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We study the design of provider incentives in the post-acute care setting—a high-
stakes but under-studied segment of the healthcare system. We focus on long-term care
hospitals (LTCHs) and the large (approximately $13,500) jump in Medicare payments
they receive when a patient’s stay reaches a threshold number of days. Discharges in-
crease substantially after the threshold, with the marginal discharged patient in rela-
tively better health. Despite the large financial incentives and behavioral response in a
high mortality population, we are unable to detect any compelling evidence of an im-
pact on patient mortality. To assess provider behavior under counterfactual payment
schedules, we estimate a simple dynamic discrete choice model of LTCH discharge de-
cisions. When we conservatively limit ourselves to alternative contracts that hold the
LTCH harmless, we find that an alternative contract can generate Medicare savings of
about $2,100 per admission, or about 5% of total payments. More aggressive payment
reforms can generate substantially greater savings, but the accompanying reduction in
LTCH profits has potential out-of-sample consequences. Our results highlight how im-
proved financial incentives may be able to reduce healthcare spending, without negative
consequences for industry profits or patient health.

KEYWORDS: Healthcare, post-acute care, financial incentives, nonlinear contracts.

1. INTRODUCTION

HEALTHCARE SPENDING is one of the largest fiscal challenges facing the U.S. federal
government. Within the healthcare system, post-acute care (PAC) is an under-studied
sector, with large stakes for both spending and patient health. PAC refers to formal care
provided to help patients recover from an acute care event such as a surgery. Medicare
spending on PAC is substantial, about $60 billion in 2013, or about 20% more than the
much-studied Medicare Part D program. Over 40% of hospitalized Medicare patients are
discharged to PAC, and 13% of Medicare deaths involve a PAC stay in the prior 30 days.
PAC spending is growing faster than overall Medicare spending and accounts for almost
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FIGURE 1.—LTCH payment schedules before and after PPS. Figure presents the payment schedule in both
the pre-PPS and PPS periods. Sample pools admissions that are associated with different short stay outlier
(SSO) thresholds, and x-axis is normalized by counting days relative to the threshold. The linear payment
schedule begins with the first day of admission, and the y-axis is normalized to zero for day −16.

three-quarters of the unexplained geographic variation in Medicare spending (Newhouse,
Garber, Graham, McCoy, Mancher, and Kibria (2013)).1

In this paper, we study the impact of provider financial incentives in determining pa-
tient flows and government spending in the Medicare PAC system. The PAC setting is at-
tractive for several reasons. First, given its fiscal importance, understanding the effects of
financial incentives is a natural area for inquiry. Second, the institutional environment—
involving multiple interlocking and potentially substitutable settings that operate under
different reimbursement regimes—suggests that financial incentives may have first-order
consequences. Third, inefficiencies in the PAC sector have potentially important implica-
tions for public health, given that PAC patients are disproportionately high risk and might
be more vulnerable to inefficiencies in the delivery of care.

Our analysis focuses on patients whose point of entry into the PAC system is a long-term
care hospital (LTCH).2 Medicare spending on LTCHs was about $5.5 billion in 2013, or
slightly under 10% of Medicare PAC spending (MedPAC (2015a)). We focus on LTCH
patients because of the sharp variation in provider incentives at this type of facility. This is
illustrated in Figure 1: providers are reimbursed a daily amount (of approximately $1,300
on average) up to a threshold number of days, at which point there is a large (approx-
imately $13,500 on average) jump in payments for keeping a patient an additional day
beyond the threshold, but no payments for any days beyond it. We investigate the effects
of this jump in payments using detailed Medicare claims data on the universe of LTCH
stays over the 2007–2012 period, when this nonlinear payment schedule was in effect, as
well as the 2000–2002 period, when LTCHs were instead reimbursed under a linear (i.e.,
constant per diem) payment schedule.

We start by briefly presenting descriptive evidence on the effect of the jump in payments
on discharge behavior. While some of these results have been previously documented, we

1These statistics are taken from MedPAC (2004, 2015a), and MedPAC (2015b), with the exception of the
statistic on deaths which we calculate using the data described in Section 2.

2The acronym LTCH is typically pronounced “el-tack,” presumably reflecting the fact that LTCHs are some-
times referred to as long-term acute care hospitals (LTACs), which is pronounced in this manner.
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present them to motivate our model of LTCH behavior. Discharges respond strongly to
the payment increase, with the share of stays discharged increasing from 2% to 9% at
precisely the day of the jump. The marginal patient discharged at the threshold appears
to be much healthier than patients discharged beforehand: at the threshold, patients are
disproportionately more likely to be discharged to a less intensive PAC facility or home
(“downstream”) than to an acute care hospital (“upstream”), and they have substantially
lower post-discharge mortality than patients discharged on earlier days.

A natural question raised by this evidence is whether distortions in the timing of dis-
charge have an impact on patient health. Given the high baseline mortality rate for LTCH
patients (30% die within 90 days of LTCH admission), if the distortions are harmful, it
seems plausible that we could detect an effect. Empirical analysis is challenging, however,
because unlike discharge behavior, mortality effects may not appear right “at” the thresh-
old. This challenge notwithstanding, we find no compelling evidence of mortality effects
from the distortions in discharge behavior. There is no evidence of a change in the level or
the slope of the mortality hazard in the vicinity of the threshold. We also find no indication
of a mortality impact when we analyze the effect of small over-time changes in the day at
which the jump in payments occurs. Of course, these results do not allow us to compre-
hensively rule out a mortality effect—we cannot, for instance, rule out an effect for every
type of patient or at each and every hospital; and these results do not speak to adverse
health effects that would not manifest in higher mortality rates. However, at minimum,
they provide no “smoking gun” evidence of patient harm, and suggest that the marginal
patients are able to receive similar care—at least in terms of mortality impact—whether
they are located in LTCHs or in an alternative setting, which empirically is usually a less
intensive PAC institution, such as a Skilled Nursing Facility (SNF).

Motivated by this descriptive evidence, we specify and estimate a dynamic model of
LTCH behavior. The purpose of our model is to analyze how providers respond to the
payment schedule on days further from the threshold, and to assess how treatment pat-
terns and Medicare payments would be affected by counterfactual payment schedules. In
our model, patients are characterized by their health, which evolves stochastically over
time. LTCHs face a (daily) decision of whether to retain the patient or discharge her to
another facility. The LTCH’s objective function includes both net revenue (Medicare pay-
ments net of costs) and other, non-monetary considerations, such as patient outcomes. If
the patient is discharged from the LTCH, the provider receives no subsequent net rev-
enue, but internalizes potential consequences of the patient being treated in an alter-
native location. If the LTCH keeps the patient, it receives net revenue that depends on
Medicare’s payment schedule, while also accounting for the non-monetary outcomes as-
sociated with the patient being treated in the LTCH and the option value of making a
similar discharge decision the following day. The provider therefore faces a standard dy-
namic discrete choice problem.

We estimate the model by simulated method of moments to match the observed dis-
charge and mortality patterns under the linear and nonlinear payment schedules. We
then use the estimated model to investigate the effects of alternative contracts that—
like the observed contract—have a daily reimbursement rate up to a cap but that—unlike
the observed contract—do not have a jump in payments at a threshold day. We find, for
example, that if we were to lower the fixed payment to eliminate the jump in payments
at the threshold, we would reduce total payments per admission for the episode of care
by 25% on average, or about $13,000 per admission. However, such a payment sched-
ule substantially reduces LTCH revenue and estimated profits, and therefore may have
out-of-sample impacts on LTCH behavior that our estimates would not capture, such as
inducing LTCH exit or lower service quality.
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We therefore also engage in a more conservative set of counterfactuals in which we
restrict attention to alternative contracts that would hold the LTCH harmless if their be-
havior did not change. Specifically, we consider the set of contracts that hold LTCH profits
constant under their observed discharge schedule. Thus, if we apply this schedule and it
triggers a “behavioral” response by LTCHs, they must be better off. Using our estimated
model, we are able to identify a broad set of “win-win” payment schedules that reduce
Medicare payments and, by construction, leave LTCHs (weakly) better off.3 The contract
that generates the largest savings reduces Medicare payments for the episode of care by
4.5%, and increases LTCH profits by 5.1%.

Our paper relates to a large literature examining how healthcare spending responds to
financial incentives. Given the importance of healthcare spending in the economy and
in public sector budgets, the existence of this large literature is not surprising. What
is surprising—and arguably unfortunate from this perspective—is that the vast major-
ity of this literature (including much of our own work) has concentrated on the impact
of consumer financial incentives, such as deductibles and co-payments, while paying rel-
atively less attention to the impact of provider financial incentives.4 Existing work on
provider-side incentives has focused on descriptive evidence that providers do, indeed,
respond to incentives, with much of the evidence coming from the introduction of the
Inpatient Prospective Payment System in 1983 (Cutler (1995), Cutler and Zeckhauser
(2000)). More recently, Clemens and Gottlieb (2014) and Ho and Pakes (2014) provided
a rare look at the behavioral response of physicians to financial incentives.

The relative lack of research on the provider side presumably reflects the difficulties
in finding clean variation in incentives. Perhaps not surprisingly, the sharp incentives cre-
ated by the LTCH payment schedule have already received some attention in academic
(Kim, Kleerup, Ganz, Ponce, Lorenz, and Needleman (2015)), popular (Weaver, Math-
ews, and McGinty (2015)), and policy (MedPAC (2016)) spheres. Our descriptive work on
discharges around the threshold is quite similar to this prior work, while our descriptive
analysis of the health of the marginal dischargee and of mortality effects is new.

Our paper is most closely related to Eliason et al. (forthcoming) who—in concurrent
independent work—also studied the impact of the LTCH payment schedule on discharge
behavior descriptively and through the lens of a dynamic model. Our findings and those
of Eliason et al. are very much in concert. Both papers present evidence that LTCHs’
discharge decisions strongly respond to the sharp financial incentives at the threshold,
and each paper develops a dynamic model to simulate the impact of alternative payment
policies, the results of which (when comparable) are also very similar. Our study places a
greater emphasis on the impact on patient outcomes and examines a somewhat different
set of counterfactual payment policies, but restricts attention to the average response. In
contrast, Eliason et al. allowed for and placed greater emphasis on the heterogeneity in
the behavioral response across LTCHs and patient demographics.

Finally, from a more conceptual perspective, our paper is related to a growing litera-
ture that seeks to interpret descriptive evidence of the behavioral responses to nonlinear
payment schedules (“bunching”) through the lens of economic models that allow for as-
sessments of behavior under counterfactual schedules (e.g., Chetty, Friedman, Olsen, and

3Given the lack of compelling evidence of mortality effects at the threshold, it seems reasonable to assume
that mortality is unlikely to be impacted much under these “LTCH held harmless” alternative contracts.

4The majority of healthcare spending, however, is accounted for by a small share of high-cost individuals
whose spending is largely in the “catastrophic” range where deductibles and co-payments no longer bind; for
example, 5% of the population account for 50% of healthcare expenditures (Cohen and Yu (2012)). It seems
likely that for such patients, consumer cost-sharing may have little impact relative to provider-side incentives.
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Pistaferri (2011), Einav, Finkelstein, and Schrimpf (2015), Manoli and Weber (2016), Ba-
jari, Hong, Park, and Town (2017), Dalton, Gowrisankaran, and Town (2017)).

The rest of the paper proceeds as follows. Section 2 provides some background on the
PAC sector, LTCHs, and our data. In Section 3, we describe the discharge and mortal-
ity patterns around the jump in payments. Section 4 motivates the need for dynamics,
presents the model, and discusses estimation and identification. Section 5 presents the es-
timation results and the impact of counterfactual payment policies. Section 6 concludes.

2. SETTING AND DATA

2.1. Post-Acute Care in the United States

Post-acute care (PAC) is the term for rehabilitation and palliative services provided to
patients recovering from an acute care hospital stay. In the United States, the Center for
Medicaid and Medicare Services (CMS) associates PAC with three types of facilities—
long-term care hospitals (LTCHs), skilled nursing facilities (SNFs), and inpatient reha-
bilitation facilities (IRFs)—as well as care at home provided by home health agencies
(HHAs) (MedPAC (2015b)). In 2013, Medicare paid $60 billion to PAC providers, ap-
proximately 16% of the $368 billion paid that year in Traditional Medicare (TM) claims;
PAC facilities constitute about 70% of total PAC spending, with the remaining 30% asso-
ciated with HHAs (MedPAC (2015a)).

In recent years, the geographic variation and growth rate of spending on PAC have
raised concerns about the efficiency of the sector. From 2001 to 2013, Medicare spending
on PAC grew at an annual rate of 6.1%, two percentage points higher than the rate of
spending growth for TM as a whole (The Boards of Trustees for Medicare (2002, 2014),
MedPAC (2015a)). A recent Institute of Medicine report found that, despite accounting
for only 16% of spending, PAC contributed to a striking 73% of the unexplained geo-
graphic variation in spending, suggesting that there may be substantial inefficiencies in
the sector (Newhouse et al. (2013)).

It is useful to think about patients as generally flowing “downstream” through the
healthcare system. Upon experiencing an acute health event, they go to a regular Acute
Care Hospital (ACH); from there they may be sent to a PAC facility to recover, and even-
tually go home once they are sufficiently healthy and can function independently. Some
ACH patients “skip” the PAC stay and return home directly from the ACH, and some
patients relapse and move “upstream” from a PAC facility back to an ACH.

The top panel of Figure 2 gives a sense of transitions among ACHs, PAC facilities
(LTCHs, SNFs, and IRFs), home (including HHAs), and death (including hospice).
(Throughout the rest of the paper, we use the term PAC facilities to refer to LTCHs,
SNFs, and IRFs, because these are facilities that provide in-house care, in contrast to
HHAs, which provide care at the patient’s home.) In our data, described below, 26% of
patients who are discharged from an ACH receive follow-up care from a PAC facility.5
From these PAC facilities, 60% of patients continue to flow home, where they may still
receive treatment from an HHA, while 34% are discharged back to an ACH. The remain-
ing 6% are discharged to a hospice or due to death.

Just like the natural flow of patients into and out of the PAC system, there is also a gen-
eral ordering of care within it. LTCHs provide the most intensive care, SNFs and IRFs

5In analysis that includes HHAs in the calculation, the share of ACH patients who are discharged to PAC
rises to 42% (MedPAC (2015b)).
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FIGURE 2.—Patient flow into and out of post-acute care. Top panel shows patient flow from acute care hos-
pitals (ACHs) to the different destinations: post-acute care (PAC) facilities; home and home health agencies;
and death or hospice. Post-acute care facilities include Long-Term Care Hospitals (LTCHs), Skilled Nursing
Facilities (SNFs), and Inpatient Rehabilitation Facilities (IRFs). Bottom panel shows how the patient flow pat-
tern is different, within PAC, between Long-Term Care Hospitals (LTCHs) and other PAC facilities (SNFs and
IRFs). All numbers are calculated using the universe of Traditional Medicare admissions during the PPS pe-
riod (October 2007 to July 2012). Numbers are shares of total discharges from each type of facility, excluding a
small share of discharges (never greater than 5%) that are more difficult to classify. See Appendix A for more
details.

provide less intensive care, and HHAs provide the least intensive bundle of medical ser-
vices. Severity of Illness categories are a commonly used measure of intensity of care, and
are constructed using the patient’s age, diagnoses, procedures, and comorbidities. The
share of patients in the highest severity of illness category declines from 43% at LTCHs,
to approximately 12% at SNFs and IRFs, to 4% at HHAs (AHA (2010)). Medicare pay-
ments per day follow the same declining pattern.

Our point of entry into the PAC landscape is through admission to an LTCH. Virtually
all LTCH admissions are from an ACH. The bottom panel of Figure 2 looks at patient
flows from LTCHs. About 11% of LTCH patients are discharged back to an ACH, 38%
are discharged to another PAC facility (SNF or IRF), and 34% are discharged home,
where they may continue to receive care from an HHA. The remaining 17% are dis-
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charged to a hospice (4%) or die within the LTCH (13%). In contrast, once in a SNF or
IRF, patients almost never get discharged to an LTCH, die much less frequently (5%),
and much more often (60%) return directly home.

Despite the interlocking nature of the PAC system, the way that Medicare reimburses
post-acute care varies substantially by the setting. Historically, all providers were paid ac-
cording to an administrative estimate of their costs. Since the early 2000s, however, Medi-
care has shifted to paying PAC providers under separate prospective payment systems that
vary based on the type of provider. Loosely, HHAs are paid per 60-day episode-of-care,
SNFs are paid a fixed rate per day, and IRFs and LTCHs are paid a fixed amount per
admission (like ACHs). We provide more details on LTCH payments in Section 3.

The fact that each type of facility is paid under a different system has raised concerns.
From a public health perspective, there is concern that the separate payment systems do
not give providers enough incentive to coordinate care across different facilities. From a
budgetary perspective, there is concern that providers may shuffle patients across facili-
ties with the aim of increasing Medicare payments. These concerns have spurred various
proposals for payment reform, including a recent bill which proposes providing a “bun-
dled payment” to a single PAC coordinator, and letting this coordinator internalize the
costs and benefits associated with the sequence of admissions and discharges for the en-
tire episode of care (H.R.1458: BACPAC Act of 2015).

2.2. Long-Term Care Hospitals

Our primary focus is on patients whose point of entry into the PAC system is a long-
term care hospital (LTCH). The demarcation “LTCH” describes how the provider gets
paid by Medicare. It is a regulatory concept, rather than a medical one. For a hospital to
get paid as an LTCH, it must have an average inpatient length of stay of 25 days or more.
Naturally, there are many ways to meet this requirement; from a medical standpoint, the
question of what an LTCH is or does is not well-defined.

The LTCH category of hospitals was created to solve a potential “side effect” of the
1982 Tax Equity and Fiscal Responsibility Act (TEFRA), which established the prospec-
tive payment system (PPS) for acute care hospitals. Under the new PPS, hospitals were
paid per discharge, and not based on their costs, as a way to provide incentives for hos-
pitals to be efficient in their treatment decisions. Regulators who were designing the PPS
realized that there was a small number of hospitals that had long average length-of-stays
(LOS) and would not be financially viable under the fixed-price PPS. LTCHs were thus
created as a carve-out from PPS for hospitals that had an average LOS of at least 25 days.
At that point in time, there were 40 hospitals that qualified as LTCHs—mainly former tu-
berculosis and chronic disease hospitals in the Boston, New York City, and Philadelphia
metropolitan areas. LTCH payments were based on costs measured in 1982, roughly in the
spirit of the pre-1982 payment system, and adjusted for inflation in subsequent years. See
Liu, Baseggio, Wissoker, Maxwell, Haley, and Long (2001) for more on the background
of the LTCH sector.

Over the last 30 years, and perhaps because of the LTCH exemption from PPS, there
was rapid growth in the LTCH sector. Because new entrants did not have cost data for
1982, payments for new entrants were determined by costs in their initial years of oper-
ation. This encouraged new entrants to be inefficient when they first opened and earn
profits by increasing their efficiency over time (Liu et al. (2001)). From the initial 40 hos-
pitals first designated as LTCHs in 1982, there are now over 400 LTCHs in the country.

Geographic penetration of LTCHs is extremely varied. There are only a few LTCHs in
the west of the country, and three states (Massachusetts, Texas, and Louisiana) account



2168 L. EINAV, A. FINKELSTEIN, AND N. MAHONEY

for a third of all LTCHs (Liu et al. (2001)). In places where there are LTCHs, these
hospitals are an important part of Medicare’s PAC landscape. For instance, in hospital
service areas (HSAs) with at least one LTCH, we calculate that LTCHs account for 13%
of Medicare PAC facility days and 28% of Medicare PAC facility spending; nationwide,
payments to LTCHs account for 12% of Medicare PAC facility spending.6

LTCHs are much more likely to be for-profit than other medical providers. Accord-
ing to 2008 data from the American Hospital Association (AHA), 72% of LTCHs are
for-profit (versus 17% for ACHs), 22% are non-profit, and 6% are government run. The
LTCH market is dominated by two for-profit companies, Kindred Health Systems and Se-
lect Medical, which run about 40% of LTCHs, according to the AHA data. Company re-
ports indicate that LTCHs are highly profitable. For their business segments that include
LTCHs, Kindred’s profits have hovered between 22% and 29% of revenue and Select’s
profits have ranged between 16% and 22% of revenue.7

Approximately half of LTCHs are known as Hospitals-within-Hospitals (HwHs), mean-
ing that they are physically located within the building or campus of an ACH but have a
separate governing body and medical staff. Regardless of their location, LTCHs tend to
have strong relationships with a single ACH (MedPAC (2004)). Because of concerns over
close relationships between LTCHs and their partner ACHs, in 2005 CMS established a
policy known as the “25-percent rule” that creates disincentives for admitting more than
25% of patients from a single facility; however, Congress has delayed the full implemen-
tation of the law.8

2.3. Data

Our main analysis focuses on patients who are admitted to an LTCH and follows them
throughout their entire healthcare episode. Our primary data source is the Medicare
Provider and Analysis Review (MedPAR) data, spanning the years 2000–2012. The data
set contains claim-level information on discharges from ACHs, LTCHs, SNFs, and IRFs.
Each record is a unique stay for which a claim was submitted, and the data contain infor-
mation on procedures, admission and discharge dates, admission sources and discharge
destinations, hospital charges, and Medicare payments. The MedPAR data also provide
us with basic demographic information such as the age, sex, and race of the beneficiary,
and information about the patient’s diagnoses.

We supplement this primary source with several ancillary data sources. First, we use
Medicare’s beneficiary summary file to approximate the (quite small) post-LTCH dis-
charge payments to hospices and HHAs, as well as post-LTCH discharge hospice days;
Appendix A provides more details. Second, we use Medicare’s beneficiary files to deter-
mine whether the beneficiary is dually eligible for Medicare and Medicaid and the date
of death. A key advantage of these data is that they allow us to observe death regard-
less of whether and where the patient is receiving care. Third, we use the Medicare chronic
conditions file to measure whether the individual has any of 27 chronic conditions in the

6Statistics calculated using the 2007–2012 MedPAR data described below.
7Profits are defined as EBITA (earnings before interest, taxes, and amortization). Kindred’s profits are

based on 2009 to 2015 company reports. Prior to 2009, Kindred did not separate out their reporting of LTCH
profits from the much larger SNF category. Select’s profits are based on company reports from 2004 to 2015.

8There is also a regulation known as the “5-percent rule” that addresses the incentive for HwHs to “ping-
pong” patients between the ACH and LTCH. If more than 5% of patients who are discharged from an LTCH
to an ACH are readmitted to the LTCH, the LTCH will be compensated as if the patient had a single LTCH
stay (42 CFR 412.532).
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calendar year prior to the LTCH stay. Finally, we use data from the American Hospi-
tal Association (AHA) survey over the same period to determine whether an LTCH is
for-profit, non-profit, or government owned, and whether it is co-located with an ACH.

Our analysis focuses on the current Medicare payment schedule for LTCHs, known as
LTCH-PPS. We analyze the time periods before and after full implementation of LTCH-
PPS, which was phased in over a five-year period starting on October 1, 2002. We define
the pre-PPS period as discharges that occurred from January 1, 2000 to September 30,
2002. For this period, we measure post-discharge payments, days, and mortality through
March 31, 2003, which is six months after the last LTCH discharge. We exclude the Octo-
ber 2002 to September 2007 phase-in period because provider behavior during this period
potentially reflects the combination of changing financial incentives and learning about
the new incentive structure, complicating the interpretation of the data. We define the
PPS period as discharges that occurred from October 1, 2007 to July 31, 2012, and ana-
lyze post-discharge payments, days, and mortality through December 31, 2012, which is
similarly six months after the last LTCH discharge.

Table I shows summary statistics on ACH, LTCH, and SNF/IRF admissions in the pre-
PPS and PPS periods.9 Since an observation is an admission, some patients (16%) show
up multiple times in the data. LTCH patients are, on average, slightly younger than ACH
patients and much younger than SNF/IRF patients. LTCH patients are also almost twice
as likely to be black and about one-third more likely to be eligible for Medicaid, relative
to ACH and SNF/IRF patients. These differences are fairly stable over time. In terms
of health, LTCH patients appear less healthy than those in an ACH or SNF/IRF. LTCH
patients have more chronic conditions prior to the stay and higher mortality. For example,
about 15% of LTCH patients die within 30 days of admission and 30% die within 90 days;
these mortality rates are about 50% larger than mortality rates for SNF/IRF patients and
about twice as large as those for ACH patients.

In terms of the intensity of medical care, LTCH stays are closer to ACH stays than stays
at an SNF/IRF. The majority of LTCH and ACH patients receive at least one medical
procedure versus about 2% of patients who visit an SNF/IRF. The most common LTCH
procedures (cardiac catheterization and blood transfusion) are also more similar to those
that occur at an ACH, relative to occupational and physical therapy, which are the most
common procedures in SNF/IRF. Length of stay at an LTCH, however, is (by design)
much more similar to that of a SNF/IRF. The average stay at an ACH is 5 days, while it is
just over 25 days in LTCH and SNF/IRF.

The bottom rows of Table I show statistics on Medicare and out-of-pocket payments.
Medicare payments in the PPS period average $2,074 per day at an ACH, $1,391 per
day at an LTCH, and $507 per day at a SNF/IRF. However, because LTCH stays are
much longer than ACH stays, per-admission Medicare payments at LTCHs average over
$35,000, which is three times greater than per-admission ACH and SNF/IRF payments.
Out-of-pocket payments at ACHs and LTCHs arise from Medicare’s Part A deductible
($1,156 in 2012) and from co-insurance payments that apply when the patient has more
than 60 hospital days in the benefit period ($289 per day in 2012). Because patients have
no out-of-pocket exposure between the deductible and their 60th hospital day, out-of-
pocket payments are a modest 7.7% of Medicare payments at ACHs and 5.4% at LTCHs
in the PPS period. SNFs, on the other hand, have a separate co-insurance schedule with

9We group SNF and IRF admissions together for convenience, as both represent post-acute care that is “less
intense” than an LTCH and because IRFs only account for a small (6.4%) fraction of these admissions.
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TABLE II

POST-DISCHARGE OUTCOMESa

Pre-PPS (Jan 2000–Sep 2002) PPS (Oct 2007–July 2012)

Overall Upstream Downstream Overall Upstream Downstream

Number of discharges (000s) 188�7 41�8 147�0 509�7 80�3 429�4
Post-discharge 30-day mortality 11�2 24�9 7�4 14�2 47�6 8�0
Post-discharge 90-day mortality 20�2 37�5 15�3 24�3 60�0 17�6
Post-discharge paymentsb 13,100 31,405 7,901 22,808 35,775 20,382
Post-discharge facility daysb 17�1 32�8 12�6 26�1 33�0 24�8

aTable presents summary statistics on post-discharge costs and facility days using the baseline sample of LTCH stays described in
Table I, excluding discharges due to death.

bPost-discharge payments and post-discharge days refer to the entire post-discharge episode of care, which we define as beginning
at the day of discharge and ending when there are two consecutive days with no payments from either an ACH, SNF/IRF, or LTCH.

payments of $144.50 per day in 2012 for stays in excess of 20 days, and a much higher
out-of-pocket share.

Our analysis encompasses not only the experience of the patient in the LTCH (i.e.,
length of stay and payments) but also their post-discharge experience. We define a post-
discharge episode of care as the spell of continuous days with a Medicare payment to
an ACH, SNF/IRF, or LTCH; the episode ends if there are two days or more without
any Medicare payments being made to any of these institutions. For each post-discharge
episode, we report 30-day mortality, 90-day mortality, post-discharge Medicare payments,
and post-discharge facility days (i.e., days in an ACH, SNF/IRF, LTCH, or hospice). Ta-
ble II shows summary statistics on post-discharge outcomes. Focusing on the PPS period,
about one-quarter of LTCH patients die within 90 days of discharge. Average length of
stay in the post-discharge episode of care is 26 days, which is similar to the average time
in the LTCH (see Table I). Average post-discharge Medicare payments is $22,808, about
60% of Medicare payments to the LTCH (see Table I).

In some of our analyses below, we find it useful to classify live discharges from the
LTCH as either “upstream” or “downstream” based on their discharge destination.
Upstream discharges represent patients in worse health than downstream destinations.
Specifically, we group LTCH discharges to hospice or ACH as upstream and we group
discharges to SNF/IRF, home (with or without home healthcare), and other as down-
stream.10 Table II shows that most (about 85%) of LTCH discharges are downstream,
and that patients initially discharged downstream have substantially lower post-discharge
mortality, length of stay, and payments.

3. LTCH PAYMENTS, DISCHARGE PATTERNS, AND OUTCOMES

In this section, we present descriptive analysis on LTCHs’ response to financial incen-
tives. The analysis motivates several of the key choices for our model of LTCH discharges,
which we present in Section 4.

10Table A.I shows with more granularity the discharge destinations within upstream and downstream. In the
PPS period, 76% of patients discharged upstream are sent to ACH (versus hospice); of patients discharged
downstream, about half are sent to SNF/IRF and another 44% are discharged to home or home health care.
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3.1. LTCH Payments

We start by describing how LTCH payments vary with the patient’s length of stay, an
object we refer to as the LTCH budget set or payment schedule. Appendix B provides
more details. Figure 1 summarizes the payment schedules in the pre-PPS and PPS periods.

Prior to October 1, 2002, LTCHs were paid their (estimated) daily cost, generating a
linear relationship between the length of the hospital stay and payments. As described
earlier, this “cost plus” reimbursement of LTCHs was seen as potentially encouraging
inefficient entry into the LTCH market. Because of this and other concerns, the 1997
Balanced Budget Act (BBA) and 1999 Balanced Budget Refinement Act (BBRA) im-
plemented a PPS for LTCHs. LTCH-PPS was phased in over a 5-year period starting on
October 1, 2002 and was fully implemented by October 1, 2007. At a broad level, LTCH-
PPS is designed to operate like the PPS for acute care hospitals (IP-PPS), under which
hospitals are paid a lump sum that is based on the patient’s diagnosis (diagnosis-related
group, or DRG) and does not vary with the patient’s length of stay.

Much like LTCHs were originally created to address a potential problem with the intro-
duction of PPS for ACHs, the features of the LTCH-PPS payment schedule can similarly
be thought of as attempting to address a potential problem arising from the introduction
of PPS for LTCHs. In particular, in designing LTCH-PPS, officials were concerned that
LTCHs might discharge patients after a small number of days but still receive large lump-
sum payments intended for longer hospital stays. To address this concern, they created
a short stay outlier (SSO) threshold. If stays were shorter than the SSO threshold, pay-
ments would be based on the pre-PPS cost-based reimbursement schedule and LTCHs
would not receive a large lump sum. However, while reducing the incentive to cycle pa-
tients in and out of the LTCH, the SSO system creates potentially problematic incentives
at the SSO threshold. At the day when payments switch from per day reimbursement to
the lump-sum prospective payment amount, Medicare payments for keeping a patient an
additional day “jump” by a large amount.

Figure 1 graphs the average payment schedules in the pre-PPS and PPS periods, pool-
ing across LTCH facilities and DRGs. The y-axis shows cumulative Medicare payments,
inflation-adjusted to 2012 dollars. The x-axis shows the length of the stay relative to the
SSO threshold, which we normalize to be day 0. The SSO threshold is defined as five-
sixths the geometric mean length of stay for that DRG in the previous year and therefore
varies by DRG (and also, to a lesser extent, by year). The average threshold is at 22.6
days; the modal threshold (accounting for 22.7% of PPS stays) is 20 days; the range is
14 to 56 days, but 99% of the sample has a SSO threshold between 16 and 39 days. As a
result, in this and subsequent figures, we present results relative to the SSO threshold so
that we can pool analyses across DRGs.11 Because the SSO threshold is undefined in the
pre-PPS period, we assign pre-PPS stays the threshold for their DRG from the first year
of the PPS period, 2007.

Under the pre-PPS system, average payments scale linearly with the length of stay at
a rate of $1,071 per day. Under the PPS system, average payments increase linearly by
$1,380 per day to the left of the SSO threshold, jump by $13,625 at the SSO threshold,
and remain constant thereafter. The jump in payments is large: it is equal to 55% of the

11We start the x-axis range at −15 days because nearly all SSO thresholds occur after 16 days. If we extended
the x-axis range to −16, for example, there would be a change in the composition of DRGs between days −16
and −15 due to the entry of new DRGs into the sample. We end the x-axis range at +45 days because there
are relatively few patients (2.1%) who are kept at the LTCH more than 45 days beyond the SSO threshold.
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cumulative payment amount on the day prior to the threshold, or equivalent to about 10
days of payments at the pre-threshold daily rate.

This sharp jump in payments was presumably not the intention of the policymakers
who designed the LTCH-PPS, but it arises naturally from the interaction of two sensible
policies. As is standard in fixed price contracts, the LTCH-PPS payments were likely set
to approximate average costs per stay. As noted, payments on a cost-plus basis up to
the SSO threshold were introduced to avoid paying LTCHs large lump-sum amounts for
relatively short stays. The (approximate) average cost for stays longer than the threshold
naturally introduces a jump in payments in the transition from a per day payment regime
to a per-stay regime, creating potentially problematic incentives. Particularly concerning
is where the threshold was set: we estimate that under the pre-PPS payment scheme, 44%
of stays would have been below the subsequent short stay outlier threshold, which is a
large fraction for a policy that is at least ostensibly designed to target “outlier” events.

In Section 5, we explore the impact of alternative, counterfactual payment schedules.
To eliminate the jump in payments, our counterfactuals alter the payment prior to the
SSO threshold (so that it does not approximate per day costs), alter the fixed PPS amount
(so that it does not approximate average costs), or alter both segments of the payment
schedule.

3.2. Discharge Patterns

To motivate our model of LTCH behavior, we present three main descriptive results
on discharge patterns from the LTCH around the threshold; some have been previously
documented, while others are, to the best of our knowledge, new.

First, there is a large spike in discharges at precisely the day of the jump in payments, in-
dicating a strong response to financial incentives. This finding has been noted by a number
of previous studies (Weaver et al. (2015), Kim et al. (2015), MedPAC (2016)). Specifically,
the top left panel of Figure 3 shows the aggregate pattern of discharges by length of stay
in the pre-PPS and PPS periods. A discharge occurs when the patient is transferred to
another facility, sent home, or dies at the LTCH. The y-axis shows discharges as a share
of the total number of stays at the LTCH. The x-axis plots the length of stay relative
to the DRG-specific SSO threshold, defined in the same manner as in Figure 1. In the
PPS period, there is a sharp increase in discharges at the SSO threshold, with the share
of discharges increasing from about 2% to 9% per day. Discharge rates remain elevated
over the subsequent 7–10 days before reverting to baseline. In the pre-PPS period, there
is no evidence of any bunching at the SSO threshold; differences in the pre-threshold
discharge rate may reflect changes in patient health or other secular trends between the
periods. Importantly, there is not a sharp decrease in discharges immediately before the
SSO threshold under PPS; as we discuss in more detail below, this motivates our decision
to write down a dynamic model of LTCH behavior (where LTCHs respond well in ad-
vance of the jump in payments) rather than a myopic model (where LTCHs only respond
immediately before the jump).

Second, the marginal patients discharged at the threshold are in relatively better health:
they are disproportionately discharged downstream and have lower post-discharge mor-
tality rates than patients discharged at other times; Eliason, Grieco, McDevitt, and
Roberts (forthcoming) have also documented that marginal patients are disproportion-
ately discharged downstream. The rest of the panels of Figure 3 decompose the discharge
pattern by the location of discharge: downstream, upstream, and death. They show in-
creases at the threshold in discharges both upstream and downstream, but the propor-
tional increase is substantially larger on the downstream margin. Moreover, because the
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FIGURE 3.—Discharge patterns by length of stay. Figure presents the distribution of the time of discharge
relative to the SSO threshold. That is, each line shows the number of discharges on a given (relative) day
divided by the total number of LTCH admissions. Sample pools admissions that are associated with different
SSO thresholds, and x-axis is normalized by counting days relative to the threshold. The top left panel presents
the distribution for all discharges, the top right and bottom left panel present the same information separately
for downstream (SNF, IRF, LTCH, home health, home, or other) and upstream (ACH or hospice) discharges,
and the bottom right panel presents discharges due to death occurring within the LTCH.

pre-threshold discharge rate is much higher downstream, the sharp change in the aggre-
gate discharge rate at the threshold (top left panel) is almost entirely driven by down-
stream discharges. We defer our discussion of the right bottom panel on mortality to the
subsection below.12

Third, among patients discharged downstream, the marginal patients discharged at the
threshold are relatively sicker, with higher post-discharge payments than pre-threshold
dischargees. Figure 4 illustrates this, plotting Medicare payments for the episode of care
that occurs after the LTCH discharge, by length of stay at the LTCH. We show these
post-discharge payments separately for patients discharged upstream and downstream
and view them as a proxy for the patient’s health at the time of discharge. For pa-
tients discharged downstream, there is a sharp increase in post-discharge payments at the

12In addition, Figure B.2 plots the 30-day post-discharge mortality rate, defined as death within 30 days
of a (live) discharge, by length of stay. The graph shows a sharp drop in post-discharge mortality at the SSO
threshold, again suggesting that the patients who are discharged at the threshold are healthier than the patients
who are discharged immediately beforehand. Of course, the decline in mortality not only reflects changes in
the composition of patients discharged at the threshold, but could in principle reflect a treatment effect of
discharge on health. We address this in the next section.
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FIGURE 4.—Post-discharge payments. Figure presents the average post-discharge payments for patients
discharged alive, by discharge day and discharge destination (upstream vs. downstream, as defined in Figure 3).
We define a post-discharge episode as ongoing until there is a break of at least two days that does not involve
a facility stay; see text for more details.

threshold, with average post-discharge payments increasing from approximately $10,000
to $20,000. There is a small change in the opposite direction for patients initially dis-
charged upstream. For longer lengths of stay, the figure becomes noisy due to the small
number of discharges.

Figure 4 suggests a simple model of LTCH behavior, which motivates the model we
present in Section 4. Prior to the threshold, retaining patients is profitable, and only the
healthiest patients are discharged to SNF/IRF or to their home and only the sickest pa-
tients are discharged to an ACH or a hospice. After the threshold, on the downstream
margin, LTCHs work “down the distribution” and discharge less healthy patients, in-
creasing post-discharge payments on average. Similarly, on the upstream margin, LTCHs
work “up the distribution,” discharging patients who are in better health, and decreasing
post-discharge payments on average. The marginal patient discharged downstream at the
threshold is therefore sicker than the average patient discharged downstream prior to the
threshold, while the marginal patient discharged upstream is slightly healthier than the
average patient discharged upstream in prior days. As we discuss more in Section 4, Fig-
ure 4 also suggests the need for a dynamic model—in which health evolves over time and
LTCHs make daily discharge decisions based on the patient’s contemporaneous health—
rather than a static model in which the hospital commits to a pre-specified length of stay
at the time of LTCH admission.

3.3. (Lack of) Mortality Effects

A natural question raised by the discharge patterns is whether the distortions in the
timing of discharges have an impact on patient health and in particular on mortality.
Since the 90-day mortality rate of LTCH patients is approximately 30% (Table I), if these
distortions are harmful to health, it seems plausible that we might be able to pick up an
effect with our data.

Empirical identification of mortality effects from the distortion in patient location at
the threshold is challenging, however. Health evolves according to a stochastic process,
with sicker patients having a higher probability of death. Distortions to the location of
care might impact the level of someone’s health, generating an on-impact effect on the
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probability of death analogous to the on-impact effect on discharges we detected. How-
ever, distortions to the location might also affect the stochastic process for health, which
would be associated with a longer-run change in mortality rate, but might not have an im-
mediate mortality effect. We therefore attempt to examine not only whether there is an
immediate impact on mortality at the threshold, but whether we can detect any longer-run
changes.

The bottom right panel of Figure 3—which plots daily mortality rates within the LTCH
by patient length of stay—shows that mortality rates among patients in the LTCH are
declining over the course of the LTCH stay with little difference around the SSO thresh-
old. However, interpretation is complicated by selection. As the sickest patients die, the
remaining patient pool is healthier, which presumably contributes to the downward mor-
tality trend. And since LTCHs are differentially discharging healthier patients at the SSO
threshold, the composition of patients who remain at the LTCH after the threshold is
different, making it tricky to disentangle any potential treatment effects on mortality at
the threshold from changes in the selection of patients remaining at the LTCH at the
threshold.

To circumvent this issue, we take advantage of the fact that, as we noted in Section 2.3,
our data also allow us to track mortality outcomes for patients even after their LTCH dis-
charge. Figure 5 therefore analyzes mortality patterns in the days post LTCH-admission,
unconditional on the patient’s current location. Conceptually, our mortality analysis follows
the logic of a reduced form regression, where the mortality hazard is the outcome, dis-
charge patterns are the endogenous variable, and the SSO threshold is the instrument.
In particular, since we know there is a sharp jump in discharge patterns at the threshold
(analogous to a large first stage), if there is a change in the level or slope of the mortality
hazard at the threshold (i.e., nonzero reduced form), we can infer that the distortion in
discharge location has an impact on mortality.

The top panel of Figure 5—which shows daily mortality rates by days since LTCH
admission—is thus similar to the bottom right panel of Figure 3, but uses the full set
of LTCH patients (unconditional on their location) rather than only those who have yet
to be discharged. As before, “natural selection” leads mortality rates to decline over time,
but we now can interpret more cleanly the mortality pattern around the SSO threshold.
The plot shows no obvious evidence of a change in the level of mortality hazard in the
vicinity of the threshold during the PPS period. In Appendix C, we examine this mortality
pattern more formally using a regression discontinuity design and similarly fail to reject
the null of a smooth mortality hazard around the SSO threshold.13 These findings are con-
sistent with no mortality effect but do not allow us to rule out a gradual effect that would
not appear sharply in the data.

If distortions in the location of care affected the stochastic process for health, we might
not observe an immediate effect, but would see a change in mortality over a longer time
horizon. The bottom panel of Figure 5 attempts to look for a more gradual effect by
plotting a 30-day mortality rate (again unconditional on the patient’s current location),
by days since LTCH admission, where the 30-day mortality hazard measures the share
of patients who are alive on a given day but die during the subsequent 30 days. The plot
once again shows no effect around the threshold, suggesting that there are no gradual
effects of the distortion in location on mortality. In Appendix C, we present a regression
discontinuity analysis that more formally confirms this result.

13Our baseline estimate (shown in column (1) of Table F.I) allows us to rule out with 95% confidence a
daily mortality increase of more than 0.05 percentage points and a daily mortality decline of more than 0.04
percentage points (off of a base of 0.6 percent).
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FIGURE 5.—Mortality patterns by days since LTCH admission. Figure presents post-LTCH-admission mor-
tality-hazard rates by day. Mortality includes any mortality, whether it occurs within the LTCH or after dis-
charge. Each panel presents hazard rates for different subsequent horizons: same day (top) and 30-day forward
(bottom).

Figure 5 thus suggests little evidence of a quantitatively large effect on mortality that is
created by the sharp changes in discharge behavior at the SSO threshold. To supplement
this analysis, we also test for mortality effects using variation over time in the location
of the SSO threshold within DRGs; Eliason et al. (forthcoming) similarly exploited this
variation to examine how changes within DRG in the SSO threshold affect discharge
behavior. Recall that the SSO threshold is determined as five-sixths of the geometric mean
length of stay in the prior year. During our 2007–2012 sample period, about 80% of (stay
weighted) DRGs experience at least one change in the SSO threshold, typically a shift of a
single day. We use these changes in the SSO threshold—which occur for different DRGs
in different years, roughly evenly distributed across the sample years—to examine the
mortality effects of length of stay in a difference-in-differences framework. In particular,
we collapse our data to the DRG-year level and estimate regressions of the form

ydt = αsSSOdt + τt + κd + εdt� (1)
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FIGURE 6.—The effect of changes in the SSO threshold on mortality. Figure shows residualized binned
scatter plots (as in, for example, Chetty, Friedman, and Rockoff (2014)). The vertical axis shows the outcome
variable net of year and DRG fixed effects, and the horizontal axis shows the SSO threshold net of year and
DRG fixed effects. The panels show scatter plots where we aggregate the data by ventiles of the horizontal
axis variable (SSO threshold). In the top left panel, the outcome variable is length of stay. In the remaining
panels, the outcome variable is the 30-, 60-, and 90-day mortality rates (unconditional on location of care). The
plots also display the best fit line from estimating equation (1), along with the estimated slope coefficient and
heteroscedasticity-robust standard errors in parentheses.

where ydt is the average outcome for DRG d in year t, SSOdt is the SSO threshold asso-
ciated with DRG d in year t, τt and κd are year and DRG fixed effects, respectively, and
εdt is the error term. We estimate a first-stage regression that relates changes in the SSO
threshold within DRGs to changes in the average length of stay within DRGs. We also
estimate reduced form regressions that relate changes in the SSO threshold to changes in
mortality within 30, 60, and 90 days of LTCH admission, and IV regressions that relate
length of stay to mortality, instrumenting for length of stay with the SSO threshold.

Figure 6 displays the results. In each panel, the horizontal axis shows the SSO threshold
net of year and DRG fixed effects. The vertical axis shows various outcome variables, also
net of year and DRG fixed effects. The graphs show scatter plots of the data, aggregated
by ventiles of the horizontal axis variable; they also show the slope coefficient αs estimated
by equation (1).

The top left panel shows that there is a strong first-stage relationship, with a one-day
increase in the SSO threshold raising the average length of stay by 0.3 days (standard er-



2180 L. EINAV, A. FINKELSTEIN, AND N. MAHONEY

TABLE III

USING SSO THRESHOLD VARIATION TO ESTIMATE MORTALITY EFFECTSa

Mean FS RF Est. IV (pp) IV (pct.) 95% CI (pct.)

30-day mortality 0�158 0�298 0�0000 0�0001 0�0007 (−0�035�0�036)
(0�067) (0�001) (0�003) (0�018)

60-day mortality 0�253 0�298 −0�0013 −0�0045 −0�0176 (−0�047�0�012)
(0�067) (0�001) (0�004) (0�015)

90-day mortality 0�306 0�298 −0�0012 −0�0040 −0�0129 (−0�043�0�018)
(0�067) (0�002) (0�005) (0�016)

aTable shows 2SLS estimates of the effect of length of stay on mortality, instrumenting for length of stay with over-time changes
in the SSO threshold. The first column shows the mean mortality rate over 30-, 60-, and 90-day time horizons (unconditional on
location of care). The second column shows the first-stage effect of the SSO threshold on length of stay (see equation (1)); the third
column shows the reduced form effect of the SSO threshold on mortality from a linear regression with year and DRG fixed effects
(see equation (1)). The fourth column shows the 2SLS estimate, where the first stage is a regression of length of stay on the SSO
threshold and year and DRG fixed effects (shown in column 2), and the second stage is a regression of mortality on length of stay
and year and DRG fixed effects. The final two columns show the 2SLS estimate (and 95% confidence interval) as a percentage of the
mean mortality rate. Standard errors and confidence intervals are all heteroscedasticity robust.

ror = 0.07).14 The three other panels of Figure 6 show the relationship between mortality
and the SSO threshold. Table III shows the corresponding IV estimates of the impact of
length of stay on mortality, where we use the change in the SSO threshold as an instru-
ment for length of stay. The estimated effects of length of stay on mortality are nega-
tive but statistically insignificant, with the point estimates ranging from a 0.45 percentage
point decline in 60-day mortality to a 0.01 percentage point change in 30-day mortality.
Because baseline mortality rates are high, we can reject fairly small proportional effects.
For example, relative to a 90-day mortality rate of 30.6%, our estimates allow us to rule
out mortality declines greater than 4.3% or mortality increases greater than 1.8% with
95% confidence interval.

Overall, while these results provide no “smoking gun” evidence of patient harm, they do
not allow us to comprehensively rule out negative health effects. And even if an average
mortality impact can be ruled out, it may mask important heterogeneity, so we would still
not be able to rule out mortality effects for every type of patient or at each and every
hospital. In addition, we cannot rule out adverse health effects that would not manifest
in higher mortality rates. While it may be tempting to analyze the effect of LTCH length
of stay on other health-related outcomes, non-mortality health outcomes are tracked and
measured differentially based on location of care, and are thus likely to be mechanically
related to the length of the LTCH stay.15

Still, we view the mortality analysis as suggestive that the marginal patients affected
by the PPS payment schedule are likely able to receive similar care—as measured by
mortality—whether they are located in an LTCH or in an alternative setting, which em-
pirically is usually a SNF. Two other pieces of evidence are consistent with this interpreta-
tion. First, we showed earlier that the patients who are most affected by the SSO threshold

14LTCHs might respond to the change in SSO threshold by admitting more or fewer patients, which would
complicate the analysis, especially if there was a change in the composition of admitted patients. However, we
find no evidence that the number or mix of admissions vary in response to changes in the SSO threshold (not
reported).

15For instance, hospital-acquired infections are measured at facilities, but not at home. All else equal, a
patient who has a longer hospital stay is more likely to acquire a hospital-acquired infection even if their
health would have been the same if their hospital stay were shorter.
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are disproportionately healthy, and thus potentially less sensitive to variation in the loca-
tion of care. Second, using a different empirical design that studies the impact of LTCH
entry into regional healthcare markets, we find that LTCH entry leads to substantial sub-
stitution from SNFs to LTCHs, but no mortality impact, again suggesting that marginal
patients can receive appropriate care at both types of facilities (Einav, Finkelstein, and
Mahoney (2018)).

4. QUANTIFYING THE IMPORTANCE OF FINANCIAL INCENTIVES

The results in the last section provide descriptive evidence of the response of LTCHs to
the sharp financial incentives associated with the SSO threshold. These patterns motivate
the discharge model that we now specify in order to assess how these patterns would
change in response to counterfactual financial contracts that do not exhibit such sharp
incentives.

4.1. The Importance of Dynamics: Intuition and Motivation

It is natural to think of a hospital discharge decision as a dynamic discrete choice prob-
lem. Every day, the LTCH assesses the patient’s health and decides whether to retain and
treat the patient at the LTCH or discharge the patient to another location, where the pa-
tient might receive different medical treatment. To develop intuition, we assume for now
that the hospital cares only about maximizing profits. We will relax this in our baseline
model below.

The LTCH decision is asymmetric and resembles an optimal stopping problem. If the
patient is discharged, the hospital has no subsequent decision to make, as it loses control
over the patient. However, if the patient is retained for an extra day, the hospital obtains
the flow costs and benefits associated with treating the patient for an extra day, as well as
the costs and benefits associated with the option value of making the optimal decision the
next day.

This dynamic option value is particularly important in light of the sharp jump in pay-
ments at the SSO threshold. To gain intuition, consider an overly simplified setting in
which the LTCH’s cost of treating each patient is c per day, and its revenues are given by
p ≈ c for each day prior to the SSO threshold, P ≈ 10p � p at the day of the threshold,
and zero thereafter. Assume also that, with some relatively low probability, in any given
day there is an exogenous probability the LTCH is forced to discharge the patient (e.g.,
due to mortality or a relapse) or forced to retain her (e.g., because a family member is not
available to transport her home).

From the LTCH’s perspective, there are three qualitatively different periods. First, con-
sider the period after the SSO threshold: the patient generates cost and no revenues, so
the hospital has no incentive to retain the patient unless it has to. Indeed, as we saw in Fig-
ure 3, hospitals discharge their patients fairly rapidly after the SSO threshold has passed.
Second, on the day at which the SSO threshold hits, the hospital has a very strong (static)
incentive to retain the patient, and thus would hold on to the patient unless forced to
discharge her. Finally, prior to the SSO threshold, the hospital does not have strong static
incentives to retain or discharge the patient (recall, we assume p ≈ c in this example), yet
it faces dynamic incentives to keep the patient until the SSO threshold in order to obtain
the large payment P .

How strong are these dynamic incentives to retain patients prior to the SSO thresh-
old? Let VSSO � 0 denote the financial value associated with LTCH patients who make
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it to the SSO threshold; in other words, VSSO is the financial reward P ≈ 10p minus the
(significantly lower) expected cost associated with the 8.3 days (on average) that patients
remain in the hospital after the SSO threshold. Prior to the SSO threshold, the dynamic
incentives to retain the patient are VSSO · Pr(LOS ≥ SSO|LOS ≥ t), the financial benefit
from reaching the SSO threshold multiplied by the probability the patient reaches the
threshold. Obviously, the probability is increasing with t, so the incentives to retain a pa-
tient are higher as the SSO threshold gets closer. However, with negligible discounting
due to time, and a relatively low probability of exogenously losing the patient (approxi-
mately 2% in the baseline sample), the probability term is fairly large, and the dynamic
incentives prior to the SSO threshold are not substantially lower than the static incentives
at the SSO threshold.

It is useful to contrast this simple framework with a myopic model of LTCH behavior in
which dynamic considerations are ignored. In a myopic model, LTCHs would experience
a sharp increase in the financial incentives to retain a patient between the SSO day and
the day that immediately precedes it, leading to a sharp decline in the discharge rate.
As can be seen in Figure 3, the data provide no evidence of such a pattern, with daily
discharge rates at the SSO day and the days that precede it being essentially the same,
which is consistent with the (overly) simplified dynamic incentives sketched above. Below,
we will show more formally that a myopic model does not fit well the discharge patterns
we observe.

We can also contrast our dynamic model with a completely static model in which the
hospital commits to a specific length of stay at the time of LTCH admission. This type
of static model is not a good descriptive model of our environment; LTCHs maintain
flexibility and make discharge decisions on an ongoing daily basis. The key drawback of
committing to a specified future discharge date is that the hospital “ties its hands” and
is not able to respond to future information. Such information is not consequential in
the setting described above but becomes important once we enrich the simple framework
and allow the health of LTCH patients to evolve stochastically, as we do in our baseline
model below. As we showed in Figure 4, there is a clear relationship between the average
health of discharged patients (as proxied by their post-discharge costs) and the timing and
destination of discharge. Once health is heterogeneous, and evolves stochastically over
time, the health status at the time of admissions is not very predictive of health status at
the time of discharge, preventing a static model from matching this relationship. Again,
we will show this more formally below.

4.2. A Model of Dynamic Discrete Discharge Choice

Our baseline model, which we present here, builds on the intuition above, relaxing some
of the assumptions and allowing for heterogeneous, stochastically evolving patient health.

Consider a patient i who is admitted at day t = 0 to LTCH l. We index patient i’s health
at the time of admission by hi�0, and assume that hi�t (conditional on patient i staying at
LTCH l) evolves stochastically from day to day. Specifically, we assume that hi�t follows a
monotone Markov process, such that hi�t ∼ F(·|hi�t−1) with F(·|h) stochastically increasing
in h.16 We use higher values of h to indicate better health, so the daily mortality hazard
m(h) is strictly decreasing in h.

16In sensitivity analysis reported in Appendix F, we examine the robustness of our findings by allowing the
health process to vary with time since admission.
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Hospital l’s flow (daily) monetary profits from patient i (whose health is given by h)
during the tth day since admission is given by

π(h� t) = p(t)− c, (2)

where p(t) is the hospital’s revenue, which depends on CMS’s reimbursement schedule
for patient i, and c is the hospital’s daily cost of treating each patient. An important
assumption in this specification is that daily costs c are constant and do not vary with the
patient’s health.17

Our focus is on the hospital’s discharge decision. Following our descriptive analysis,
we consider two alternative destinations for patient i, downstream and upstream, so that
every day the hospital makes a choice between keeping the patient overnight in the LTCH
(l), discharging her downstream (d), or discharging her upstream (u). The hospital’s non-
monetary payoffs every day are given by

uj(h)= vj(h)+ σεεijt for j = l� d�u� (3)

where j = l� d�u is the location in which the patient stays that day, vj(h) captures hospital
l’s value from having the patient staying at location j (which can be viewed as the part
of the patient’s utility that is internalized by the hospital), and εijt is an error term, which
is distributed i.i.d. type I extreme value and scaled by the parameter σε. The error term
presumably captures idiosyncratic considerations associated with the patient and/or the
hospital. Moreover, because hospital l loses control over the patient upon discharge, it
will be convenient to denote by V j(h) the present value to hospital l of the patient’s
utility from being discharged to destination j = d�u.

This setting lends itself to a simple dynamic programming problem, which can be rep-
resented by the following Bellman equation:

V (h� t)= π(h� t)+ δ
(
1 −m(h)

)
E

⎛
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where δ is the LTCH’s (daily) discount factor. The two state variables are the health of
the patient (h) and the number of days since LTCH admission (t). While we did not find
a mortality effect in our descriptive analysis, by allowing the health process outside the
LTCH to evolve according to Gd(·|h) and Gu(·|h), instead of F(·|h) within the LTCH, our
model allows patient health to evolve differentially across alternative locations of care.

It is convenient to benchmark vj(h) against the LTCH value from having the patient
stay at the LTCH. That is, we normalize vl(h) = 0 for all h, and normalize V j(h) ac-
cordingly. Applying these adjustments and using the well-known expression for the logit’s

17While one may be worried that sicker patients are more costly, we view the homogeneous cost assumption
as a reasonable approximation for several reasons. First, large components of LTCH cost structure are unlikely
to vary much with the health status of the patient occupying the bed. These health-invariant costs include the
equipment and personnel associated with the bed and the shadow cost of capacity constraints. Second, in the
implementation below, we will examine empirical patterns across DRGs; any health-related variation in costs
across DRGs will therefore be captured as long as the DRG-specific payment rates reflect this variation (as
they are designed to). We have also verified that the quantitative implications of allowing cost to vary with
health are relatively minor in the context of our counterfactual exercises.
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inclusive value, we can write the problem as

V (h� t) = p(t)− c + δ
(
1 −m(h)

)
σε ln

⎧⎨
⎩exp

(∫
V

(
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)
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h′|h))

+ exp
(
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) + exp
(
V u(h)

)
⎫⎬
⎭ � (5)

Finally, we note that the state variable t only affects the problem through the hospital
revenue function p(t), and p(t) = 0 for all t > SSO, so the problem becomes stationary
after the SSO threshold, and the solution is simply a fixed point of

V t>SSO(h)= −c + δ
(
1 −m(h)

)
σε ln
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(
h′)dF(
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) + exp
(
V u(h)

)
⎫⎬
⎭ � (6)

We can therefore solve the dynamic problem by first solving for the fixed point associated
with the post-SSO stationary part of the problem given by equation (6), and then iterating
backwards until t = 0 using equation (5).

4.3. Parameterization and Estimation

Parameterization

We make several additional assumptions before we take the model to the data. The
first is about the health process. Given that mortality is monotone in h, it is convenient to
normalize the health index by mortality risk. We do so by assuming that h is defined by its
associated mortality hazard using the following relationship:

m(h)= 1 −�(h)� (7)

where �(·) is the standard normal CDF. We note that h is an index so the above is simply
a normalization, which endows h with a cardinal measure. Equipped with this normal-
ization, we then make parametric assumptions about the initial health distribution (as
of LTCH admission, t = 0), and about how the health process evolves over time within
the LTCH. Specifically, we assume that hi�0 is drawn from N(μ0�σ

2
0 ) and that F(·|hi�t−1)

follows an AR(1) process:

hi�t = μ+ ρhi�t−1 + εi�t� where εi�t ∼N
(
0�σ2

)
� (8)

In our baseline specification, we allow the health process inside the LTCH to be different
in the pre-PPS and PPS periods, in order to accommodate potential differences in the
LTCH patient mix; these may result from the growth of the LTCH sector, time trends
in medical technology and practice, or directly from the change in financial incentives.
Note that we do not need to model the health process outside the LTCH since any effect
of the post-discharge location on health would affect the discharge decisions through its
(unidentified) effect on the continuation values, V j(h), which we do not model explicitly.

Second, we approximate V u(h) and V d(h) using a linear function in h, so that

V j(h)= υ0j + υ1jh for j = d�u� (9)

Recall from Section 3 that healthier patients (higher h), who are associated with lower
mortality, are discharged to d, while sicker patients (lower h), associated with higher
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mortality, are discharged to u. It is therefore natural to expect υ1d > 0 and υ1u < 0. That
is, all else equal, discharge destination d becomes more attractive as health gets better
(h is higher) and destination u becomes more attractive as patients’ health worsens (h is
lower). As explained below, one of the intercept terms υ0d and υ0u needs to be normalized,
so we set υ0u = 0.

Third, as we discussed in Section 2, LTCHs are part of an interlocking post-acute
care system, with changes in LTCH incentives potentially affecting Medicare spend-
ing throughout the patients’ entire episode of care. In particular, Figure 4 shows sharp
changes in both upstream and downstream post-discharge payments at the SSO thresh-
old, indicating a relationship between patients’ health at discharge and total Medicare
spending. To account for such spillovers in our counterfactuals, we model the relationship
between health at discharge and post-discharge payments as

Pj(h)= exp(ζ0j + ζ1jh) for j = d�u� (10)

where Pj(h) represents the post-discharge payments for a patient initially discharged to
location j = d�u with health status h at the time of discharge. We allow this relationship
to vary by whether the patient is initially discharged upstream or downstream and use an
exponential specification so that predicted post-discharge payments are strictly positive.

Fourth, as is typical in these types of models, we set (rather than estimate) the daily
discount factor to δ = 0�951/365.18 Finally, to account for changes in cost over time, we de-
flate the costs parameter c in the pre-PPS period by the ratio of reported administrative
costs across periods, which we estimate to be 0.75. Thus, overall we are left with 19 pa-
rameters to estimate: five parameters (μ0�σ0�μ�σ�ρ) that are associated with the health
distribution and the way it evolves over time in the pre-PPS period, five corresponding
parameters in the PPS period, the cost parameter (c), four parameters (υ1u�υ0d�υ1d�σε)
associated with the relative value of patients at facilities u and d, and four parameters
associated with post-discharge payments in the PPS period (ζ0d� ζ1d� ζ0u� ζ1u).

Estimation

An important decision is how to treat heterogeneity across patients, observable health
conditions, and LTCH hospitals. In our baseline specification, we abstract from such het-
erogeneity and instead model the “average” discharge decision as it pertains to the “av-
erage” LTCH patient and the “average” payment schedule. That is, we pool all payment
schedules observed in the data, separately for the pre-PPS and PPS periods, measure each
day in the schedule relative to the DRG-specific SSO threshold in the PPS period (which
is normalized to zero at the SSO threshold), and construct the average payment schedule
for each day, as shown in Figure 1. We analogously pool the discharge patterns, separately
for the pre-PPS and PPS periods, in a 61-day window around the SSO threshold (from day
−15 to day 45 as shown in Figure 3). We then estimate our model in an attempt to match
these average patterns.

An advantage of this approach of focusing on the average patterns, rather than the
heterogeneous patterns, is that it only requires us to solve the dynamic problem once
(for each period, pre-PPS and PPS), which is computationally attractive. Given that our
primary focus is on the aggregate effect of financial incentives across the entire LTCH

18While having a discount factor so close to 1 might generally create convergence issues, in our Bellman
equation the probability of survival enters jointly with the discount factor so that the “effective discount factor”
δ (1 −m(h)) is not too close to 1.



2186 L. EINAV, A. FINKELSTEIN, AND N. MAHONEY

sector, abstracting from the heterogeneity across patients and hospitals is less likely to
be consequential. Heterogeneity in the response is also the focus of the related exercise
reported by Eliason et al. (forthcoming).

We estimate the model using simulated method of moments, to match the daily mor-
tality and discharge patterns presented in Figure 3, as well as post-discharge payment
moments that are based on Figure 4. Specifically, we use two sets of moments. First, we
use 183 moments for the pre-PPS payment schedule, reflecting the daily discharge and
mortality risks within the 61-day window around the SSO threshold. One set of moments
is associated with discharge rates to d, another with discharge rates to u, and a third with
mortality rates. We then construct another set of 183 corresponding moments for the PPS
period. Because much of the identification is driven by the sharp change to discharge in-
centives at the SSO threshold, we assign greater weights to moments that are closer to day
zero (the SSO threshold) by making the weights decrease by a constant amount (1/61) per
day away from the threshold. The second set of moments uses the data on post-discharge
payments to allow us to capture spillover effects in our counterfactuals. Specifically, we
average post-discharge payments for each discharge destination (d or u), separately for
discharges before and after the SSO threshold. We then match them to the model pre-
diction regarding the health status distribution of discharged patients, thus allowing us to
link health and post-discharge payments.19

Generating the model predictions requires us to solve the dynamic problem described
in the previous section for each set of parameters. To ease the computation, we approx-
imate the health process F(·|hi�t−1) with a discrete health space that evolves according
to a Markov transition matrix (Tauchen (1986)).20 This eases the solution of the dynamic
problem, and at the same time allows us to read the discharge probabilities directly off
the solution, without any need to integrate (presumably by simulation) over potentially
intractable integration regions.

4.4. Identification

The model specified above is closely related to a large family of dynamic discrete choice
models that have been studied extensively in the literature. Pakes (1986) is an early ap-
plication of such models, and Arcidiacono and Ellickson (2011) provides a recent review.
In order to understand the challenge of nonparametric identification of the model, it
is probably easiest to discuss the relationship between our model and the econometric
framework studied in Hu and Shum (2012) and in Hu, Shum, Tan, and Xiao (2015). Our
model presented above would map very closely to this framework if we observed a vari-
able that corresponds one-to-one to latent health hi�t .

In our setting, the mortality rate is observed and plays a conceptually similar role to
such a variable, but because mortality is a binary variable it unfortunately does not have a
one-to-one relationship with the continuous health index, and therefore our model cannot
be nonparametrically identified. Instead, we rely on the parametric assumptions associ-
ated with the initial health distribution and the AR(1) process for the evolution of health
in order to identify the rest of the model. Conditional on identifying the parameters that

19Because there is no variation in payments in the pre-PPS period, we do not have the variation in dis-
chargees’ health that we need to identify the pre-PPS post-discharge payments model. Since we focus on the
PPS period in our counterfactuals, and therefore do not need these estimates, we do not estimate pre-PPS
post-discharge payments.

20In particular, we approximate the health distribution with a grid of 250 evenly spaced values that span a
range of +/− three standard deviations around the mean of the steady-state health process.
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govern initial health and the way it evolves over time, identification of the other parame-
ters is reasonably straightforward.

In Appendix E, we provide many more details about the (parametric) identification of
the model. To provide intuition, it is useful to build up from the case when patient health is
held fixed at a given value of h and there is only a downstream margin of discharge. In this
case, discharges are characterized by three parameters: the scale parameter on the logit
errors σε, the cost parameter c, and the value of discharging the patient downstream υd .

We can use the jump in payments at the SSO threshold to separately identify the scale
parameter σε from the cost c and value of discharge υd parameters. Since we normalize
the coefficients on net profits (p(t) − c) to 1, the scale parameter σε can be thought of
as the inverse “profits sensitivity” of the LTCH. Prior to the SSO threshold, increasing σε

reduces the option value of retaining the patient until the jump in payments because the
LTCH places less weight on the financial value of the jump in payments, thus raising the
value of discharging the patient. After the SSO threshold, profits are negative, so increas-
ing σε makes retaining the patient not as bad, thus lowering the value of discharging the
patient. As a result, σε can be thought of as modulating the change in incentives at the
SSO threshold, with a higher value for σε resulting in a smaller change in discharges at
the jump in payments conditional on patient health.

In contrast, increasing the costs parameter c and increasing the value of downstream
discharge υd raises the value of discharging the patient both before and after the SSO
threshold. Increasing the costs parameter c reduces the net profits from retaining a pa-
tient at the LTCH, with an impact that is proportional to the patient’s expected length
of stay. Thus, a higher value for c raises the incentive to discharge the patient in every
period, and especially in the first few days when (holding h fixed) the expected length of
stay is longest. Increasing the value of downstream discharge υd raises the incentives to
discharge the patient, but unlike the effect of costs, the effect is fairly constant over time.
Thus, c and υd are separately identified because of their differential impact on the first
few days of the LTCH stay.

In summary, the scale parameter σε is separately identified from the costs c and υd

because it modulates the size of the shift in incentives to discharge at the SSO threshold,
while the costs and υd parameters are mostly affected by the level of discharge rates. They
are separately identified from each other because of the differential movement in the first
few days of the LTCH stay. The intuition for identification on the upstream margin is
similar. Identification can be achieved from the PPS moments alone, but given that we
restrict these parameters to be time-invariant, it is also aided by variation in discharge
patterns between the pre-PPS and PPS periods.

If health status h were observed, we could make the argument above conditional on
health, and thus identify each object as a nonparametric function of h. In practice, h is
unobserved, but identifying the health process is conceptually easy given our assump-
tions. If there were no discharges, which is roughly the case during the first week of the
LTCH stay, the only attrition from the sample would be due to mortality. With only five
parameters that determine the initial health distribution and how it evolves from day to
day, mortality rates over five days are sufficient to identify the health process parameters,
separately in the pre-PPS and PPS periods. Once the unobserved health distribution is
identified, we can integrate over h and apply a similar intuition to the one we described
above for the homogeneous h case. Moreover, once the health process is identified, the
cross-sectional distribution of h varies over time in “known” ways, so we can also identify
how the key parameters—in particular the V ’s—vary as a function of h.

Finally, the parameters of the post-discharge payments model (ζ0d� ζ1d� ζ0u� ζ1u) are
identified by the sharp change in health of patients discharged on different sides of the
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SSO threshold. These parameters essentially determine the mapping from the model pre-
dictions regarding the average health status of patients discharged before and after the
SSO threshold to the corresponding average of observed post-discharge payments, which
also exhibit a sharp change around the SSO threshold (Figure 4).

Obviously, as is typically the case, the intuition for identification requires us to have
substantial variation in the data. In practice, some of the variation is not as large, and
statistical power issues require us to impose more parametric structure, so the estimable
model is not as flexible—especially in terms of the extent to which parameters vary with
h—as the identifiable structure would be.

5. RESULTS

5.1. Parameter Estimates and Model Fit

Table IV presents the parameter estimates. Our point estimate of c is $1,109, implying
that LTCH’s actual costs are 77.8% of the average pre-SSO daily reimbursement rate. The
υ1u, υ0d , and υ1d parameters capture the value the LTCH places on the patient’s utility
from being discharged to u or d relative to remaining at the LTCH, as well as any poten-
tial effect on patient health evolution in the discharge location (relative to remaining at
the LTCH). The estimates imply that LTCHs are indifferent between u and d for a patient
with h= 2�0, which is a fairly low health level. For instance, h= 2�0 is the 4.3th percentile
of the steady-state PPS health (normal) distribution (which has mean of 5�9 and standard
deviation 2�3) and corresponds to a daily mortality hazard of 2.2%. Consistent with our
description of patients flowing downstream as their health improves, d is relatively bet-
ter for healthier patients and u is better for sicker patients. The magnitude of the slope
parameter υ1d is about one-fifth as large (in absolute value) as the slope parameter υ1u,
which indicates that a given change in financial incentives will have a much larger effect
on discharges on the downstream margin. These estimates are consistent with the descrip-
tive evidence that shows a substantially larger response on the downstream margin at the
SSO threshold.

TABLE IV

PARAMETER ESTIMATESa

Parameter Std. Error Parameter Std. Error

Health process during pre-PPS: Preferences:
μ0 11�31 0�139 c (000s) 1�11 0�018
σ0 4�31 0�060 ν1u (000s) −31�12 1�880
μ 0�39 0�023 ν0d (000s) −76�22 2�462
ρ 0�99 0�002 ν1d (000s) 6�63 0�189
σ 2�45 0�002 σε (00s) 8�14 0�217

Health process during PPS: Post-discharge payments:
μ0 5�37 0�134 ζ0u 10�09 0�038
σ0 1�87 0�060 ζ1u −0�77 0�049
μ 3�90 0�091 ζ0d 12�65 0�039
ρ 0�34 0�006 ζ1d −0�28 0�009
σ 2�14 0�062

aTable presents parameter estimates in our baseline specification. Standard errors are computed using the asymptotic GMM
formula, where the variance-covariance matrix is computed using the bootstrap method, sampling with replacement from the set of
LTCH admissions.
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Relative to the slope parameters υ1u and υ1d , the scale parameter σε on the logit error
is fairly small. The estimates imply that a tenth of a standard deviation increase in the
error term increases the value of discharging a patient to a given location by $104, the
product of σε = 814 and a tenth of a standard deviation of the logit error (π/

√
6). In

contrast, a tenth of a standard deviation increase in steady-state health index (which has a
standard deviation of 2�3) raises the value of discharging a patient downstream by $1,510
(= 0�1 × 2�4 × 6,629) and lowers the value of discharging a patient upstream by $7,087
(= 0�1 × 2�4 × 31,123), indicating that health status is capturing most of the unobserved
heterogeneity in discharge behavior.

The ζ parameters capture the relationship between health at discharge and post-
discharge payments in the PPS period. Consistent with our interpretation of Figure 4, the
estimates indicate that post-discharge payments are declining as the patient gets healthier,
with semi-elasticities of ζ1u = −0�77 and ζ1d = −0�28 on the upstream and downstream
margins, respectively.

We are cautious not to over-interpret the change between the pre-PPS and PPS periods
in the health process parameters. Because they are the only parameters that are allowed
to vary across the time periods, they not only capture differences in the health of admitted
patients but may also reflect other factors that vary over time, such as changes in medical
technology or the administrative capacity of providers.

The model fits the data reasonably well. Figure D.1 presents our discharge moments
and the simulated moments from the estimated model. The model does a very good job
fitting the spike in discharges to u and d in the PPS period. This is particularly encourag-
ing because this variation is a key source for identification. The model fit for the mortality
patterns in the pre-PPS and PPS periods is good over the initial days, but less good at
longer time horizons. This is likely due to our fairly parsimonious parameterization of the
health process. The model fit is also poorer for discharges to u in the pre-PPS period.

In Appendix D, we write down and estimate two non-dynamic alternatives to our base-
line model, which we discussed informally in Section 4.1 above: a myopic model and a
completely static model. We show that the fit of our baseline, dynamic model is substan-
tially better than the fit of either of the alternative, non-dynamic models.

5.2. Illustrating the Key Tradeoffs

Figure 7 provides some intuition for how the model operates, plotting the policy func-
tion at the estimated parameters. Healthy patients (higher h) are discharged to d, while
sick patients (lower h) are discharged to u. Consistent with the descriptive evidence in
Figure 4, LTCHs work “down the distribution” at the jump and lower their discharge
threshold on the d margin, and conversely work “up the distribution” on the u margin
and increase the discharge threshold. The larger shift on the d margin relative to the u
margin relates directly to our discussion above on the magnitude of the slope parame-
ter estimates in Table IV (υ1d and υ1u). The relatively small outward shift in the policy
function just before the SSO threshold is consistent with the descriptive results which
show limited evidence on “missing mass” immediately to the left of the SSO threshold.
As noted above, such “missing mass” would be expected in a myopic model, which would
produce a sharp decline in the discharge rate between the SSO day and the day that im-
mediately precedes it.

Figure 8 unpacks the mechanism that gives rise to this policy function, providing intu-
ition for the model’s predictions. In the top panel, we display the LTCH’s choice-specific
payoffs (i.e., continuation values) as a function of patient health and the number of days
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FIGURE 7.—Optimal discharge policy. Figure shows the policy function implied by the estimated model.
The top black line approximates the health level above which a patient is discharged to d, and the bottom
black line approximates the health level below which a patient is discharged to u. Higher h denotes better
health (lower mortality). Recall that the policy function is not a deterministic function of h; given the ε’s in the
LTCH’s flow payoff function (see equation (3)), h is related to discharge stochastically. The policy lines in the
above figure are drawn so that at that given level of h, 50% of the patients are discharged to d (top line) and
u (bottom line).

until the SSO threshold, from day −15 through day 0. The dashed line on the left shows
the value of discharging a patient upstream, and the dashed line on the right shows the
value of discharging a patient downstream; these are linear in patient health (by assump-
tion) and do not vary with the patient’s length of stay (by design). The solid lines show the
continuation value from retaining the patient at the LTCH; these are nonlinear in patient
health and vary over days t = −15� � � � �0, after which the problem becomes stationary and
the value is the same as at day 0 for all subsequent t.

In the bottom panel, we show the probability of retaining the patient at the LTCH un-
til the SSO threshold as a function of patient health for days t = −15� � � � �−1. Prior to
the SSO threshold, the value of retaining the patient is primarily driven by the probabil-
ity of keeping the patient through the SSO threshold and obtaining the large lump-sum
payment. As the bottom panel shows, even well before the SSO threshold most patients
(except for the very sick patients with low h) are kept through the SSO threshold. Since
there are only small increases in this probability from day to day, there is almost no change
in the cutoff points at which patients are optimally discharged upstream or downstream;
this explains why the policy function shown in Figure 7 is virtually flat prior to the thresh-
old. At the SSO threshold, the dynamic incentives disappear, and the continuation value
of retaining the patient drops substantially (difference between day −1 and day 0 in top
panel), making discharge more appealing, and shrinking the range of health status in
which it is optimal to retain patients, as shown in Figure 7.

5.3. The Effects of Counterfactual Financial Incentives

We use our model to simulate discharge patterns and Medicare payments under a va-
riety of counterfactual payment schedules. Throughout this section, we assume that the
initial distribution of health of admitted patients stays the same but that the subsequent
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FIGURE 8.—Choice-specific continuation values as a function of the state variables. Top panel presents
choice-specific continuation values as a function of the state variables: health status of the patient (on the
horizontal axis) and the number of days until the SSO threshold (shown in separate lines) from day −15
through day 0. The dashed lines are the continuation values from discharging the patient upstream (left dashed
line) and downstream (right dashed line), and these (by design) do not change with time to the SSO threshold.
The solid lines are the continuation values from retaining the patient at the LTCH, and these do vary over
time. They are monotone in days; within a day the pattern of continuation values by health status changes at
day −1 (the day before the SSO threshold) when the large payment is guaranteed, and continues with a similar
pattern (but much lower level) of continuation values on the threshold day (day 0). Continuation values after
day 0 are identical to those shown for day 0 given the stationary nature of the problem after the threshold. The
bottom panel of the figure presents the probability of the patient being retained at the LTCH until the SSO
threshold (conditional on the optimal discharge policy).

discharge decisions reflect the incentives provided by the counterfactual payment sched-
ules.

We limit our attention to alternative schedules that maintain the current practice of
a cap on payments after a certain number of days. We do this both because it respects
the current policy approach toward LTCH payments and because an “uncapped” sched-
ule would lead to a small number of long stays, which is outside of the variation in our
data. Specifically, we consider three main types of counterfactuals: payment schedules
that remove the jump while holding the threshold day constant, payment schedules that
eliminate the jump (and allow the threshold day to vary) while holding LTCHs harmless,
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and cost-based reimbursement at a constant per diem, capped at 60 days. Throughout, we
assume that these counterfactual payment schedules do not affect patient mortality, con-
sistent with both the in-sample evidence presented here and the out-of-sample evidence
of the impact of LTCH entry into a market in Einav, Finkelstein, and Mahoney (2018).

Removing the Jump

We start by considering two simple modifications of the baseline payment schedule that
eliminate the jump in payments at the SSO threshold, but, like the baseline PPS pay-
ment schedule, provide no payments on the margin for stays in excess of the SSO thresh-
old. Figure 9 plots these counterfactual payment schedules and the baseline schedule for
comparison. The top panel shows a counterfactual we call “higher rate per day,” which
eliminates the jump by increasing the per diem payment from $1,380 to $2,145 prior to
the SSO threshold but holds the post-threshold payment fixed. The bottom panel shows a
counterfactual schedule we call “lower cap,” which eliminates the jump in payments at the
SSO threshold by reducing the PPS payment from $34,319 to $22,074 but holds the pre-

FIGURE 9.—Counterfactual payment schedules. Figure shows the observed (PPS) payment schedule (thick
gray line in both panels) and the first two counterfactual payment schedules we consider (black line in each
panel). Both counterfactual schedules eliminate the jump in payments at the SSO threshold, but do this in
different ways.
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FIGURE 10.—Counterfactual policy functions and discharge patterns. Top left panel shows the implied dis-
charge policy function from the two “no jump” counterfactual payment schedules described in the main text
and illustrated in Figure 9. The discharge policy function associated with the observed contract design is shown
in gray and is the same as the one reported in Figure 7. The three other panels show discharges (upstream,
downstream, and to death) under these two counterfactual payment schedules. The solid black line reports
results that are based on our parameter estimates (reported in Table IV) and the observed payment schedule,
and each other line reports the results under a different counterfactual payment schedule.

SSO per diem payment fixed. The “higher rate per day” contract is weakly more generous
than the baseline schedule, while the “lower cap” contract is weakly less generous.

We use our model to simulate discharge patterns and Medicare payments under these
two counterfactuals. Figure 10 shows the policy functions under each payment schedule
and the corresponding discharge patterns. Table V summarizes the impact of each of these
payment schedules on Medicare payments to LTCHs and to other facilities; Appendix F
assesses the sensitivity of these results to alternative specifications.

The black dashed line in the top left panel of Figure 10 shows the policy function under
the “higher rate per day” counterfactual. During the first few days, the policy function is
similar to that under the observed schedule. However, as the length of stay increases, the
elimination of the jump reduces the incentive to retain patients, and the policy function
shifts inwards on the upstream and downstream margins. The black dashed lines in the
other panels of Figure 10 show discharge patterns under this counterfactual. Mirroring
the changes in the policy function, the “higher rate per day” counterfactual increases
discharges in the 10 days prior to the SSO threshold, relative to the observed schedule.
As shown in column (2) of Table V, these higher discharge rates reduce average length
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TABLE V

DISCHARGES AND PAYMENTS FROM COUNTERFACTUAL PAYMENT SCHEDULESa

Observed
Schedule

Higher Rate
per Day

Lower
Cap

Lowest
Medicare
Payment
Within
“LTCH

Preferred”
Schedules

Linear
Schedule at
Estimated

Cost

Linear Schedule
at “Opportunity”

(SNF) Cost
(1) (2) (3) (4) (5) (6)

LTCH payments:
Total payments 27,953 28,316 16,024 26,313 35,546 7,392
Total profits 6,518 8,991 −407 6,876 −971 −8,865
Average LOSb 19�3 17�4 14�8 17�5 32�9 14�7
Payment per day 1,446 1,625 1,082 1,501 1,080 504

Discharges upstream:
Total payments 3,813 3,551 3,223 3,583 5,911 3,240
Share of discharges 0�11 0�11 0�10 0�11 0�17 0�10
Payment per discharge 33,669 33,315 32,561 33,312 35,513 32,494

Discharges downstream:
Total payments 16,031 16,009 16,153 15,795 10,394 15,247
Share of discharges 0�79 0�80 0�83 0�80 0�66 0�83
Payment per discharge 20,367 19,913 19,548 19,674 15,648 18,436

Total Medicare payments 47,796 47,877 35,399 45,691 51,851 25,879

Counterfactual payment schedule
Pre-SSO per diem 1,380 2,145 1,380 1,931 1,109 507
Cap amount 34,319 34,319 22,074 32,830 66,540 30,420

aTable presents results from the counterfactual payment schedules. Column (1) reports results that are based on our parameter
estimates (reported in Table IV) and the observed payment schedule, and each other column reports the results from predicted dis-
charge patterns under a different counterfactual payment schedule. The counterfactual payment schedules we consider are described
in the main text.

bLength of stay is measured from day −15. To make it comparable to the summary statistics reported in Table I, all numbers should
be increased by 7.5 days (because the average SSO threshold across admissions in our sample is 22.5 days).

of stay by 1.9 days or 7.1%.21 Eliason et al. (forthcoming) reported a similar exercise, and
obtain qualitatively similar results.22

Despite the significantly higher per day payments prior to the jump ($2,145 versus
$1,380), Medicare payments to LTCHs increase by a very small amount of $362 or 1%.
The small increase is due to a large behavioral response to the incentives. Holding dis-
charge patterns fixed, LTCHs would get paid about 50% more per day for stays below
the SSO threshold, but in response to the elimination of the jump, patients are now dis-
charged earlier, so overall payments are lower. Holding discharge patterns fixed, we cal-
culate that the mechanical effect of this counterfactual is a $1,748 increase in Medicare
payments to the LTCH, implying that the behavioral response to the removal of the jump

21Length of stay is measured from day −15. Because the average SSO threshold in our sample is 22.5 days,
values for length of stay need to be increased by 7.5 (=22�5 − 15) days to match the summary statistics.

22Specifically, Eliason et al. (forthcoming) reported on a “per diem counterfactual,” which is very similar
to our “higher rate per day” exercise. They found a similar length of stay effect (1.25 days shorter, relative
to our 1.9 estimate) and a modest effect on total Medicare cost. It is important to note that the comparison
is imperfect: the counterfactual is not exactly the same, the model and the observation periods are slightly
different, and they focused on the most common DRGs while we use all LTCH admissions.
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reduces Medicare payments to the LTCH by $1,394 per admission. LTCH profits per ad-
mission rise by $2,441 or 35% relative to the observed schedule.

We next explore the effects of the “lower cap” payment schedule. The gray line in the
top left panel of Figure 10 shows the policy function under this counterfactual. The elim-
ination of the jump in payments shifts the policy function inwards during the entire pre-
threshold period, relative to that under the observed schedule. The gray lines in the other
panels of Figure 10 show that discharges correspondingly rise, with the daily share of
discharges to d increasing four-fold and the share of discharges to u increasing more
modestly over most of the pre-threshold period. As shown in column (3) of Table V, av-
erage length of stay is reduced by 4.5 days, and payments to the LTCH are reduced by
$11,967 or 43%. The mechanical effect (holding observed discharge patterns fixed) of the
“lower cap” payment schedule is a reduction in payments of $8,851 or about 74% of the
overall reduction, with the remaining 26% due to the behavioral response. LTCH profits
per admission fall by $7,030 per admission and are estimated to be negative, a point we
return to below.

The remaining rows of Table V consider the impact of these counterfactual payment
schedules on Medicare payments throughout the rest of the episode of care. For these
counterfactuals, the spillovers on post-discharge payments are small. For the “higher rate
per day” counterfactual, post-discharge payments for patients discharged to u and d are
affected by a few hundred dollars. For the “lower cap” counterfactuals, the decrease in
post-discharge payments is larger but still small compared to decrease in LTCH payments.
Combining the effects on LTCH payments and post-discharge payments, our estimates
indicate that the “higher rate per day” has virtually no effect on total Medicare payments
($74 increase) and the “lower cap” reduces total Medicare payments by a substantial
$12,456 or 26%.

While interesting, neither of the above counterfactuals is fully satisfactory. While the
“lower cap” counterfactual suggests that alternative payment schedules could substan-
tially reduce Medicare payments, the large decrease in LTCH revenue (and in estimated
profits) might have unintended consequences. For instance, under this payment sched-
ule, LTCHs might cut back on socially valuable fixed investments or even exit the market.
In contrast, the “higher rate per day” counterfactual, while clearly making LTCHs better
off, has virtually no effect on Medicare payments. Yet, these two exercises suggest that
there might be “intermediate” contracts that generate cost savings without the risk of
unintended consequences. We explore such counterfactuals below.

“Win-Win” Payment Schedules

With the above considerations in mind, we now consider a set of counterfactuals that
hold LTCH revenue fixed under the observed discharge patterns. Faced with these con-
tracts, if LTCHs do not change their behavior, they will have identical revenue, costs, and
profits as they would under the observed payment schedule. If LTCHs change their be-
havior, by revealed preferences, they must be (weakly) better off. Therefore, by design,
these contracts should not have a negative impact on LTCHs.

In the same spirit as the previous counterfactuals, we consider contracts that pay a
constant per diem amount up to a threshold length of stay, at which point the payments
are capped and per diem payments drop to zero (obviously, with no jump). We consider
contracts where the payment is capped at thresholds in a +/− 10 day range on either side
of the current SSO threshold day. Since the generosity of the contract is strictly increasing
in the per diem rate, for a given length of stay at which payments are capped, there is a
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FIGURE 11.—“Win-win” payment schedules. The top panel shows some examples of the 21 potential
“win-win” contracts we consider. All contracts pay a constant amount up to a threshold length of stay, where
they are capped (so that per diem rate drops to zero) with no jump at the threshold. We consider threshold
days ranging from +/− 10 days of the current threshold, with the unique payment schedule defined for each
threshold day as the one that would hold payments to the LTCH (i.e., LTCH revenue) fixed if they did not
change their discharge behavior under the observed contracts. The bottom panels show outcomes (given the
LTCH’s counterfactual behavior) under these various potential “win-win” payment schedules shown in the top
panel. For each schedule (represented by a dot which is labeled with the day the payment schedule switches
from a per day rate to a cap), the bottom left panel shows LTCH payments per admission against (the negative
of) total Medicare payments (including estimated post-discharge payments) for the episode of care; and the
bottom right panel shows LTCH profits per admission against total Medicare payments.

unique payment schedule that holds LTCH revenue fixed under the baseline discharge
patterns.

The top panel of Figure 11 plots a set of these contracts, where to avoid overcrowding
the figure, we show payment schedules for only a subset of the 21 contracts considered.
The bottom left panel of Figure 11 plots LTCH payments against total Medicare pay-
ments (including estimated post-discharge payments) for each of the contracts we con-
sider, while the bottom right panel plots estimated LTCH profits against total Medicare
payments. For comparison, both plots also show outcomes under the observed payment
schedule.

The figures indicate that there is a broad set of “win-win” payment schedules that re-
duce total Medicare payments for the episode of care while leaving LTCHs (weakly) bet-
ter off. Every counterfactual contract with a threshold between −8 and 8 days reduces
Medicare spending, although there is substantial heterogeneity in the reduction. LTCH
revenues increase for every contract with a threshold of 6 to 10 days and decline for con-
tracts with a threshold of −10 to 5 days. Because LTCHs value both profits and patient
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utility, LTCH profits under counterfactuals do not necessarily increase. LTCH profits are
higher than their baseline level for contracts with a threshold −10 to 2 days and are lower
for thresholds of 3 to 10 days. Counterfactuals that decrease profits do not lower them by
a substantial amount.

The counterfactual with payment threshold of 1 day more than the current SSO thresh-
old results in the largest reduction in Medicare spending and is a natural contract to
focus on. Column (4) of Table V shows outcomes for this contract. Under this payment
schedule, Medicare payments to LTCHs are reduced by $1,655 or 5.9%. Accounting for
Medicare payments across the entire episode of care leads to somewhat higher savings of
$2,127, or 4.4% of total episode payments. Despite the reduced payments, LTCH profits
rise by $315 per stay or 4.5%: the decline in LTCH revenue is offset by lower costs, as
length of stay is almost 2 days (7%) shorter.

Cost-Based Payment Schedules

The last two columns of Table V report results from two additional counterfactuals that
explore cost-based reimbursement at a constant per diem rate. The first counterfactual
pays LTCHs a constant per diem of their estimated costs, which is $1,091 per day. The
second counterfactual pays LTCHs a constant per diem of $507, which is the average per
day payment to SNFs during the post-discharge period. We think about this counterfac-
tual as a form of “reference based pricing” where Medicare pays LTCHs the opportunity
cost to Medicare of the patient—that is, the amount Medicare would have incurred for
the patient at a location that provides fairly similar care (at least for the marginal patient).
To avoid extrapolating too far outside of our data, for both of these counterfactuals we
cap payments after 60 days, which leads LTCHs to discharge virtually all of their patients
within 90 days of the current SSO threshold.

Paying LTCHs their estimated costs leads to a substantial $6,026 increase in payments
to LTCHs and a smaller $2,509 overall increase in total Medicare payments. Payments
increase because LTCHs retain patients for longer time periods rather than discharging
them to SNFs where Medicare payments would be lower, with average length of stay
increasing from 19.2 to 32.0 days. Paying LTCHs the average per diem for SNFs leads to
a massive decrease in LTCH payments and total Medicare payments, accompanied by a
sharp reduction in length of stay. Of course, concerns about unintended consequences,
which we discussed in the context of the “lower cap” schedule, are also relevant here.

6. CONCLUSIONS

In this paper, we examined the impact of provider financial incentives in post-acute
care (PAC), a setting with large stakes both for the government budget and patient health
that has received scant attention in the academic literature. Within the context of PAC,
we examined the impact of a jump in Medicare payments to long-term care hospitals
(LTCHs) that occurs after a pre-specified length of stay, when reimbursement shifts from
a per diem rate to a lump-sum payment.

The descriptive evidence showed a large response by LTCHs to the jump in payments.
At the threshold, there is a large spike in discharges. The marginal patient affected by the
payment threshold is relatively healthy. We are unable to detect any impact on patient
mortality at the threshold, even in this high-mortality population.

This descriptive evidence motivated our specification of a stylized dynamic model of
LTCH discharge behavior. We estimated the model and used it to examine the implica-
tions of alternative payment schedules, including “win-win” contracts that hold LTCHs
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(and presumably their patients) harmless, while reducing Medicare payments. The con-
tract with the largest Medicare savings reduced total Medicare payments by nearly 5%
while increasing LTCH profits by a similar percentage.

We also considered more aggressive payment schedules that resulted in substantially
higher Medicare savings but raised the possibility of unintended consequences due to a
large reduction in LTCH profits. In particular, in our model we take admission to the
LTCH as given and focus on the impact of counterfactual policies for this fixed set of
patients. However, the large reduction in profits brought about in our more aggressive
counterfactuals may affect which patients are admitted to an LTCH and might have even
broader effects on the market, for instance through LTCH entry and exit decisions. We
consider an important area for further work to move “up” the healthcare pathway and
model the ACH’s decision of whether to discharge a patient to an LTCH or another PAC
provider.

More broadly, our results indicate how economic models and data can be combined to
better inform contract design. A small dose of common sense is sufficient to see that the
sharp jump in payments at the threshold is inefficient, and that some alternative payment
schedule should be better for both the Medicare payer and the LTCH. Data and descrip-
tive evidence, however, were important to demonstrate that the behavioral response by
the LTCH to the current payment schedule was quantitatively meaningful, and an eco-
nomic model—parameterized and estimated on the data—was necessary to identify spe-
cific “win-win” contracts that could create opportunities for both LTCHs and Medicare
to gain. While naturally our results are specific to our particular setting, we hope that
this type of approach can inform future work examining the impact of providers’ finan-
cial incentives not only for the directly affected provider but throughout the healthcare
system.

APPENDIX A: POST-DISCHARGE PAYMENTS AND DAYS

Our starting point of the analysis is an admission to an LTCH. We can observe all
discharge destinations from an LTCH. Table A.I shows the share of discharges to different
locations. In the PPS period, 13% of patients die during their LTCH stay, another 14%
are discharged upstream (with the vast majority going to inpatient care), and 73% are
discharged downstream (with approximately half of these patients going to an SNF/IRF
and 45% going home, where they may receive care from an HHA).

We define a post-discharge “episode of care” as the spell of almost continuous days
following discharge from an LTCH with Medicare payments to an ACH, SNF/IRF, or
LTCH. In particular, the episode ends if there are at least two days without Medicare
payments to these institutions.

Although in the MedPAR data we can observe all discharge destinations, we can only
observe post-discharge Medicare payments and days for ACH and for PAC facilities (SNF,
IRF, LTCH), but not for home health visits or hospice. To address the fact that we do not
observe payments or days at HHAs or hospices, we supplement the MedPAR data with
annual spending and utilization from the Beneficiary Summary File (BSF) Cost & Use
file. For every stay in the MedPAR data, we observe whether the patient was discharged to
an HHA or hospice at some point in the episode of care. For patients who were discharged
to an HHA or hospice, we impute the patient’s payments and days using the annual BSF
data. In practice, HHA and hospice payments are quite small as a share of the total. For
example, we estimate that of individuals with an LTCH discharge, LTCH and SNF/IRF
payments constitute over 90% of total PAC payments, with home health accounting for
only 8%.
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TABLE A.I

DISCHARGE DESTINATIONSa

Pre-PPS PPS

Death 0.138 0.132

Upstream 0.191 0.137
Inpatient 0.981 0.761
Hospice 0.019 0.239

Downstream 0.672 0.731
LTCH 0.001 0.006
SNF 0.240 0.434
IRF 0.006 0.066
Home health 0.214 0.302
Home 0.453 0.139
Other 0.085 0.053

Total 1.00 1.00

Number of Obs. 218,857 587,385

aTable shows the percentage of discharges to death, upstream, and downstream in pre-PPS and PPS periods. The upstream and
downstream discharges are further decomposed.

Since these annual amounts include some payments and days that occur before or af-
ter the “episode of care,” our imputation likely leads us to overestimate post-discharge
Medicare payments and days. However, we think that the approach provides a reason-
able approximation. Table A.II shows that our estimates of post-discharge payments and
facility days are not affected much if we instead impute 0 costs for HHA and hospice, and
0 days for hospice.

APPENDIX B: LTCH PAYMENT SYSTEMS

Prior to fiscal year 2003 (i.e., October 2002), CMS reimbursed LTCHs on a cost-based
system. At the start of fiscal year 2003, CMS began transitioning LTCHs to a prospective
payment system (PPS). The PPS, which was fully phased in by the start of fiscal year
2008 (i.e., October 2007), is the focus of our study. This appendix describes it in more
detail, drawing heavily on Kim et al. (2015), 3M Health Information Systems (2015), and
MedPAC (2014).

TABLE A.II

POST-DISCHARGE OUTCOMESa

Pre-PPS (Jan 2000–Sep 2002) PPS (Oct 2007–July 2012)

Overall Upstream Downstream Overall Upstream Downstream

Number of discharges (000s) 188�7 41�8 147�0 509�7 80�3 429�4
Post-discharge payments (upper bound) 13,100 31,405 7,901 22,808 35,775 20,382
Post-discharge payments (lower bound) 12,106 30,712 6,821 20,144 33,446 17,655
Post-discharge facility days (upper bound) 17�1 32�8 12�6 26�1 33�0 24�8
Post-discharge facility days (lower bound) 16�9 32�1 12�6 24�7 26�0 24�4

aTable presents upper and lower bounds for our imputation of post-discharge payments and days using the baseline sample of
LTCH stays described in Table I, excluding discharges due to death. Appendix A provides more detail. The upper bound is used for
our empirical analysis.
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B.1. LTCH PPS Rules

In contrast to the cost-based system, which had reimbursed hospitals based on the es-
timated cost of each patient’s case, the PPS outlined a fixed reimbursement amount for
each patient, based on the patient’s DRG. These DRG-based lump-sum payments were
meant to reflect the typical resources consumed by each type of patient. However, in or-
der to discourage short stays in hospitals which were meant to provide long-term care, the
PPS includes a short stay outlier (SSO) threshold, with reduced payments below the full
DRG payment for LTCH patients who are discharged before a DRG-specific threshold.

Full DRG Payment

The full DRG payment is computed as

Full DRG Payment = Adjusted Federal Rate × DRG Relative Weight, (B.1)

where

Adjusted Federal Rate

= (Unadj. Federal Rate × Labor-Related Share × Wage Index)

+ (Unadj. Federal Rate × Nonlabor-Related Share)�

(B.2)

This payment structure is similar to the much-studied Inpatient PPS used for (regular)
acute care hospitals (ACHs) that was introduced in 1983, but differs in two ways. First,
although the DRGs are defined in the same way for the LTCH and Inpatient PPS, the
relative weights associated with DRGs have different values in LTCH-PPS. Second, the
LTCH-PPS unadjusted federal rate is larger than the corresponding Inpatient PPS value.
The result is that LTCH-PPS payments are substantially greater than Inpatient PPS pay-
ments for the same DRG, presumably to reflect the greater costs at an LTCH relative to
an ACH.23

Short Stay Outlier (SSO) Payment

If an LTCH stay has a length of stay (LOS) shorter than or equal to five-sixths of the ge-
ometric average length of stay (ALOS) for the DRG, it is paid as a short stay outlier. We
call the smallest integer greater than five-sixths of the geometric ALOS the SSO thresh-
old. The SSO threshold is constant within a DRG-PPS Rate Year (with the exception of
2009).

A short stay outlier is paid the lowest of the following:
1. Full DRG Payment.
2. 120% of the DRG per diem amount times the length of stay, where the DRG per

diem amount is defined as the ratio of the full DRG payment to the geometric average of

23Also, like Inpatient PPS, LTCH PPS offers a High Cost Outlier (HCO) payment for particularly costly
stays. Specifically, an LTCH can receive a HCO payment if the cost of the case exceeds the HCO Threshold.
The HCO payment is made in addition to the regular payment amount. Importantly, for our purposes, HCO
payments can be made regardless of whether the LTCH stay is considered an SSO outlier or eligible for the
full DRG payment. We therefore exclude HCO payments from our analysis and model. About 9% of LTCH
stays in our baseline sample have HCO payments, and the median HCO payment in our baseline sample is
$12,428.
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the LOS for that DRG. This option is roughly equivalent to a linear interpolation of the
full DRG payment between Day 0 and the SSO threshold.24

3. 100% of the cost of the case, which is computed as total charges multiplied by the
facility-specific cost-to-charge ratio.

4. A blend of the Inpatient PPS amount (used at ACH) and 120% of the DRG per
diem amount. Note that this option converges to option 2 as LOS increases.

B.2. Empirical Payment Schedules

PPS Payment Schedule

We use a commercial software offered by the company 3M (the product is called “Core
Grouping Software” (CGS)) to compute counterfactual Medicare payments for each
post-PPS period stay.25 Specifically, for each stay in the PPS period, we compute the PPS
payment for the actual discharge day and each possible counterfactual discharge day. The
inputs into this calculation are the admission date, estimated hospital charges, principal
and secondary diagnoses, procedures, discharge status, age, and sex of the patient. For
counterfactual lengths of stay, we assume that hospital charges scale linearly with the
observed length of stay.

With this information, the software produces the DRG code, the SSO threshold day,
and the total Medicare payment for each length of stay. To validate the software, we
compare the predicted DRG against the DRG we observe in the data, and the predicted
payment against the observed payment for the observed length of stay. The predicted
DRG matches the observed value in 99.9% stays and the predicted Medicare payment is
within one dollar of the observed Medicare payment in 90% of stays.

Figure B.1 illustrates the resultant, estimated payment schedules for both the pre-PPS
and PPS periods. Note that this figure differs slightly from Figure 1 in the paper, which
depicts a stylized model of the post-period payment schedules in which the pre-threshold
payments are constant per diem. In practice, the pre-threshold payments appear to be
slightly bowed downwards; we abstract from this in Figure 1 which we use in our model
estimates, where we use the average payment per day for stays discharged before the
threshold to construct the slope of the payment schedule prior to the threshold.

What features of the payment rule created the jump in payments at the SSO thresh-
old? Recall that right of the SSO threshold, short stay outlier rules do not apply and the
payment is just the full DRG payment, which means the cumulative payment schedule is
always a flat line to the right of the threshold. To the left of the SSO threshold, each stay
is paid the minimum of four alternative payments; the shape of the payment schedules
therefore depends on which of the four alternatives is binding. If options 1, 2, or 4 were
binding, we would not see a jump at the threshold. Therefore, we conclude that cost of
the case must be binding in most cases because we observe a jump on average. Note that
the cost of case being binding is necessary rather than the sufficient condition for creating
a jump in the payment schedule; the costs could theoretically be such that the payment
schedule only has a kink at the SSO threshold rather than a jump. In practice, however,
the cost of the case is on average lower than the other options, and we see a jump at the
threshold.

24To see this, note that 120% of the DRG per diem amount times the length of stay is approximately equal
to 120% × (Full DRG payment)/((6/5)SSO Threshold) × LOS, which is equal to (Full DRG payment)/(SSO
Threshold) × LOS.

25For more information about this software, see: http://solutions.3m.com/wps/portal/3M/en_US/
Health-Information-Systems/HIS/Products-and-Services/Products-List-A-Z/Core-Grouping-Software/.

http://solutions.3m.com/wps/portal/3M/en_US/Health-Information-Systems/HIS/Products-and-Services/Products-List-A-Z/Core-Grouping-Software/
http://solutions.3m.com/wps/portal/3M/en_US/Health-Information-Systems/HIS/Products-and-Services/Products-List-A-Z/Core-Grouping-Software/
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FIGURE B.1.—Empirical versus approximated payment schedules. Figure presents the payment schedules
used in the paper (gray lines, which are the same as Figure 1 in the main text) against the observed payments
(black lines). Appendix B provides more detail about the (slight) differences.

Pre-PPS Payment Schedule

In the pre-PPS period, LTCHs were paid their (estimated) costs, up to facility-specific
per day limit (MedPAC (2014)). For most facilities, this limit was binding. For these fa-
cilities, we calculate the LTCH payment schedule as the per day limit multiplied by the
length of the stay. For a small number of facilities, the payment limit does not appear to
bind. For these facilities, we assume that reported costs are linear in the patient’s length
of stay, and we calculate the payment schedule as the (imputed) per day cost multiplied by
the length of stay. When we analyze discharge patterns in the pre-PPS period, we assign
each stay the SSO threshold it would have had in the first year of the PPS period, based
on the DRG assignments made using the CGS software described above.

FIGURE B.2.—Post-discharge mortality rates. Figure presents the (forward looking) 30-day mortality rate
after a (live) discharge, as a function of the day of discharge.
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APPENDIX C: MORTALITY ANALYSIS

We formally test for a mortality effect using a regression discontinuity (RD) design. Let
i index individuals and t index days relative to the SSO threshold. Let yit be a mortality
indicator. For our analysis of the 1-day mortality hazard, yit takes a value of 1 if the in-
dividual dies on day t and takes on a value of 0 if the individual is alive. For the 30-day
mortality analysis, yit takes on a value of 1 if the individual dies in the subsequent 30 days
and takes on a value of 0 if the individual does not die over this period. Individuals who
have already died are excluded from the analysis.

In our baseline RD specification, we allow for a linear trend in the running variable t
and permit this linear trend to vary on different sides of the SSO threshold:

yit = α0 + α1t + 1t≥0(β0 +β1t)+ εit � (C.1)

The coefficient of interest β0 captures the change in mortality at the SSO threshold, con-
ditional on the linear controls. To confirm the robustness of our findings, we also estimate
a specification with a quadratic time trend that, as before, is also allowed to vary on dif-
ferent sides of the SSO threshold:

yit = α0 + α1t + α2t
2 + 1t≥0

(
β0 +β1t +β2t

2
) + εit� (C.2)

In both specifications, we restrict our analysis to observations close to the threshold, fo-
cusing on bandwidths of 3, 5, and 10 days within the threshold. We cluster our standard
errors at the DRG level, which allows for correlation in the health process not only within
an individual over time but also within the set of individuals who have the same DRG and
therefore may exhibit correlated mortality profiles. We focus the mortality analysis on the
post-PPS period.

Table C.I shows the parameter estimates. Panel A reports the effect on the level of
the 1-day mortality hazard (the β0 coefficient). Column (1) of Panel A, which shows our
baseline specification with a linear time trend and a 3-day bandwidth, indicates that 1-day
mortality increases by less than 0.01 percentage point at the threshold. This estimate is
tiny in absolute magnitude, small relative to the baseline daily mortality rate of 0.6%, and
is statistically indistinguishable from zero. Columns (2) to (6) show that this finding is
robust to alternative bandwidths and a quadratic time trend.

We use two approaches to examine more gradual effects of the threshold on mortality
patterns. In Panel B, we report the effect on the slope of the 1-day mortality hazard (the
β1 coefficient) from the linear specification (equation (C.1)). If distortions in the location
of care have an effect on the evolution of health, we might expect a change in the slope
of the mortality hazard at the threshold, even if there is not an on-impact effect on the
level. The point estimates are small, statistically insignificant, and robust to alternative
bandwidths. In Panel C, we show effects on the level of the 30-day mortality hazard (the
β0 coefficient), which is also designed to measure more gradual effects. Column (1) of
Panel C, which again shows the baseline specification with a linear time trend and a 3-day
bandwidth, indicates an economically tiny and statistically insignificant 0.005 percentage
point decline in 30-day mortality at the threshold (relative to a baseline 30-day mortality
rate of 13.4%). As before, the effect is robust to alternative bandwidths and a quadratic
time trend.

To complement the regression tables, in Figure C.1 we show standard RD plots for the
1-day and 30-day mortality effects. The dots show the underlying data. The solid lines
show local linear regressions, constructed using a 3-day bandwidth and a uniform kernel
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TABLE C.I

REGRESSION DISCONTINUITY EFFECT ON MORTALITYa

Linear Quadratic

(1) (2) (3) (4) (5) (6)

Panel A. Effect on 1-day mortality hazard
Post Threshold Indicator 0�00007 0�00021 0�00039 0�00003 −0�00013 0�00018

(0�00023) (0�00017) (0�00013) (0�00048) (0�00030) (0�00019)
[0�763] [0�213] [0�003] [0�954] [0�671] [0�336]

Bandwidth 3 5 10 3 5 10
No. of Obs. 3,617,134 5,685,012 10,864,654 3,617,134 5,685,012 10,864,654

Panel B. Effect on 1-day mortality hazard slope
Post Threshold Indicator −0�00013 0�00004 0�00002

(0�00008) (0�00004) (0�00002)
[0�115] [0�264] [0�149]

Bandwidth 3 5 10
No. of Obs. 3,617,134 5,685,012 10,864,654

Panel C. Effect on 30-day mortality hazard
Post Threshold Indicator −0�00005 −0�00023 0�00013 0�00013 −0�00007 −0�00016

(0�00016) (0�00016) (0�00022) (0�00026) (0�00021) (0�00021)
[0�778] [0�156] [0�548] [0�608] [0�751] [0�425]

Bandwidth 3 5 10 3 5 10
No. of Obs. 3,617,134 5,685,012 10,864,654 3,617,134 5,685,012 10,864,654

aTable shows results from the regression discontinuity mortality analysis described in Appendix C. Columns (1)–(3) use a linear
functional form (see equation (C.1)) before and after the SSO threshold, while columns (4)–(6) use a quadratic functional form (see
equation (C.2)). Panels A and C report the estimate of the β0 coefficient, which captures the jump in mortality rate at the SSO
threshold in the PPS-period; Panel B reports the estimate of the β1 coefficient, which captures the change in the slope of the mortality
rate at the threshold in the PPS-period. Each column restricts the analysis to a different bandwidth number of days before and after the
SSO threshold. The 1-day mortality hazard is defined as the share of individuals alive at a given day who die by the next day; the 30-day
mortality hazard is similarly defined as the share of individuals alive at a given day who die in the next 30 days. All mortality rates are
calculated unconditional on patient’s location. Standard errors, clustered at the DRG level, are in regular brackets and p-values in
square brackets.

so that they correspond to our baseline specification (Table C.I, column (1)) where we
estimate a linear regression on a window of +/− 3 days around the discontinuity. The
dashed lines show 95% confidence intervals, constructed by bootstrapping with replace-
ment over DRGs. The plots visually confirm the regression evidence which showed no
jump in either the 1-day or 30-day mortality hazard at the threshold.

Because our standard errors in the regression discontinuity analysis rely on difficult-to-
test assumptions about the correlation structure of the error term, we assess the robust-
ness of our statistical inference using permutation inference (Rosenbaum (1984, 2002),
Abadie, Athey, Imbens, and Wooldridge (2014)). Specifically, we estimate equation (C.1)
with a bandwidth of 3, replacing the dummy variable for being to the right of the SSO
threshold with a dummy variable for being to the right of placebo thresholds defined at
t = −12 and t = 42 in the pre- and post-PPS periods. That is, we estimate an RD effect for
a placebo threshold at each day starting 3 days after the start of our sample and ending 3
days before the end (to allow for a 3-day bandwidth); we also exclude days −3 to 3 in the
post-PPS period since these days might be contaminated by a potential treatment effect.

Figure C.2 plots the actual effect and the distribution of placebo estimates for the 1-day
and 30-day mortality hazards. The plots show that the actual change in mortality at the
SSO threshold is not particularly large relative to the typical day-to-day variation in the



PROVIDER INCENTIVES AND HEALTHCARE COSTS 2205

FIGURE C.1.—RD plots of mortality hazard by days since LTCH admission. Figure shows RD plots of the
effects on mortality by days since admission in the PPS period. Mortality includes any mortality, whether it
occurs within the LTCH or after discharge. Days since admission is normalized by counting days relative to the
SSO threshold. The top panel shows the 1-day mortality hazard, defined as the fraction of living individuals
who die in the next day; the bottom panel shows the 30-day mortality hazard, defined as the fraction of living
individuals who die in the next 30 days. The dots show the underlying data averaged by day. The solid lines
show local linear regressions, constructed using a 3-day bandwidth and a uniform kernel. The dashed lines
show 95% confidence intervals, constructed by bootstrapping with replacement over DRGs.

mortality hazard. The distributions of placebo estimates imply a p-value of 0.796 for the
1-day mortality hazard and a p-value of 0.757 for the 30-day mortality hazard.

APPENDIX D: NON-DYNAMIC MODELS

In Sections 4.1 and 5.1, we briefly discussed two non-dynamic alternative models of
LTCH behavior: (i) a myopic model in which the LTCHs make discharge decisions on
a daily basis but do not internalize the dynamic implications of their decisions and (ii)
a completely static model in which LTCHs commit to discharge decisions at the time of
LTCH admission. Below, we present these models in more detail and argue these models
perform poorly relative to our baseline dynamic model.
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FIGURE C.2.—Perturbation tests for the estimated mortality effect. Figure shows perturbation tests for the
mortality effect described in Appendix C. The top panel reports the estimated 1-day mortality effect and the
bottom panel reports the estimated 30-day mortality effect from estimating equation (A3) with a bandwidth
of 3, but replacing the dummy variable for being to the right of the SSO threshold with a dummy variable for
being to the right of a placebo threshold; see Appendix C for more details. The figure also shows where the
actual estimated effect falls within this range of placebo estimates.

D.1. Myopic Model

The first non-dynamic model we consider is one in which LTCHs are myopic and thus
do not internalize the effects of their behavior on future periods. The objective function
for the LTCH is to choose a location optimally ignoring any dynamic consideration. That
is, as in the baseline model, we assume that hospital l’s value from discharging a patient
to location j is given by

uj(h)= vj(h)+ σεεijt for j = d�u� (D.1)

and hospital l’s value from retaining the patient is given by

ul(h)= p(t)− c + vl(h)+ σεεilt � (D.2)

Unlike the baseline model, the LTCH does not take into account any dynamic implication,
such as the option value associated with discharging the patient later.
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TABLE D.I

PARAMETER ESTIMATES FROM THE MYOPIC VERSION OF THE MODELa

Parameter Parameter

Health process during pre-PPS: Preferences:
μ0 7.53 c (000s) 1�24
σ0 2.77 ν1u (000s) −380�45
μ 0.76 ν0d (000s) −4�48
ρ 0.94 ν1d (000s) 0�21
σ 1.96 σε (00s) 5�14

Health process during PPS:
μ0 7.67
σ0 2.86
μ 1.84
ρ 0.79
σ 2.29

aTable presents point estimates of the parameters for the myopic version of the model, which we describe in Appendix D.1.

Normalizing vl(h) = 0 (as we do in the baseline model) yields the discharge probabili-
ties

Pr(j|h� t)= exp
[
vj(h)/σε

]
exp

[(
p(t)− c

)
/σε

] + exp
[
vu(h)/σε

] + exp
[
vd(h)/σε

] � (D.3)

We parameterize the health process in the same way as in the baseline model, and (as in
the baseline model) assume that vj(h) is linear in h. We estimate the model by GMM to
match the standard pre- and post-PPO period moments.

Figure D.2 shows the fit of the myopic model and Table D.I shows the parameter esti-
mates. Not surprisingly, the myopic model struggles to fit the discharge patterns around
the jump in payments. On the upstream margin, shown in the top left panel of Figure D.2,
the myopic model predicts that LTCHs are relatively unresponsive to the change in in-
centives. While actual discharges nearly double at the SSO threshold, the myopic model
predicts almost no jump in behavior. The reason is intuitive: To fit the relatively high level
of discharges on the day before the jump in payments (t = −1), myopic LTCHs are esti-
mated to be insensitive to price. But this results in the model being unable to match the
jump at the SSO threshold. The dynamic model can better fit the data because it allows
for a “second dimension” of LTCH behavior. Because LTCHs are dynamically building
up a stock of patients who are marginal to the change in the incentives, they can exhibit
a jump in discharges at the SSO threshold (t = 0) while still being inelastic enough to
discharge sick patients on the day prior to the jump (t = −1).

Conversely, on the downstream margin, shown in the middle left panel of Figure D.2,
LTCHs are too responsive to the jump in payments. While the myopic model matches the
level of discharges after the jump in payments (t = 0), it predicts that the LTCH will dis-
charge nobody on the day before the payment increase (t = −1), which undershoots the
actual discharge rate of approximately 1%. In a sense, the myopic model is making the
“opposite” mistake relative to the upstream margin. To fit the sharp jump at the threshold,
the myopic LTCHs are estimated to be extremely price sensitive. But this price sensitivity
makes the model unable to match the positive share of discharges at the SSO thresh-
old, where keeping the patient an additional day would result in a large payday. Because
forward-looking LTCHs build up a stock of marginal patients, the dynamic model is able
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FIGURE D.1.—Model fit of the baseline model. Figure shows the moments we use for estimation, and how
the model is able to fit them. Black bars in each panel represent the actual moments from the data, and the
gray bars represent the predicted moments from the model estimates. The left three panels represent the PPS
period, and the right three panels represent the pre-PPS period. The top panels show discharge rates upstream,
the middle panels show discharge rates downstream, and the bottom panels show mortality rates (within the
LTCH).

to match the jump in discharges while at the same time also discharging some patients on
the day prior to the jump (t = −1).

D.2. Static Model

The second non-dynamic model we consider is a completely static model in which, at
the time of admission, the LTCH commits to discharge the patient to a given location (ei-
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FIGURE D.2.—Model fit of the myopic model. Figure is parallel to Figure D.1, and shows how the myopic
model described in Appendix D.1 fits the data.

ther upstream or downstream) after a given number of days. As in the baseline model, we
use V j(h) to denote the payoff to discharging the patient to location j = u�d and p(t)− c
to denote net revenue. Since the LTCH commits to a discharge decision at admission, we
assume that, at admission, the LTCH draws a separate logit error for each length of stay
by location of discharge with scale parameter σε. Normalizing the patient’s utility at the
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TABLE D.II

PARAMETER ESTIMATES FROM THE STATIC VERSION OF THE MODELa

Parameter Parameter

Health process during pre-PPS: Preferences:
μ0 15�35 c (000s) 1�77
σ0 4�98 ν1u (000s) 0�71
μ 3�33 ν0d (000s) −53�77
ρ 0�85 ν1d (000s) 3�72
σ 4�67 σε (00s) 73�38
Health process during PPS:
μ0 20�64
σ0 8�28
μ 0�42
ρ 0�99
σ 3�07

aTable presents point estimates of the parameters for the static version of the model, which we describe in Appendix D.2.

LTCH to zero yields the discharge probabilities

Pr(j� t|h0)

=
exp

[(
t∑

τ=1

δτS(τ|h0)
(
p(τ)− c

) + δt+1S(t|h0)

∫
V j(ht)dF(ht |h0)

) /
σε

]

∑
k=u�d

∑
s=−15�����+45

exp

[(
s∑

τ=1

δτS(τ|h0)
(
p(τ)− c

) + δs+1S(s|h0)

∫
V k(hs)dF(hs|h0)

) /
σε

] �

(D.4)

where S(t|h0) is the survival function, the probability that a patient with initial health h
survives to period t. Within the exponents, the first term,

∑t

τ=1 δ
τS(τ|h0)(p(τ)− c), is the

expected discounted net profits and the second term is the probability the patient survives
to a given t multiplied by the payoff V l(h) from discharging them to location j at that date.
The health process and V j ’s are parameterized and have the same interpretation as in the
baseline model. The model is estimated by GMM to match the standard moments in the
pre- and post-PPO period.

Figure D.3 shows the fit of the static model and Table D.II shows the parameter esti-
mates. The static model fits the moments quite well but has two weaknesses relative to
the dynamic framework. First, because the LTCH does not condition on heterogeneous
future health when it makes its discharge decisions, a much larger share of the hetero-
geneity loads on the logit error. In particular, the scale term on the logit error is more
than 10 times larger in the static model than in the baseline model ($7,337 versus $597).
From a modeling perspective, we think it is more desirable for the heterogeneity to load
on the health process, which has a clearer economic interpretation. Second, because the
discharge locations are largely determined by the logit draws, rather than the evaluation
of health, the static model does not capture the relationship between discharge location
and observed health. Recall that Figure 4 shows that patients discharged upstream exhib-
ited much larger post-discharge payments than patients discharged downstream. Indeed,
these patterns were an important motivation for our “vertical” discharge model.



PROVIDER INCENTIVES AND HEALTHCARE COSTS 2211

FIGURE D.3.—Model fit of the static model. Figure is parallel to Figure D.1, and shows how the static model
described in Appendix D.2 fits the data.

Figure D.4 shows predicted 30-day post-discharge mortality for both the baseline (top
panel) and static models (bottom panel) under the assumption that health outside of the
LTCH evolves according to the same health process we estimated for patients that remain
at the LTCH. Because in the static model LTCHs do not adjust their decisions based on
the evolution of health, discharge decisions are largely based on the logit draw, and over
longer time horizons, there is very little difference in the projected 30-day post-discharge
mortality by location of discharge (upstream versus downstream). While we do not model
the health process outside of the LTCH and therefore do not attempt to perfectly fit
post-discharge mortality within the baseline model, our baseline model also predicts large
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FIGURE D.4.—Discharge patterns implied by the static model. Figure shows the 30-day mortality rate for
upstream and downstream dischargees. The top panel presents the results for the baseline model (which trace
closely the optimal discharge policy function shown in Figure 7 of the main text), while the bottom panel shows
the pattern implied by the parameter estimates of the static model (described in Appendix D.2).

differences in 30-day post-discharge mortality on the upstream and downstream margins,
which is much more consistent with this basic feature of our economic environment.

APPENDIX E: IDENTIFICATION

In Section 4.4, we provided intuition for how the variation in our data allows us to sepa-
rately identify the parameters in our model. In this appendix, we provide some additional
details. We first present some quantitative exercises that link perturbations of model pa-
rameters to changes in the moments that are used for estimation; the results from this
exercise are generally consistent with the overall intuition provided in Section 4.4 of the
main text. We then focus on the preference parameters, which are the most critical for
our counterfactual exercises, and show how, conditional on patient health, the variation
around the jump in payments due to the SSO threshold allows us to separately identify
σε, c, and the υ’s.
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E.1. The Impact of Changes in Parameter Values on the Estimation Moments

To provide more evidence on the mapping between data and parameters, in this section
we conduct a perturbation exercise where we adjust each of the parameters on a one-by-
one basis and measure the response of the predicted moments we use for estimation.

Figure E.1 provides a few specific examples of the output from this analysis. The left
panels show the absolute change in discharges upstream, downstream, and to death by

FIGURE E.1.—The impact of perturbing selected parameters on discharge patterns. Figure presents se-
lected perturbation exercises, which are described in Appendix E and summarized in Table E.I. The left panels
present the impact of increasing the parameter μ0 by one standard error on each of the moments used for es-
timation (discharge patterns by day upstream (top), downstream (middle), and to death (bottom)). The right
panel presents a similar exercise for the parameter σε.
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TABLE E.I

SUMMARY OF PARAMETER PERTURBATION EXERCISEa

Initial Health Health Process Preference

Upstream
Early 0�443 5�652 0�673
Pre-threshold 0�049 5�166 0�706
Near-threshold 0�043 4�106 1�190
Post-threshold 0�005 0�609 0�172

Downstream
Early 0�656 4�259 3�484
Pre-threshold 0�137 6�094 3�170
Near-threshold 0�478 13�035 2�466
Post-threshold 0�058 0�625 0�629

Death
Early 2�368 3�567 0�279
Pre-threshold 0�053 3�870 0�305
Near-threshold 0�029 2�033 0�361
Post-threshold 0�003 0�276 0�060

aTable summarizes the perturbation exercise described in Appendix E. We start by perturbing each parameter of the model by
a single standard error, and measure its impact on each estimation moment; Figure E.1 presents two selected examples. We then
summarize this exercise by averaging the impact across parameters in a given group and aggregating over groups of days. Parameters
are grouped into initial health (μ0 and σ0), health process (μ, σ , and ρ), and preferences parameters (everything else).

length of stay where we increase the mean of the initial health distribution (μ0) by its
standard error (0.14). The figures show that the effect of mean initial health is concen-
trated in the first few days of the stay and mainly affects discharges to death. The right
panels show the absolute change in discharges upstream, downstream, and to death by
length of stay where we increase the scale parameter on the logit errors (σε) by five times
its standard error (135). Perturbing the scale parameter has the largest effects around the
SSO threshold on the upstream and downstream margins.

In Table E.I, we attempt to summarize the output from this analysis across all of the
parameters, discharge margins, and lengths of stay. To ease the presentation, we segment
the parameters into three groups: initial health parameters (μ0�σ0), non-initial health
parameters (μ�σ�ρ), and preference and cost parameters (υ1u�υ0d�υ1d�σε� c). For each
discharge destination (upstream, downstream, death), we also divide the post-PPS time
period into early (t = −15� � � � �−11), pre-threshold (t = −10� � � � �−3), near-threshold
(t = −2� � � � �+10), and post-threshold (t = +11� � � � �+45). A cell in the table shows the
simple average of the absolute change in the discharge share (to the corresponding desti-
nation) over a set of the corresponding parameters and days.

Column (1) of Table E.I shows that the initial health parameters are primarily affecting
discharges in the early days, and particularly strongly related to discharges to death in
the first few days of the stay (consistent with the example shown in Figure E.1). The
link between the health parameters and discharge to death is not surprising. There is a
one-for-one mapping between a patient’s health and their probability of death. The fact
that this connection is concentrated in the first few days after admission suggests that the
initial health parameters are largely pinned down by the moments over the first few days,
and that these parameters are not strongly affecting discharge (and mortality) patterns in
later days of the stay.
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Column (2) shows that, as may be expected, perturbing the non-initial health param-
eters generates fairly broad shifts in the discharge moments, both across the different
locations (upstream, downstream, death) and different lengths of stay. This is a direct
consequence of health being an important state variable that governs behavior across all
of the discharge margins and time periods. Finally, column (3) shows that the preference
and costs parameters are most strongly connected to the downstream moments, except
well after the SSO threshold (t = +11� � � � �+45) where the connection is weaker.

Overall, the table is consistent with our intuitive discussion in Section 4.4 of the main
text, and loosely supports a “triangular” identification argument, whereby the initial mor-
tality and discharge patterns identify the initial health parameters, the mortality and up-
stream patterns during the rest of the LTCH stay identify the health evolution process
(non-initial health parameters), and conditional on these, the downstream discharge pat-
terns before and around the SSO threshold identify the preference parameters.

E.2. Separately Identifying the Scale, Cost, and Preference Parameters

Our main counterfactual exercises analyze changes in LTCH payments, making it im-
portant to pay particular attention to the way we identify the non-health parameters,
which are the ones that are most directly affecting the response of the LTCH discharge
policy to changes in payments. In this section, we therefore “zoom in” on this group of
parameters—σε, c, and the υ’s—and provide more detail on how the variation around
the jump allows us to separately identify each of them separately.

In Section 4.4 of the main text, we argue that the jump in payments at the SSO threshold
allows us to identify the scale parameter (σε) from the cost parameter (c) and preference
parameters (the υ’s) while the costs and preference parameters are separately identified
by the differential discharge patterns elsewhere during the LTCH stay. Here, we provide
support for these arguments by showing the effect of perturbing these parameters on the
choice-specific payoffs. To simplify the exposition, we focus on the downstream margin
and hold fixed patient health at a given value h, thus reducing the set of υ’s to a single
parameter. That is, discharges on the downstream margin are characterized by the scale
parameter σε on the logit errors, the cost parameter c, and the V d(h) value of discharg-
ing the patient downstream. Figure E.2 shows the net payoffs to discharging downstream
relative to keeping the patients at the LTCH (V d(h) − V l(h)) for h = 10�5, which is ap-
proximately the health index of the marginal patient discharged downstream under the
estimated parameters (see Figure 7 in the main text). The solid lines show the net payoffs
from discharge at the estimated parameters. The dashed lines show the net payoffs from
discharge when we increase the parameter values.

The top panel shows the effect of increasing the scale parameter σε by 50% of its esti-
mated value (from 5.97 to 8.96). Intuitively, because we normalize the coefficient on prof-
its (p(t) − c) to 1 in the LTCH’s objective function, σε can be thought of as the inverse
“profits sensitivity” of LTCH behavior. Therefore, prior to the SSO threshold, increasing
σε reduces the option value of retaining the patient until the jump in payments because
the LTCH places less weight on the financial value of the jump in payments, thus raising
the value of discharging the patient. After the SSO threshold, profits are negative, so in-
creasing σε makes retaining the patient not as bad, thus lowering the value of discharging
the patient. As a result, σε can be thought of as modulating the change in net payoffs at
the SSO threshold, with a higher value for σε resulting in a smaller change in discharges
at the jump in payments conditional on patient health.

The middle panel shows the effects of increasing cost c by 25% of its estimated value
(from 1091 to 1363). Increasing the cost parameter c has a negative impact on the LTCH’s
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FIGURE E.2.—The impact of perturbing selected parameters on continuation values. Figure shows the im-
pact of increasing each preference parameter on the continuation value of downstream discharge (relative
to retaining the patient). The top panel shows this exercise for σε, the middle panel for c, and the bottom
panel for V d(h) (we show values for h = 10�5, which is approximately the health index of the marginal patient
discharged downstream under the estimated parameters).
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value from retaining a patient at the LTCH both before and after the SSO threshold, and
the extent of this impact is proportional to the expected length of stay of the patient.
The shift in the value of discharge is relatively larger in the first few days of the hospital
stay because, at that point, the LTCH expects to keep the patient for a longer number of
days (in order to receive the large lump-sum payment at the SSO threshold). The shift is
uniform after the SSO threshold because the problem is stationary.

The bottom panel shows the effect of raising the value of downstream discharge V d(h)
for a patient with h = 10�5 from −10.8 to 32.4. Raising V d(h) directly increases the
value of discharging the patient downstream. Since most patients who are retained at
the LTCH are eventually discharged downstream, raising V d(h) also increases the con-
tinuation value of retaining the patient at the LTCH and discharging them downstream in
a later period. The indirect effect is smaller than the direct effect because of discounting
and the probability that the patient is discharged upstream or to death instead of down-
stream at a later date. Thus, there is a net increase in the payoff to discharging the patient,
but unlike the effect of costs, which was relatively larger in the first few days of the stay,
the effect of increasing υ0d is fairly constant over time because discounting is minimal and
death probability is low for patients who are close to the downstream margin.

Given the results of these perturbation exercises, it is now easier to see how the model is
identified. The scale parameter is separately identified from the costs and V d(h) because
it modulates the size of the shift in net payoffs at the SSO threshold, while the costs and
V d(h) parameters are mostly affected by the level of discharge rates. They are separately
identified from each other because of the differential movement in the first few days of
the LTCH stay.

APPENDIX F: ROBUSTNESS

In our baseline model, we made a number of parametric assumptions. In order to assess
the sensitivity of our main results to these assumptions, Table F.I reports the main results
(from Table V) from a subset of the alternative specifications that we examined. The
results appear to be qualitatively robust.

In our first alternative specification, we relax the assumption that the health process
is stationary by allowing the autocorrelation parameter ρ to vary with length of stay ac-
cording to ρ = ρ0 + ρ1 ln(t + 1), where the time index is defined such that the patient is
admitted on date t = 0.26 While in the pre-PPS period ρ1 is very close to zero, in the PPS
period the estimate is slightly negative, ρ1 = −0�005, which is consistent with health be-
coming less stable over the course of the stay. However, as shown in Panel B of Table F.I,
enriching the specification in this manner has virtually no effect on the counterfactuals.
We also specified other models of health processes, such as a random walk and a random
walk with a drift, but the ability of these models to fit the data was much worse than our
baseline specification.

The second specification reported in Table F.I fits the model using only the PPS mo-
ments. The counterfactuals, shown in Panel C of Table F.I, are very similar to the baseline
estimates, suggesting that the sharp jump in payments at the SSO threshold, relative to
over-time variation from the implementation of LTCH-PPS, is the key driver of the re-
sults. The limited importance of the over-time variation presumably stems from the fact

26We assume that the correlation parameter becomes fixed after 45 days at a value of ρ = ρ0 + ρ1 ln(46) so
that the dynamic programming problem becomes stationary for t > 45, allowing us to solve the t > 45 problem
by value function iteration and earlier periods by backwards induction.
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TABLE F.I

ROBUSTNESS TO ALTERNATIVE SPECIFICATIONSa

Observed
Schedule

Higher Rate
per Day Lower Cap

Lowest Medicare Payment Within
“LTCH Preferred” Schedules

A. Baseline specification
LTCH Total Payments 27,953 28,316 16,024 26,313
LTCH Total Profits 6,518 8,991 -407 6,876
LTCH Average LOS 19.3 17.4 14.8 17.5
Total Medicare Payments 47,796 47,877 35,399 45,691

B. Alternative specification #1: time-varying health process
LTCH Total Payments 27,953 28,324 16,043 26,320
LTCH Total Profits 5,153 7,762 -1,460 5,640
LTCH Average LOS 19.3 17.4 14.8 17.5
Total Medicare Payments 47,819 47,916 35,471 45,726

C. Alternative specification #2: post-PPS moments only
LTCH Total Payments 28,101 28,545 16,506 26,648
LTCH Total Profits 10,446 12,454 2,466 10,421
LTCH Average LOS 19.8 18.0 15.7 18.2
Total Medicare Payments 47,969 48,322 36,211 46,225

aTable reports the main results from Table V under two alternative specifications of the model. Panel A reports results from the
baseline specification, which corresponds to the numbers that are already reported in Table V. Panel B repeats the analysis, but we
allow the AR(1) health process to vary over time by allowing the serial correlation parameter ρ to change linearly with the natural
logarithm of days since LTCH admission. Panel C re-estimates the model using only data from the post-PPS period.

that we allow distinct health process parameters in each period, thereby soaking up much
of the over-time variation.
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