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Summary

A common feature of methods for analysing samples of probability density functions is that
they respect the geometry inherent to the space of densities. Once a metric is specified for this
space, the Fréchet mean is typically used to quantify and visualize the average density of the
sample. For one-dimensional densities, the Wasserstein metric is popular due to its theoretical
appeal and interpretive value as an optimal transport metric, leading to the Wasserstein–Fréchet
mean or barycentre as the mean density. We extend the existing methodology for samples of
densities in two key directions. First, motivated by applications in neuroimaging, we consider
dependent density data, where a p-vector of univariate random densities is observed for each
sampling unit. Second, we introduce a Wasserstein covariance measure and propose intuitively
appealing estimators for both fixed and diverging p, where the latter corresponds to continuously
indexed densities. We also give theory demonstrating consistency and asymptotic normality,
while accounting for errors introduced in the unavoidable preparatory density estimation step.
The utility of theWasserstein covariance matrix is demonstrated through applications to functional
connectivity in the brain using functional magnetic resonance imaging data and to the secular
evolution of mortality for various countries.

Some key words: Barycentre; Fréchet mean; Fréchet variance; Functional connectivity; Mortality; Random density.

1. Introduction

The analysis of samples of density functions or distributions is an important and challenging
problem for modern statistical practice (Delicado, 2011). Examples include distributions of age at
death or mortality for different countries, warping functions, and distributions of voxel-to-voxel
correlations of functional magnetic resonance imaging signals for a sample of subjects. While
functional principal component analysis using cross-sectional averaging can be directly applied
to samples of density functions (Kneip & Utikal, 2001), more recently techniques have been
developed that incorporate the geometric constraints inherent to the space of density functions. A
popular metric for data where each data atom corresponds to a randomly sampled distribution or
density is the Wasserstein metric, both for its theoretical appeal and for its convincing empirical
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340 A. Petersen AND H.-G. Müller

performance in various applications (Bolstad et al., 2003; Zhang & Müller, 2011; Bigot et al.,
2017, 2018; Panaretos & Zemel, 2016).

We consider samples of density data where multiple random densities per subject are observed,
that is, repeated realizations of a stochastic process defined on Dp, where D is a space of one-
dimensional density functions. For p = 1, a variety of methods have been proposed, focusing on
concepts of mean, modes of variation and dimensionality reduction (Delicado, 2011; Petersen &
Müller, 2016; Hron et al., 2016). However, generalizations of these methods for p > 1, where
one has a vector of densities, have not yet been developed, even though such data arise in various
applications. An essential first step is the extension of the mean and variance concepts for samples
of densities to a vector of means and covariance matrix. We demonstrate here the usefulness of
these concepts for applications. The type of data we consider is different from data where one
observes, for each subject, a random sample of identically distributed p-vectors, for which the
joint distribution is of interest. Instead, we focus on the joint modelling of p univariate densities.

Using the Wasserstein geometry of optimal transport on the space of densities, we extend the
concepts of Fréchet mean and variance to a measure of Wasserstein covariance between com-
ponent densities for a p-variate density-valued process. As one does not observe the densities
themselves but rather samples of univariate data that they generate, a preliminary density esti-
mation step is necessary and is taken into account in our analysis. Our theoretical arguments
show that the population Wasserstein covariance can be estimated consistently, with a limiting
Gaussian distribution under sufficient conditions for the estimation error associated with the
preliminary estimation step to be negligible. Motivated by one of the applications, we also con-
sider continuously varying densities, where one observes a discretized version of a continuously
evolving density-valued process, similar to densely observed repeated functional data (Park &
Staicu, 2015; Chen et al., 2017). For this situation we target a Wasserstein covariance surface and
develop theory for its consistent estimation while still accounting for errors in density estimation.

The utility of the proposed methodology is demonstrated through the analysis of functional
magnetic resonance imaging and mortality data. In the application to brain imaging, we investigate
differences in intraregional functional connectivity between Alzheimer’s patients, cognitively
normal subjects, and a third group of individuals diagnosed with mild cognitive impairment,
a sign of increased risk for developing dementia. Here, intraregional functional connectivity is
quantified by the distribution of voxel-to-voxel correlations within a neighbourhood, called a
functional hub, corresponding to a small region in the brain. Multiple densities per subject are
obtained for a number of hubs simultaneously, leading to a random vector of densities obtained
for each subject in the sample. In the mortality application, we consider distributions of age at
death over a range of calendar years, and compare the resulting Wasserstein covariance surfaces
for a group of Eastern European countries and a second group of other nations.

2. Wasserstein covariance

2.1. The Wasserstein metric and geometry

Let D be a class of one-dimensional densities such that
∫

R
u2f (u) du < ∞ for all f ∈ D. For

f , g ∈ D, suppose Y ∼ f and consider the collection of nondecreasing maps T ∗ : R → R, known
as transports, such that T ∗(Y ) ∼ g. The optimal transport problem that leads to the Wasserstein
metric is to find the transport that minimizes

∫
R

{
T ∗(u) − u

}2 f (u) du,
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Wasserstein covariance 341

and the solution is known to be T = G−1 ◦ F , where F and G are the distribution functions of f
and g, respectively (Ambrosio et al., 2008). The resulting squared Wasserstein distance is

d2
W (f , g) =

∫
R

{T (u) − u}2 f (u) du.

This metric arises from a local inner product (Ambrosio et al., 2008). If gj ∈ D (j = 1, 2) have
distribution functions Gj, the optimal transports Tj = G−1

j ◦ F for given F reside in the tangent
space of f , and for each f an inner product between T1 and T2 can be defined by

〈T1, T2〉f =
∫

R

{T1(u) − u} {T2(u) − u} f (u) du, (1)

so that dW (f , gj)
2 = 〈Tj, Tj〉f = 〈T−1

j , T−1
j 〉gj .

2.2. Wasserstein mean, variance and covariance

For a random density F in D, its Fréchet mean and Fréchet variance (Fréchet, 1948) are natural
tools for relating the distributional properties of F to the Wasserstein geometry of D in terms
of first- and second-order behaviour. When the space D is endowed with the metric dW , the
Wasserstein–Fréchet, or simply Wasserstein, mean and variance of F are

f⊕ = arg min
f ∈D

E
{
dW (F, f )2} , var⊕(F) = E

{
dW (F, f⊕)2} . (2)

For a single density process F, the theoretical and practical properties of the Wasserstein mean
have been thoroughly investigated (Bolstad et al., 2003; Zhang & Müller, 2011; Panaretos &
Zemel, 2016; Bigot et al., 2017), and recently the Wasserstein variance was adopted to quantify
variability explained when performing dimension reduction for densities (Petersen & Müller,
2016). To quantify the dependence between two random densities, we propose here the extension
of these concepts to a Wasserstein covariance measure.

For a bivariate density process (F1, F2), where the Fj are random elements of D, for j = 1, 2,
denote by F⊕, j the distribution function of the Wasserstein mean of Fj in (2) and denote the
corresponding density by f⊕, j. The random optimal transport from f⊕, j to Fj is Tj = F−1

j ◦F⊕, j,
where Fj is the distribution function of Fj, so that the Wasserstein variances are

var⊕(Fj) = E
{
dW (Fj, f⊕, j)

2} = E

[∫
R

{
Tj(u) − u

}2 f⊕, j(u) du

]
= E

(〈Tj, Tj〉f⊕, j

)
.

This suggests defining a Wasserstein covariance measure as an expected inner product between T1
and T2. Since in general f⊕,1 |= f⊕,2, these transports reside in different tangent spaces. Adopting
a common technique for manifold-valued data (Yuan et al., 2012), we push T1 to a new transport
map T̃1 in the tangent space of f⊕,2 by a parallel transport map. Intuitively, as T1 is transported
to T̃1 along the geodesic connecting f⊕,1 to f⊕,2, its angle with the geodesic is preserved. In the
Wasserstein geometry, setting T⊕,12 = F−1

⊕,1 ◦ F⊕,2, one obtains T̃1 = T1 ◦ T⊕,12 − T⊕,12 + id,

where id is the identity map. Due to symmetry of this operation, if T̃2 = T2 ◦ T−1
⊕,12 − T−1

⊕,12 + id,
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342 A. Petersen AND H.-G. Müller

then 〈T̃1, T2〉f⊕,2 = 〈T1, T̃2〉f⊕,1 . Thus, the Wasserstein geometry motivates

cov⊕(F1, F2) = E
(
〈T̃1, T2〉f⊕,2

)
= E

(
〈T1, T̃2〉f⊕,1

)
= cov⊕(F2, F1) (3)

as the Wasserstein covariance between the two random densities.

2.3. Expression in terms of quantile functions

The well-known fact that for one-dimensional densities the Wasserstein geometry is closely
related to quantile functions (Villani, 2003; Panaretos & Zemel, 2016; Petersen & Müller, 2016)
leads to a second characterization of Wasserstein covariance, which is useful for practice. The
change of variable t = F(u) applied to (1) gives the alternative expression

〈T1, T2〉f =
∫ 1

0

{
F−1(t) − G−1

1 (t)
} {

F−1(t) − G−1
2 (t)

}
dt, (4)

so that d2
W (f , g) = ∫ 1

0 {F−1(t) − G−1(t)}2 dt. We can then express the quantities in (2) and (3)
in terms of the random quantile functions F−1

j . The Wasserstein means f⊕, j are characterized

by their quantile functions F−1
⊕,j(t) = E{F−1

j (t)} (0 � t � 1; j = 1, 2), and the Wasserstein
variances and covariances are

cov⊕(Fj, Fk) = E

[∫ 1

0

{
F−1

j (t) − F−1
⊕,j(t)

} {
F−1

k (t) − F−1
⊕,k(t)

}
dt

]
(j, k = 1, 2). (5)

Expressions (4) and (5) reveal a connection to functional data analysis. Viewing (F−1
1 , F−1

2 )

as bivariate functional data, key objects are the mean functions, F−1
⊕, j(t), and covariance surfaces,

Cjk(s, t) = cov
{

F−1
j (s), F−1

k (t)
}

(j, k = 1, 2; 0 � s, t � 1),

that characterize the first- and second-order behaviour of the processes (Li & Hsing, 2010).
Writing Mjk for the integral operator with kernel Cjk , Fubini’s theorem implies that

cov⊕(Fj, Fk) =
∫ 1

0
Cjk(t, t) dt = Tr(Mjk)

where Tr(·) is the operator trace. Accordingly, the Wasserstein variance of each component distri-
bution can be interpreted as a summary of the variability in the quantile process, and Wasserstein
covariance as a summary of covariability.

Using quantile functions has two major advantages when multiple densities are observed
per subject. First, the derived notions of mean, variance, and covariance have geometric inter-
pretations in the manifold induced by the Wasserstein metric in the space of distributions, as
in (2) and (3). Second, quantile functions always have the same support, [0, 1], regardless of
the distributional supports of the Fj, so that the Wasserstein covariance remains well-defined
even when the latter differ. In contrast, attempts to define similar covariance summaries based on
cross-covariance operators of density or compositional representations are bound to fail when dis-
tributional supports differ. For example, if Gjk is the ordinary cross-covariance operator between
densities Fj and Fk , the operator trace is well-defined only when the supports coincide. Even when
they are the same, taking Tr(Gjk) as a summary covariance measure has no intuitive geometric
meaning.
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Wasserstein covariance 343

2.4. Wasserstein covariance matrices and kernels

Considering a p-variate density process F = (F1, . . . , Fp) with component Wasserstein means
and variances f⊕,j and var⊕(Fj) (j = 1, . . . , p), we initially assume that p is fixed, as in the brain
imaging example in § 4.1. The Wasserstein covariance matrix for F is the p × p matrix with
elements

(�⊕)jk = cov⊕(Fj, Fk), (6)

which is easily seen to be a valid covariance matrix.
Motivated by the mortality example in § 4.2, suppose the components of F are indexed by a

continuous variable 0 � yj � 1, which could represent time. To model the setting of repeatedly
observed densities that are measured densely in time, we allow p → ∞. Then F can be thought
of as a discretized version of an unobservable process F(y), 0 � y � 1, with Fj = F(yj). We
target the Wasserstein mean surface f⊕(· ; y) and covariance kernel

�⊕(y, z) = cov⊕ {F(y), F(z)} (0 � y, z � 1).

3. Estimation of Wasserstein covariance objects

3.1. Density estimation

While we defined the Wasserstein covariance for fully observed densities, in reality these
densities are rarely if ever directly observed. Rather, the data actually available are collections of
scalar random variables Wijr (i = 1, . . . , n; j = 1, . . . p; r = 1, . . . , Nij), where n is the number
of subjects i, p is the number of densities or distributions j per subject, and Nij is the number
of independent observations r distributed according to the jth density that are available for the
ith subject and may vary across i and j. The observed data can be viewed as resulting from two
independent random mechanisms, where the first random mechanism generates the independent
vectors of densities fi = {fi1, . . . , fip} (i = 1, . . . , n), while the second generates the observations
that are sampled from these distributions, Wijr ∼ fij. The Wijr are all independent and for each
fixed (i, j) are also identically distributed.

Obtaining density estimates f̂ij from the observed data Wijr and using these as proxies for the
fij, for the asymptotic analysis we need to address the challenge that these estimates are noisy
and deviate from the true density targets. Since the targets �⊕ can be expressed as integrated
moments of the multivariate quantile process, an obvious route would be to estimate the empirical
quantile functions and proceed by averaging. However, this has some practical drawbacks, and a
preferred approach is to first construct a sample of smooth density estimates f̂ij and then obtain
smooth distribution functions by integration, quantile functions as inverse functions and the target
quantities from the estimated quantile functions.

The theoretical analysis of the Wasserstein covariance estimates in § 3.2 below requires the
following assumption, where a preliminary density estimator is generically denoted by f̂ .

Assumption 1. There is a compact interval I such that for any f ∈ D, its support Df is a
compact interval contained in I . If W1, . . . , WN is a random sample from f , the density estimate
f̂ based on this sample is a probability density function on Df such that for some decreasing
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344 A. Petersen AND H.-G. Müller

sequence bN = o(1) as N → ∞,

sup
f ∈D

E
{

dW (f , f̂ )
}

= O(bN ).

A density estimator that satisfies Assumption 1 is described in Petersen & Müller (2016). If the
support Df is known and the condition

sup
f ∈D

sup
u∈Df

max
{
f (u), 1/f (u), |f ′(u)|} < ∞

is satisfied, then one may take bN = N−1/3; see Proposition 1 in the Supplementary Material.
With no assumed uniform lower bound on the random densities, Panaretos & Zemel (2016)
proposed a density estimator for which bN = N−1/4.

Lastly, because np densities need to be simultaneously estimated, each from data of varying
sample sizes Nij, these need to be tied to the number of independent subjects n, as follows.

Assumption 2. There exists a sequence N = N (n) such that mini,j Nij � N and N → ∞ as
n → ∞.

Here N is a uniform lower bound on the sample sizes for the np densities to be estimated that
must diverge with the number of subjects n to ensure uniform consistency of the densities.

3.2. Wasserstein covariance estimation

For fixed p, given densities fi = (fi1, . . . , fip) (i = 1, . . . , n) that are independently and iden-
tically distributed according to F = (F1, . . . , Fp), our main goal is to estimate the Wasserstein
covariance matrix �⊕, with elements defined in (6). We compute density estimates f̂ij, which are
then mapped to their quantile function estimates X̂ij = F̂−1

ij . Write X̂ c
ij = X̂ij − n−1 ∑n

i=1 X̂ij and

Ĉjk(s, t) = n−1 ∑n
i=1 X̂ c

ij (s)X̂
c
ik(t). To target the Wasserstein covariance �⊕, the results of § 2.3

suggest the estimator

(
�̂⊕

)
jk

=
∫ 1

0
Ĉjk(t, t) dt.

Theorem 1 demonstrates the overall rate of convergence of the Wasserstein covariance estimator,
establishing asymptotic normality when N diverges sufficiently fast. While our focus is on the
Wasserstein covariance, the same rate of convergence is also obtained for the full covariance
surface Ĉjk(s, t) as an estimator of Cjk(s, t); see Theorem 3 in the Supplementary Material, where
also auxiliary results and proofs can be found.

Theorem 1. Suppose Assumptions 1 and 2 hold, and that Fj ∈ D almost surely (j = 1, . . . , p).
Then ‖�⊕ − �̂⊕‖F = Op(n−1/2 + bN ), where ‖·‖F denotes the Frobenius norm. Additionally,
if n1/2bN converges to zero, then there exists a zero-mean p × p Gaussian matrix C such that
n1/2(�̂⊕ − �⊕) converges weakly to C.

The covariance structure of C is a four-dimensional array defined in the Supplementary Mate-
rial. Under regularity conditions, the density estimator in Petersen & Müller (2016) satisfies
bN = N−1/3 so that asymptotic Gaussianity is obtained for N = nq, q > 3/2. Faster rates of
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Wasserstein covariance 345

convergence bN = N−ρ , with 1/3 < ρ < 1/2, can be obtained under additional smoothness
conditions and for suitable density estimators, and then weaker conditions on q will suffice.

In the continuously indexed case, the vectors of densites fi = (fi1, . . . , fip) correspond to dis-
cretized versions of independent and identically distributed realizations f̃i(· ; y) of a latent dynamic
density surface F(y), 0 � y � 1, where fij are independently distributed for different i as F(yij).
For simplicity, we require the following condition.

Assumption 3. The number of observation times p = p(n) satisfies np−1 = O(1), and these
are equidistant and common for all subjects, i.e., yij = (j − 1)/(p − 1) for 1 � j � p.

We then estimate �⊕(yj, yk) by the sample Wasserstein covariance kernel estimator

�̂⊕(yj, yk) =
∫ 1

0
Ĉjk(t, t) dt,

followed by linearly interpolating these discretized estimates to obtain �̂⊕(y, z) for any
0 � y, z � 1. For this interpolation to be negligible, we require two additional assumptions.

Assumption 4. There exists a constant L1 > 0 such that

|�⊕(y1, z1) − �⊕(y2, z2)| � L1(|y1 − y2| + |z1 − z2|) (0 � y1, y2, z1, z2 � 1).

Assumption 5. With Xi(t ; y) denoting the random quantile function corresponding to f̃i(· ; y)
and X c

i (t ; y) = Xi(t ; y) − E{Xi(t ; y)},
∫

[0,1]4
cov

{
X c

1 (s ; y)X c
1 (s ; z), X c

1 (t ; y)X c
1 (t ; z)

}
ds dt dy dz < ∞.

Theorem 2. Suppose Assumptions 1–5 hold and that F(y) ∈ D almost surely. Then

∫ 1

0

∫ 1

0

{
�⊕(y, z) − �̂⊕(y, z)

}2
dy dz = Op(n

−1 + b2
N ).

4. Applications

4.1. Functional connectivity in brain imaging

The study of functional connectivity in the brain involves the identification of voxels or regions
which exhibit similar behaviour, as quantified by neuroimaging techniques such as electroen-
cephalography and functional magnetic resonance imaging. Of special interest are connections
that are present when subjects are in the resting state (Allen et al., 2014). Studies of connections
between spatially remote regions revealed the so-called default mode network in the resting brain,
including nodes of high centrality that have been characterized as functional connectivity hubs
(Buckner et al., 2009). The strength of connections between neighbouring voxels, as opposed
to those between remote regions, contains important information related to various biological
factors (Gao et al., 2016) and neurological diseases (Zalesky et al., 2012). The strength of local
connections in a particular brain region has been quantified in various ways (Tomasi & Volkow,
2010; Zang et al., 2004).

Petersen & Müller (2016) demonstrated the utility of a relatively simple approach to quantify-
ing local connectivity within functional connectivity hubs that uses probability density functions
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Fig. 1. Wasserstein means for ten functional connectivity hubs for (a) normal, (b) mild cognitive impairment and
(c) Alzheimer’s subjects, displayed as densities.

formed by smoothing histograms of pairwise temporal correlations between the signals of each
voxel within a hub and the signal at its central seed voxel. We implement this approach for the
p = 10 hubs in Table 3 of Buckner et al. (2009). The resulting 10-dimensional vectors of densities
that are obtained for each subject are then analysed with the proposed Wasserstein covariance.
The ten hubs of interest are located in the left and right parietal lobes, medial superior frontal
lobe, medial prefrontal lobe, left and right middle frontal lobes, posterior cingulate/precuneus
region, right supramarginal lobe, and the left and right middle temporal lobes.

The densities were constructed for 171 cognitively normal subjects, 65 subjects with
Alzheimer’s disease, and a third group of 86 subjects with mild cognitive impairment, with
the data pre-processed as in Petersen et al. (2016). The densities were then used to compute
estimated Wasserstein mean densities f̂⊕,j for each group separately, which are displayed for each
of the ten hubs in Fig. 1. The various groups show remarkable similarities in terms of the average
Wasserstein connectivity distributions across these ten functional hubs. In contrast, the Wasser-
stein covariance and correlation matrices in Fig. 2 exhibit clear differences between the groups
and provide valuable additional information. Correlations are overall stronger for the normal
subjects and those with mild cognitive impairment and exhibit different patterns of dependency
across hubs. Complete second-order behaviour can be studied through the estimated quantile
covariance function estimates Ĉjk , where for p = 10 there are 45 such functions for each group.
We examine the off-diagonal elements for j < k by plotting slices corresponding to the three
quartiles s = 0.25, 0.5, 0.75; see the Supplementary Material.

We can also test for group differences in Wasserstein covariance using bootstrap samples
obtained by centring all quantile functions with respect to their group means. To construct a
bootstrap sample under the null hypothesis that all groups have the same Wasserstein covariance
matrix, we simply centre each multivariate quantile process at its corresponding groupWasserstein
mean. By pooling these centred processes, a bootstrap sample is obtained by sampling with
replacement and then dividing into three groups of proper size. With estimates �̂n⊕, �̂m⊕ and �̂a⊕
for the groups of normal, mildly cognitively impaired and Alzheimer’s subjects, the test statistic
for the global null hypothesis that all groups are equal is

S =
∥∥∥log �̂n⊕ − log �̂m⊕

∥∥∥2

F
+

∥∥∥log �̂n⊕ − log �̂a⊕
∥∥∥2

F
+

∥∥∥log �̂m⊕ − log �̂a⊕
∥∥∥2

F
.
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Fig. 2. Estimated Wasserstein covariance (top row) and correlation (bottom row) matrices for normal (left), mild
cognitive impairment (middle) and Alzheimer’s (right) subjects. LMF and RMF, left and right middle frontal; LPL and
RPL, left and right parietal; LMT and RMT, left and right middle temporal; MSF, medial superior frontal; MP, medial
prefrontal; PCP, posterior cingulate/precuneus; RS, right supramarginal. Positive values are shown in black and negative

values in white, and larger circles correspond to larger absolute values.
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Fig. 3. Estimated Wasserstein correlation submatrices corresponding to lateral hub pairs for (a) normal
and (b) Alzheimer’s subjects, after reordering of hubs by hierarchical clustering using Ward’s criterion.

Rectangles indicate the groupings when three clusters are used. Labels correspond to those in Fig. 2.

Using 1000 bootstrap samples, the global p-value was found to be p = 0.015. An alternative
test, obtained by replacing the estimated Wasserstein covariance matrices with the corresponding
correlations in the above statistic, resulted in p = 0.093. To further explore the differences
between normal and Alzheimer’s groups, the matrices were reduced to a subset of rows/columns
corresponding to the lateral hub pairs in the middle frontal, middle temporal and parietal regions,
then reordered using Ward’s hierarchical clustering algorithm with three clusters, visualized in
Fig. 3. This demonstrates the presence of asymmetry in the Alzheimer’s disease group, which
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is absent in the normal group. Derflinger et al. (2011) and others report findings of similar
asymmetries in the brains of Alzheimer’s patients.

One can ask how the Wasserstein covariance approach compares to established approaches in
brain imaging. A commonly used measure of local connectivity is regional homogeneity (Zang
et al., 2004), corresponding to Kendall’s coefficient of concordance between the BOLD signals at
the seed voxel and those of its immediate neighbours. This scalar measure of regional homogeneity
can be computed for each hub and each subject, resulting in a sample of ordinary multivariate
data. The group covariance and correlation matrices are shown in the Supplementary Material.
Some common patterns are seen, most notably an increased number of negative correlations for
the Alzheimer’s group. However, the differences are not as stark, and the regional homogeneity
covariances do not reveal the asymmetry seen in the Wasserstein covariance analysis.

4.2. Distribution of age at death for period cohorts

To gain a better understanding of human longevity, the study of the temporal evolution of
the distributions of age at death and their dependency structure over calendar time is of interest.
The Human Mortality Database provides yearly mortality and population data for 38 countries
at www.mortality.org, which have been previously analysed with various functional data
analysis techniques (Hyndman & Shang, 2010; Chiou & Müller, 2009).

For a given country and calendar year, the probability distribution for mortality can be rep-
resented by its density. Consider a country for which life tables are available for the years
yj (j = 1, . . . , p). For integer-valued ages a = 0, . . . , 110, the life table provides the size of
the population ma which is at least a years old, normalized so that m0 = 100 000. These life
tables were converted to histograms of age-at-death, which we then smoothed by applying the
hades package, available athttp://www.stat.ucdavis.edu/hades/, with a smooth-
ing bandwidth of h = 2. This led to estimated densities of age-at-death on the age domain
[20 years, 110 years].

To illustrate the proposed methods for continuously varying densities, we considered 32 coun-
tries and identified subgroup of nE = 8 countries located in Eastern Europe for comparison with
the remaining nO = 24 countries. Densities were estimated for every year between 1985 and
2005. Wasserstein means are depicted in the Supplementary Material and are found to be quite
similar for the two groups, demonstrating increasing longevity over calendar time. In contrast,
the estimated Wasserstein covariance and correlation surfaces of these two groups differ quite
drastically, as seen in Fig. 4.

Examining the diagonals of the Wasserstein covariance plots, the Eastern European countries
are characterized by stagnant Wasserstein variability until 1993 when it increases sharply, fol-
lowed by a steady increase between 1998 and 2005. For the non-Eastern European countries,
the Wasserstein variability is maximal in 1994. Wasserstein correlations reveal that mortality
dependencies are high and roughly constant over time for the non-Eastern European countries,
while they are weak for Eastern European countries between years before 1990 and those after
1995.

These exploratory findings are not altogether surprising, given the economic and societal
upheaval in Eastern Europe beginning around 1990, which is seen to be reflected in theWasserstein
covariance. In addition to exploratory analysis, we implemented a bootstrap test as described in
the previous section. With estimated Wasserstein covariance surfaces �̂E⊕ and �̂O⊕, the test statistic
was computed as the square-root distance between the associated operators (Pigoli et al., 2014)
and implemented by computing the Frobenius distance between the principal square roots of the
discretized matrix estimates. Computing this statistic for 1000 bootstrap samples, the p-value
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Fig. 4. Estimated Wasserstein covariance (left column) and correlation (right column) matrices for Eastern European
(top row) and other (bottom row) countries.

for the difference between Wasserstein covariances of Eastern European and other countries was
0.287, while it was 0.007 using Wasserstein correlations, providing some evidence for differences
in the distributions of the density processes.

5. Discussion

For studying the covariance structure of vectors of random densities, the Wasserstein approach
is preferred over possible alternatives such as the transformation approach (Petersen & Müller,
2016) or compositional methods based on the Aitchison geometry (Egozcue et al., 2006). This is
because of its convincing practical behaviour for the construction of barycentres (Bolstad et al.,
2003; Zhang & Müller, 2011) and the theoretically appealing connections with optimal transport.

Specifically, the transformation approach, where densities are mapped to the entire Hilbert
space L2 by means of a suitable transformation such as the log-quantile density transformation,
could be applied to the components of the vectors of densities, which would lead to unconstrained
multivariate functional data. For such data, any one of numerous available measures of functional
covariance and correlation (Leurgans et al., 1993; Dubin & Müller, 2005; Eubank & Hsing, 2008;
Yang et al., 2011) could then be harnessed. One would need to choose among many possible
covariance measures and transformation maps, none of which is isometric to the Wasserstein
distance. The resulting metric distortions make such an approach difficult to interpret.

In contrast, the proposed Wasserstein covariance has a canonical interpretation as an expected
value of inner products of optimal transport maps. This means that the proposed Wasserstein
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covariance is similar to the notion of a regular covariance for an appropriate inner product, and
can be interpreted as a measure of the degree of synchronization of the movement of probability
mass from the Fréchet means to the random components of a bivariate density process. It thus
emerges as a natural and compelling extension of the Wasserstein–Fréchet variance. The quantile
function representation of the Wasserstein covariance in (4) facilitates the joint Wasserstein
analysis of p one-dimensional distributions with Wasserstein covariance matrices and surfaces,
enhancing the appeal of the proposed approach for practical applications.

While the geometric notion of covariance in (3) can be extended to the case where the sam-
ple densities have a multivariate domain, the implementation via quantile functions cannot be
extended for this case, and therefore the asymptotic theory we provide remains limited to the
case of one-dimensional densities. An extension to multivariate domains and analogous notions
of covariance with respect to other metrics are open problems for future research.
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