
Eurographics Conference on Visualization (EuroVis) 2018
J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

Volume 37 (2018), Number 3

CFGExplorer: Designing a Visual Control Flow Analytics System
around Basic Program Analysis Operations

Sabin Devkota and Katherine E. Isaacs

Computer Science, University of Arizona

Figure 1: CFGExplorer helps researchers analyze programs and correlate control flow (a) and trace data (b). We designed a domain-specific
layout approach to elucidate loop structure (orange). Users can animate execution using the linked blue gradient (c).

Abstract
To develop new compilation and optimization techniques, computer scientists frequently consult program analysis artifacts such
as control flow graphs (CFGs) and traces of executed instructions. A CFG is a directed graph representing possible execution
paths in a program. CFGs are commonly visualized as node-link diagrams while traces are commonly viewed in raw text format.
Visualizing and exploring CFGs and traces is challenging because of the complexity and specificity of the operations researchers
perform. We present a design study where we collaborate with computer scientists researching dynamic binary analysis and
compilation techniques. The research group primarily employs CFGs and traces to reason about and develop new algorithms for
program optimization and parallelization. Through questionnaires, interviews, and a year-long observation, we analyzed their
use of visualization, noting that the tasks they perform match common subroutines they employ in their techniques. Based on this
task analysis, we designed CFGExplorer, a visual analytics system that supports computer scientists with interactions that are
integrated with the program structure. We developed a domain-specific graph modification to generate graph layouts that reflect
program structure. CFGExplorer incorporates structures such as functions and loops, and uses the correspondence between
CFGs and traces to support navigation. We further augment the system to highlight the output of program analysis techniques,
facilitating exploration at a higher level. We evaluate the tool through guided sessions and semi-structured interviews as well as
deployment. Our collaborators have integrated CFGExplorer into their workflow and use it to reason about programs, develop
and debug new algorithms, and share their findings.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13433



S. Devkota & K. Isaacs / CFGExplorer

1. Introduction

Several research areas in computer science, including compilation,
performance engineering, and reverse engineering, seek to analyze
and ultimately transform a given computer program into one with
more desirable properties. These properties can include decreased
runtime (i.e., optimization), portability, or maintainability. Once
developed, these automatic techniques allow software developers
to work at higher levels of abstraction, expending less effort to con-
struct responsive, portable, and maintainable programs.

Depending on the particular application a researcher is target-
ing, the transformation they are developing may be required to op-
erate on the program source code, program executable, or even a
log of observed instructions. To gain insight into their problem,
researchers often analyze example programs at a low level. Two
artifacts commonly used in program analysis are instruction traces
and control flow graphs (CFGs). Instruction traces list the executed
instructions in a program. They represent ground truth but are dif-
ficult to interpret without structure. A CFG is a directed graph with
sequential code as nodes and execution paths as edges and can be
constructed from an instruction trace. They are commonly visual-
ized using node-link diagrams resulting from a Sugiyama [STT81]
style layout. However, researchers struggle to interpret and use
these diagrams for even modestly-sized programs. Despite this
challenge, we observed researcher, trying to understand if his tech-
nique worked, wait 36 hours for a general layered layout to com-
plete and render. Our goal is to determine how visualization can
better support the analysis needs of computing researchers.

We have been collaborating with a compilation and program
analysis research group for over fifteen months to understand their
use of visualization, their analysis needs, and how to design a sys-
tem that supports them. We augmented our data collection by in-
terviewing researchers in similar areas outside this group. Through
these observations, interviews, and questionnaires, we developed a
data and task abstraction for dynamic program analysis with CFGs.
We found researchers typically visualize CFGs to “debug” their
own mental models as well as their proposed transformation algo-
rithms. The operations they perform correspond to the basic oper-
ations that compose their proposed algorithms. We used this in-
sight to design a visual analytics system that incorporates these
domain-specific operations and structures to improve our collab-
orators’ analysis workflow.

Our visualization prototype incorporates program structures
through its graph layout, interactive highlighting, and coordinated
navigation. We developed a novel graph layout approach and graph
encoding that emphasizes loop constructs matching the models
used by both our collaborators and their algorithms. Similarly, we
design encodings and interactions for basic program analysis oper-
ations that detect loops, instructions, or addresses of interest. We
facilitate exploration by linking the temporal information of the
trace with the structure information of the CFG and provide quick
navigation to program structures such as functions and loops.

In summary, our contributions are:

• a data and task analysis and abstraction for dynamic control flow
graphs (Section 4),

• a domain-specific layout for control flow graphs (Section 5.1),

• the design of a visual analytics system for dynamic program
analysis (Section 5), and

• the evaluation of the system (Section 6) through user sessions
and deployment.

Before discussing these contributions, we first provide a brief
overview of the domain (Section 2) and related work (Section 3).
We conclude with a discussion of lessons learned that may be trans-
ferred to related problems (Section 7).

2. Background

The ultimate goal of our collaborators is to develop automated
methods for transforming and enhancing programs. In developing
these methods, researchers often perform some sort of manual pro-
gram analysis, deeply examining the operations of a small set of
programs by consulting artifacts such as the program source code,
dynamically collected logs of executed instructions (“traces”), and
the program’s control flow graph. We describe these artifacts and
associated program analysis terminology.

An instruction trace is a sequence of instructions executed by
a program during its execution. Each line of the trace refers to a
single instruction. Included in our traces is the address of each ex-
ecuted instruction and its representation in assembly language. An
instruction’s address refers to its position in storage when the pro-
gram is loaded. It uniquely identifies the instruction in the context
of the rest of the program and may be used to correlate the low level
instruction to higher level source code. In addition to addresses and
assembly, our traces sometimes include extra information regard-
ing the state of the memory or CPU flags during execution. Figure 1
(right) shows a raw instruction trace in ASCII format.

We use the term control flow graph (CFG) to refer to a di-
rected graph representing execution paths that a program can
take [FOW87]. The vertices of the graph are basic blocks: consec-
utive instructions that must be executed in order. We use the term
jump to refer to instructions that can move execution to an instruc-
tion at a non-adjacent address. Typically a basic block ends with
a jump. The edges in a CFG show the relationships between basic
blocks determined by their jumps. Typically, CFGs are relatively
sparse graphs, but high degree nodes can occur due to switch
statements or functions that are called from multiple locations.

Loops, often declared in source code with keywords such as for
and while, are of interest to program analysts. In the CFG, a loop

header

tail

outer

exit
edge

back
edge

exit
node

Figure 2: Loop.

has a single entry node called the
header. A node is said to domi-
nate another if all paths between the
program entry node and the other
node must go through the domi-
nating node. A back edge is an
edge whose sink node dominates its
source node, which is then referred
to as the tail node. Thus, the back
edge induces the looping behavior.
We refer to non-loop nodes that suc-
ceed the loop as outer nodes. Nodes
representing basic blocks that can exit the loop are called exit
nodes and their corresponding exiting edges are exit edges. Figure 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

454



S. Devkota & K. Isaacs / CFGExplorer

shows these components. In the figure, the header node is also an
exit node, because it has an edge to a successor outside the loop.

Our CFGs are derived from instruction traces. Unlike statically
generated CFGs, they include interprocedural edges and omit basic
blocks that were not executed. Our CFGs also include counts of the
number of times a basic block or a control flow edge appears in the
instruction trace. Note that while the CFG represents the possible
control flow executed, it does not retain the exact order of execution
as the trace does.

3. Related Work

While CFGs contain cycles, they are typically close enough to di-
rected acyclic graphs to which Sugiyama [STT81] type layered lay-
outs are frequently employed. In particular, the dot [GKNpV93]
layout algorithm of GraphViz [GN00] was used by our collabora-
tors at the start of this project, as well as other computer science
research groups we consulted.

Visualization for Program Analysis Graphs. Several program
analysis-specific visualizations use a Sugiyama-style layout, such
as VCG [San95], CFGFactory [Con], and the works of Bal-
mas [Bal04] and Wurthinger et al. [WWM08]. None of these lay-
outs incorporate internal loop semantics into their layout as we do,
though Balmas pre-processed the graph to group hierarchically by
function and loop. We use this hierarchy as well, but for navigation.
VCG produces a static visualization.

Toprak et al. [TWS14] use a linear layout of aggregated basic
blocks formed by converting the graph to a regular expression.
Their visualization is for single function CFGs, while ours are inter-
procedural. Furthermore, they found that although their approach is
better for navigating along specific execution paths, CFGs are bet-
ter for getting an overview of the whole graph. We require both.

Instead of showing a node-link diagram, Krinke et al. [Kri04]
highlight source code to show (possibly multi-hop) connectivity
and distance from a variable of interest. Our collaborators are in-
terested in how the source code is transformed into instructions and
thus a source code view is not sufficient.

Related Graph Solutions in Other Domains. Following paths is
an important task in our work (Section 4). We consider customized
visualizations emphasizing this task. Borkin et al. [BYB∗13] cre-
ated a visualization for directed graphs of file system provenance.
They forgo the typical node-link diagram for a time-aggregated
drill-down radial diagram to improve provenance search tasks, but
the abstraction does not apply to our tasks, which do not have a
time analogue of similar behavior. Pathfinder [PGS∗16] provides
a query interface to explore paths between two nodes, returning a
rank-ordered list and subgraph. Both solutions rely on one or both
nodes being known beforehand, but identification of nodes of inter-
est must also be supported by our visualization.

Wongsuphasawat et al. [WSW∗18] visualize dataflow graphs of
deep learning models, simplifying the graph by hierarchical clus-
tering, edge-bundling, and filtering. We allow hierarchical grouping
of nodes, with different semantics due to differing characteristics of
our graphs that have fewer repeated sub-structures and support dif-
ferent analysis goals.

4. Task Analysis

Our goal is to improve visual tools for computer science research.
We examined why and how control flow graph visualization is used
in practice and identified four major goals served by six tasks.

We collaborated with a group of computer scientists researching
binary instrumentation, analysis, and compilation techniques. Dur-
ing this collaboration, the group varied in size from seven to twelve
with two to four faculty and post-doctoral researchers, two to three
graduate students, and two to eight undergraduates, not including
the authors. We attended their regularly scheduled (at least weekly)
meetings to observe their use of visualization as a group. Initially,
the researchers worked solely with traces in a text editor and CFGs
rendered as static PDFs.

We interviewed two of the researchers who used CFG visual-
ization individually and observed another two as they used a CFG
for technical analysis. Each of these researchers also examined in-
struction traces. We then developed a brief reflective questionnaire
asking what their goals, operations, tools used, and insights found
were during a single analysis session. The purpose was to collect
data about how they use visualization as they find the need, rather
than scheduling a session and disrupting their workflow. Our col-
laborators submitted six such completed questionnaires.

During the course of our investigation, we identified four major
goals our collaborators had in consulting a visualization:

G1: Debug Mental Model. Our collaborators have a mental model
of what the control flow graph or instruction trace of a program will
contain. The automatic techniques they develop rest on that mental
model. However, they expect their mental model is incomplete or
incorrect—part of their research effort is developing enough under-
standing to construct a new solution. They use the visualization to
help develop that understanding and find inconsistencies, either at a
large structural or more focused scale. When examining an instruc-
tion trace, the corresponding CFG visualization is used to provide
structure and context to the otherwise flat data file.

G2: Locate a Feature of Interest. A researcher believes some fea-
ture may exist in the execution trace or control flow graph. The def-
inition of the feature may be fuzzy or the feature may be quicker
to find visually than through other methods such as writing and
debugging a custom script. For example, one of our collaborators
wanted instruction addresses associated with high degree nodes in
the control flow graph. He consulted the node-link diagram to find
those nodes and thus the addresses they contained rather than writ-
ing a script to list the high degree nodes because performing the
task with the visualization required less effort.

G3: Debug an Algorithm. Once a researcher has an algorithm in
mind, they may use the visualization as a reference while simulat-
ing the algorithm by hand. Should they find an example that does
not work, they use the visualization to help identify the cause. They
may then refine their mental model as well (G1).

G4: Present, Explain, and Share. Researchers use the visual-
izations as an explanatory aid in correspondence, during research
group meetings, and in papers and proposals.

In the framework of Lam et al. [LTM17], most goals (G1, G3,

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

455



S. Devkota & K. Isaacs / CFGExplorer

and G4) fall under the category “Collect Evidence (Single Popu-
lation),” specifically the assessing hypotheses step, with G4 being
performed by multiple analysts. Goal G2 is is of type “Discover
Observation (Single Population),” specifically noting observations
and examining their attributes.

To identify smaller tasks in support of these goals, two authors
independently coded the questionnaires and observation notes to
identify tasks performed by our collaborators. We then used affin-
ity diagramming [BH99] to split, merge, and group tasks. We dis-
covered the following tasks, some of which support multiple goals.
We describe these tasks and their relation to low level visualization
tasks using the task taxonomy for graph data of Lee et al. [LPP∗06]
where applicable.

T1: Follow Control Flow. In a raw execution trace, control flows
instruction-by-instruction, line-by-line, but it is difficult to relate
each instruction to the higher level structure of the program. When
viewing the CFG as a node-link diagram, researchers follow edges
or paths to understand how the instructions relate to the basic block
structure of the program. These tasks are thus “Browse - Follow
Path” in the Lee et al. taxonomy. To determine an exact ordering
of events, the researchers would then relate the node-link diagram
back to the raw trace. Following control flow is performed in both
G1 (debug mental model) to gain an understanding of the program
and G3 (debug algorithm) as part of simulating an algorithm. Fre-
quently this process is repeated during presentation (G4) as well.

T2: Identify Known Structures. To understand the relationship
between the instructions and higher level program constructs (G1)
or in search of a particular structure (G2), researchers typically
want to identify common constructs such as loops, functions, and
conditionals. Within a loop, they will identify sub-structures of in-
terest, including the entry and exit basic blocks and the loop back
edge. To correlate with knowledge about the code, they may be in-
terested in the loop nesting depth. While identifying exit nodes via
their exit edges can be considered a “Browse - Follow Path” task,
for the most part these are what Lee et al. describe as “High-Level
Tasks.” Once a structure is found, the instructions associated with
it are often queried—this is an “Attribute - Nodes” task.

T3: Examine Specific Regions. Once a region of interest is iden-
tified, either visually (T2) or by some other method such as a cus-
tom script, the researchers may want to narrow their exploration to
that region. This task occurs both when trying to refine their men-
tal model (G1) or apply a planned algorithm to that region (G3).
Often the researcher searches for a specific instruction or address
(“Attribute - Nodes”). To simplify their search, they sometimes pre-
process the data to filter out unimportant data.

T4: Identify Outliers. When debugging their mental model (G1),
researchers search the visualization for anomalies—pieces of the
visualization that “don’t look right.” Features of interest (G2), such
as high degree nodes, are also often assumed to appear as outliers.
The latter falls under “Attribute - Nodes” and the former as “High-
Level” in the Lee et al. taxonomy.

T5: Identify Feature Repetition. To optimize a program, re-
searchers target frequently executed instructions. Thus they want
to identify highly traveled elements in the CFG. They may also be
interested in branch divergence—the proportion of iterations that

follow each flow from a conditional. Infrequently executed instruc-
tions are important to note for maintaining program correctness af-
ter transformation. These queries are done when debugging their
mental model (G1), searching for features related to iteration count
(G2), and debugging their proposed algorithms (G3). This data is
usually modeled as weights on the nodes and edges, making them
“Attribute - Nodes” and “Attribute - Links” tasks.

T6: Alter Visualization. When sharing findings (G4), our collabo-
rators would sometimes annotate a static image to highlight certain
instructions, nodes, or edges. Sometimes they would pre-filter or
aggregate the data to obtain a more simple visualization for pre-
sentation or for exploration (G1, G3). A few times, they re-drew a
sub-graph of interest manually either for presentation or their own
understanding, usually “fixing” the layout.

Summary. Many of these tasks, such as loop identification and fol-
lowing control flow, are operations that are basic building blocks
for the algorithms the researchers are trying to develop. We use this
observation as an additional guide to our design process.

5. CFGExplorer

The design of CFGExplorer † is supported by our task analysis
(Section 4) and an iterative design process that included weekly
meetings with our collaborators as well as short informal interviews
with researchers outside the group. We observed our collaborators
would frequently present and discuss both the CFG and the raw
trace, attempting to show the same instructions in both at the same
time. Therefore, we designed our system around two main linked
views: a CFG view and a trace view. These are displayed side by
side as shown in Figure 1.

Our collaborators perform both path-following and attribute
look-up tasks on the CFG, so node-link diagrams, which they were
using, are more appropriate [GFC04, KEC06] compared to matrix-
based representations. Furthermore, our collaborators frequently
drew node-link diagrams when analyzing data, indicating this rep-
resentation matches their mental model. While node-link diagrams
can be difficult to interpret at large scale, we can take advantage
of the sparseness of CFGs as well as domain-specific structures to
produce a more interpretable layout. We describe this layout and
our graph encoding choices in Section 5.1.

Both the CFG and the trace can be inputs to the algorithms our
collaborators are developing. However, the trace represents ground
truth and thus our collaborators would refer back to it after find-
ing insights in derived structures. Thus, we left the trace in its raw
text format but added several features to link it with the CFG and
provide visual cues about basic operations their algorithms might
perform. We describe linking and highlighting in Section 5.2.

5.1. CFG View

We designed a node-link CFG view which emphasizes loops. Algo-
rithms developed by our collaborators often use the identification

† http://github.com/hdc-arizona/cfgexplorer

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

456



S. Devkota & K. Isaacs / CFGExplorer

of loops and their components so we design our CFG layout to pre-
serve these structures. Panning and zooming is supported through
standard ’click and drag’, ’pinch zoom,’ and ’mouse scroll’ interac-
tions. We describe the layout, style, and interaction choices below.

Domain-specific Layout. While CFGs contain cycles, the overall
structure is generally layered, making a Sugiyama [STT81] style
layout appropriate. We chose a vertically layered layout as the ver-
tical direction was associated with sequence by our collaborators to
the point they vehemently objected to a horizontal layout of a sim-
ple five-node graph in a grant proposal, concerned it would confuse
their community. In another instance, a researcher expressed con-
fusion with the node placement in a general layered layout being
presented by a colleague. The colleague responded that it was an
artifact of the layout and did not imply sequence as the first re-
searcher had inferred.

We chose to draw the graph with the instructions associated with
each basic block visible in the nodes to avoid researchers having to
perform a look up operation and to support tasks T1 and T3. We
also provide a hover lens for each node which shows the instruc-
tions at a fixed size using a tooltip, even when the node is small.

Our collaborators struggled to interpret general layered-graph
layouts as the number of nodes increased. We decided to incor-
porate the domain-specific semantics into the layered-graph style,
specifically the expected structure of a loop and its components as
described in Section 2. We forced non-loop nodes reachable by a
loop’s tail node to appear after (below) the loop by adding invisible
edges. The invisible edges increase the layer (rank) of the non-loop
nodes as viewed by the layout algorithm. We experimented with
adding invisible edges from all the loop nodes instead of just the
tail node but found the produced layouts distorted the positions of
the other loop components of interest. Figures 3a and 3b show a
before and after layout using this approach. These changes support
tasks T1, T2, and T4. Though we provide this layout, we also pro-
vide functionality to move nodes while maintaining connectivity in
support of task T6.

%0

%6

%9 %16

(a) Original.

%0:

%6:

%9:

%16:

(b) Altered.

%0:

%6:

%9:

%16:

(c) Back edges.

%0:

%6:

%9:

%16:

(d) Boundaries.

Figure 3: CFG of a simple while loop as generated by
LLVM [LA04]. To modify the results of a general layered layout
(a), we add an invisible edge (red) from the tail node to all outer
nodes (b). In dot, we also route the back edge using ports (c) and
color the loop based on its bounding nodes and edges (d).

When using dot as our base layout, we found it necessary to ex-
plicitly route the back edge using ports (Figure 3c), but not so when
using the Dagre [cpe] library. We ultimately chose Dagre to layout

%0:

%15:

%96:

%17: %100:

%105:

%18:%104:

%638:

%20:

%106:

%22: %110:

%115:

%23:%114:

%61:

%65:%600:

%93: %116:%617:

%621: %631:

%131: %134:

%633:

%135:

%138: %592:

%141:

%149: %597:

%186:

%152:

%164:

%187:

%185:

%167:

%184:

%191: %322:

%192: %348:

%196: %318:

%197: %319:

%201: %314:

%273: %315:

%277: %310:

%307: %311:

%352: %466:

%353: %467:

%357: %462:

%358: %463:

%362: %458:

%436: %459:

%440: %454:

%451: %455:

%471: %588:

%472: %589:

%476: %584:

%477: %585:

%481: %580:

%553: %581:

%557: %576:

%573: %577:

%619: %625:

%630:

%620: %629:

Dagre

dot

%0:

%15:

%96:

%17: %100:

%105:

%18:%104:

%638:

%20:

%106:

%22: %110:

%115:

%23: %114:

%61:

%65:

%600:

%93:%116:

%617:

%621:

%631:

%131:%134:

%633:

%135:

%138:

%592:

%141:

%149:

%597:

%186:

%152:

%164:

%187:

%185:

%167:

%184:

%191:

%322:

%192:

%348:

%196:

%318:

%197:

%319:

%201:

%314:

%273:

%315:

%277:

%310:

%307:

%311:

%352:

%466:

%353:

%467:

%357:

%462:

%358:

%463:

%362:

%458:

%436:

%459:

%440:

%454:

%451:

%455:

%471:

%588:

%472:

%589:

%476:

%584:

%477:

%585:

%481:

%580:

%553:

%581:

%557:

%576:

%573:

%577:

%619: %625:

%630:

%620: %629:

{%0:}

{%15:}

{%96:}

{%17:} {%100:}

{%18:}

{%20:}

{%106:}

{%22:} {%110:}

{%23:}

{%61:}

{%65:} {%600:}

{%93:} {%116:}

{%631:}

{%105:}

{%104:}

{%638:}

{%633:}

{%115:}

{%114:}

{%131:} {%134:}

{%135:}

{%138:} {%592:}

{%141:} {%149:}

{%186:}

{%152:} {%164:}

{%185:}

{%167:}

{%184:}

{%187:}

{%191:} {%322:}

{%192:}

{%196:} {%318:}

{%197:}

{%201:} {%314:}

{%273:}

{%277:} {%310:}

{%307:} {%311:}

{%315:}

{%319:}

{%348:}

{%352:} {%466:}

{%353:}

{%357:} {%462:}

{%358:}

{%362:} {%458:}

{%436:}

{%440:} {%454:}

{%451:} {%455:}

{%459:}

{%463:}

{%467:}

{%471:} {%588:}

{%472:}

{%476:} {%584:}

{%477:}

{%481:} {%580:}

{%553:}

{%557:} {%576:}

{%573:} {%577:}

{%581:}

{%585:}

{%589:}

{%597:}

{%617:}

{%621:}

{%619:} {%625:}

{%620:}

{%630:}

{%629:}

Figure 4: CFG of the mini-flux-div benchmark [OSG∗14] as ren-
dered by Dagre, dot, and our domain-specific approach. Our lay-
out reveals multiple simple, but deeply nested loops.

our modified graph in CFGExplorer due to its time performance,
but maintain the dot-based version as well to aid in prototyping
and presentation. Figure 4 compares the layouts of Dagre and dot
to ours (created using dot on the modified graph) on a static CFG
of the mini-flux-div benchmark [OSG∗14].

One of the researchers outside our primary collaborator group
said he preferred orthogonal edges like in VCG [San95]. He found
them easier to follow and label. We showed both orthogonally
routed and spline edges to our primary collaborators. They indi-
cated a preference for the spline edges, in line with the use of
curved edges in domains such as metro-map layouts [RNL∗13,
KNT13].

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

457



S. Devkota & K. Isaacs / CFGExplorer

Figure 5: Loop boundaries (orange) are drawn as the convex hull
of the loop nodes and back edge, darker indicates loop nesting.
This approach does not capture all loop edges (left) as doing so can
create difficult-to-interpret results in more complicated graphs.

Loop Boundaries. To further aid researchers in quickly identifying
loops (task T2), we draw a boundary enclosing all nodes in the loop
as a solid-colored background. The boundaries are computed as the
convex hull of all loop node boxes and the back edge using the
Graham scan algorithm.

We considered including all loop-internal edges in the boundary
calculation. We checked each pair of adjacent nodes in the convex

Figure 6: Functions and loops can be automatically centered via
the slide-out navigation menu. A bounding box is drawn around the
function or loop and all member nodes are selected (teal border).

hull. If an edge existed between them, we replaced the previously
calculated convex hull edge with the graph edge. While including
all loop-internal edges in the convex hull worked well for simple
CFGs (Figure 3d), it was difficult to interpret in larger graphs with
more edge crossings and complex code behavior and it was com-
putationally expensive. However, since the back edge is of special
importance in defining the loop, we included it in our convex hull
calculation, ensuring it is within the loop boundary background.

Non-loop nodes may be included in the boundary. We decided
against a non-convex approach as it would not be “loop-like” and
would be computationally expensive. We include a feature to ex-
plicitly highlight nodes of a given loop to ameliorate this issue.

We chose orange for the loop boundaries to not be confused
with the highlighting in Section 5.2. We further encode loop nest-
ing depth with the lightness of the orange coloring—more deeply
nested loops appear darker as shown in Figure 5.

Encoding Loop Components. To support task T5, we encode the
number of times a node was executed using border thickness and
the number of times an edge was traveled using line width, where
higher is thicker. As there is a large amount of variation, both are
calculated on a log scale. While most edges are drawn in black, we
draw all loop back edges in magenta to make them quickly identifi-
able as desired by task T2. These encodings are shown in Figure 5.

Some of our CFG data is augmented with extra nodes and links
added by our collaborators for their analysis. These are marked as
such in the data. We use dotted lines and decrease the size of these
nodes to communicate they are not basic blocks or dependencies
from the trace.

Function and Loop Interaction and Navigation. We provide a
slide-out navigation menu for functions and loops, as shown in Fig-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

458



S. Devkota & K. Isaacs / CFGExplorer

ure 6. Clicking on an entry will center the graph view on the cor-
responding structure and highlight all member nodes. We experi-
mented with hovering, but found our collaborators used the menu
for directed search rather than browsing and thus vastly preferred
the view only change on deliberate command. The menu also serves
a visualization purpose, summarizing the structure of the data in
terms of functions and loops and showing containment and nesting
via indention.

Users can double-click on an entry to aggregate all member
nodes into a single “super-node,” thus decreasing the number of
nodes shown in the graph. Super-nodes maintain all in and out
edges of the function or loop they represent. The node aggrega-
tion is similar to the functionality in GrouseFlocks [AMA08] and
ASK-GraphView [AHK06], as applied to a layered layout instead
of a force-directed one. We place the super-node at the centroid
of its child nodes to preserve the existing layout. We maintain the
ability to move and delete (super-)nodes from the view. Execution
counts on edges between super-nodes are also aggregated.

5.2. Linked Navigation and Highlighting

As we observed our collaborators generating insights from a CFG
visualization and then consulting the corresponding portion of the
raw trace, we designed our system to aid in these operations by
linking the navigation and highlighting of both data structures.
We also describe two highlight encodings, temporal highlighting
and analysis highlighting, which support common operations per-
formed by our collaborators as well as building blocks for the algo-
rithms they design.

Positional linking and highlighting. Navigation in one view
causes the other view to center on the selection. Scrolling the trace
view will center the CFG on the first basic block visible in the trace.
We do not alter the zoom as users found doing so disorienting. Hov-
ering over a node in the CFG cause the raw trace to re-center so
the hovered basic block is placed at the top. Hovering also causes
the node boundary to be drawn in teal and the corresponding ba-
sic block in the trace to be outlined in teal. Clicking on an edge
shows a preview of the incident nodes of the edge. Similar to that
of CGV [TAS09], this feature is designed for long edges where one
or both of the incident nodes are not visible.

Temporal highlighting. A CFG does not contain the exact order
of instructions executed, which is needed to understand the exact
sequence of events. This data is included in the trace. For a higher
level understanding of the iterations (tasks T1 and T5) and for in-
sight on whether a proposed algorithm can operate on the CFG
alone or requires the trace, we use linked highlighting to show se-
quence information from the trace. In particular, we highlight the
basic blocks visible in the raw trace view and their corresponding
nodes in the CFG, using a gradient to denote their order. The gra-
dient is from light to dark blue, with lighter meaning earlier in the
sequence. Scrolling through the trace thus produces an animation
of the flow of control. Due to the positional linking, the highlight-
ing portions of the CFG remain centered. Figure 7 demonstrates
this highlighting.

Analysis highlighting. Our collaborators frequently develop anal-
ysis programs for finding specific instructions, addresses, or regis-

Figure 7: The visible portions of the trace and corresponding nodes
in the CFG are colored using a blue gradient. Researchers can see
the sequence of a portion of the trace in the CFG. Scrolling acts as
animation to understand execution.

ters both to help understand program behavior or as part of a larger
solution in their research. We incorporate a feature that highlights
elements returned by such programs as they appear in both the trace
and the CFG. We implemented this highlighting for two such analy-
sis techniques supplied by the researchers, backtainting and upward
exposed read (UER) detection. The backtaint of an instruction finds
all other instructions that may have affected it through data flow. It
is helpful for understanding the provenance of a particular instruc-
tion. A UER is a read instruction in a loop to a location that has
not yet been written in that iteration of a loop. Detecting UERs is
helpful in determining if a loop can be parallelized. The program
supplied by our collaborators allows filtering of returned UERs to
those where the write occurs within the loop (in-UERs) and those
where it does not (out-UERs).

When a distance metric is available, such as the number of in-
structions executed between the queried instruction and the found
instruction in backtainting, we use the shade of purple to indicate
that distance, where darker means closer to the query. The backtaint
analysis does not take control dependency into account and hence
the instructions returned by the analysis are not arranged in the ex-
act order of closeness to the queried instruction. Figure 8 shows an
example of backtaint highlighting, the dark purple line is closer to
the query than the lighter purple line.

Highlighting design considerations. Our design has several forms
of highlighting that can activate simultaneously which could cause
confusion. Non-color channels such as region and size would alter
the layout and we did not want to add shape markers to the text. We
tried several colors for highlight and gradient with our collabora-
tors and selected the one they found most visible. We interpolated
in perceptual color space. We determined highlight precedence by
considering how our collaborators used each highlight. Backtaint,
UER, and loop highlighting, as well as future analytics that would
use the same semantics (e.g., adding similar functionality for pro-
gram slicing), are very deliberate user choices, and thus take prece-
dence over the navigational highlighting of hovering and scrolling.
As hover highlighting is a quick and basic action, we chose teal
outlines for the encoding so it could be composed with the other
area-based highlights. To give users more flexibility in avoiding in-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

459



S. Devkota & K. Isaacs / CFGExplorer

Figure 8: The backtainted addresses from the query address
40059E (denoted here with a floating arrow) are highlighted in pur-
ple. Darker implies a closer address in the data dependency chain.

terference and in focusing on particular attributes, we allow any
highlight feature (color, thickness, background) to be turned off.

5.3. Implementation

CFGExplorer is a browser-based client-server application. A Flask
server runs program analyses (e.g, loop-finding, backtainting) and
communicates them in a RESTful manner. The client is written in
Javascript using d3js [BOH11] with Dagre [cpe] as the base lay-
out. Users can export the CFG view as an SVG (task T6). Though
CFGExplorer was designed for both CFGs and traces, a CFG-only
mode without trace-dependent features exists to support a broader
range of uses, such as examining statically-generated CFGs.

6. Evaluation

To evaluate the effectiveness of the CFGExplorer, we conducted
hour long evaluation sessions with six participants, four of them
from our group of collaborators. Of the four collaborators, one had
recently joined the project and was thus not part of the formative
design process. We also conducted short demonstrations at a com-
puting conference to seek feedback outside the research group. We
deployed CFGExplorer to our collaborators and observed its use
over the course of our development.

6.1. Evaluation Sessions

We scheduled evaluation sessions with six participants. Four of
them are our collaborators of which three are students and one
holds a Ph.D. degree. One of the students joined the project a month
before the evaluation session as was not involved in the formative
design process. We refer to them as P1, P2, P3, and P4 respectively,
with P4 being the participant new to the project. P1 had been using
our tool for analysis during deployment, while the other two par-
ticipants had seen the tool but not interacted with it. The other two
participants, P5 and P6, had not seen or used CFGExplorer before.
P5 is an undergraduate student who had been working on a dif-
ferent program analysis research project for one semester. P6 is a
graduate student whose research is in the area of security, including
reverse engineering. For these sessions, the participants used a lap-
top provided by the authors rather than their usual work machines.

Our evaluation sessions started with a ten minute tutorial ex-
plaining the encoding, interactivity, and features of CFGExplorer.
Next, the participants were asked to complete the tasks described
below. We then encouraged free exploration, which all participants
did. We closed the session with a semi-structured interview and de-
briefing. Each session was conducted individually, with one author
directing the participant and another author taking notes.

Participants were asked to perform evaluation tasks of increasing
difficulty and to “think aloud” while doing so. The evaluation tasks
E1 - E5 are listed below along with their corresponding tasks from
the task analysis of Section 4.

E1. Find a specific address in the trace and center the node con-
taining it in the CFG. (Task T3)

E2. Find a specific function. (Task T3)
E3. Find a specific loop and identify its back edge and loop exits.

(Tasks T2 and T3)
E4. Find the loop with the most iterations. (Tasks T2 and T5)
E5. Free Exploration: Explore instructions marked by automated

analysis. (Tasks T1 and T4)

The evaluation dataset was generated by other members of the
collaborator group and was one of a set of datasets collected for
their analysis. The programs we evaluated CFGExplorer on were
different from the programs our participants were working on at
that time. Furthermore, we did not time participants. We describe
our observations of task performance below.

E1: Find a specific address. Participants P1, P3, P4, and P6 im-
mediately used the browser’s search feature to find the given ad-
dress in the trace. They then scrolled the trace to center the node in
the CFG view. P2 needed to be reminded of the command for the
browser search, but then followed in the same manner. P3 remarked
they would have preferred dragging to scrolling in the trace view.

P5 started by performing a backtaint on the address and then
explored the results. After being reminded of what the backtaint
feature does, the participant said "Usually I would just use Ctrl-F"
and questioned if it was okay. Once given approval, the participant
completed the task using the browser’s search feature.

E2: Find a specific function. Participants did not exhibit difficulty
with this task. They opened the navigation menu and located the
specified function in the functions block and used it to highlight
and center the function in the CFG view before closing the menu.

E3: Find a specific loop and its components. Similar to E2, all
participants used the navigation menu, this time with the loop hi-
erarchy block, to find and center the specific loop. After closing
the navigation menu, they identified the back edge as the one col-
ored magenta. To find the exit nodes, they scrolled to the bottom of
the loop, loosely centering the bottom of the background color and
identified edges leaving the loop.

E4: Find the loop with the highest iteration count. The partici-
pants used different strategies for this task. P1 and P5 first looked
for loops in the CFG view that had thick borders and edges be-
cause line width encodes trip count, with P1 appearing to use the
orange background to verify they were loops. After finding can-
didate loops, they used the navigation menu to center the graph
on each loop and zoom in to read the trip counts. P2, P3 and P4

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

460



S. Devkota & K. Isaacs / CFGExplorer

started from the navigation menu, centering and zooming on every
loop and reading the trip count on the back edge. P6 located all the
loops using just zooming and panning by identifying orange loop
boundaries. He remarked he would use the navigation menu if there
was a large number of loops.

P4 took some time to recognize the largest loop, which extended
beyond the screen at his zoom level. P5 incorrectly assumed the or-
der of loops listed in the navigation menu was based on loop itera-
tions. (The branch order of the loop hierarchy is arbitrary.) None of
the participants used the “Show Loops” feature to color the loops.

E5: Free exploration. Participants were encouraged to analyze the
graph and to try the backtainting (P1, P2, P3, P5, P6) or upwards
exposed read (UER) detection (P4) features, so we could observe
how to better integrate more complicated program analysis tech-
niques into the visualization.

E5: Free exploration - Backtainting. P1 decided to explore a
dataset of his choosing. The dataset was from a linked list program
which he had last looked at six months beforehand. He wanted to
work with it again to think through how his in-development al-
gorithm would handle the dataset. From the graph view and his
knowledge of the source program, he identified a loop of interest.
He backtainted on an address from one of the instructions late in
the loop, resulting in most loop addresses being highlighted. He re-
marked that the backtainted instruction therefore belonged to one
set of instructions used in his research. He typed another address
and saw that fewer addresses were tainted, meaning the instruction
belonged to the other set. He continued with several more instruc-
tions, writing down which group each address belonged to on a
sheet of paper.

When asked, P1 explained that he wanted to understand direct
dependencies and that those will be the ones tainted first (“the im-
mediate taint”). Using the difference in the taint highlighting color,
he would locate such an address and use it as input for the next taint.
He suggested a limit on the number of tainted addresses that would
be highlighted to focus on the closest ones. Using the sheet of paper
from earlier, he drew a subgraph showing the taint dependencies.

The other participants explored the original dataset. P2 operated
similarly to P1—starting with an address near the end of a loop and
polling which addresses resulted in many versus few highlights.

Participant P3 asked for a reminder on how to use the tainting
feature. She first found some instructions of interest and explained
what operations the instructions were performing and how she be-
lieved that related to the original program. She first tainted an in-
struction she identified as being a loop increment because she was
curious what would happen. After tainting, she pointed out where
the loop initialization was with respect to the increment. She dis-
covered an untainted instruction in the loop and wondered why it
had not been tainted, saying: “Is this iterating over an array? Yes,
max iterates over an array, so it’s looking for the boundary of an
array.” She was thus able to determine why the instruction was not
part of the taint with the help of knowledge of the program.

Participant P5 wanted to verify her understanding of the back-
taint feature, hypothesizing that the order of addresses in the back-
taint does not follow the execution order of instructions in the trace.
She used the backtaint analysis feature on an address inside a loop.

The result showed that some addresses were highlighted after the
input instruction. She further hypothesized “so the lightest color
would be the initial value... the very first one that starts affecting
the others ones.”

Participant P6 first searched for a print function using both the
browser search and the navigation menu, because print functions
indicate program output. The program did not have a print function,
so he instead searched for return statements, immediately locating
one in the program exit node. He tainted the address and noted it
can be hard to visually find all the highlights when zoomed far out.
He instead scrolled through the trace to find the addresses, remark-
ing the process gave him a sense of execution count.

Focusing on a single loop, P6 identified an instruction which
causes the loop to exit and performed a taint on that address. Using
the taint similarly to P3, he explained what the loop is doing, iden-
tifying the iteration instructions and those that handle arguments.

Finally, P6 noted that there is a lot of Python start up code in the
data. He used the function list in the navigation menu to collapse
probable Python functions into single nodes. He said of the function
collapsing: “I think that’s the most helpful feature especially for the
type of things like reverse engineering.”

E5: Free exploration - UER Detection. Participant P4 experi-
mented with the UER analysis, having previous experience per-
forming such analysis manually on smaller traces in a different
assembly language. Using the feature that returns only the UERs
caused by writes within loops (in-UERs), he quickly identified the
source of the UER by pointing to the bottom node of a loop and
noted all highlighted accesses of the value happen before (above)
his identified instruction. He inferred: “So that has the back edge,
which means that value might be updated when we use it in the next
iteration of the loop. So we have to be careful between iterations.”

The UER analysis was in-development by another member of
P4’s research group. P4 decided to verify its behavior. He first high-
lighted out-UERs, those that use values not defined in the loop. He
identified a highlighted register in one loop instruction. He then vi-
sually searched the other highlighted lines in the loop, verifying
that register is never assigned and thus is correctly considered an
out-UER. P4 said the visualization is helpful in checking correct-
ness of the UER detector. He suggested adding a feature to filter
the UERs so he can focus on inspecting just a few at a time.

P4 was curious as to whether the UER detection used trace in-
formation. We brought up a dataset from a simple array summation
program with which he was familiar. P4 hypothesized that if the
UER detector uses the trace, it should show no UERs, but if it does
not, it might have false positives. P4 highlighted the detected UERs
and examined their corresponding lines in the trace. He concluded
the UER feature is not using trace information.

6.1.1. Semi-structured Interviews

After the tasks were completed, we conducted semi-structured in-
terviews with the participants starting with specific questions on the
ease or difficulty of performing certain tasks. Then we asked more
general questions about usability and desired features. We summa-
rize themes in the responses below.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

461



S. Devkota & K. Isaacs / CFGExplorer

Participants liked the linking of the CFG and execution trace rep-
resentations. P1 remarked “So what I see when I spit it out on the
command line is just a list of instructions. That doesn’t give me
any context to how the instructions are related.” P4 said CFGEx-
plorer was useful for his research and “it really simplifies navigat-
ing through a trace because it identifies the loops for you.” P5 said
“This [CFGExplorer] is so convenient.” P2 said “It’s really nice to
be able to explore and connect information especially between the
CFG and the trace. There’s nothing else we have that does that. It’s
really invaluable” and “...it will help me solidify what information
we can get from the trace and we can get from the CFG.” P3 also
discussed the need to connect the trace and control flow when re-
questing more tainting features: “...it seems like there needs to be
control flow tainting as well. We all need to think about how the
forward expression tree building interacts with the trace.”

The graph layout was also appreciated by participants. P1 said
“If the instruction is higher up, it’s probably executed first” and
also remarked he used the highlighted back edge as a cue to ascer-
tain loop extents. P3 noted that “the jumps are already pretty clear
visually.” Participants P2, P3, and P4 preferred the layout be static
or locked rather than having the ability to alter the graph visualiza-
tion. P1 said being able to move the nodes was useful when making
figures for presentation, but had not needed to use it for analysis.

Participants generally found the tool usable. P1 stated “It was in-
tuitive. I feel like I could open this up and figure out how to zoom”
and “Scrolling and centering is pretty much perfect now.” P6 said
both looking at the program and performing the analysis was very
easy. P4 liked the ability to disable some of the encoding, noting
that node thickness is useful when zoomed out but unneeded when
zoomed in. P5 liked the ability to search and highlight everything.
Both P1 and P3 stated they preferred clicking to hovering when
centering the graph from the navigation menu. P3 did not find the
hover lens useful and turned the feature off. P1 said he did not cur-
rently use the loop and function collapsing in CFGExplorer, but
anticipated needing it soon. P6 emphasized that the loop and func-
tion collapsing was an important feature to him.

When asked about annotation, P1 and P2 said they preferred to
take a screenshot and then use a separate program, e.g., one that
allows the user to draw with the stylus. In contrast, P3 suggested
being able to save the visualization’s state along with a note, high-
light features, and add tags. P4 stated annotations would be useful,
noting “most of the communication in our group is taking a screen-
shot in your tool”, and then sending it around with comments. P1
and P2 said it was possible built-in annotation would be useful, but
would prefer priority be given to other features.

Participants suggested adding the ability to filter columns in the
instruction trace (P3), a list view of backtainted addresses (P1, P6),
heuristically collapsing some functions on startup (P6), and auto-
matic highlighting of other domain-specific constructs such as up-
ward exposed reads and slices (P3). P3 also asked for a bright and
larger highlight color for the linked node highlight. P6 suggested
more color difference between successively highlighted blocks in
the linked gradient coloring.

Both participants from outside our collaborator group (P5 and
P6) asked if the tool was available for their own use and were given
a link to the demonstration site. P6 suggested CFGExplorer could

be used to help students on their reverse engineering assignments,
noting limitations of other tools. He also was interested in using it
with other assembly languages. He suggested the dynamic support
could help with obfuscated code, as the dynamic CFG may remove
some of the obfuscation.

6.1.2. Limitations in Evaluation Sessions

The findings of the evaluation sessions are limited by the small
number of participants, three of whom were regularly in attendance
at research meetings used in our task analysis and subsequent de-
sign iterations. Additionally, four of the participants (those from
our collaborator group) had some familiarity with the evaluation
dataset, though none had recently been analyzing it when the ses-
sion was run. This familiarity may have enhanced their productivity
with CFGExplorer.

The evaluation sessions were designed to last one hour, includ-
ing the interview portion. The time constraint limited the kind of
analyses we could observe. As CFGExplorer was designed to aid
researchers, a more realistic workflow using CFGExplorer would
take significantly longer and might involve using other analysis
tools and methods in tandem.

6.2. Conference Feedback

We sought feedback regarding CFGExplorer at a parallel comput-
ing research conference. Three researchers (R1, R2, and R3) with
an interest in CFGs were given either a short demonstration or a
link to the prototype and sample data. None had previously seen or
heard about our work. All three researchers responded positively to
the domain-specific layout and interactivity and asked for the URL.
R1 particularly liked the loop and function collapsing capabilities.

The researchers also made several suggestions. R1 and R3 re-
quested more flexibility with multivariate data associated with the
CFG, such as time and branch count for vectorization. R3 in partic-
ular suggested the ability to color edges by more types. R1 won-
dered about the scalability of CFGExplorer because he looks at
CFGs from big applications.

6.3. Deployment

CFGExplorer has been in development for over an year and has
been deployed among our collaborators concurrently with develop-
ment for more than 6 months. Informally, the visualization received
positive feedback during meetings with focus on the linked graph
and trace highlighting and loop and function navigation. Prior to the
deployment of CFGExplorer, our collaborators would show PDFs
generated using a general layered layout. Since deployment, some
collaborators now present using CFGExplorer instead, though one
still uses a static PDF from a general layered layout.

During research meetings, we observed collaborators simulating
the steps of their proposed algorithms on example data in CFG-
Explorer for the rest of the group. Screenshots from CFGExplorer
were also used to share findings in emails, presentations, and pro-
posals. In one meeting, a collaborator shared an annotated screen-
shot from the tool, marking particular instructions with colors. We
followed up with the collaborator asking how he had generated the

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

462



S. Devkota & K. Isaacs / CFGExplorer

screenshot. He said he used the navigation menu to navigate to his
loop of interest and then took the screenshot and annotated it using
a drawing app on his tablet.

During another session, a researcher pointed out long chains of
degree-2 nodes visible in CFGExplorer. The insight was that the
data contained an unexpectedly large number of untaken jumps,
which would significantly slow down their proposed algorithm.
They began considering additional approaches to mitigate the prob-
lem. Though datasets with this feature had been viewed with the
general layered layout in static form, they had not noticed this fea-
ture before using CFGExplorer.

Case Study: Developing a Specialized UER Detector. The re-
searchers are in the process of developing a specialized program
to detect upward exposed reads (UERs) of interest to their larger
project. They initially programmed the detector to use only the
CFG, but believe they will need some information from the trace
to refine the results. They used CFGExplorer to inspect the out-
put with the goals of (A) determining if the detector is behaving
as expected (correctness) and (B) determining the minimal amount
of information they need from the trace. One senior collaborator
remarked “I think bringing things up in CFGExplorer is the right
way to do this,” because it shows the correspondence between the
trace and the CFG.

The researchers had a sub-group meeting, limited to stakehold-
ers in the UER detection. The researchers used CFGExplorer to
highlight the results of the UER detector in a sample program. The
researchers verified the correctness of the results by checking the
addresses touched by the UERs. While doing so, they noticed the
register rbpwas returned frequently. After discussing why the pro-
gram detects the register, they decided it could be ignored by their
detector program.

Another discovery made while looking at the UER results came
from examining repeated basic blocks in a short loop. Using CFG-
Explorer, they quickly recognized a repeated portion of the trace
corresponding to the loop. One researcher noted that despite a non-
zero value being added to the same register each iteration, the value
in the trace did not seem to change between iterations. The re-
searchers hypothesized an error in the tracing utility and made a
note to consult with the collaborators in charge of those tools.

7. Discussion and Lessons Learned

Our evaluation shows that computer science researchers were able
to perform the Section 4 tasks using CFGExplorer and found it use-
ful enough to integrate with their existing workflow. The domain-
specific layout and interactivity in the form of correlation with the
trace as well as navigation to loop structures emerged as their most
well-regarded components of the visualization system.

During the free exploration task (E5) in the evaluation sessions
and in research group meetings, the use of analysis highlighting
(e.g., due to backtainting) seemed to help researchers more quickly
orient themselves in the assembly. We frequently observed them
explaining what a group of instructions did and relating them to
program constructs such as the loop iterator, thus supporting task
T2 (Identify Known Structures).

However, researchers’ thoughts on potential integrated annota-
tion capabilities, which might further help them mark known struc-
tures, were mixed. We observed the researchers who preferred us-
ing general stylus-based drawing tools on screenshots were also
likely to draw graphs on paper, as P1 did during our evaluation
sessions. We infer annotation capabilities that incorporate creating
subgraphs, in addition to the highlighting proposed by P3 and R3,
could be beneficial, but would need to be designed in a flexible
enough manner and may need to support touch and stylus inputs.

Though the ability to alter the layout was a task we identified
during our initial analysis, the feature seemed detrimental during
our evaluation sessions, causing us to add the ability to lock the
layout. In part, we believe the ability to move nodes got in the way
because layout alteration is a relatively short part of the analysis
process. Our domain-specific layout may have also lessened the
need to “fix” the layout in performing the analysis. However, P6
and R1’s enthusiasm for collapsing functions and loops indicates
that more support for altering the layout in a domain-specific fash-
ion, i.e., locally updating the layout to preserve more of the struc-
ture in terms of edge routing and node placement, is needed to aid
researchers when they want to make changes.

No participants used the “Show loops” feature, which highlights
the nodes of each loop with a different color, to identify loops in the
evaluation. We infer that coloring the background using the convex
hull of each loop combined with the loop hierarchy in the naviga-
tion menu was sufficient for loop exploration.

Our design was based on data collected from computer science
researchers via observation, interviews, and questionnaires as well
as consideration of existing approaches. On reflection during our
analysis, we noted that many of the tasks performed by the re-
searchers are analogous to common building blocks used by al-
gorithms in their community. This insight opens another avenue
for task and requirements analysis—the APIs of their common li-
braries and toolkits. Once we brought this observation to one of the
principal investigators of the research group, they remarked fram-
ing their needs in those terms also helped them think about their
own uses of visualization. We expect the design of other visualiza-
tions for computing research and well as further design to increase
the capabilities of CFGExplorer can benefit from careful examina-
tion and classification of features available in common libraries.

8. Conclusion

We have presented a design approach, task analysis, and proto-
type system for program analysis with control flow graphs. We ob-
served that computer science systems researchers often approach
a CFG visualization in the same way the algorithms they develop
do. We used this observation to guide the design of our graph lay-
out, analysis features, encodings, and interactions. We incorporated
the identification of loops and their components, a basic operation,
directly into the graph layout and encoding. Correspondence be-
tween the CFG and the trace was done with coordinated views. We
included backtaint and UER analysis as highlighting features and
expect their design to transfer to similar analyses. We evaluated our
prototype design through deployment, informal interviews, and for-
mal evaluation sessions. Researchers particularly liked the domain-
specific layout and interactivity and found the prototype usable.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

463



S. Devkota & K. Isaacs / CFGExplorer

Our collaborators have integrated CFGExplorer into their work-
flow, using it for analysis and collaboration.

We plan on providing a general methodology for incorporat-
ing basic analysis operations in a manner similar to our backtaint
and UER highlighting, targeting formats available from common
tools such as LLVM. We foresee this requiring multivariate tech-
niques [KPW13]. We also plan to closely examine issues of scala-
bility. While CFGExplorer increased the size of graphs that our col-
laborators could examine and improved upon their analysis process,
applicability to data larger than a few thousand nodes is untested
and may require new techniques. We expect hierarchical layout ap-
proaches that integrate more domain information will be needed as
well as support for then altering the graph, similar to [GSE∗14].

9. Acknowledgements

We thank the individuals who participated in our evaluation and our
collaborators in the Science Up To Par project in the Department of
Computer Science at the University of Arizona. We further thank
the National Science Foundation for funding this research under
award III-1656958.

References
[AHK06] ABELLO J., HAM F. V., KRISHNAN N.: Ask-graphview: A

large scale graph visualization system. IEEE Trans. on Vis. and Comp.
Graphics 12, 5 (Sept 2006), 669–676. doi:10.1109/TVCG.2006.
120. 7

[AMA08] ARCHAMBAULT D., MUNZNER T., AUBER D.: Grouseflocks:
Steerable exploration of graph hierarchy space. IEEE Trans. on Vis. and
Comp. Graphics 14, 4 (July 2008), 900–913. doi:10.1109/TVCG.
2008.34. 7

[Bal04] BALMAS F.: Displaying dependence graphs: a hierarchical ap-
proach. J. Soft. Maint. and Evolution: Res. and Prac. 16, 3 (2004), 151–
185. 3

[BH99] BEYER H., HOLTZBLATT K.: Contextual design. interactions 6,
1 (Jan. 1999), 32–42. doi:10.1145/291224.291229. 4

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3: Data-driven
documents. IEEE Trans. on Vis. and Comp. Graphics 17, 12 (Dec 2011),
2301–2309. doi:10.1109/TVCG.2011.185. 8

[BYB∗13] BORKIN M. A., YEH C. S., BOYD M., MACKO P., GAJOS
K. Z., SELTZER M., PFISTER H.: Evaluation of filesystem provenance
visualization tools. IEEE Trans. on Vis. and Comp. Graphics (2013). 3

[Con] Control flow graph factory. http://www.drgarbage.com/
control-flow-graph-factory/. (Accessed on 12/10/2016). 3

[cpe] cpettitt/dagre: Directed graph renderer for javascript. https://
github.com/cpettitt/dagre. (Accessed on 12/10/2016). 5, 8

[FOW87] FERRANTE J., OTTENSTEIN K. J., WARREN J. D.: The pro-
gram dependence graph and its use in optimization. ACM Trans. Pro-
gram. Lang. Syst. 9, 3 (July 1987), 319–349. doi:10.1145/24039.
24041. 2

[GFC04] GHONIEM M., FEKETE J.-D., CASTAGLIOLA P.: A compari-
son of the readability of graphs using node-link and matrix-based repre-
sentations. In Proc. IEEE Symp. on Info. Vis. (2004), pp. 17–24. 4

[GKNpV93] GANSNER E. R., KOUTSOFIOS E., NORTH S. C., PHONG
VO K.: A technique for drawing directed graphs. IEEE Trans. on Soft.
Eng. 19, 3 (1993), 214–230. 3

[GN00] GANSNER E. R., NORTH S. C.: An open graph visualization
system and its applications to software engineering. Software – Prac.
and Exp. 30, 11 (2000), 1203–1233. 3

[GSE∗14] GLADISCH S., SCHUMANN H., ERNST M., FÃIJLLEN G.,
TOMINSKI C.: Semi-automatic editing of graphs with customized lay-
outs. Comp. Graphics Forum 33, 3 (2014), 381–390. doi:10.1111/
cgf.12394. 12

[KEC06] KELLER R., ECKERT C. M., CLARKSON P. J.: Matrices or
node-link diagrams: which visual representation is better for visualizing
connectivity models? Information Visualization 5 (2006), 62–76. 4

[KNT13] KOBOUROV S. G., NÖLLENBURG M., TEILLAUD M.: Draw-
ing Graphs and Maps with Curves (Dagstuhl Seminar 13151). Dagstuhl
Reports 3, 4 (2013), 34–68. doi:10.4230/DagRep.3.4.34. 5

[KPW13] KERREN A., PURCHASE H. C., WARD M. O.: Multivariate
network visualization: Dagstuhl Seminar 13201, May 12-17, 2013: re-
vised discussions. Springer, 2013. 12

[Kri04] KRINKE J.: Visualization of program dependence and slices. In
Proc. 20th IEEE Int’l Conf. on Soft. Maint. (Sept 2004), pp. 168–177.
doi:10.1109/ICSM.2004.1357801. 3

[LA04] LATTNER C., ADVE V.: LLVM: A compilation framework for
lifelong program analysis & transformation. In Proc. Int’l Symp. on Code
Gen. and Optimization (2004), CGO ’04, pp. 75–. 5

[LPP∗06] LEE B., PLAISANT C., PARR C. S., FEKETE J.-D., HENRY
N.: Task taxonomy for graph visualization. In Proc. 2006 AVI BE-
LIV Workshop (2006), BELIV ’06, ACM, pp. 1–5. doi:10.1145/
1168149.1168168. 4

[LTM17] LAM H., TORY M., MUNZNER T.: Bridging from goals to
tasks with design study analysis reports. IEEE Trans. on Vis. and Comp.
Graphics (2017). doi:10.1109/TVCG.2017.2744319. 3

[OSG∗14] OLSCHANOWSKY C., STROUT M. M., GUZIK S., LOFFELD
J., HITTINGER J.: A study on balancing parallelism, data locality, and
recomputation in existing pde solvers. In Proc. Supercomputing (2014),
SC ’14, pp. 793–804. doi:10.1109/SC.2014.70. 5

[PGS∗16] PARTL C., GRATZL S., STREIT M., WASSERMANN A. M.,
PFISTER H., SCHMALSTIEG D., LEX A.: Pathfinder: Visual analysis
of paths in graphs. In Proc. Eurographics / IEEE VGTC Conf. on Vis.
(2016), EuroVis ’16, pp. 71–80. doi:10.1111/cgf.12883. 3

[RNL∗13] ROBERTS M. J., NEWTON E. J., LAGATTOLLA F. D.,
HUGHES S., HASLER M. C.: Objective versus subjective measures of
paris metro map usability: Investigating traditional octolinear versus all-
curves schematics. Int’l J. Human-Comp. Studies 71, 3 (2013), 363 –
386. 5

[San95] SANDER G.: Graph layout through the vcg tool. Proc. Graph
Drawing, GD’94, LNCS 894 (1995), 194–205. 3, 5

[STT81] SUGIYAMA K., TAGAWA S., TODA M.: Methods for visual
understanding of hierarchical system structures. IEEE Trans. on Systems,
Man, and Cybernetics 11, 2 (1981), 109–125. 2, 3, 5

[TAS09] TOMINSKI C., ABELLO J., SCHUMANN H.: Technical section:
Cgv-an interactive graph visualization system. Comput. Graph. 33, 6
(Dec. 2009), 660–678. doi:10.1016/j.cag.2009.06.002. 7

[TWS14] TOPRAK S., WICHMANN A., SCHUPP S.: Lightweight struc-
tured visualization of assembler control flow based on regular expres-
sions. In Proc. IEEE VISSOFT (2014), pp. 97–106. 3

[WSW∗18] WONGSUPHASAWAT K., SMILKOV D., WEXLER J., WIL-
SON J., MANÉ D., FRITZ D., KRISHNAN D., VIÃL’GAS F. B., WAT-
TENBERG M.: Visualizing dataflow graphs of deep learning models in
tensorflow. IEEE Trans. Visualization & Comp. Graphics (2018). 3

[WWM08] WÜRTHINGER T., WIMMER C., MÖSSENBÖCK H.: Visu-
alization of program dependence graphs. In Proc. Joint Euro. Conf. on
Theory and Prac. of Soft. / 17th Int’l Conf. on Compiler Construction
(2008), CC’08/ETAPS’08, pp. 193–196. 3

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

464

http://dx.doi.org/10.1109/TVCG.2006.120
http://dx.doi.org/10.1109/TVCG.2006.120
http://dx.doi.org/10.1109/TVCG.2008.34
http://dx.doi.org/10.1109/TVCG.2008.34
http://dx.doi.org/10.1145/291224.291229
http://dx.doi.org/10.1109/TVCG.2011.185
http://www.drgarbage.com/control-flow-graph-factory/
http://www.drgarbage.com/control-flow-graph-factory/
https://github.com/cpettitt/dagre
https://github.com/cpettitt/dagre
http://dx.doi.org/10.1145/24039.24041
http://dx.doi.org/10.1145/24039.24041
http://dx.doi.org/10.1111/cgf.12394
http://dx.doi.org/10.1111/cgf.12394
http://dx.doi.org/10.4230/DagRep.3.4.34
http://dx.doi.org/10.1109/ICSM.2004.1357801
http://dx.doi.org/10.1145/1168149.1168168
http://dx.doi.org/10.1145/1168149.1168168
http://dx.doi.org/10.1109/TVCG.2017.2744319
http://dx.doi.org/10.1109/SC.2014.70
http://dx.doi.org/10.1111/cgf.12883
http://dx.doi.org/10.1016/j.cag.2009.06.002



