m

Check for
updates

Research Article Vol. 2, No. 2/15 February 2019/ OSA Continuum 332

OSA CONTINUUM ‘

Field demonstration of a wing-beat modulation
lidar for the 3D mapping of flying insects

MARTIN JAN TAauc,! ® KuRT M. FRISTRUP,2 KEVIN S. REPASKY,]
AND JOSEPH A SHAwW"

!Electrical and Computer Engineering, Montana State University, 610 Cobleigh Hall, Bozeman, MT 59715,
USA

2Natural Sounds and Night Skies Division, Natural Resource Stewardship and Science, 2101 Oakridge Dr.
Suite 100, Fort Collins, CO 80525, USA

*joseph.shaw@montana.edu

Abstract: We describe a wing-beat modulation lidar system designed for the 3D mapping of
flying insects in ecological or entomological studies. To better understand the signals from
this instrument, we analyzed simulated signals to identify how they were affected by various
imperfections, such as variations in the spacing and amplitude of each individual wing-beat
reflection. In addition, a radiometric model was used to estimate signal-to-noise ratio to gain
insight into the relationships between the optical system design and insect parameters (e.g., wing
size, reflectivity, or diffusivity).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In recent years, light-based methods of insect detection and classification have shown great
promise for the field of entomology. Insects are both abundant and diverse and their impact
on the planet and humans is of particular interest. Some studies have focused on detecting
disease-carrying mosquitoes [1-6] since they are responsible for more than one million deaths
each year from conditions like malaria, dengue, and West Nile virus [7,8]. Insects can also
be a nuisance to farmers by ruining crops and reducing yields and this has also been a strong
motivator for some studies [9—15]. On the other hand, researchers were also motivated by the
fact that many insects are pollinators and a vital component for most of the world’s food supply
[5,10,16-20]. Finally, some studies have exploited the ability of honeybees to detect land mines
through smell [21-24]. These and other studies benefit from noninvasive methods of remotely
sensing insect distributions [17,25-30].

Flying insects can be sensed remotely using various optical detection methods. For example,
the spectral distribution of reflected light may be useful for helping identify certain characteristics
of age, sex, or species, thereby enabling detection and classification of insects [3,6,11,26,30-34].
Although this approach has shown some promise in distinguishing between different insects, the
wing-beat frequency of flying insects can easily distinguish them from stationary objects, making
it a good method for insect detection (although the actual wing-beat frequency can be confused
by the presence of harmonics, etc.). To use the wing-beat frequency for insect classification of
species and sex, the fundamental and harmonic frequencies provide a more accurate classification
than the fundamental alone [2-5,9-11,16,17,22-24,29,32,33,35-37]. A combination of spectral
reflectances and temporal wing-beat information provides the most robust means to classify
insects; however, in this work, we exclusively focus on the wing-beat frequencies of insects as a
means of detection (and not classification) against a continuously changing background.

Wing-beat frequencies have been studied through both acoustic [35,38-40] and optical means.
Laboratory measurements often produce the cleanest wing-beat signals since the environment is
controlled, the background is well known and constant, and the insect is confined to a volume
near the beam, typically less than a few meters from the source [2-5,11,18,33,34,36,37,41,42].
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The work done in such laboratory settings has paved the way for insect detection and clas-
sification in the field by characterizing wing-beat fundamentals and harmonics for various
insects, as well as interpreting the heading and orientation from the frequency information
[33]. Previous remote sensing field studies have used active remote sensing systems (i.e., lidar)
[9,10,16,17,21-24,28,32,43] and passive systems [28—30,44]. In general, the field studies aim to
both detect and classify insects (e.g., species) along a near-horizontal path. Numerous external
factors (e.g., changing background, brief transit time) cause data from field experiments to be
less identifiable from laboratory experiments [16,29]. Although a highly cluttered insect signal
may be too forgone to identify species, sex, or other characteristics, it is likely that it is sufficient
to determine if an insect was present or not.

In this paper, we describe a wing-beat modulation lidar system designed for three-dimensional
(3D) scanning and show data from a field campaign at the AMK Ranch in Grand Teton National
Park, USA (43.94° N, 110.64° W) during 8 June 2016. We collected backscattered laser light
in a 3D volume using an updated version of a heritage lidar system [24]. Although some
studies have had 3D scanning capabilities [12,24], their intentions were not to map insects in 3D
space. To our knowledge, this is the first entomological lidar to scan 3D space for insect counts
based on wing-beat frequency in a general study of insects in a natural environment. During
analysis, we found that many insect signals had been affected by external factors to a point where
classification was impossible. As such, we performed simulations of wing-beat signals and
systematically varied parameters such as peak amplitude variation and wing-beat separation time
to identify their impacts on the original signal. Finally, we performed a radiometric analysis
on the uncalibrated system to guide the understanding of current systems and the design of
future wing-beat-modulation lidar systems. First, we describe the instrument and data processing
routines; next we present experimental insect signals followed by simulated wing-beat signals;
and finally we show 3D insect spatial distributions and detections as a function of time as an
indication of the utility of this kind of instrument in entomological field studies.

2. Instrument description

The lidar system was adapted from a heritage system that was used for honeybee detection
[22-24,45,46]. Some components from the previous system, specifically the laser, detector, and
analog-to-digital converter (ADC), were implemented into the new lidar system, whereas other
components, such as the telescope, lenses, filters, mirrors, and the motorized pan-and-tilt mount
were newly integrated. The redesign of the wing-beat-modulation lidar system allowed for 3D
scanning to map insect locations in a volume.

2.1. Hardware

The lidar system was modular in that the transmitting and receiving optics could be separated for
transport or independently modified for future iterations. A schematic diagram and photograph
are shown in Figs. 1 and 2. Together, the system was about 38.5 kg in mass and had a 0.5 m?
footprint. It was attached to a pan-and-tilt mount (MOOG QPT-130) that was secured to a 1 m?
optical breadboard for stability.

The first component in the transmitting optics was the laser head (JDS Uniphase NG-10320-100)
with a pulse width of 0.6 ns, repetition rate that ranged from 4 kHz to 6 kHz (mostly dependent on
temperature), laser pulse energy of 3 uJ that yielded 5 kW of pulse power, and a center wavelength
of 532 nm. A small photomultiplier tube (PMT) was used to trigger the digitizer in the receiver
(discussed next). Before exiting the system at the center of the receiver telescope’s #101.6 mm
central obstruction, the transmitted laser beam was expanded by a refractive telescope with 10x
magnification to a size of 050.8 mm with half-angle beam divergence of 0.2 mrad. The total
probe volume, which was constrained by the beam area and the maximum range bin, was about
0.55m?>.
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Fig. 1. Schematic of full optical setup split between the top and side view shows the beam
as it expands through the transmitting optics and exits the system. The receiving optics
collect, filter, and detect the return signal.
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Fig. 2. Full optical setup photograph shows the lidar system during field campaign.

The first component in the receiving optics was the Schmidt-Cassegrain telescope (12 Meade
LX200 Classic) with a focal length of 3048 mm, a full aperture of #304.8 mm, and effective
(unobscured) area of 577.6 cm?. On the back end, a short lens tube assembly housed a collimating
lens (ThorLabs LA1951-A), two laser line filters (ThorLabs FL532-3) with 61.2% transmission
at the center wavelength of 532 nm (optical density of 0.2) and a full width at half maximum of
3 nm. Although the filter transmits beyond 1500 nm, the detector PMT’s multialkali photocathode
response steeply declines at about 700 nm, so outside of the 532 nm region the optical density
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was about 6. Following these filters was a focusing lens (ThorLabs LA1131-A), with a 50-mm
focal length that focused the beam onto a PMT (Hamamatsu H9305-04, rise time = 1.4 ns). The
inclusion of the filtering optics at the back end resulted in an effective focal length of 4590 mm
for the entirety of the receiving optics. Considering the rectangular effective area of the PMT,
the diagonal (largest) field-of-view (FOV) was 1.5 mrad, and the horizontal (smallest) FOV
was 0.4 mrad. Finally, the current from the PMT was converted to a digital number against a
50 Q resistor on the ADC (Gage CS14200 with 14 bits, 200 megasamples per second, 100 MHz
bandwidth, and RC time constant of 2 ns).

2.2. Software

Software was developed to control the hardware and to process and analyze the collected data.
MATLAB was used to control the ADC card and the pan-and-tilt mount through a single script
for ease of use, and to perform the post-processing routines. Although we used the algorithms
from previous single-species studies of honeybees as a guide [23], the post-processing in this
more general insect study was more complex, and our system was not calibrated for optical cross
sections or intended to classify species or sex [16]. Furthermore, our background was frequently
changing and we often observed non-insect objects, such as trees. Considering this, we manually
searched the data for insect wing-beat modulation signatures.

2.2.1. Instrument control

The goal of the experiments was to count insects throughout a 3D volume as a function of time
throughout the day and night in preparation for later experiments where we studied the effects of
artificial light sources on insect distributions. The system would step through a series of pan
and tilt coordinates (called “vectors” in this paper) and collect data. During the time that it
moved from vector to vector, the software would store the data, the pan and tilt coordinates, and
timestamps. Data were collected for about 0.2 s (depending on the current repetition rate of the
laser), and each run (i.e., movement to a vector and data collection) lasted for a total of about 2 s.
Over the course of an entire scan (typically about 9 min), 10% was spent on data collection and
90% was spent moving. The infrequency of data collection as compared to movement is likely
one of the reasons the lidar did not collect as many samples as other similar systems [9,17,43].

Raw data were stored in 1024 x 200 (time X range) arrays, much like Hoffman et al. [23],
and saved as a field in a MATLAB structure. Other important parameters, such as the pulse
separation time, which ranged from 167 pus to 250 us, were stored as separate fields within the
MATLAB structure and used in the post-processing algorithms. The range resolution, limited by
the sample rate and electronic bandwidth of the ADC (200 MHz and 100 MHz, respectively),
was 0.75 m.

2.2.2. Post-processing

Detecting insect signatures in a large dataset was all done in post-processing. The routines,
explained below, were designed to find insect signals among noise and hard-target returns.
Signals that came from insect wing beats were manually identified by analyzing the amplitude
and frequency of the detected signal. The process did not consider that the same insect could be
counted multiple times; although, outside of a few events, most signals were separated by at least
many seconds, and the infrequency of insect detection suggests that it would have been unlikely
for two insects to occupy the same volume at the same time. However, counting the same insect
again after multiple seconds was possible. Furthermore, in contrast with other studies that had
pink noise (1/£%) [16], the noise within this system was white from 5 Hz to 3000 Hz within the
uncertainty in our measurements.

When detected with a wing-beat modulation lidar, flying insects produce a unique signal from
static objects in the scan region. A typical scan region contained trees, rocks, and vegetation,
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all of which produced a lidar signal. However, the static objects produced a frequency lower
than the minimum resolvable frequency of the lidar system. Even slowly moving objects, such as
swaying grass, falling leaves, or other animals would also oscillate at low frequencies. Insect
wings, on the other hand, oscillate up to 1 kHz [34], making them easy to distinguish.

Distinguishing insects from other objects was done by analyzing the frequency domain of
each signal with a Discrete Fourier Transform (DFT, which we used because early attempts at
other methods of power spectrum estimation yielded similar results). The maximum resolvable
frequency was 2.5 kHz for the typical laser pulse repetition frequency of 5 kHz. Similarly, the
minimum resolvable frequency (or frequency resolution) was 5 Hz, found as the inverse of the
product of the number of pulses in the time-domain signal (1024) and the time spacing between
pulses (0.2 ms). However, the minimum measurable wing-beat frequency is actually higher than
this, limited by the insect’s flight velocity and laser beam diameter. For example, an insect
flying at 1 ms~! perpendicular to a 50-mm-diameter beam would encounter the beam for 0.05s,
corresponding to a Nyquist-limited wing-beat frequency of 40 Hz.

The details are described below for identifying insects from the DFT, but the basic analysis was
performed by identifying the fundamental frequency of a signal by inspection, and classifying it
as insect based on the amplitude of the fundamental and harmonics, similar to previous studies
[17,21-24,30,32,33,42]. The decisions were made by a human user who judged each data set by
the amplitude and shape of the time- and frequency-domain signals. Namely, large amplitudes
with well-defined spacings were accepted as insects.

Specifically, the manual three-step process identified the presence of insects in space and time.
The software pre-processed the data by normalizing each array to the maximum return signal in
that scan, and then a background signal (accounting for overlap and range) was determined by
taking the mean of data where no insect or hard target returns were present and was subtracted
from each array. In the first step of the processing routine, the user scrolled through false color
images of every data array (such as the one shown in Fig. 3), and flagged it when an event
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Fig. 3. Data from a field experiment show a hard target at 71.9 m and a modulated signal
from 0.14 s to 0.19 s at 36.0 m that is from an insect. The insect signal is zoomed and the
color changed to emphasize the modulated pattern. The 36.0 m range bin is plotted in Fig. 4.

was present. An event was defined as a brief signal with apparent oscillations. In the second
step, each flagged data array was examined by the user to identify the range at which the event
took place. Finally, the third step plotted the flagged range bins of each event in time, and
frequency. Figures 4 and 5 are both examples of plots that the user would use to identify if the
signal originated from an insect. Some signals, such as Fig. 4, had well-defined peaks in both
the time and frequency domain, whereas others, such as Fig. 5, had muddled signals in both
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Fig. 4. The time- and frequency-domain signals for a “very likely” insect from a field
campaign on § June 2016 show four strong and evenly spaced peaks in time and well-defined
harmonics in frequency.
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Fig. 5. The time- and frequency-domain signals for a “somewhat likely” insect measurement
from a field campaign on 8 June 2016 had muddled peaks in time and no clear fundamental
or harmonics in frequency.

domains. This led to a tiered classification system where the user would classify the event into
“very likely” (Fig. 4), “somewhat likely” (Fig. 5), or “somewhat/very unlikely” categories. Part
of the classification was based on the signal-to-noise ratio (SNR), defined as the mean of the
peaks divided by the standard deviation of the non-insect signal. Although this process was
open to some biasing and inconsistencies, analysis done in Sections 3.2 and 5 suggested that the
classifications were probably accurate.

The “very likely” insect cases were sent through a final analysis step where their fundamental
and harmonics were identified by the user. In the frequency spectrum, the signal was either
represented as a single large-amplitude fundamental peak or as a series of large-amplitude
harmonics. In the first case, the user would simply identify the frequency of the largest peak;
however, in the other situation the user used the separation between harmonics to determine the
fundamental frequency. This additional analysis on “very likely” insects returned fundamental
and harmonic frequencies.

Figure 4 shows the time- and frequency-domain signals for a signal classified as “very likely,
based on past work from laboratory [33,42] and field measurements [17,22-24,30,32]. The
time-domain signal had very sharp peaks between 0.14 s and 0.19 s, relatively no noise floor, and
slight variation in peak amplitude. The frequency domain had many well-defined harmonics
spaced by 100 Hz and very little noise.

A more common signal, shown in Fig. 5, represented the case of a “somewhat likely” insect.
The time-domain signal appeared to have a modulated signal between 0.05 s and 0.1 s. There
was a large amount of noise in the time domain, and each peak had a different width. The
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frequency domain is difficult to read and extract much useful information about the wing-beat
period. Nonetheless, the combination of spikes in the time domain, and a few low-power peaks
at 64 Hz and 96 Hz in the frequency domain suggested that this was a “somewhat likely” insect.

In the above method, insects were detected (but not classified) based on the return signal from
their oscillating wings. The basic method of identifying an insect event in space and time has
been used before and is well documented for laboratory tests and some field experiments. Data
collected in field campaigns are mixed with external factors that cause the wing-beat signatures to
be less clear than those from laboratory measurements, causing them to have insufficient frequency
information [29]. If these muddled signals were truly insects, however, then they are likely to
carry important information about spatial distributions, and should thus be analyzed. Therefore,
to better understand how different patterns of signal, noise, and measurement conditions affect
the pure insect wing-beat signals, we modeled temporal wing-beat patterns and their frequency
spectra so that we could then use the findings to infer information about an insect based on the
detected signal.

3. Simulated wing-beat signals

From our experiments, we found that pure wing-beat signals are often muddled by various known
and unknown factors. For example, we know shot noise and the transit time of the insect through
the probe volume greatly impact our ability to identify an insect; however, we also assume that
variables such as the orientation of the insect in space contribute to distortion in our signal. These
factors could easily cause a clean wing-beat pattern to become nearly unrecognizable as an insect.
To understand how the detected signals related back to actual wing-beat waveforms, we simulated
a perfect instance and systematically added and varied different types of noise and disruptions.

3.1.  Pure wing-beat signals

For the purposes of signal processing, an ideal (although non-physical) wing-beat signal was
an infinite series of Dirac delta functions, more commonly referred to as a comb function, as
defined by Eq. (1). To approach a more realistic scenario, we considered factors such as dwell
time, partially specular wings, and noise sources from the instrument (an even more realistic
simulation could include the low-frequency signal contributed by the insect body reflection).
Insect speeds can greatly vary, but a reasonable estimate is about 1 m s™!. Considering an insect
flying at this speed perpendicular to the optical axis that passes through the 050.8 mm beam
would result in a dwell time of about 0.05 s, and thus a minimal resolvable frequency of 40 Hz.
Some insects will spend more time in the beam, whereas others will only pass through a portion
of it, and so this value can vary. Dwell time is accounted for by multiplying the comb function
with a rect function of that width, defined by Eq. (2). Furthermore, each Dirac delta function
in the comb would have some width, since the wings are not perfectly specular; in fact wings
are likely a combination of diffuse and specular components [16,21,29,32,34]. To account for
some diffusivity, the delta functions were convolved with a narrow gauss function, as defined by
Eq. (3).

comb (%) -7 i 5(% s 1)
k=—oo

rect (4] = {‘1) g:g:j% @)

gauss (é) = exp (—% (i)z) 3)

The product of the comb and rect convolved with the gauss function represented the exemplar
insect wing-beat for signal processing. The time- and frequency-domain signals are shown in
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Fig. 6. The exemplar insect was simulated in the time domain (top) and the Fourier
transformed signal represented the frequency domain (bottom). In the time domain, the
red dashed line represents the gauss function that a windowed comb was convolved with
for width (note that it is multiplied by 7 in order to view the two functions on the same
scale). In the frequency domain, the gauss function widens and windows the fundamental
and harmonics (note that it has been multiplied by U? so that it can be viewed on the same
scale).

Eq. (4) and Fig. 6.
F {gauss (é) * comb (%) X rect (l—t])} = Wgauss(Zﬂo'f)xTcomb(Tf)*Usinc(Uf) 4)

The different functions in the time domain had important effects in the frequency domain. The
width of the time window (rect) inversely determined the width of the peaks in the frequency
domain, such that if an insect spent more time within the beam, the frequency domain would have
harmonics with narrow profiles. Similarly, the width of the Gaussian determined the number of
harmonics in the frequency domain. If an insect were to produce very narrow (almost delta-like)
peaks, then a large number of harmonics would be present in the frequency domain. Since no
disruptions of any kind were present in these simulations, they were very unrealistic, but they
gave us insight as to what an undisturbed signal looked like.

3.2. Noisy wing-beat signals

A more realistic example of a detected signal had a variety of noise or other disruptions. We
simulated four different types of disruptions and inspected their Fourier transforms for the case
of a varying peak amplitude, sigma (o) jitter (i.e., variation in width of each wing reflection),
time jitter (i.e., variation in time between each wing reflection), and a noise floor (i.e., instrument
noise and background fluctuations). Each individual contribution and all contributions together
are represented in Fig. 7. Red dotted lines are included in the frequency domain to identify where
the exemplar insect would have the first six harmonics.

Each different contribution had a unique impact on the frequency-domain signal when compared
to the exemplar insect (Fig. 6). We do not specifically attribute a particular cause for each effect,
but rather assume that multiple imperfections can culminate to cause any of the distortions.
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Fig. 7. Simulations showing the time and frequency domains for an exemplar insect
wing-beat signal that has been disrupted by four different factors show how each contribution
in the time domain affects the frequency domain. Peak amplitude variation increased the
overall power of higher frequencies, but reduced the amplitude of harmonics. o jitter
modified the local shape of all harmonics. Time jitter distorted the fundamental and reduced
the amplitude of higher frequencies. A noise floor produced more noise in the frequency
domain and reduced signal past the second harmonic. The combination of each contribution
produced a frequency spectrum from which a frequency could not be identified easily.

The addition of peak amplitude variation reduced the amplitude of higher harmonics, but also
increased the overall amplitude at higher frequencies. Sigma (o) jitter caused the local regions
around the higher harmonics to increase in amplitude. The addition of time jitter reduced higher
frequencies and made the fundamental tone nearly unreadable. Finally, the noise floor reduced the
readability of the frequency domain, especially after the second harmonic, and greatly reduced
the amplitude of the first and second harmonics. Although these four contributions are only a
subset of all possible disturbances, they likely represent some of the most common disruptions.
In fact, the “all noise” case looks similar to Fig. 5, suggesting that this particular event was
probably an insect. Since “very likely” insect signals are very clean, we believe that most of the
disturbances modeled above come from the way that the insect flies through the beam; it is likely
that the orientation changes, or the heading shifts while the insect is within the beam. It is also
possible that the laser stability limits contribute to the signal fluctuation over realistic averaging
times.
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4. Radiometric analysis

The simulated wing-beat signals from Section 3 are helpful when interpreting important
information about the insect, such as the wing-beat frequency or perhaps its orientation in space,
since that can have an impact on harmonics [33]. Similarly, a radiometric analysis provides insight
to how the size and reflectivity of the wings or other instrument design parameters influence the
signal detectability. In this section, we first present radiometric calculations leading to SNR and
then illustrate how the simulated signals vary with experimental or design parameters.

4.1.  Modeling return signals

The transmitted signal began at the laser and ended at the insect. The return signal began with
the insect wing and terminated on the PMT. We calculated the final optical power as a function of
the various components within the lidar system and experimental settings. The laser quantities,
mirror reflectivities, and lens transmissions were determined from manufacturer data sheets;
atmospheric attenuation was modeled using the MODTRAN radiative transfer code; and some
unknown quantities, such as the diffusivity of the insect wing, were assumed.

The assumptions we made were based on some real signals that we detected, but such
parameters must be modified for a reader’s particular experiment because many of the parameters
can vary greatly. Wing reflectivities in the visible spectrum, for example, can vary from a few
percent [21,31,33] to above 70% for some butterflies and beetles [47,48]. Based on the worst-case
signal from Fig. 5, we assumed a very low wing reflectivity of 1% and very small effective wing
size (i.e., area of near-specular reflection) of 0.1 mm?, and scattering into a projected solid angle
of /10 sr, which could vary a lot based on the wing curvature and sensing geometry [21], as well
as other factors such as species, age, or sex of the insect [32,49]. We use the projected solid angle
into which light from the wing is scattered (;.,,) as means to approximate the bidirectional
reflectance distribution function (BRDF); a more rigorous treatment would use a full BRDF
approach, but since we did not know this quantity for all the insects in this study, we adopted
this approximation. We also assumed that the laser beam quality was affected by atmospheric
turbulence, and so we use an effective divergence angle («) to account for this. These assumptions
are reiterated and carried out through the calculations below. To begin with, the laser power
(®y45er) Was determined as the ratio of the laser pulse energy (Quser = 3 pJ) and pulse width
(Atygser = 0.6 ns, which was assumed to be flat). The detected flux (®,,;) was reduced from the
original laser power by optical elements, atmospheric attenuation, and scattering properties of the
insect wing. Specifically, the mirrors at 45° and slant angles (0,45 = 99.4% and p;r3 = 99.6%,
respectively), lenses (Tje,s = 99.5%), and the atmosphere (7, = 98.3%) affected the outgoing
beam. The effective divergence half angle (@ = 0.4 mrad) of the 10x expanded laser, the distance
from the lidar system to the insect (d;,s = 56.2 m), and the initial diameter of the beam as it exited
the system (Dpeqn, = 0.0508 m) influenced the irradiance on the wing. The wing itself had an
effective size (Aying = 0.1 mm?) based on the region from which the near-specular light reflected,
a reflectivity (pying = 1%), and a diffusivity (Qy.qs = 7/10sr). Finally, the transmittances and
reflectivities of the receiving optics were considered. This included the effective aperture of
the telescope (Ary = 577.6 cm?), which accounted for the obstructions from the secondary
mirror and lens tube assembly, the transmittance of the Schmidt plate (77 = 98%) and laser line
filters (75, = 61.2%) as well as the final focusing and collimating lenses (7jens = 99.5%) and the
reflectivity of the primary and secondary mirrors (o7 = 94%). These were applied to calculate
the detected power.

5 4 2 2 2
Diaser Pmirs Prniras Ciens LatmPwing TTTﬁltpTA TeﬁAwing

D(’L”'Vl
nd} (tan(a) + =522 Qe

Dyer =

=0.012 uW (5)
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The PMT detector had a quantum efficiency (7,,m,; = 0.163) at its peak wavelength of A = 532 nm.
Also, assuming typical daytime conditions, we calculated that the background (®y,) produced
about 0.05 uW of optical power. By taking into account the charge of an electron (¢g), Planck’s
constant (h), the speed of light (c), and the PMT’s dark current (i; = 1 nA), the cathode current
(i) was

. nmeCI((I)det + (I)bg)/1
le =
hc
Finally, the detector was shot noise limited, so for PMT gain G, the SNR was determined by

+ig=530A. (6)

Gi Gi
SNR = 2% = k-~ 104, )

Oshot 4/ 2qG2i.Af

where Ay, the electrical bandwidth of the ADC, was 100 MHz.

4.2. Signal dependence on experimental parameters

There is a trade between the achievable SNR and size (and cost) of the lidar instrument. We used
the radiometric analysis as a design tool, such as aiding in the selection of a telescope aperture
(see Fig. 8), and also to interpret the return signal. The reflectivity, size, and specular or diffusive
properties of the wing, and the divergence angle of the outgoing beam are typically different
for every detected event. By making some assumptions, such as the size and reflectivity of an
insect wing based on the species in the area and time of day, and taking into account the range
bin where the insect was detected, other information like the diffusivity of the wing potentially
could be interpreted. The relationship between these variables, the SNR, and the range to the
insect are described below.

various effective wing areas

0.5 mm?
600 1 mm?
2
400 Smm
telescope effective
aperture (cm?)
200
50 mm?
0
0 50 100 150

range (m)

Fig. 8. A plot of telescope effective aperture necessary to detect different effective sizes of
insect wings at various ranges with an SNR of 10 can provide valuable insight into what
telescope is needed depending on the requirements of the entomological research. In these
simulations, the reflectivity was 1% and light from the wing scattered into /10 sr, and the
divergence half angle of the outgoing laser was 0.4 mrad.

In design stages of the lidar system, the radiometric analysis provided useful insight into
the selection of components. For a lowest allowable SNR value (in our case 10), a variety of
telescope sizes were considered. Figure 8 plots the telescope effective aperture as a function
of range to the insect for different effective wing sizes and a fixed SNR = 10. By inspection of
this figure, a lidar system could detect an insect with a wing area of 5 mm? at a range of 100 m
with SNR = 10 if a telescope had an effective aperture of at least 200 cm?. If the design required
that we detect smaller wing sizes at 100 m and the same SNR, then the system would need a
larger telescope for our selected laser. This was not the only consideration when choosing a
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telescope, but it certainly was an important aspect when choosing a major part of the receiver
optics. Similarly, Fig. 9 shows curves of wing reflection area that produce SNR = 10 at ranges up
to 150 m for five different values of wing reflectivity.

various reflectivities

0.05%
0.5%
_1 5.%
10 50.%
effective 100%
wing size (mm2)
1074
1077
0 50 100 150
range (m)

Fig. 9. The necessary effective wing size to acquire an SNR of 10 for various partially
specular (i.e., Qgcqr = /10 sr) reflectivity values. The effective telescope aperture area was
577.6 cm? and the laser divergence half angle was 0.4 mrad.

The goal of this insect lidar was to detect insects in a field as proof of concept for entomological
and ecological studies. The type of insects that we could detect came down to the scattering
medium: the insect wing. As long as the wing had the right combination of size, reflectivity, and
diffusivity, the receiving optics would be able to detect it. Furthermore, entomologists may be
able to use this information to suggest whether the insect was male or female, old or young, or
what species it was. The diffusive and spectral properties of some wings, for example, change
over a lifetime [6,33]. Figures 8 and 9 are just two examples of how Eq. (5) can be manipulated
to hone in on a specific parameter.

5. Spatial and temporal insect distributions

Mapping insects in 3D space within their natural environment using a lidar system, to our
knowledge, has not been done prior to this study. The scanning capability of the lidar system can
provide insight into insect movement over time. One particular area of interest is how insects
respond to variables like noise and light. For example, Kirkeby et al. [17] pointed a stationary
entomological lidar near a light trap and observed light-dependent insect behavior. In a similar
way, a 3D scanning lidar system can map insect distributions from more dimensions. The added
spatial information likely carries important information. One application of this method is to
improve the understanding of light pollution on insects, and how future methods of lighting could
then mitigate these affects.

As discussed in Section 2, detected insects were classified into two categories, “very likely”
and “somewhat likely.” In Section 3, our simulations showed that good wing-beat signals can
be quickly distorted by various contributions, suggesting that the “somewhat likely” insects are
almost certainly insects. In Fig. 10, histograms of “very likely” and “somewhat likely” insects
are plotted as a function of time during the course of the day. The pattern of “very likely” insects
follows results from other studies [9,10,17], in that insects become more abundant around dusk
(and dawn, although this is not shown here since we did not collect data at that time). Although
our data do not continue much past sunset, they do agree with other studies [9,17] in that the
greatest number of insect counts occur just after sunset. Furthermore, the pattern is present in
both the “very likely” and “somewhat likely” insect cases, suggesting that the “somewhat likely”
insects are indeed insects since they follow the same pattern.
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Fig. 10. Histograms of insect counts for “very likely” (left) and “somewhat likely” (right)
show very similar trends suggesting that even “somewhat likely” insects are indeed insects.
The blue bars correspond to the left axis and indicate the number of insects during that
one-hour bin. Error bars assume that the insect counts follow a Poisson distribution. The
relative humidity (pink dashed line) and temperature (green line) correspond to the right
axis (measured at the Jackson Hole Airport about 38 km from the lidar site with wind speeds
varying up to 6.3ms~!). Sunset is represented by the black line around 21:00.

Arbitrary pan and tilt positioning of the mount allows for 3D mapping of insect locations.
For brevity, we do not report range-dependent insect counts from this preliminary experiment;
however, a sense of insect distributions within the measured volume is shown in Fig. 11(a). The

insect spatial distributions

Zg ¢ ?nsects before 19:00 .
height (m) 10 * insects after 19:00 3 =+
0 (a)
100
50

range (m 0
y ge () 0 20 40 60 80 100

324

height (m) (b)

125

range (m)

Fig. 11. Mapping insect spatial distributions in 3D space was possible due to the pan and
tilt capability of the lidar instrument. In (a), the green region represents the scanning volume,
red triangles represent insect counts before 19:00 (local time) and blue dots represent insect
counts after 19:00. The intent of this particular figure is to show that capability of the 3D
mapping, not necessarily to identify any trends. In (b), the 3D distributions are projected
onto the range-height plane.

green volume represents the scan region, the blue dots represent insects after 19:00 local time,
whereas the red diamonds represent insects detected before 19:00. According to Fig. 10, insects
are most abundant after 19:00, and so we plotted 3D insect distributions with this time difference
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color coded. To help the reader interpret this densely packed 3D plot, Fig. 11(b) shows the
same insect distribution as a range-height profile. The data set plotted here included 738 insects
detected in a time period of approximately 12 hours. The greatest insect-detection range in this
case was 125 m at a height near 32.4 m, although we note that dense forest below this height was
one reason more insects were not detected at such long ranges. This type of data can be used to
design future experiments involving placement of variable light and noise sources within the
scan region for monitoring how the insects react. For example, if a light source were placed into
the scan region at 19:00, the before and after distributions are likely to be very different.

An important characteristic about the scanning lidar system is its unreliability in counting
absolute insect number. Insect counting, essentially a Poisson process, can be made most useful
by taking relative measurements, rather than absolute ones. Therefore, some dependencies are
not considered here. For example, fewer insects will be counted in a region of partial overlap, and
smaller insects will be counted close to the lidar although they may not reflect enough light to be
detected at large ranges; large insects, on the other hand, may be detected at larger range due to
their size. Such dependencies would need to be taken into account if the user was interested in
knowing insect size as a function of range, or similar parameters. For the purposes of our study,
however, we were not considering such dependencies.

6. Conclusion

The instrument described in this paper was upgraded from a heritage system originally developed
at Montana State University for land mine detection using honeybees [21-24,45]. Since the latest
iteration, we have improved hardware and software so that the instrument is capable of detecting a
variety of insects, and not just honeybees. The most significant improvement was the pan-and-tilt
mount, which allowed the system to point in any arbitrary direction without sacrificing beam
quality or accounting for different field-of-view overlaps as a function of pointing vector. The
software was also generalized for broad insect detection by incorporating the entire available
frequency spectrum and not just the range around 200 Hz. Although other lidar systems have
detected insects out to 1 km [28], our instrument did not sample past about 130 m. Nonetheless,
our radiometric analysis indicates that our setup could detect an insect at that range, as long as
the insect had a large wing size and reflectivity.

Detecting insects in their natural environment without disruption can provide valuable
information to entomologists. To locate flying insects in a 3D volume, we designed, built, and
implemented a lidar system for field studies. During a field campaign in Grand Teton National
Park, we detected a few hundred insects, but found their signals to vary greatly in terms of noise,
peak intensity and spacing, and other factors. In order to better understand these signals, we
simulated pure wing-beat signatures and added noise and other disturbances to observe the effects
in the time and frequency domains. Furthermore, we performed a radiometric analysis to guide
us in the development of the lidar system, and to interpret some information about insect signals,
such as the effective reflecting area of the insect wing.

Many studies seek to classify an insect in species, sex, or other characteristic, but our study was
only focused on insect detection. Some events detected by the lidar system were unclassifiable;
however, based on the fact that insect signals degrade, those events can at least be counted as
insect events. Although insect classification can lead to deeper analysis, detecting insects in 3D
space is still an important parameter in many studies.

Because the lidar system was upgraded from a heritage system, some components were not
ideal for insect studies. For example, a short-wave infrared laser wavelength would have yielded
a larger reflectivity from insects, is eye-safe at higher powers, and does not disrupt the insects
[2,3,26,43]. Furthermore, a lidar system could provide additional information about insect
behavior with modifications that could include a quadrant camera for information about insect
flight path [28-30,33,34], polarization capabilities for wing and body contributions [1,3,21], and
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multiple wavelength channels for assessment of biological tissue, such as melanin [3,26,30,32,44].
The simulations and radiometric analysis presented in this paper are another tool in the arsenal of
detecting and classifying insects. Further, while the real insect signals from the 3D-mapping
entomological lidar provide little information into the type of insect, they add a new dimension
to previous works. Considering these steps, the future version of this lidar system will be able to
detect insect responses to different variables, including those needed to test insects’ response to
noise and light pollutants.
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