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Special Issue Editorial

‘Calcium is life’

Ca2+ signaling is critically important for cell and develop-
mental biology. Despite long-standing issues still holding 
back the field, an increasingly large repertoire of genes 
and mechanisms has now been described. The unantici-
pated complexity revealed by genomics is giving way to a 
renaissance in our understanding, and the characteriza-
tion of novel molecular mechanisms. The reviews in this 
special issue bring together research focused on spe-
cific structures, including mitochondria, pollen tubes and 
guard cells, as well as on the processes of ion homeosta-
sis and salt stress tolerance, and nodulation.

Back in 1995, a British scientist was driving past a research 
institute in the south of France when his attention was caught 
by an unusual road sign: ‘Le Calcium C’est La Vie’. A bizarre 
sight for any driver, a picture of it swiftly moved into the talks 
given by Anthony Trewavas, a leading Ca2+ signaling researcher, 
to signify the importance and relevance of calcium (Ca2+) as 
the most versatile signaling second messenger, involved in prac-
tically all aspects of cell and developmental biology from egg 
activation to cell apoptosis. Eventually the French pronounce-
ment made it into the title of an essay about the nature and 
mechanisms behind Ca2+ waves in plants (Trewavas, 1999). The 
present special issue takes on the symbolic urgency of this road 
sign to highlight the centrality of Ca2+ signaling in practically 
every scenario that can be classed as ‘experimental botany’.

Key considerations for the reviews are novelty and the simul-
taneous need to address long-standing issues still holding back 
the field. For example, we lack fundamental knowledge on the 
apparent absence of any ligand-operated Ca2+ storage system, 
we are only just beginning to reveal the molecular identity of 
Ca2+ channels, and strong disagreement still reigns about Ca2+ 
channel gating and regulation. Despite this, an increasingly 
large repertoire of genes and mechanisms has been described 
in recent years, and there is a growing body of researchers con-
tributing breakthroughs on many fronts, from the identification 
of bona fide Ca2+ channels in plants to the definition of putative 
Ca2+-signaling networks.

Gene discovery, unanticipated complexity

Back in ‘Le Calcium C’est La Vie’ days, the feeling of excitement 
was similar. A number of Ca2+-binding proteins, putative trans-
ducers of the basic Ca2+ signals, were discovered by a combin-
ation of biochemistry and the first genetic screens, which were 

designed for the most essential aspects of plant biology. These 
revealed gene/protein families specific to plants, like the Calcium 
Dependent Protein Kinases (CPKs or CDPKs) and the CBL–
CIPK (Calcineurin B-like protein and CBL-Interacting Protein 
Kinase) pairs. Some ‘usual suspects’, such as animal homologs of 
calmodulin and the CMLs (Calmodulin-Like proteins) were also 
confirmed as playing important roles (reviews in Harper et al., 
2004; Hepler, 2005). The field went ahead quickly on the basis 
of what looked like the roadmap for a true Ca2+ signature and 
signaling paradigm in plants, as was occurring in the animal field.

The advent of genomics, and the consequent reverse genetics 
approaches, brought tremendous speed to the gene discovery pro-
cess, but rather than confirming a paradigm this revealed a great 
deal of unanticipated complexity, with members of most Ca2+-
signaling protein families running into the dozens. Genomics also 
brought about a need to revise many pharmacological approaches 
due to the absence of homologs to the mammalian genes in light 
of which those assays were designed and interpreted. And there 
was the conundrum of what were the Ca2+ channels in plants, as 
no obvious family emerged from the Arabidopsis genome and 
multiple forward genetics screens over a decade or so failed to 
bring consensus about their genetic identity.

Plants do it differently

There is now something of a renaissance in our understanding 
of many of these issues: there is some agreement about at least 
five families of Ca2+-permeable channels (Swarbreck et al., 2013) 
and the involvement of differently coded Ca2+ signaling in vari-
ous aspects of plant physiology seems beyond doubt (Dodd et al., 
2010; Edel and Kudla, 2015). A recent analysis of the evolution-
ary trends of Ca2+ signaling in plants (Edel et al., 2017) focused 
on the fact that, when compared to animals, the available rep-
ertoire of genes coding for Ca2+-influx mechanisms in plants is 
reduced, and therefore the available machinery must shoulder a 
greater burden in terms of fulfilling the same signaling functions. 
The authors elaborate that this limitation on channel diversity is 
compensated by larger and more-diverse families of Ca2+-binding 
signaling proteins capable of contributing to the amplification and 
integration of the primary Ca2+ signals.

These are provocative conclusions that may be falsified if 
new families of channels are found, but suggest, as perhaps the 
most reasonable explanation for present findings, that plants 
‘do it differently’. So although the animal paradigms served us 
well in searching for conservation of function, the time is ripe 
to assume that (i) even when the same molecular mechanisms 
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are present, they may result from convergent evolution with 
adaptation to the very different contexts of plant physiology, 
and thus (ii) the same function may be achieved through dif-
ferent associations and regulatory mechanisms. Box 1 brings 
together the key elements of the novel molecular mechanisms 
described in the reviews in this special issue.

Channels and stores

Of all the gene families documented as coding for Ca2+-
permeable channels, the ones for which there are more data 
available are the Glutamate Receptor-Like (GLRs) and the 
Cyclic Nucleotide Gated channels (CNGCs).

GLRs made it to center stage directly from their genomic 
identification during the assembly of the Arabidopsis genome 
(Lam et al., 1998). This is not surprising as there was little expect-
ation of their existence in organisms without an organized ner-
vous system. In Arabidopsis, the family has twenty genes divided 
into three clades and high functional redundancy, making this 

family more numerous than its homolog in our own human ner-
vous system. A decade of primary screens allowed some advances 
in defining their physiological roles (reviews in Davenport, 2002; 
Konrad et  al., 2011; Forde and Roberts, 2014). Multiple func-
tions have been attributed to GLRs, but the field was shaken by 
the demonstration that they may be involved in the conductance 
of long-range electrical signaling in response both to herbivore 
(Mousavi et al., 2013) and aphid (Vincent et al., 2017) feeding. 
Wudick et al. (2018) take a different perspective, and rather focus 
on the point that given the current uncertainties on regulation by 
oligomerization, ligand gating, ion specificity and association with 
other proteins, data from this kind of screening will always be dif-
ficult to interpret in terms of channel function. Further structural 
and evolutionary arguments are raised to make the case that elu-
cidation of the molecular properties of these channels is needed 
for full understanding of their biological function, as GLRs stand 
as a good example of the limitations inherent to strictly translat-
ing mammalian knowledge of function and regulation.

Equally with 20 gene copies, but contrary to GLRs, some 
single mutant CNGCs seem highly unique in their phenotypes. 

Box 1. Ca2+ signaling in the plant cell

Unified representation of Ca2+ signaling in the plant cell, with different types of organization color 
coded by quadrant of the ‘textbook’ diagram. Moving clockwise: (i) structures—mitochondria (Costa 
et al., 2018), pollen tubes (Wudick et al., 2018), and guard cells (Konrad et al., 2018); (ii) processes 
—ion homeostasis and salt stress tolerance (Manishankar et al., 2018), and nodulation (Charpentier, 
2018).
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CNGC18 was one of the first to be characterized (Frietsch et al., 
2007), with its single mutation resulting in an extremely strong 
pollen tube/reproductive phenotype. Other members show simi-
larly strong phenotypes from single mutations, which is remark-
able given the multitude of members, for which one would expect 
a high degree of redundancy. Another puzzling fact is our lack of 
knowledge on the pathways for synthesis and degradation of any 
type of cyclic nucleotides in plants. Yet, of relevance, CNGC15 
was found to be essential for the generation of Ca2+ signatures 
in the nuclei of Medicago root cells during Rhizobium infection 
(Charpentier et al., 2016). This was the last and most elusive mem-
ber of the cascade of proteins involved in the propagation of Ca2+ 
signals triggered by Nod factors along the root hair, where the 
nodulation transcriptional program is triggered in the nucleus 
upon a specific number of Ca2+ elevations.

Nuclear Ca2+ oscillations have been known for a long time 
(e.g. Pauly et  al., 2000), and in this issue Charpentier (2018) 
contextualizes the nodulation signal based on all the reported 
nuclear Ca2+ signaling phenomena described in plants. The 
nodulation case study is then used as a template to discuss the 
origin of nuclear signals in diverse contexts and the mecha-
nisms of downstream transcriptional regulation, clearly sug-
gesting a role for the nuclear envelope as an important Ca2+ 
store capable of generating specific transcriptional triggering 
signatures, namely through CNGCs.

The whole issue of Ca2+ stores is taken to a new level in the 
review by Costa et al. (2018). These authors bring together what 
we know about the main intracellular Ca2+ stores: the vacuole, 
endoplasmic reticulum, Golgi, peroxisomes, apoplast, and the 
double membrane organelles, the mitochondria and plastids. 
Special attention is given to the latter two, as the authors have 
been at the forefront of the molecular characterization of the 
channels involved in Ca2+ transport from mitochondria and 
plastids. Some GLRs (3.4 and 3.5) have distinct peptide signals 
that target these organelles, and the authors were pioneers in 
showing that to be the case and so implicating them in Ca2+ 
homeostasis (Teardo et al., 2015).

More profoundly the team has been at the forefront in char-
acterizing the mitochondrial channel uniporter (MCU) in plants 
(Teardo et al., 2017). These transporters were long sought, their 
existence implied by a number of mitochondrial Ca2+ patholo-
gies, and first demonstrated by Rizzuto’s team (De Stefani et al., 
2011). Given their importance for cytosolic Ca2+ homeostasis in 
mammalian cells, their discovery in plants bears promise of equally 
relevant functions. Besides thorough coverage of the molecular 
mechanisms operating in all these organelles and how they make 
functional Ca2+ stores, Costa et al. (2018) also offer arguably the 
most extensive and comprehensive published account of Ca2+-
imaging sensors (and methods for each), with critical compari-
sons from the leading group in the world in this area.

Codes, networks and stress

The hallmark of Ca2+ signaling is the formation of unique spa-
tial and temporal patterns of cytosolic concentration changes 
that carry specific information. These are collectively known 
as Ca2+ signatures, and include oscillations, elevations, standing 
waves and, more rarely, standing gradients. The holy grail of the 

field is to know exactly how these patterns encode informa-
tion, and how specific proteins that bind Ca2+ with different 
affinities and kinetics are able to decode them, resulting in spe-
cific modifications (e.g. phosphorylation/de-phosphorylation) 
of other downstream proteins. Konrad et  al. (2018) focus on 
two systems with Ca2+ oscillation either on a standing gradient 
(the pollen tube) or spatially distributed (guard cells/stomata) 
to infer common patterns and different properties that could 
help explain the network of interactions, feedback loops and 
pattern-generation mechanisms. Both systems have been exten-
sively used for Ca2+-signaling research, but the meaning of their 
Ca2+ signatures remains elusive.

Pollen tubes possess arguably the most robust and conspicu-
ous standing Ca2+ gradients of any cell at their growing tip, and 
when germinated in vitro display oscillations in many species. 
However, this is not always the case, and there are no sound data 
showing that they exist in vivo (Damineli et  al., 2017). Guard 
cells, on the other hand, stand together with nodulation as one 
of the two examples where a certain number of elevations have 
been shown and suggested to have a physiological function, in 
this case the closure of the stomata (Allen et al., 2000).

Konrad et al. (2018) cover all the known families of Ca2+-
binding proteins, but with a bias for the CPKs, the area in 
which the authors have contributed most significantly. Some 
original data are presented on Ca2+ dynamics during fast sto-
mata closure. A comparison between the ionic regulation of 
these two systems has been published before (Michard et al., 
2017), the originality here being the greater molecular detail 
and definition of a set of behaviors collectively designated 
‘signalosomes’. Comparison of the signalosomes is used to 
establish correlations between genetics, spatial and temporal 
patterns, and biochemistry; these are then built into a compara-
tive model that suggests that pollen tubes and stomata seem to 
operate through the same sort of functional units to generate 
the two macroscopic outputs of these cells, growth and clos-
ure, respectively. These kind of parallels are useful as a narrative 
and to inspire experiments to test the underlying hypotheses 
in terms of temporal delays, which can be measured with ever-
increasing efficiency as new probes become available (see Costa 
et  al., 2018, for probe choice) and as the group has recently 
shown (Guttermuth et al., 2018).

Concluding the issue, Manishankar et al. (2018) review the 
very competitive field of Ca2+ signaling during salt stress. Salt 
stress is simultaneously one of the most profound abiotic stress 
problems and one of the most successful stories in which non-
biased genetic screens have led to the discovery of completely 
unsuspected and original molecular mechanisms in plants. The 
first such mutants were of the class SOS (salt overly sensitive; 
Liu and Zhu, 1997) and gave rise to one of the most dynamic 
fronts of research on Ca2+ decoding, involving the CBL–CIPK 
sensor (Kudla et al., 1999). This sensor arguably constituted the 
first identified pathway for ion homeostasis in plants and is 
triggered by Ca2+ binding giving rise to numerous and elo-
quent reviews on the subject (e.g. Edel and Kudla, 2015).

The huge number of possible combinations between 
the members of the two families (10 CBLs×26 CIPKs in 
Arabidopsis) constitutes a formidable challenge such that all 
combinations are tested under specific screens. Nevertheless, 
the prospect that some of these combinations might bear the 
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right kinetics and affinities to make them ‘the’ specific sensor 
for a certain Ca2+ signature is tantalizing. Manishankar et  al. 
(2018) cover the abundant literature that relates to specific 
CBL–CIPKs as being associated with specific kinds of salt stress 
responses, namely for potassium, nitrogen molecules, magne-
sium, metals and anions, and argue that CBL–CIPKs have a 
‘…coordinated role for Ca2+ signaling in plant nutrition’. As 
with the review by Konrad et al. (2018), the core of the system 
consists of the phosphorylation of specific ion channels that in 
return affect Ca2+ concentration, providing the feedback loop 
for Ca2+ binding to the kinase or kinase complex, respectively.

Conclusion

The representation of novel molecular mechanisms provided in 
Box 1 highlights how much progress the Ca2+-signaling field is 
experiencing. In addition, it shows the fragmentation that has 
occurred into each specialist area, which calls for a more sys-
tems-oriented perspective to integrate these different parts. The 
reviews in this issue provide challenging perspectives on ways 
to reach this goal, but achieving it would lay the ground for the 
next steps where the formation of waves and the decoding of 
specific signatures still lack defined molecular mechanisms.
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