ ArgType f
, list2 ∼ [ResType f]) ⇒ f → list1→ list2

Once again, we simply have to infer the types of map’s argu-
ments and then solve constraints. There is no need to create

unification variables that might live under type constructors.

Therefore, our task now is to use this technique to de-

sign an API for a given theory we wish Thoralf to consider

that avoids unification variables. The API in Figure 1 is just

such an API, where all the statements about finite maps

are expressed as constraints, not, say, as type families that

could occur in the middle of types, giving rise to unification

variables.

4.4 Finite Maps

Wenow look at the details of how the finite maps are encoded

as an example of how to extend Thoralf with a new theory.

data Fm (k :: Type) (v :: Type) :: Type where { }

type family Nil :: Fm k v where { }
type family Alter (m :: Fm k v) (key :: k) (val :: v)

:: Fm k v where { }

116

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA Divesh Otwani and Richard A. Eisenberg

type family Delete (m :: Fm k v) (key :: k)
:: Fm k v where { }

The Fm type is an empty datatype, and all its inhabitants are

empty closed type families, following the design criterion

of Section 3.2. The library offers three primitive operations

on maps: Nil creates the empty map, Alter changes or adds
a new entry to the map, and Delete removes an entry (if

it exists). While Nil is exported to clients, the other type

families are not, as they can induce the plugin to encounter a

unification variable. For example, consider if we had declared

the AddField constructor of our Record like this:

data Record :: Fm Symbol Type → Type where
AddField :: Record r → SSymbol field → valty

→ Record (Alter r field valty)

A use of AddField could now have a unification variable

standing in for r that the solver could not handle.

Instead, we export constraints such as Has:

type Has (m :: Fm k v) (key :: k) (val :: v)
= (Alter m key val ∼ m)

A use of Has asserts that adding a new entry into m will not

change it—in other words, m already must have that entry.

Because this constraint will not be decomposed, we can be

sure its use will not induce unification variables.

Therefore, we have two design principles:

• Represent the type with abstract closed type families.

• Only export constraints and constants.

4.5 Why SMT: Limitations and Advantages

We consider here the limitations and advantages of our

choice to use SMT over a custom solver.

The chief advantage, of course, is that we do not have to

write our own solver. In our experience, a critical application

of type checker plugins is to support finite maps, the need for

which has come up several times in unrelated projects. Given

that Z3 supports the theory of arrays [4], it seems redundant

to write our own solver. Relatedly, by taking advantage of

the expertise that has gone into creating and optimizing the

Z3 solver, we could hope to be confident that the solver is

efficient and correct.

Modern SMT solvers support many theories: integers, bit-

vectors, datatypes, etc. With all these theories, a key benefit

of using SMT is composibility. Finite maps are parameterized,

and we want the value type to range over any type. This

means we might have a finite map as the value type, or some

other type with an SMT-supported theory. Translating the

equality problem into SMT leverages the composibility built

into the theories of SMT solvers.

Not all is rosy, however. GHC’s type language is much

richer than the language that SMT-LIB supports, which lacks,

for example, polymorphism in functions. Solvers also have no

ability to perform type inference, which makes polymorphic

datatype constants (which are allowed) sometimes difficult

to use in practice. SMT solvers’ architecture makes working

with unification variables nearly impossible. Further, we

were surprised to learn that the implementation of Z3 was

sometimes erroneous, having witnessed some segmentation

faults (among other misbehavior) along the way. We have

not tried other solvers, but we learned afresh in this project

how taking a dependency can be painful. Lastly, using an

SMT solver limits the quality of the type errors
11
.

Our hunch is that the future lies in SMT and generic

solvers. As these solvers get more and more advanced (and

stable) they will surely surpass custom solvers. Right now,

however, the call remains close.

5 Related Work

Diatchki’s SMT Solver Plugin Ourwork here builds most

directly on that of Diatchki [5]. He described the technique

we adopted here of asserting the negation of the wanted and

then checking for unsatisfiability. His work also discusses

the possibility of improvement, wherein a unification vari-

able gets filled in, perhaps only with partial information.

Diatchki’s approach does not scale, however. Our approach

here of eliminating unification variables by design is novel

and should have no trouble scaling. Our work focuses more

on the theory of a type checker plugin and on correctness

than on implementation.

Units-of-measure Gundry [9] has also described GHC’s

plugin interface, focusingmore on its integrationwith GHC’s

OutsideIn algorithm [16] and on writing his own solver for

units-of-measure. Gundry’s work does not consider correct-

ness of plugins in the way we do here. We have a proof-of-

concept that there is a valid encoding function for Gundry’s

type-level data and believe Thoralf can subsume his plugin.

Extensible Records There are a solid handful of implemen-

tations of heterogeneous maps (of which Record is an exam-

ple), including HMap [14], CTRex, and row-types. These all
use closed type families and thus all suffer from the inherent

limitations of that approach: closed type families tend to

work well on concrete data, but get stuck when polymor-

phism comes in. By contrast, our work with an SMT solver

means that we are not relying on type families and can have

more flexible equality relations.

Acknowledgments

The authors thank Kenny Foner for his collaboration during

early explorations into this idea and Lennart Augustsson,

whose conversation sparked the idea for this work. This ma-

terial is based upon work supported by the National Science

Foundation under Grant No. 1704041.

11
Though, it seems possible for a plugin to explore which assertions cause

issues and reverse engineer helpful error messages.

117

The Thoralf Plugin: For Your Fancy Type Needs Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

References

[1] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and

Stephanie Weirich. 2016. Safe Zero-cost Coercions for Haskell. J.
Funct. Program. 26 (2016), 1–79.

[2] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyon Jones.

2005. Associated Type Synonyms. In International Conference on Func-
tional Programming (ICFP ’05). ACM.

[3] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT

Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 337–340.

[4] Leonardo de Moura and Nikolaj Bjørner. 2009. Generalized, efficient

array decision procedures. In 2009 Formal Methods in Computer-Aided
Design. 45–52.

[5] Iavor S. Diatchki. 2015. Improving Haskell Types with SMT. In Pro-
ceedings of the 2015 ACM SIGPLAN Symposium on Haskell (Haskell ’15).
ACM.

[6] Richard A. Eisenberg and Jan Stolarek. 2014. Promoting Functions to

Type Families in Haskell. In ACM SIGPLAN Haskell Symposium.

[7] Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and

Stephanie Weirich. 2014. Closed Type Families with Overlapping

Equations. In Principles of Programming Languages (POPL ’14). ACM.

[8] Richard A. Eisenberg and StephanieWeirich. 2012. Dependently Typed

Programming with Singletons. In ACM SIGPLAN Haskell Symposium.

[9] Adam Gundry. 2015. A Typechecker Plugin for Units of Measure:

Domain-specific Constraint Solving in GHC Haskell. In Proceedings of

the 2015 ACM SIGPLAN Symposium on Haskell (Haskell ’15). ACM.

[10] Georgios Karachalias, Tom Schrijvers, Dimitrios Vytiniotis, and Si-

mon Peyton Jones. 2015. GADTs meet their match. In International
Conference on Functional Programming (ICFP ’15). ACM.

[11] John McCarthy. 1962. Towards a mathematical science of computation.

In IFIP Congress. 21–28.
[12] Stefan Monnier and David Haguenauer. 2010. Singleton types here,

singleton types there, singleton types everywhere. In Programming
languages meets program verification (PLPV ’10). ACM.

[13] Takayuki Muranushi and Richard A. Eisenberg. 2014. Experience

Report: Type-checking Polymorphic Units for Astrophysics Research

in Haskell. In ACM SIGPLAN Haskell Symposium.

[14] Atze van der Ploeg, Koen Claessen, and Pablo Buiras. 2016. The Key

Monad: Type-safe Unconstrained Dynamic Typing. In Proceedings of
the 9th International Symposium on Haskell (Haskell 2016). ACM, New

York, NY, USA.

[15] Aaron Stump, ClarkW. Barrett, David L. Dill, and Jeremy Levitt. 2001. A

decision procedure for an extensional theory of arrays. In Proceedings
16th Annual IEEE Symposium on Logic in Computer Science. 29–37.
https://doi.org/10.1109/LICS.2001.932480

[16] Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin

Sulzmann. 2011. OutsideIn(X): Modular Type Inference with Local

Assumptions. Journal of Functional Programming 21, 4-5 (Sept. 2011).

118

https://doi.org/10.1109/LICS.2001.932480

	Abstract
	1 Introduction
	2 Examples of Using Thoralf
	2.1 Natural Numbers with Arithmetic
	2.2 Row Types and Extensible Records

	3 A Theory of Type-Equality Plugins
	3.1 Type Checking with a Type-Equality Plugin
	3.2 Type Safety
	3.3 The Formal Type-Equality Constraint Solving Problem
	3.4 Correspondence Between Theory and Code

	4 Thoralf: Building a Generic and Extensible Plugin with SMT
	4.1 Examples
	4.2 Extending Thoralf
	4.3 Type Variables
	4.4 Finite Maps
	4.5 Why SMT: Limitations and Advantages

	5 Related Work
	Acknowledgments
	References

