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Abstract Understanding the relationships between different properties of data, such as whether

a genome or connectome has information about disease status, is increasingly important. While

existing approaches can test whether two properties are related, they may require unfeasibly large

sample sizes and often are not interpretable. Our approach, ‘Multiscale Graph Correlation’ (MGC),

is a dependence test that juxtaposes disparate data science techniques, including k-nearest

neighbors, kernel methods, and multiscale analysis. Other methods may require double or triple

the number of samples to achieve the same statistical power as MGC in a benchmark suite

including high-dimensional and nonlinear relationships, with dimensionality ranging from 1 to 1000.

Moreover, MGC uniquely characterizes the latent geometry underlying the relationship, while

maintaining computational efficiency. In real data, including brain imaging and cancer genetics,

MGC detects the presence of a dependency and provides guidance for the next experiments to

conduct.

DOI: https://doi.org/10.7554/eLife.41690.001

Introduction
Identifying the existence of a relationship between a pair of properties or modalities is the critical ini-

tial step in data science investigations. Only if there is a statistically significant relationship does it

make sense to try to decipher the nature of the relationship. Discovering and deciphering relation-

ships is fundamental, for example, in high-throughput screening (Zhang et al., 1999), precision med-

icine (Prescott, 2013), machine learning (Hastie et al., 2001), and causal analyses (Pearl, 2000).

One of the first approaches for determining whether two properties are related to—or statistically

dependent on—each other is Pearson’s Product-Moment Correlation (published in 1895; Pear-

son, 1895). This seminal paper prompted the development of entirely new ways of thinking about

and quantifying relationships (see Reimherr and Nicolae, 2013 and Josse and Holmes, 2013 for

recent reviews and discussion). Modern datasets, however, present challenges for dependence-test-

ing that were not addressed in Pearson’s era. First, we now desire methods that can correctly detect

any kind of dependence between all kinds of data, including high-dimensional data (such as ’omics),

structured data (such as images or networks), with nonlinear relationships (such as oscillators), even

with very small sample sizes as is common in modern biomedical science. Second, we desire meth-

ods that are interpretable by providing insight into how or why they discovered the presence of a

statistically significant relationship. Such insight can be a crucial component of designing the next

computational or physical experiment.

While many statistical and machine learning approaches have been developed over the last 120

years to combat aspects of the first issue—detecting dependencies—no approach satisfactorily

addressed the challenges across all data types, relationships, and dimensionalities. Hoeffding and

Renyi proposed non-parametric tests to address nonlinear but univariate relationships (Hoeffd-

ing, 1948; Rényi, 1959). In the 1970s and 1980s, nearest neighbor style approaches were
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popularized (Friedman and Rafsky, 1983; Schilling, 1986), but they were sensitive to algorithm

parameters resulting in poor empirical performance. ‘Energy statistics’, and in particular the distance

correlation test (DCORR), was recently shown to be able to detect any dependency with sufficient

observations, at arbitrary dimensions, and structured data under a proper distance metric

(Székely et al., 2007; Székely and Rizzo, 2009; Szekely and Rizzo, 2013; Lyons, 2013). Another

set of methods, referred to a ‘kernel mean embedding’ approaches, including the Hilbert Schmidt

Independence Criterion (HSIC) (Gretton and Gyorfi, 2010; Muandet et al., 2017), have the same

theoretical guarantees, which is shown to be a kernel version of the energy statistics

(Sejdinovic et al., 2013; Shen and Vogelstein, 2018). The energy statistics can perform very well

with a relatively small sample size on high-dimensional linear data, whereas the kernel methods and

another test (Heller, Heller, and Gorfine’s test, HHG) (Heller et al., 2013) perform well on low-dimen-

sional nonlinear data. But no test performs particularly well on high-dimensional nonlinear data with

typical sample sizes, which characterizes a large fraction of real data challenges in the current big

data era.

Moreover, to our knowledge, existing dependency tests do not attempt to further characterize

the dependency structure. On the other hand, much effort has been devoted to characterizing ‘point

cloud data’, that is, summarizing certain global properties in unsupervised settings (for example,

having genomics data, but no disease data). Classic examples of such approaches include Fourier

(Bracewell and Bracewell, 1986) and wavelet analysis (Daubechies, 1992). More recently, topologi-

cal and geometric data analysis compute properties of graphs, or even higher order simplices

(Edelsbrunner and Harer, 2009). Such methods build multiscale characterization of the samples,

eLife digest If you want to estimate whether height is related to weight in humans, what would

you do? You could measure the height and weight of a large number of people, and then run a

statistical test. Such ‘independence tests’ can be thought of as a screening procedure: if the two

properties (height and weight) are not related, then there is no point in proceeding with further

analyses.

In the last 100 years different independence tests have been developed. However, classical

approaches often fail to accurately discern relationships in the large, complex datasets typical of

modern biomedical research. For example, connectomics datasets include tens or hundreds of

thousands of connections between neurons that collectively underlie how the brain performs certain

tasks. Discovering and deciphering relationships from these data is currently the largest barrier to

progress in these fields. Another drawback to currently used methods of independence testing is

that they act as a ‘black box’, giving an answer without making it clear how it was calculated. This

can make it difficult for researchers to reproduce their findings – a key part of confirming a scientific

discovery. Vogelstein et al. therefore sought to develop a method of performing independence

tests on large datasets that can easily be both applied and interpreted by practicing scientists.

The method developed by Vogelstein et al., called Multiscale Graph Correlation (MGC,

pronounced ‘magic’), combines recent developments in hypothesis testing, machine learning, and

data science. The result is that MGC typically requires between one half to one third as big a sample

size as previously proposed methods for analyzing large, complex datasets. Moreover, MGC also

indicates the nature of the relationship between different properties; for example, whether it is a

linear relationship or not.

Testing MGC on real biological data, including a cancer dataset and a human brain imaging

dataset, revealed that it is more effective at finding possible relationships than other commonly used

independence methods. MGC was also the only method that explained how it found those

relationships.

MGC will enable relationships to be found in data across many fields of inquiry – and not only in

biology. Scientists, policy analysts, data journalists, and corporate data scientists could all use MGC

to learn about the relationships present in their data. To that extent, Vogelstein et al. have made the

code open source in MATLAB, R, and Python.

DOI: https://doi.org/10.7554/eLife.41690.002
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much like recent developments in harmonic analysis (Coifman and Maggioni, 2006; Allard et al.,

2012). However, these tools typically lack statistical guarantees under noisy observations and are

often computationally burdensome.

We surmised that both (i) empirical performance in all dependency structures, in particular high-

dimensional, nonlinear, low-sample size settings, and (ii) providing insight into the discovery process,

can be addressed via extending existing dependence tests to be adaptive to the data (Zhang et al.,

2012). Existing tests rely on a fixed a priori selection of an algorithmic parameter, such as the kernel

bandwidth (Gretton et al., 2006), intrinsic dimension (Allard et al., 2012), and/or local scale

(Friedman and Rafsky, 1983; Schilling, 1986). Indeed, the Achilles Heel of manifold learning has

been the requirement to manually choose these parameters (Levina and Bickel, 2004). Post-hoc

cross-validation is often used to make these methods effectively adaptive, but doing so adds an

undesirable computational burden and may weaken or destroy any statistical guarantees. There is

therefore a need for statistically valid and computationally efficient adaptive methods.

To illustrate the importance of adapting to different kinds of relationships, consider a simple illus-

trative example: investigate the relationship between cloud density and grass wetness. If this rela-

tionship were approximately linear, the data might look like those in Figure 1A (top). On the other

hand, if the relationship were nonlinear—such as a spiral—it might look like those in Figure 1A (bot-

tom). Although the relationship between clouds and grass is unlikely to be spiral, spiral relationships
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Figure 1. Illustration of Multiscale Graph Correlation (MGC) on simulated cloud density (xi) and grass wetness (yi).

We present two different relationships: linear (top) and nonlinear spiral (bottom; see Materials and methods for

simulation details). (A) Scatterplots of the raw data using 50 pairs of samples for each scenario. Samples 1, 2, and 3

(black) are highlighted; arrows show x distances between these pairs of points while their y distances are almost 0.

(B) Scatterplots of all pairs of distances comparing x and y distances. Distances are linearly correlated in the linear

relationship, whereas they are not in the spiral relationship. DCORR uses all distances (gray dots) to compute its test

statistic and p-value, whereas MGC chooses the local scale and then uses only the local distances (green dots). (C)

Heatmaps characterizing the strength of the generalized correlation at all possible scales (ranging from 2 to n for

both x and y). For the linear relationship, the global scale is optimal, which is the scale that MGC selects and results

in a p-value identical to DCORR. For the nonlinear relationship, the optimal scale is local in both x and y, so MGC

achieves a far larger test statistic, and a correspondingly smaller and significant p-value. Thus, MGC uniquely

detects dependence and characterizes the geometry in both relationships.

DOI: https://doi.org/10.7554/eLife.41690.003
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are prevalent in nature and mathematics (for example, shells, hurricanes, and galaxies), and are

canonical in evaluations of manifold learning techniques (Lee and Verleysen, 2007), thereby moti-

vating its use here.

Under the linear relationship (top panels), when a pair of observations are close to each other in

cloud density, they also tend to be close to each other in grass wetness (for example, observations 1

and 2 highlighted in black in Figure 1A, and distances between them in Figure 1B). Similarly, when

a pair of observations are far from each other in cloud density, they also tend to be far from each

other in grass wetness (see for example, distances between observations 2 and 3). On the other

hand, consider the nonlinear (spiral) relationship (bottom panels). Here, when a pair of observations

are close to each other in cloud density, they also tend to be close to each other in grass wetness

(see points 1 and 2 again). However, the same is not true for large distances (see points 2 and

3). Thus, in the linear relationship, the distance between every pair of points is informative with

respect to the relationship, while under the nonlinear relationship, only a subset of the distances are.

For this reason, we juxtapose nearest neighbor mechanism with distance methods. Specifically,

for each point, we find its k-nearest neighbors for one property (e.g. cloud density), and its l-nearest

neighbors for the other property (e.g. grass wetness); we call the pair ðk; lÞ the ‘scale’. A priori, how-

ever, we do not know which scales will be most informative. We compute all distance pairs, then effi-

ciently compute the distance correlations for all scales. The local correlations (Figure 1C, described

in detail below) illustrate which scales are relatively informative about the relationship. The key,

therefore, to successfully discover and decipher relationships between disparate data modalities is

to adaptively determine which scales are the most informative, and the geometric implication for the

most informative scales. Doing so not only provides an estimate of whether the modalities are

related, but also provides insight into how the determination was made. This is especially important

in high-dimensional data, where simple visualizations do not reveal relationships to the unaided

human eye.

Our method, ‘Multiscale Graph Correlation’ (MGC, pronounced ‘magic’), generalized and extends

previously proposed pairwise comparison-based approaches by adaptively estimating the informa-

tive scales for any relationship — linear or nonlinear, low-dimensional or high-dimensional, unstruc-

tured or structured—in a computationally efficient and statistically valid and consistent fashion. This

adaptive nature of MGC effectively guarantees an improved statistical performance. Moreover, the

dependency strength across all scales is informative about the structure of a statistical relationship,

therefore providing further guidance for subsequent experimental or analytical steps. MGC is thus a

hypothesis-testing and insight-providing approach that builds on recent developments in manifold

and kernel learning, with complementary developments in nearest-neighbor search, and multiscale

analyses.

The multiscale graph correlation procedure
MGC is a multi-step procedure to discover and decipher dependencies across disparate data modali-

ties or properties. Given n samples of two different properties, proceed as follows (see Materials

and methods and (Shen et al., 2018) for details):

1. Compute two distance matrices, one consisting of distances between all pairs of one property
(e.g. cloud densities, entire genomes or connectomes) and the other consisting of distances
between all pairs of the other property (e.g. grass wetnesses or disease status). Then center
each distance matrix (by subtracting its overall mean, the column-wise mean from each col-
umn, and the row-wise mean from each row), and denote the resulting n-by-n matrices A and
B.

2. For all possible values of k and l from 1 to n:
a. Compute the k-nearest neighbor graphs for one property, and the l-nearest neighbor

graphs for the other property. Let Gk and Hl be the adjacency matrices for the nearest
neighbor graphs, so that Gkði; jÞ ¼ 1 indicates that Aði; jÞ is within the k smallest values of

the ith row of A, and similarly for Hl.
b. Estimate the local correlations—the correlation between distances restricted to only the
ðk; lÞ neighbors—by summing the products of the above matrices,

ckl ¼Pij Aði; jÞGkði; jÞBði; jÞHlði; jÞ.
c. Normalize ckl such that the result is always between �1 and þ1 by dividing byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij A
2ði; jÞGkði; jÞ �

P
ij B

2ði; jÞHlði; jÞ
q

:
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3. Estimate the optimal local correlation c� by finding the smoothed maximum of all local correla-

tions fcklg. Smoothing mitigates biases and provides MGC with theoretical guarantee and bet-
ter finite-sample performance.

4. Determine whether the relationship is significantly dependent—that is, whether c� is more
extreme than expected under the null—via a permutation test. The permutation procedure
repeats steps 1–4 on each permutation, thereby eliminating the multiple hypothesis testing
problem by only computing one overall p-value, rather than one p-value per scale, ensuring
that it is a valid test (meaning that the false positive rate is properly controlled at the specified
type I error rate).

Computing all local correlations, the test statistic, and the p-value requires Oðn2 log nÞ time, which

is about the same running time complexity as other methods (Shen et al., 2018).

Results

MGC typically requires substantially fewer samples to achieve the same
power across all dependencies and dimensions
When, and to what extent, does MGC outperform other approaches, and when does it not? To

address this question, we formally pose the following hypothesis test (see Materials and methods for

details):

H0 : X andY are independent

HA : X andY arenotindependent:

The standard criterion for evaluating statistical tests is the testing power, which equals the proba-

bility that a test correctly rejects the null hypothesis at a given type one error level, that is

power = Prob(H0 is rejected jH0 is false). The higher the testing power, the better the test proce-

dure. A consistent test has power converging to 1 under dependence, and a valid test controls the

type one error level under independence. In a complementary manuscript (Shen et al., 2018), we

established the theoretical properties of MGC, proving its validity and universal consistency for

dependence testing against all distributions of finite second moments.

Here, we address the empirical performance of MGC as compared with multiple popular tests: (i)

DCORR, a popular approach from the statistics community (Székely et al., 2007; Székely and Rizzo,

2009), (ii) MCORR, a modified version of DCORR designed to be unbiased for sample data

(Szekely and Rizzo, 2013), (iii) HHG, a distance-based test that is very powerful for detecting low-

dimensional nonlinear relationships (Heller et al., 2013). (iv) HSIC, a kernel dependency measure

(Gretton and Gyorfi, 2010) formulated in the same way as DCORR except operating on kernels, (v)

MANTEL, which is historically widely used in biology and ecology (Mantel, 1967). (vi) RV coefficient

(Pearson, 1895; Josse and Holmes, 2013), which is a multivariate generalization of PEARSON’s prod-

uct moment correlation whose test statistic is the sum of the trace-norm of the cross-covariance

matrix, and (vii) the CCA method, which is the largest (in magnitude) singular value of the cross-

covariance matrix, and can be viewed as a different generalization of PEARSON in high-dimensions

that is more appropriate for sparse settings (Hotelling, 1936; Witten et al., 2009; Witten and Tib-

shirani, 2011). Note that while we focus on high-dimensional settings, Appendix 1 shows further

results in one-dimensional settings, also comparing to a number of tests that are limited to one

dimension, including: (viii) PEARSON’s product moment correlation, (ix) SPEARMAN’s rank correlation

(Spearman, 1904), (x) KENDALL’s tau correlation (Kendall, 1970), and (xi) MIC (Reshef et al.,

2011). Under the regularity condition that the data distribution has finite second moment, the first

four tests are universally consistent, whereas the other tests are not.

We generate an extensive benchmark suite of 20 relationships, including different polynomial (lin-

ear, quadratic, cubic), trigonometric (sinusoidal, circular, ellipsoidal, spiral), geometric (square, dia-

mond, W-shape), and other functions. This suite includes and extends the simulated settings from

previous dependence testing work (Székely et al., 2007; Simon and Tibshirani, 2012;

Gorfine et al., 2012; Heller et al., 2013; Szekely and Rizzo, 2013). For many of them, we introduce

high-dimensional variants, to more extensively evaluate the methods; function details are in Materi-

als and methods. The visualization of one-dimensional noise-free (black) and noisy (gray) samples is

shown in Figure 2—figure supplement 1. For each relationship, we compute the power of each
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method relative to MGC for ~20 different dimensionalities, ranging from 1 up to 10, 20, 40, 100, or

1000. The high-dimensional relationships are more challenging because (1) they cannot be easily

visualized and (2) each dimension is designed to have less and less signal, so there are many noisy

dimensions. Figure 2 shows that MGC achieves the highest (or close to the highest) power given 100

samples for each relationship and dimensionality. Figure 2—figure supplement 2 shows the same

advantage in one-dimension with increasing sample size.

Moreover, for each relationship and each method we compute the required sample size to

achieve power 85% at error level 0.05, and summarize the median size for monotone relationships

(type 1–5) and non-monotone relationships (type 6–19) in Table 1. Other methods typically require

double or triple the number of samples as MGC to achieve the same power. More specifically, tradi-

tional correlation methods (PEARSON, RV, CCA, SPEARMAN, KENDALL) always perform the best in mono-

tonic simulations, distance-based methods including MCORR, DCORR, MGC, HHG and HSIC are slightly

worse, while MIC and MANTEL are the worst. MGC’s performance is equal to linear methods on mono-

tonic relationships. For non-monotonic relationships, traditional correlations fail to detect the exis-

tence of dependencies, DCORR, MCORR, and MIC, do reasonably well, but HHG and MGC require the

fewest samples. In the high-dimensional non-monotonic relationships that motivated this work, and

are common in biomedicine, MGC significantly outperforms other methods. The second best test

that is universally consistent (HHG) requires nearly double as many samples as MGC, demonstrating

that MGC could half the time and cost of experiments designed to discover relationships at a given

effect size.

MGC extends previously proposed global methods, such as MANTEL and DCORR . The above experi-

ments extended MCORR , because MCORR is universally consistent and an unbiased version of DCORR

(Szekely and Rizzo, 2013). Figure 2—figure supplement 3 directly compares multiscale generaliza-

tions of MANTEL and MCORR as dimension increases, demonstrating that empirically, MGC nearly domi-

nates its global variant for essen- tially all dimensions and simulation settings considered here.

Figure 2—figure supplement 4 shows a similar result for one-dimensional settings while varying

sample size. Thus, not only does MGC empirically nearly dominate existing tests, it is a framework

that one can apply to future tests to further improve their performance.

MGC deciphers latent dependence structure
Beyond simply testing the existence of a relationship, the next goal is often to decipher the nature

or structure of the relationship, thereby providing insight and guiding future experiments. A single

scalar quantity (such as effect size) is inadequate given the vastness and complexities of possible

relationships. Existing methods would require a secondary procedure to characterize the relation-

ship, which introduces complicated ‘post selection’ statistical quandaries that remain mostly unre-

solved (Berk et al., 2013). Instead, MGC provides a simple, intuitive, and nonparametric (and

therefore infinitely flexible) ’map’ of how it discovered the relationship. As described below, this

map not only provides interpretability for how MGC detected a dependence, it also partially charac-

terize the geometry of the investigated relationship.

The MGC-Map shows local correlation as a function of the scales of the two properties. More con-

cretely, it is the matrix of ckl’s, as defined above. Thus, the MGC-Map is an n-by-n matrix which enco-

des the strength of dependence for each possible scale. Figure 3 provides the MGC-Map for all 20

different one-dimensional relationships; the optimal scale to achieve t̂� is marked with a green dot.

For the monotonic dependencies (1-5), the optimal scale is always the largest scale, that is the global

one. For all non-monotonic dependencies (6-19), MGC chooses smaller scales. Thus, a global optimal

scale implies a close-to-linear dependency, otherwise the dependency is strongly nonlinear. In fact,

this empirical observation led to the following theorem (which is proved in Materials and methods):

Theorem 1. When ðX; YÞ are linearly related (meaning that Y can be constructed from X by rota-

tion, scaling, translation, and/or reflection), the optimal scale of MGC equals the global scale. Con-

versely, a local optimal scale implies a nonlinear relationship.

Thus, the MGC-Map explains how MGC discovers relationships, specifically, which scale has the most

informative pairwise comparisons, and how that relates to the geometry of the relationship. Note

that MGC provides the geometric characterization ‘for free’, meaning that no separate procedure is

required; therefore, MGC provides both a valid test and information about the geometric

relationship.
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Figure 2. An extensive benchmark suite of 20 different relationships spanning polynomial, trigonometric, geometric, and other relationships

demonstrates that MGC empirically nearly dominates eight other methods across dependencies and dimensionalities ranging from 1 to 1000 (see

Materials and methods and Figure 2—figure supplement 1 for details). Each panel shows the testing power of other methods relative to the power of

MGC (e.g. power of MCORR minus the power of MGC) at significance level a ¼ 0:05 versus dimensionality for n ¼ 100. Any line below zero at any point

indicates that that method’s power is less than MGC’s power for the specified setting and dimensionality. MGC achieves empirically better (or similar)

power than all other methods in almost all relationships and all dimensions. For the independent relationship (#20), all methods yield power 0:05 as

they should. Note that MGC is always plotted ‘on top’ of the other methods, therefore, some lines are obscured.

DOI: https://doi.org/10.7554/eLife.41690.004

The following figure supplements are available for figure 2:

Figure supplement 1. Visualization of the 20 dependencies at p ¼ q ¼ 1.

DOI: https://doi.org/10.7554/eLife.41690.005

Figure supplement 2. The same power plots as in Figure 2, except the 20 dependencies are one-dimensional with noise, and the x-axis shows sample

size increasing from 5 to 100.

DOI: https://doi.org/10.7554/eLife.41690.006

Figure supplement 3. The same set-ups as in Figure 2, comparing different MGC implementations versus its global counterparts.

DOI: https://doi.org/10.7554/eLife.41690.007

Figure supplement 4. The same power plots as in Figure 3, except the 20 dependencies are one-dimensional with noise, and the x-axis shows sample

size increasing from 5 to 100.

DOI: https://doi.org/10.7554/eLife.41690.008
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Moreover, similar dependencies have similar MGC-Maps and often similar optimal scales. For

example, logarithmic (10) and fourth root (11), although very different functions analytically, are geo-

metrically similar, and yield very similar MGC-Maps. Similarly, (12) and (13) are trigonometric func-

tions, and they share a narrow range of significant local scales. Both circle (16) and ellipse (17), as

well as square (14) and diamond (18), are closely related geometrically and also have similar MGC-

Maps. This indicates that the MGC-Map partially characterizes the geometry of these relationships,

differentiating different dependence structures and assisting subsequent analysis steps. Moreover,

in Shen and Vogelstein, 2018, we proved that the sample MGC-Map (which MGC estimates) con-

verges to the true MGC-Map provided by the underlying joint distribution of the data. In other

words, each relationship has a specific map that characterizes it based on its joint distribution, and

MGC is able to accurately estimate it via sample observations. The existence of a population level

characterization of the joint distribution strongly differentiates MGC from previously proposed multi-

scale geometric or topological characterizations of data, such as persistence diagrams

(Edelsbrunner and Harer, 2009).

MGC is computationally efficient
MGC does not incur large computational costs and has a similar complexity as existing methods.

Though a naı̈ve implementation of MGC requires Oðn4Þ operations, we devised a nested implementa-

tion that requires only Oðn2 log nÞ operations. Moreover, obtaining the MGC-Map costs no additional

computation, whereas other methods would require running a secondary computational step to

decipher geometric properties of the relationship. MGC can also trivially be parallelized, reducing

computation to Oðn2 log n=TÞ, where T is the number of cores (see Algorithm C1 for details). Since T

is often larger than log n, in practice, MGC can be Oðn2Þ, meaning only a constant factor slower than

DCORR and HSIC, which is illustrated in Figure 6 of Shen and Vogelstein, 2018. For example, at sam-

ple size n ¼ 5000 and dimension p ¼ 1, on a typical laptop computer, DCORR requires around 0.5 s to

compute the test statistic, whereas MGC requires no more than 5 s. But the cost and time to obtain

2.5� more data (so DCORR has same average power as MGC) typically far exceeds a few seconds. In

Table 1. The median sample size for each method to achieve power 85% at type one error level 0.05, grouped into monotone (type

1–5) and non-monotone relationships (type 6–19) for both one- and ten-dimensional settings, normalized by the number of samples

required by MGC.

In other words, a 2.0 indicates that the method requires double the sample size to achieve 85% power relative to MGC. PEARSON, RV,

and CCA all achieve the same performance, as do SPEARMAN and KENDALL. MGC requires the fewest number of samples in all settings,

and for high-dimensional non-monotonic relationships, all other methods require about double or triple the number of samples MGC

requires.

Dimensionality One-Dimensional Ten-Dimensional

Dependency type Monotone Non-Mono Average Monotone Non-Mono Average

MGC 1 1 1 1 1 1

DCORR 1 2.6 2.2 1 3.2 2.6

MCORR 1 2.8 2.4 1 3.1 2.6

HHG 1.4 1 1.1 1.7 1.9 1.8

HSIC 1.4 1.1 1.2 1.7 2.4 2.2

MANTEL 1.4 1.8 1.7 3 1.6 1.9

PEARSON / RV / CCA 1 >10 >10 0.8 >10 >10

SPEARMAN / KENDALL 1 >10 >10 n/a n/a n/a

MIC 2.4 2 2.1 n/a n/a n/a

DOI: https://doi.org/10.7554/eLife.41690.009

The following source data is available for Table 1:

Source data 1. Testing power sample size data in one dimension.

DOI: https://doi.org/10.7554/eLife.41690.010

Source data 2. Testing power sample size data in high-dimensions.

DOI: https://doi.org/10.7554/eLife.41690.011
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comparison, the cost to compute a persistence diagram is typically Oðn3Þ, which is orders of magni-

tude slower when n> 10. The running time of each method on the real data experiments are

reported in Materials and methods.

Figure 3. The MGC-Map characterizes the geometry of the dependence function. For each of the 20 panels, the abscissa and ordinate denote the

number of neighbors for X and Y , respectively, and the color denotes the magnitude of each local correlation. For each simulation, the sample size is

60, and both X and Y are one-dimensional. Each dependency has a different MGC-Map characterizing the geometry of dependence, and the optimal

scale is shown in green. In linear or close-to-linear relationships (first row), the optimal scale is global, that is the green dot is in the top right corner.

Otherwise the optimal scale is non-global, which holds for the remaining dependencies. Moreover, similar dependencies often share similar MGC-Maps

and similar optimal scales, such as (10) logarithmic and (11) fourth root, the trigonometric functions in (12) and (13 , 16) circle and (17) ellipse, and (14)

square and (18) diamond. The MGC-Maps for high-dimensional simulations are provided in Figure 3—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.41690.012

The following figure supplement is available for figure 3:

Figure supplement 1. The MGC-Map for the 20 panels for high-dimensional dependencies.

DOI: https://doi.org/10.7554/eLife.41690.013
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Mgc uniquely reveals relationships in real data
Geometric intuition, numerical simulations, and theory all provide evidence that MGC will be useful

for real data discoveries. Nonetheless, real data applications provide another necessary ingredient

to justify its use in practice. Below, we describe several real data applications where we have used

MGC to understand relationships in data that other methods were unable to provide.

MGC discovers the relationships between brain and mental properties
The human psyche is of course dependent on brain activity and structure. Previous work has studied

two particular aspects of our psyche: personality and creativity, developing quantitative metrics for

evaluating them using structured interviews (Costa and McCrae, 1992; Jung et al., 2009). However,

the relationship between brain activity and structure, and these aspects of our psyche, remains

unclear (DeYoung et al., 2010; Xu and Potenza, 2012; Bjørnebekk et al., 2013; Sampaio et al.,

2014). For example, prior work did not evaluate the relationship between entire brain connectivity

and all five factors of the standard personality model (Costa and McCrae, 1992). We therefore uti-

lized MGC to investigate published open access data (see Materials and methods for details).

First, we analyzed the relationship between resting-state functional magnetic resonance (rs-fMRI)

activity and personality (Adelstein et al., 2011). The first row of Table 2 compares the p-value of dif-

ferent methods, and Figure 4A shows the MGC-Map for the sample data. MGC is able to yield a sig-

nificant p-value (< 0.05), whereas all previously proposed global dependence tests under

consideration (MANTEL, DCORR, MCORR, or HHG) fail to detect dependence at a significance level of

0.05. Moreover, the MGC-Map provides a characterization of the dependence, for which the optimal

scale indicates that the dependency is strongly nonlinear. Interestingly, the MGC-Map does not look

like any of the 20 images from the simulated data, suggesting that the nonlinearity characterizing

this dependency is more complex or otherwise different from those we have considered so far.

Second, we investigated the relationship between diffusion MRI derived connectivity and creativ-

ity (Jung et al., 2009). The second row of Table 2 shows that MGC is able to ascertain a dependency

between the whole brain network and the subject’s creativity. The MGC-Map in Figure 4B closely

resembles a linear relationship where the optimal scale is global. The close-to-linear relationship is

also supported from the p-value table as all methods except HSIC are able to detect significant

dependency, which suggests that there is relatively little to gain by pursuing nonlinear regression

techniques, potentially saving valuable research time by avoiding tackling an unnecessary problem.

The test statistic for both MGC and MCORR equal 0.04, which is quite close to zero despite a signifi-

cant p-value, implying a relatively weak and noisy relationship. A prediction of creativity via linear

regression turns out to be non-significant, which implies that the sample size is too low to obtain

useful predictive accuracy (not shown), indicating that more data are required for single subject pre-

dictions. If one had first directly estimated the regression function, obtaining a null result, it would

remain unclear whether a relationship existed. This experiment demonstrates that for high-dimen-

sional and potentially structured data, MGC is able to reveal dependency with relatively small sample

size while parametric techniques and directly estimating regression functions can often be

ineffective.

Table 2. The p-values for brain imaging vs mental properties.

MGC always uncovers the existence of significant relationships and discovers the underlying optimal

scales. Bold indicates significant p-value per dataset.

Testing Pairs/Methods MGC DCORR MCORR HHG HSIC

Activity vs Personality 0.043 0.667 0.441 0.059 0.124

Connectivity vs Creativity 0.011 0.010 0.011 0.031 0.092

DOI: https://doi.org/10.7554/eLife.41690.015

The following source data is available for Table 2:

Source data 1. p-value data for activity vs personality.

DOI: https://doi.org/10.7554/eLife.41690.016

Source data 2. p-value data for connetivity vs creativity.

DOI: https://doi.org/10.7554/eLife.41690.017
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The performance in the real data closely matches the simulations results: the first dataset exhibits

a strongly nonlinear relationship, for which MGC has the lowest p-value, followed by HHG and HSIC

and then all other methods; the second dataset exhibits a close-to-linear relationship, for which

global methods perform the best while HHG and HSIC are trailing. Moreover, MGC detected a com-

plex nonlinear relationship for brain activity versus personality, and a nearly linear but noisy

Figure 4. Demonstration that MGC successfully detects dependency, distinguishes linearity from nonlinearity, and identifies the most informative feature

in a variety of real data experiments. (A) The MGC-Map for brain activity versus personality. MGC has a large test statistic and a significant p-value at the

optimal scale (13, 4), while the global counterpart is non-significant. That the optimal scale is non-global implies a strongly nonlinear relationship. (B)

The MGC-Map for brain connectivity versus creativity. The image is similar to that of a linear relationship, and the optimal scale equals the global scale,

thus both MGC and MCORR are significant in this case. (C) For each peptide, the x-axis shows the p-value for testing dependence between pancreatic

and healthy subjects by MGC, and the y-axis shows the p-value for testing dependence between pancreatic and all other subjects by MGC. At critical

level 0:05, MGC identifies a unique protein after multiple testing adjustment. (D) The true and false positive counts using a k-nearest neighbor (choosing

the best k 2 ½1; 10�) leave-one-out classification using only the significant peptides identified by each testing method. The peptide identified by MGC

achieves the best true and false positive rates, as compared to the peptides identified by HSIC or HHG.

DOI: https://doi.org/10.7554/eLife.41690.014
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relationship for brain network versus creativity, the only method able to make either of those claims.

In a separate experiment, we assessed the frequency with which MGC obtained false positive results

using brain activity data, based on experiments from Eklund et al. (2012); Eklund et al. (2016).

Appendix 1—figure 1 shows that MGC achieves a false positive rate of 5% when using a significance

level of 0.05, implying that it correctly controls for false positives, unlike typical parametric methods

on these data.

MGC identifies potential cancer proteomics biomarkers
MGC can also be useful for a completely complementary set of scientific questions: screening proteo-

mics data for biomarkers, often involving the analysis of tens of thousands of proteins, peptides, or

transcripts in multiple samples representing a variety of disease types. Determining whether there is

a relationship between one or more of these markers and a particular disease state can be challeng-

ing but is a necessary first step (Frantzi et al., 2014). We sought to discover new useful protein bio-

markers from a quantitative proteomics technique that measures protein and peptide abundance

called Selected Reaction Monitoring (SRM) (Wang et al., 2011). Specifically, we were interested in

finding biomarkers that were unique to pancreatic cancer, because it is lethal and no clinically useful

biomarkers are currently available (Bhat et al., 2012).

The data consist of proteolytic peptides derived from the blood samples of 95 individuals harbor-

ing pancreatic (n ¼ 10), ovarian (n ¼ 24), colorectal cancer (n ¼ 28), and healthy controls (n ¼ 33). The

processed data included 318 peptides derived from 121 proteins. Previously, we used these data

and other techniques to find ovarian cancer biomarkers (a much easier task because the dataset has

twice as many ovarian patients) and validated them with subsequent experiments (Wang et al.,

2017). Therefore, our first step was to check whether MGC could correctly identify ovarian bio-

markers. Indeed, the peptides that have been validated previously are also identified by MGC.

Emboldened, using the same dataset, we applied MGC to screen for biomarkers unique to pancreatic

cancer. To do so, we first screened for a difference between pancreatic cancer and healthy controls,

identifying several potential biomarkers. Then, we screened for a difference between pancreatic can-

cer and all other conditions, to find peptides that differentiate pancreatic cancer from other cancers.

Figure 4C shows the p-value of each peptide assigned by MGC, which reveals one particular protein,

neurogranin, that exhibits a strong dependency specifically with pancreatic cancer. Subsequent liter-

ature searches reveal that neurogranin is a potentially valuable biomarker for pancreatic cancer

because it is exclusively expressed in brain tissue among normal tissues and has not been linked with

any other cancer type (Yang et al., 2015; Willemse et al., 2018). In comparison, HSIC identified neu-

rogranin as well, but it also identified another peptide; HHG identified the same two by HSIC, and a

third peptide. A literature evaluation of these additional peptides shows that they are upregulated

in other cancers as well and are unlikely to be useful as a pancreatic biomarker (Helfman et al.,

2018; Lam et al., 2012). The rest of the global methods did not identify any markers at significance

level 0:05, see Materials and methods for more details and Appendix 1—table 2 for identified pep-

tide information using each method.

Since there is no ground truth yet in this experiment, we further carried out a classification task

using the biomarkers identified by the various algorithms, using a k-nearest-neighbor classifier to

predict pancreatic cancer, and a leave-one-subject-out validation. Figure 4D shows that the peptide

selected by MGC (neurogranin) works better than any other subset of the peptides selected by HSIC

or HHG, in terms of both fewer false positives and negatives. This analysis suggests MGC can effec-

tively be used for screening and subsequent classification.

Discussion
There are a number of connections between MGC and other prominent statistical procedures that

may be worth further exploration. First, MGC can be thought of as a regularized or sparsified variant

of distance or kernel methods. Regularization is central to high-dimensional and ill-posed problems,

where dimensionality is larger than sample size. Second, MGC can also be thought of as learning a

metric because it chooses the optimal scale amongst a set of n2 truncated distances, motivating

studying the relationship between MGC and recent advances in metric learning (Xing et al., 2003). In

particular, deep learning can be thought of as metric learning (Giryes et al., 2015), and generative

adversarial networks (Goodfellow et al., 2014) are implicitly testing for equality, which is closely
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related to dependence (Sutherland et al., 2016). While MGC searches over a two-dimensional

parameter space to optimize the metric, deep learning searches over a much larger parameter

space, sometimes including millions of dimensions. Probably neither is optimal, and somewhere

between the two would be useful in many tasks. Third, energy statistics provide state of the art

approaches to other problems, including goodness-of-fit (Székely and Rizzo, 2005), analysis of vari-

ance (Rizzo and Székely, 2010), conditional dependence (Székely and Rizzo, 2014; Wang et al.,

2015), and feature selection (Li et al., 2012; Zhong and Zhu, 2015), so MGC can be adapted for

them as well. Indeed, MGC can also implement a two-sample (or generally the K-sample) test

(Szekely and Rizzo, 2004; Heller et al., 2016; Shen and Vogelstein, 2018). Specifically, for more

than two modalities, one may use summation of pairwise MGC test statistics, similar to how energy

statistic is generalized to K-sample testing from two-sample testing (Rizzo and Székely, 2010;

Rizzo and Székely, 2016; Shen and Vogelstein, 2018), or how canonical correlation analysis is gen-

eralized into more than two modalities (Kettenring, 1971; Tenenhaus and Tenenhaus, 2011;

Shen et al., 2014). Finally, although energy statistics have not yet been explicitly used for classifica-

tion, regression, or dimensionality reduction, MGC opens the door to these applications by providing

guidance as to how to proceed. Specifically, it is well documented in machine learning literature that

the choice of kernel, metric, or scale often has a strong effect on the performance of different

machine learning algorithms (Levina and Bickel, 2004). MGC provides a mechanism to estimate scale

that is both theoretically justified and computationally efficient, by optimizing a metric for a task

wherein the previous methods lacked a notion of optimization. Nonlinear dimensionality reduction

procedures, such as Isomap (Tenenbaum et al., 2000) and local linear embedding (Roweis and

Saul, 2000) for example, must also choose a scale, but have no principled criteria for doing so. MGC

could be used to provide insight into multimodal dimensionality reduction as well.

The default metric choice of MGC in this paper is always the Euclidean distance, but other metric

choices may be more appropriate in different fields, and using the strong negative type metric as

specified in Lyons (2013) guarantees consistency. However, if multiple metric choices are experi-

mented to yield multiple MGC p-values, then the optimal p-value should be properly corrected for

multiple testing. Alternatively, one may use the maximum MGC statistic among multiple metric

choices, apply the same procedure in each permutation (i.e. in each permutation, use the same num-

ber of metric choices and take the maximum MGC as the permuted statistic), then derive a single

p-value. Such a testing procedure properly controls the type one error level without the need for

additional correction.

MGC also addresses a particularly vexing statistical problem that arises from the fact that methods

methods for discovering dependencies are typically dissociated from methods for deciphering them.

This dissociation creates a problem because the statistical assumptions underlying the ‘deciphering’

methods become compromised in the process of ‘discoverying’; this is called the ‘post-selection

inference’ problem (Berk et al., 2013). The most straightforward way to address this issue is to col-

lect new data, which is costly and time-consuming. Therefore, researchers often ignore this fact and

make statistically invalid claims. MGC circumvents this dilemma by carefully constructing its permuta-

tion test to estimate the scale in the process of estimating a p-value, rather than after. To our knowl-

edge, MGC is the first dependence test to take a step towards valid post-selection inference.

As a separate next theoretical extension, we could reduce the computational space and time

required by MGC. MGC currently requires space and time that are quadratic with respect to the num-

ber of samples, which can be costly for very large data. Recent advances in related work demon-

strated that one could reduce computational time of distance-based tests to close to linear via faster

implementation, subsampling, random projection, and null distribution approximation (Huo and

Székely, 2016; Huang and Huo, 2017; Zhang et al., 2018; Chaudhuri and Hu, 2018), making it

feasible for large amount of data. Alternately, semi-external memory implementations would allow

running MGC even as the interpoint comparison matrix exceeds the size of main memory (Da Zheng

et al., 2015; Da Zheng et al., 2016a; Da Zheng et al., 2016b; Da Zheng et al., 2016c).

Finally, MGC is easy to use. Source code is available in MATLAB, R, and Python from https://mgc.

neurodata.io/ (Bridgeford et al., 2018; experiments archived at https://github.com/elifesciences-

publications/MGC-paper). Code for reproducing all the figures in this manuscript is also available

from the above websites. We showed MGC’s value in diverse applications spanning neuroscience

(which motivated this work) and an ’omics example. Applications in other domains facing similar
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questions of dependence, such as finance, pharmaceuticals, commerce, and security, could likewise

benefit from MGC.

Materials and methods

Mathematical details
This section contains essential mathematical details on independence testing, the notion of the gen-

eralized correlation coefficient and the distance-based correlation measure, how to compute the

local correlations, and the smoothing technique. A statistical treatment on MGC is in Shen and

Vogelstein, 2018, which introduces the population version of MGC and various theoretical

properties.

Testing independence
Given pairs of observations ðxi; yiÞ 2 R

p � R
q for i ¼ 1; . . . ; n, assume they are independently identi-

cally distributed as ðX; YÞ~iidFXY . If the two random variables X and Y are independent, the joint distri-

bution equals the product of the marginals, that is FXY ¼ FXFY . The statistical hypotheses for testing

independence is as follows:

H0 : FXY ¼ FXFY ;

HA : FXY 6¼ FXFY :

Given a test statistic, the testing power equals the probability of rejecting the independence

hypothesis (i.e. the null hypothesis) when it is false. A test statistic is consistent if and only if the test-

ing power increases to 1 as sample size increases to infinity. We would like a test to be universally

consistent, that is consistent against all joint distributions. DCORR, MCORR, HSIC, and HHG are all consis-

tent against any joint distribution of finite second moments and finite dimension.

Note that p is the dimension for x’s, q is the dimension for y’s. For MGC and all benchmark meth-

ods, there is no restriction on the dimensions, that is the dimensions can be arbitrarily large, and p is

not required to equal q. The ability to handle data of arbitrary dimension is crucial for modern big

data. There also exist some special methods that only operate on one-dimensional data, such as

(Reshef et al., 2011; Heller et al., 2016; Huo and Székely, 2016), which are not directly applicable

to multidimensional data.

Correlation measures
To achieve consistent testing, most state-of-the-art dependence measures operate on pairwise com-

parisons, either similarities (such as kernels) or dissimilarities (such as distances).

Let X n ¼ fx1; � � � ; xng 2 R
p�n and Yn ¼ fy1; � � � ; yng 2 R

q�n denote the matrices of sample observa-

tions, and dx be the distance function for x’s and dy for y’s. One can then compute two n� n distance

matrices ~A ¼ f~aijg and ~B ¼ f~bijg, where ~aij ¼ dxðxi; xjÞ and ~bij ¼ dyðyi; yjÞ. A common example of the

distance function is the Euclidean metric (L2 norm), which serves as the starting point for all methods

in this manuscript.

Let A and B be the transformed (e.g., centered) versions of the distance matrices ~A and ~B, respec-

tively. Any ‘generalized correlation coefficient’ (Spearman, 1904; Kendall, 1970) can be written as:

cðXn;YnÞ ¼
1

z

Pn
i¼1
Pn

j¼1 aijbij; (1)

where z is proportional to the standard deviations of A and B, that is z¼ n2sasb. In words, c is the

global sample correlation across pairwise comparison matrices A and B, and is normalized into the

range ½�1;1�, which usually has expectation 0 under independence and implies a stronger depen-

dency when the correlation is further away from 0.

Traditional correlations such as the Pearson’s correlation and the rank correlation can be written

via the above correlation formulation, by using A and B directly from sample observations rather

than distances. Distance-based methods like DCORR and MANTEL operate on the Euclidean distance

Vogelstein et al. eLife 2019;8:e41690. DOI: https://doi.org/10.7554/eLife.41690 14 of 32

Tools and resources Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.41690


by default, or other metric choices on the basis of domain knowledge; then transform the resulting

distance matrices ~A and ~B by certain centering schemes into A and B. HSIC chooses the Gaussian ker-

nel and computes two kernel matrices, then transform the kernel matrices ~A and ~B by the same cen-

tering scheme as DCORR. For MGC, A and B are always distance matrices (or can be transformed to

distances from kernels by Sejdinovic et al. (2013)), and we shall apply a slightly different centering

scheme that turns out to equal DCORR.

To carry out the hypothesis testing on sample data via a nonparametric test statistic, for example

a generalized correlation, the permutation test is often an effective choice (Good, 2005), because a

p-value can be computed by comparing the correlation of the sample data to the correlation of the

permuted sample data. The independence hypothesis is rejected if the p-value is lower than a pre-

determined type 1 error level, say 0.05. Then the power of the test statistic equals the probability of

a correct rejection at a specific type 1 error level. Note that HHG is the only exception that cannot be

cast as a generalized correlation coefficient, but the permutation testing is similarly effective for the

HHG test statistic; also note that the iid assumption is critical for permutation test to be valid, which

may not be applicable in special cases like auto-correlated time series (Guillot and Rousset, 2013).

Distance correlation (DCORR) and the Unbiased Version (MCORR)
Define the row and column means of ~A by �a�j ¼ 1

n

Pn
i¼1 ~aij and �ai� ¼ 1

n

Pn
j¼1 ~aij. DCORR defines

aij ¼ ~aij� �ai�� �a�jþ �a; if i 6¼ j;
0; if i¼ j;

�

and similarly for bij. For distance correlation, the numerator of Equation 1 is named the distance

covariance (Dcov), while sa and sb in the denominator are the square root of each distance variance.

The centering scheme is important to guarantee the universal consistency of DCORR, whereas Mantel

uses a simple centering scheme and thus not universally consistent.

Let cðX; YÞ be the population distance correlation, that is, the distance correlation between the

underlying random variables X and Y. Székely et al. (2007) define the population distance correla-

tion via the characteristic functions of FX and FY , and show that the population distance correlation

equals zero if and only if X and Y are independent, for any joint distribution FXY of finite second

moments and finite dimensionality. They also show that as n! ¥, the sample distance correlation

converges to the population distance correlation, that is, cðXn;YnÞ ! cðX; YÞ. Thus the sample dis-

tance correlation is consistent against any dependency of finite second moments and dimensionality.

Of note, the distance covariance, distance variance, and distance correlation are always non-nega-

tive. Moreover, the consistency result holds for a much larger family of metrics, those of strong neg-

ative type (Lyons, 2013).

It turns out that the sample distance correlation has a finite-sample bias, especially as the dimen-

sion p or q increases (Szekely and Rizzo, 2013). For example, for independent Gaussian distribu-

tions, the sample distance correlation converges to 1 as p; q! ¥. By excluding the diagonal entries

and slightly modifies the off-diagonal entries of A and B, Szekely and Rizzo (Szekely and Rizzo,

2013; Székely and Rizzo, 2014) show that MCORR is an unbiased estimator of the population dis-

tance correlation cðx; yÞ for all p; q; n, which is approximately normal even if p; q! ¥. Thus it enjoys

the same theoretical consistency as DCORR and always has zero mean under independence.

Local correlations
Given any matrices A and B, we can define a set of local correlations as follows. Let RðA�j; iÞ be the

‘rank’ of xi relative to xj, that is, RðA�j; iÞ ¼ k if xi is the kth closest point (or ‘neighbor’) to xj, as deter-

mined by ranking the n� 1 distances to xj. Define RðBi�; jÞ equivalently for the Y’s, but ranking rela-

tive to the rows rather than the columns (see below for explanation). For any neighborhood size k

around each xi and any neighborhood size l around each yj, we define the local pairwise

comparisons:

eakij ¼
aij; if RðA�j; iÞ � k;

0; otherwise;

�
eblij ¼

bij; if RðBi�; jÞ � l;

0; otherwise;

�
(2)

and then let akij ¼ eakij� �ak, where �ak is the mean of feakijg, and similarly for blij.
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The local correlation coefficient at a given scale is defined to effectively exclude large distances:

cklðX n;YnÞ ¼
1

zkl

Pn
i; j¼1 a

k
ijb

l
ij; (3)

where zkl ¼ n2sk
as

l
b, with sk

a and sl
b is the standard deviations for the truncated pairwise comparisons.

The MGC-Map can be constructed by computing all local correlations, which allows the discovery of

the optimal correlation. For any aforementioned correlation (DCORR, MCORR, HSIC, MANTEL, PEARSON),

one can define its local correlations by using Equation 3 and plugging in the respective aij and bij

from Equation 1.

As most nonlinear relationships intrinsically exhibit a local linear structure, considering the near-

est-neighbors is able to amplify the dependency signal over the global correlation. There could be

two other scenarios: when the small distances in one modality mostly correspond to large distances

in another modality, or when the large distances in one modality correspond to large distance in

another modality. For the first scenario, the small distances become negative terms after centering

while the large distances become positive terms after centering, so adding their product to ckl will

cause the test statistic to be smaller — in fact, as distance correlation is shown to be > 0 under

dependence (Székely et al., 2007), the first scenario cannot happen for all distances pairs. For the

second scenario, one can experiment using the large distances (or the furthest neighbors) only by

reversing the ranking scheme in local correlation to descending order. However, whenever the large

distances are highly correlated, the small distances must also be highly correlated after centering by

the mean distances, so global correlation coefficient like DCORR already handles this scenario. There-

fore considering the nearest-neighbor may significantly improve the performance over global corre-

lation, while considering the other scenarios does not.

MGC as the optimal local correlation
We define the multiscale graph correlation statistic as the optimal local correlation, for which the

family of local correlation is computed based on Euclidean distance and MCORR transformation.

Instead of taking a direct maximum, MGC takes a smoothed maximum, that is the maximum local

correlation of the largest connected component R such that all local correlations within R are signifi-

cant. If no such region exists, MGC defaults the test statistic to the global correlation (details in Algo-

rithm C2). Thus, we can write:

c�ðXn;YnÞ ¼ max
ðk; lÞ2R

cklðXn;YnÞ

R¼ Largest Connected Component of fðk; lÞ such thatckl>maxðt;cnnÞg:

Then the optimal scale equals all scales within R whose local correlations are as large as c*. The

choice of t is made explicit in the pseudo-code, with further discussion and justification offered in

Shen and Vogelstein, 2018.

Proof for theorem 1
Theorem 1. When ðX; YÞ are linearly related (rotation, scaling, translation, reflection), the optimal

scale of MGC equals the global scale. Conversely, that. the optimal scale is local implies a nonlinear

relationship.

Proof. It suffices to prove the first statement, then the second statement follows by contraposi-

tive. When ðX; YÞ are linearly related, Y ¼ WX þ b for a unitary matrix W and a constant b up-to possi-

ble scaling, in which case the distances are preserved, that is kyi � yjk ¼ kWxi �Wxjk ¼ kxi � xjk. It
follows that McorrðXn;YnÞ ¼ 1, so the global scale achieves the maximum possible correlation, and

the largest connected region R is empty. Thus the optimal scale is global and

MgcðXn;YnÞ ¼ McorrðXn;YnÞ ¼ 1.

Computational complexity of each step
The distance computation takes Oðn2 maxfp; qgÞ, and the ranking process takes Oðn2 log nÞ. Once the

distance and ranking are completed, computing one local generalized correlation requires Oðn2Þ
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(see Algorithm C4). Thus, a naive approach to compute all local generalized correlations requires at

least Oðn2 maxfn2; p; qgÞ by going through all possible scales, meaning possibly Oðn4Þ which would

be computationally prohibitive. However, given the distance and ranking information, we devised an

algorithm that iteratively computes all local correlations in Oðn2Þ by re-using adjacent smaller local

generalized correlations (see Algorithm C5). Therefore, when including the distance computation

and ranking overheads, the MGC statistic is computed in Oðn2 maxflog n; p; qgÞ), which has the same

running time as the HHG statistic, and the same running time up to a factor of log n as global correla-

tions like DCORR and MCORR, which require Oðn2 maxfp; qgÞ time. By utilizing a multi-core architecture,

MGC can be computed in Oðn2 maxflog n; p; qg=TÞ instead. As T ¼ logðnÞ is often a small number, for

example T is no more than 30 at 1 billion samples, thus MGC can be effectively computed in the

same complexity as DCORR. Note that the permutation test adds another r random permutations to

the n2 term, so computing the p-value requires Oðn2 maxflog n; p; q; rg=TÞ.

MGC algorithms and testing procedures
Six algorithms are presented in order:

. Algorithm C1 describes MGC in its entirety (which calls most of the other algorithms as
functions).

. Algorithm C2 computes the MGC test statistic.

. Algorithm C3 computes the p-value of MGC by the permutation test.

. Algorithm C4 computes the local generalized correlation coefficient at a given scale ðk; lÞ, for a
given choice of the global correlation coefficient.

. Algorithm C5 efficiently computes all local generalized correlations, in nearly the same running
time complexity as computing one local generalized correlation.

. Algorithm C6 evaluates the testing power of MGC by a given distribution.

For ease of presentation, we assume there are no repeating observations of X or Y, and note that

MCORR is the global correlation choice that MGC builds on.

Pseudocode C1 Multiscale Graph Correlation (MGC); requires Oðn2 maxðlog n; p; q; rÞ=TÞ time, where r is the number
of permutations and T is the number of cores available for parallelization.

Input: n samples of ðxi; yiÞ pairs, an integer r for the number of random permutations.

Output: (i) MGC statistic c�, (ii) the optimal scale ðk; lÞ, (iii) the p-value pðc�Þ,
function MGððxi; yiÞ, for i 2 ½n�Þ
(1) Calculate all pairwise distances:

for i; j :¼ 1; . . . ; n do

aij ¼ dxðxi; xjÞ dx is the distance between pairs of x samples

bij ¼ dyðyi; yjÞ dy is the distance between pairs of y samples

end for

Let A ¼ faijg and B ¼ fbijg.
(2) Calculate Multiscale Correlation Map C & MGC Test Statistic:

½c�; C; k; l� ¼ MGCSAMPLESTATðA;BÞ Algorithm C2

(3) Calculate the p-value

pvalðc�Þ ¼ PERMUTATIONTESTðA;B; r; c�Þ Algorithm C3

end Function

Pseudocode C2 MGC test statistic. This algorithm computes all local correlations, take the smoothed maximum, and
reports the ðk; lÞ pair that achieves it. For the smoothing step, it: (i) finds the largest connected region in the
correlation map, such that each correlation is significant, that is larger than a certain threshold to avoid correlation
inflation by sample noise, (ii) take the largest correlation in the region, (iii) if the region area is too small, or the
smoothed maximum is no larger than the global correlation, the global correlation is used instead. The running time
is Oðn2Þ.
Input: A pair of distance matrices ðA;BÞ 2 R

n�n � R
n�n.

Output: The MGC statistic c� 2 R, all local statistics C 2 R
n�n, and the corresponding local scale ðk; lÞ 2 N� N.

Continued on next page
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1: function MGCSAMPLESTATðA;BÞ
2: C ¼ MGCALLLOCALðA;BÞ All local correlations

3: t ¼ THRESHOLDINGðCÞ find a threshold to determine large local correlations

4: for i; j :¼ 1; . . . ; ndo rij  Iðcij>tÞend for identify all scales with large correlation

5: R frij : i; j ¼ 1; . . . ; ng binary map encoding scales with large correlation

6: R ¼ CONNECTEDðRÞ largest connected component of the binary matrix

7: c�  Cðn; nÞ use the global correlation by default

8: k  n; l n

9: if
P

i;j rij

� �
� 2n then proceed when the significant region is sufficiently large

10: ½c�; k; l�  maxðC � RÞ find the smoothed maximum and the respective scale

11: end if

12: end Function

Input: C 2 R
n�n.

Output: A threshold t to identify large correlations.

13: function THRESHOLDING C
14: t P

cij< 0
ðcijÞ2=Pcij< 0

1 variance of all negative local generalized correlations

15: t maxf0:01; ffiffiffi
t
p g � 3:5 threshold based on negative correlations

16: t maxft; 2=n; cnng
17: end Function

Pseudocode C3 Permutation Test. This algorithm uses the random permutation test with r random permutations for
the p-value, requiring Oðrn2 log nÞ for MGC. In the real-data experiment, we always set r ¼ 10,000. Note that the
p-value computation for any other global generalized correlation coefficient follows from the same algorithm by
replacing MGC with the respective test statistic.

Input: A pair of distance matrices ðA;BÞ 2 R
n�n � R

n�n, the number of permutations r, and MGC statistic c� for the
observed data.

Output: The p-value pval 2 ½0; 1�.
1: function PERMUTATIONTEST(A, B, r, c�)

2: for t :¼ 1; . . . ; r do

3: p ¼ RANDPERMðnÞ generate a random permutation of size n

4: c�
0
½t� ¼ MGCSAMPLESTATðA;Bðp;pÞÞ calculate the permuted MGC statistic

5: end for

6: pvalðc�Þ  1

t

Pr
t¼1 Iðc� � c�

0
½t�Þ compute p-value of MGC

7: end function

Pseudocode C4 Compute local test statistic at a given scale. This algorithm runs in Oðn2Þ once the rank information
is provided, which is suitable for MGC computation if an optimal scale is already estimated. But it would take Oðn4Þ if
used to compute all local generalized correlations. Note that for the default MGC implementation uses single
centering, the centering function centers A by column and B by row, and the sorting function sorts A within column
and B within row. By utilizing T ¼ logðnÞ cores, the sorting function can be easily parallelized to take
Oðn2 logðnÞ=TÞ ¼ Oðn2Þ.
Input: A pair of distance matrices ðA;BÞ 2 R

n�n � R
n�n, and a local scale ðk; lÞ 2 N� N.

Output: The local generalized correlation coefficient ckl 2 ½�1; 1�.
1: function LOCALGENCORR(A, B, k, l)

2: for Z :¼ A;B do EZ ¼ SORTðZÞ end for parallelized sorting

3: for Z :¼ A;B do Z ¼ CENTERðZÞ end for center distance matrices

4: ~ckl  trððA � EAÞT � ðB � ðEBÞTÞÞ un-normalized local distance covariance

Continued on next page
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5: vA  trððA � EAÞT � ðA � ðEAÞTÞÞ local distance variances

6: vB  trððB � EBÞT � ðB � ðEBÞTÞÞ
7: eA  Pn

i;j¼1ðA � EAÞij sample means

8: eB  Pn
i;j¼1ðB � EBÞij

9:
ckl  ~ckl � eAeB=n2

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vA � ðeA=nÞ2
� �

vB � ðeB=nÞ2
� �r

center and normalize

10: end function

Pseudocode C5 Compute the multiscale correlation map (i.e., all local generalized correlations) in Oðn2 log n=TÞ.
Once the distances are sorted, the remaining algorithm runs in Oðn2Þ. An important observation is that each product
aijbij is included in ckl if and only if ðk; lÞ satisfies k � RðA�j; iÞ and l � RðB�j; iÞ, so it suffices to iterate through aijbij for
i; j :¼ 1; . . . ; n, and add the product simultaneously to all ckl whose scales are no more than ðRðA�j; iÞ;RðB�j; iÞÞ. To
achieve the above, we iterate through each product, add it to ckl at ðklÞ ¼ ðRðA�j; iÞ;RðB�j; iÞÞ only (so only one local
scale is accessed for each operation); then add up adjacent ckl for k; l ¼ 1; . . . ; n. The same applies to all local
covariances, variances, and expectations.

Input: A pair of distance matrices ðA;BÞ 2 R
n�n � R

n�n.

Output: The multiscale correlation map C 2 ½�1; 1�n�nfor k; l ¼ 1; . . . ; n.

1: function MGCALLLOCAL(A, B)

2: for Z :¼ A;B do EZ ¼ SORTðZÞ end for

3: for Z :¼ A;B do Z ¼ CENTERðZÞend for

4: for i; j :¼ 1; . . . ; n do iterate through all local scales
to calculate each term

5: k  EZij
6: l EZij
7: ~ckl  ~ckl þ aijbij

8: vAk  vAk þ a2ij

9: vBl  vBl þ b2ij

10: eAk  eAk þ aij

11: eBl  eBl þ bij

12: end for

13: for k :¼ 1; . . . ; n� 1 do iterate through each scale again
and add up adjacent terms

14: ~c1;kþ1  ~c1;k þ ~c1;kþ1

15: ~ckþ1;1  ~ckþ1;1 þ ~ckþ1;1

16: for Z :¼ A;B do vZkþ1  vZk þ vZkþ1 end for

17: for Z :¼ A;B do eZkþ1  eZk þ eZkþ1 end for

18: end for

19: for k; l :¼ 1; . . . ; n� 1 do

20: ~ckþ1;lþ1  ~ckþ1;l þ ~ck;lþ1 þ ~ckþ1;lþ1 � ~ck;l

21: end for

22: for k; l :¼ 1; . . . ; n do

23:
ckl  ~ckl � eAk e

B
l =n

2
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vAk � eAk

2
=n2

� �
vBl � eBl

2
=n2

� �r

24: end for

Continued on next page
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25: end function

Pseudocode C6 Power computation of MGC against a given distribution. By repeatedly sampling from the joint
distribution FXY , sample data of size n under the null and the alternative are generated for r Monte-Carlo replicates.
The power of MGC follows by computing the test statistic under the null and the alternative using Algorithm C2. In
the simulations we use r ¼ 10,000 MC replicates. Note that power computation for other benchmarks follows from
the same algorithm by plugging in the respective test statistic.

Input: A joint distribution FXY , the sample size n, the number of MC replicates r, and the type 1 error level a.

Output: The power b of MGC.

1: function MGCPOWER(FXY , n, r, a)

2: for t :¼ 1; . . . ; r do

3: for i :¼ ½n� do
4: x0i ~

iidFX ; y
0

i ~
iidFY

sample from null

5: ðx1i ; y1i Þ~iidFXY ; sample from alternative

6: end for

7: for i; j :¼ 1; . . . ; n do

8: a0ij ¼ dxðx0i ; x0j Þ, b0ij ¼ dyðy0i ; y0j Þ pairwise distances under the null

9: a1ij ¼ dxðx1i ; x1j Þ, b1ij ¼ dyðy1i ; y1j Þ pairwise distances under the alternative

10: end for

11: c�
0
½t� ¼ MGCSAMPLESTATðA0;B0Þ MGC statistic under the null

12: c�
1
½t� ¼ MGCSAMPLESTATðA1;B1Þ MGC statistic under the alternative

13: end for

14: !a  CDF1�aðc�0½t�; t 2 ½r�Þ the critical value of MGC under the null

15: b Pr
t¼1ðc�1½t�>!aÞ=r compute power by the alternative distribution

16: end function

Simulation dependence functions
This section provides the 20 different dependency functions used in the simulations. We used essen-

tially the exact same relationships as previous publications to ensure a fair comparison

(Székely et al., 2007; Simon and Tibshirani, 2012; Gorfine et al., 2012). We only made changes to

add white noise and a weight vector for higher dimensions, thereby making them more difficult, to

better compare all methods throughout different dimensions and sample sizes. A few additional

relationships are also included.

For each sample x 2 R
p, we denote x½d�; d ¼ 1; . . . ; p as the dth dimension of the vector x. For the

purpose of high-dimensional simulations, w 2 R
p is a decaying vector with w½d� ¼ 1=d for each d, such

that wTx is a weighted summation of all dimensions of x. Furthermore, Uða; bÞ denotes the uniform

distribution on the interval ða; bÞ, BðpÞ denotes the Bernoulli distribution with probability p, Nð�;SÞ
denotes the normal distribution with mean � and covariance S, U and V represent some auxiliary

random variables, k is a scalar constant to control the noise level (which equals 1 for one-dimensional

simulations and 0 otherwise), and � is a white noise from independent standard normal distribution

unless mentioned otherwise.

For all the below equations, ðX; YÞ~iidFXY ¼ FYjXFX . For each relationship, we provide the space of

ðX; YÞ, and define FYjX and FX , as well as any additional auxiliary distributions.

1. Linear ðX; YÞ 2 R
p � R,

X ~Uð�1;1Þp;
Y ¼wTXþk�:

2. Exponential ðX;YÞ 2Rp�R:
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X ~Uð0;3Þp;
Y ¼ expðwTXÞþ 10k�:

3. Cubic ðX;YÞ 2Rp�R:

X ~Uð�1; 1Þp;
Y ¼ 128ðwTX� 1

3
Þ3þ 48ðwTX� 1

3
Þ2� 12ðwTX� 1

3
Þþ 80k�:

4. Joint normal ðX;YÞ 2Rp�R
p: Let �¼ 1=2p, Ip be the identity matrix of size p� p, Jp be the

matrix of ones of size p� p, and S¼ Ip �Jp
�Jp ð1þ 0:5kÞIp

� �
. Then

ðX;YÞ~Nð0;SÞ:

5. Step Function ðX;YÞ 2Rp�R

X ~Uð�1;1Þp;
Y ¼ IðwTX>0Þþ �;

where I is the indicator function, that is IðzÞ is unity whenever z true, and zero otherwise.

6. Quadratic ðX; YÞ 2 R
p � R:

X ~Uð�1;1Þp;
Y ¼ ðwTXÞ2þ 0:5k�:

7. W Shape ðX;YÞ 2Rp�R : U ~Uð�1;1Þp,

X ~Uð�1;1Þp;

Y ¼ 4 ðwTXÞ2� 1

2

� �2

þwTU=500

" #
þ 0:5k�:

8. Spiral ðX;YÞ 2Rp�R : U ~Uð0;5Þ, �~Nð0;1Þ

X½d� ¼U sinðpUÞcosdðpUÞ ford¼ 1; . . . ;p� 1;
X½d� ¼U cospðpUÞ;
Y ¼U sinðpUÞþ 0:4p�:

9. Uncorrelated Bernoulli ðX;YÞ 2Rp�R : U ~Bð0:5Þ�1 ~Nð0; IpÞ; �2 ~Nð0;1Þ;

X ~Bð0:5Þpþ 0:5�1;
Y ¼ ð2U� 1ÞwTXþ 0:5�2:

10. Logarithmic ðX;YÞ 2Rp�R
p : �~Nð0; IpÞ

X ~Nð0; IpÞ;
Y½d� ¼ 2 log2ðjX½d�jÞþ 3k�½d� ford¼ 1; . . . ;p:

11. Fourth Root ðX;YÞ 2Rp�R
p :

X ~Uð�1;1Þp;
Y ¼ jwTXj14þk

4
�:

12. Sine Period 4pðX;YÞ 2Rp�R
p :U ~Uð�1;1Þ;V ~Nð0;1Þp; �¼ 4p,

X½d� ¼Uþ 0:02pV½d� ford¼ 1; . . . ;p;
Y ¼ sinð�XÞþk�:

13. Sine Period 16p ðX;YÞ 2Rp�R
p: Same as above except �¼ 16p and the noise on Y is changed

to 0:5k�.

14. Square ðX; YÞ 2 R
p � R

p: Let U ~Uð�1; 1Þ; V ~Uð�1; 1Þ; �~Nð0; 1Þp; � ¼ � p
8
. Then
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X½d� ¼U cos�þV sin�þ 0:05p�½d�;
Y½d� ¼�U sin�þV cos�;

for d¼ 1; . . . ;p:

15. Two Parabolas ðX; YÞ 2 R
p � R: � ~Uð0; 1Þ; U ~Bð0:5Þ,

X ~Uð�1;1Þp;
Y ¼ ðwTXÞ2þ 2k�

� �
� ðU� 1

2
Þ:

16. Circle ðX;YÞ 2Rp�R :U ~Uð�1;1Þp; �~Nð0; IpÞ; r¼ 1;

X½d� ¼ r sinðpU½dþ1�Þ
Yd

j¼1
cosðpU½j�Þþ 0:4�½d�

 !
ford¼ 1; . . . ;p� 1;

X½p� ¼ r
Yp

j¼1
cosðpU½j�Þþ 0:4�½p�

 !
;

Y ¼ sinðpU½1�Þ:

17. Ellipse ðX;YÞ 2Rp�R: Same as above except r¼ 5.

18. Diamond ðX; YÞ 2 R
p � R

p: Same as ’Square’ except � ¼ � p
4
.

19. Multiplicative Noise ðx; yÞ 2 R
p � R

p : u ~Nð0; IpÞ;

x~Nð0; IpÞ;
y½d� ¼ u½d�x½d� ford¼ 1; . . . ;p:

20. Multimodal Independence ðX;YÞ 2Rp�R
p : LetU ~Nð0; IpÞ;V ~Nð0; IpÞ;U0 ~Bð0:5Þp;V 0 ~Bð0:5Þp.

Then

X ¼U=3þ 2U0� 1;
Y ¼ V=3þ 2V 0� 1:

For each distribution, X and Y are dependent except (20); for some relationships (8,14,16-18)

they are independent upon conditioning on the respective auxiliary variables, while for others they

are ’directly’ dependent. A visualization of each dependency with D¼Dy ¼ 1 is shown in Figure 2—

figure supplement 1.

For the increasing dimension simulation in the main paper, we always set k ¼ 0 and n ¼ 100, with

p increasing. Note that q ¼ p for types 4, 10, 12, 13, 14, 18, 19, 20,, otherwise q ¼ 1. The decaying

vector w is utilized for p> 1 to make the high-dimensional relationships more difficult (otherwise,

additional dimensions only add more signal). For the one-dimensional simulations, we always set

p ¼ q ¼ 1, k ¼ 1 and n ¼ 100.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.41690.019

Real data processing

Brain activity vs personality
This experiment investigates whether there is any dependency between resting brain activity

and personality. Human personality has been intensively studied for many decades; the most

widely used and studied approach is the NEO Personality Inventory-Revised the characterized

personality along five dimensions (Costa and McCrae, 1992).

This dataset consists of 42 subjects, each with 197 time-steps of resting-state functional

magnetic resonance activity (rs-fMRI) activity, as well as the subject’s five-dimensional

’personality’. Adelstein et al. (Adelstein et al., 2011) were able to detect dependence

between the activity of certain brain regions and dimensions of personality, but lacked the

tools to test for dependence of whole brain activity against all five dimensions of personality.

For the five-factor personality modality, we used the Euclidean distance. For the brain

activity modality, we derived the following comparison function. For each scan, (i) run

Configurable Pipeline for the Analysis of Connectomes pipeline (Craddock et al., 2013) to

process the raw brain images yielding a parcellation into 197 regions of interest, (ii) run a

spectral analysis on each region and keep the power of band, (iii) bandpass and normalize it to

sum to one, (iv) calculate the Kullback-Leibler divergence across regions to obtain a similarity

matrix across comparing all regions. Then, use the normalized Hellinger distance to compute

distances between each subject.

Brain connectivity vs creativity
This experiment investigates whether there is any dependency between brain structural

networks and creativity. Creativity has been extensively studied in psychology; the ’creativity

composite index’ (CCI) is an index similar to an ’intelligence quotient’ but for creativity rather

than intelligence (Jung et al., 2009).

This dataset consists of 109 subjects, each with diffusion weighted MRI data as well as the

subject’s CCI. Neural correlates of CCI have previously been investigated, though largely using

structural MRI and cortical thickness (Jung et al., 2009). Previously published results explored

the relationship between graphs and CCI (Koutra et al., 2015), but did not provide a valid

test.

We used Euclidean distance to compare CCI values. For the raw brain imaging data, we

derived the following comparison function. For each scan we estimated brain networks from

diffusion and structural MRI data via Migraine, a pipeline for estimating brain networks from

diffusion data (Roncal et al., 2013). We compute the distance between the graphs using the

semi-parametric graph test statistic (Sussman et al., 2012; Shen et al., 2017; Tang et al.,

2017), embedding each graph into two dimensions and aligning the embeddings via a

Procrustes analysis.

Proteins vs cancer
This experiment investigated whether there is any dependency between abundance levels of

peptides in human plasma and the presence of cancers. Selected Reaction Monitoring (SRM) is

a targeted quantitative proteomics technique for measuring protein and peptide abundance in

complicated biological samples (Wang et al., 2011). In a previous study, we used SRM to

identify 318 peptides from 33 normal, 10 pancreatic cancer, 28 colorectal cancer, and 24

ovarian cancer samples (Wang et al., 2017). Then, using other methods, we identifed three

peptides that were implicated in ovarian cancer, and validated them as legitimate biomarkers

with a follow-up experiment.
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In this study, we performed the following five sets of tests on those data:

1. Ovarian vs. normal for all proteins,
2. Ovarian vs. normal for each individual protein,
3. Pancreas vs. normal for all proteins,
4. Pancreas vs. all others for each individual protein,
5. Pancreas vs. normal for each individual protein.

These tests are designed to first validate the MGC method from ovarian cancer, then

identify biomarkers unique to pancreatic cancer, that is, find a protein that is able to tell the

difference between pancreas and normals, as well as pancreas vs all other cancers. For each of

the five tests, we create a binary label vector, with 1 indicating the cancer type of interest for

the corresponding subject, and 0 otherwise. Then each algorithm is applied to each task. For

all tests we used Euclidean distances and the type 1 error level is set to a ¼ 0:05. The three

test sets assessing individual proteins provide 318 p-values; we used the Benjamini-Hochberg

procedure (Benjamini and Hochberg, 1995) to control the false discovery rate. A summary of

the results are reported in Appendix 1—table 1.

Appendix 1—table 1. Results for cancer peptide screening. The first two rows report the

p-values for the tests of interest based on all peptides. The next four rows report the number of

significant proteins from individual peptide tests; the Benjamini-Hochberg procedure is used to

locate the significant peptides by controlling the false discovery rate at 0.05.

Testing pairs / Methods MGC MANTEL DCORR MCORR HHG

1 Ovar vs. Norm: p-value 0.0001 0.0001 0.0001 0.0001 0.0001

2 Ovar vs. Norm: # peptides 218 190 186 178 225

3 Pancr vs. Norm: p-value 0.0082 0.0685 0.0669 0.0192 0.0328

4 Panc vs. Norm: # peptides 9 7 6 7 11

5 Panc vs. All: # peptides 1 0 0 0 3

6 # peptides unique to Panc 1 0 0 0 2

7 # false positives for Panc 0 n/a n/a n/a 1

DOI: https://doi.org/10.7554/eLife.41690.020

The following source data is available for Appendix 1—table 2:

Appendix 1—table 1—Source data 1. Ovarian testing results.

DOI: https://doi.org/10.7554/eLife.41690.021

Appendix 1—table 1—Source data 2 Pancreatic testing results.

DOI: https://doi.org/10.7554/eLife.41690.022

Appendix 1—table 1—Source data 3. Peptide screening results for pancreatic.

DOI: https://doi.org/10.7554/eLife.41690.023

All methods are able to successfully detect a dependence between peptide abundances

in ovarian cancer samples versus normal samples (Appendix 1—table 1, line 1). This is likely

because there are so many individual peptides that have different abundance distributions

between ovarian and normal samples (Appendix 1—table 1, line 2). Nonetheless, MGC

identified more putative biomarkers than any of the other methods. While we have not

checked all of them with subsequent experiments to identify potential false positives, we do

know from previous experiments that three peptides in particular are effective biomarkers.

All three peptides have p-value » 0 for all methods including MGC, that is, they are all

correctly identified as significant. However, by ranking the peptides based on the actual test

statistic of each peptide, MGC is the method that ranks the three known biomarkers the

lowest, suggesting that it is the least likely to falsely identify peptides.

We then investigated the pancreatic samples in an effort to identify biomarkers that are

unique to pancreas. We first checked whether the methods could identify a difference using

all the peptides. Indeed, three methods found a dependence at the 0.05 level, with MGC

obtaining the lowest p-value (Appendix 1—table 1, line 3). We then investigated how many

individual peptides the methods identified; all of them found 6 to 11 peptides with a
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significant difference between pancreatic and normal samples (Appendix 1—table 1, line 4).

Because we were interested in identifying peptides that were uniquely useful for pancreatic

cancer, we then compared pancreatic samples to all others. At significance level 0:05, only

MGC, HSIC, and HHG identified peptides that expressed different abundances in this more

challenging case, and we list the top four peptides in Appendix 1—table 2 along with the

corrected p-value for each peptide.

Appendix 1—table 2. For each of MGC, DCORR, MCORR, HHG, HSIC, MANTEL, PEARSON, and MIC,

list the top four peptides identified for Panc vs All and the respective corrected p-value using

Benjamini-Hochberg. Bold indicates a significant peptide at type 1 error level 0.05. The top

candidates are very much alike except MIC. In particular, neurogranin is consistently among the

top candidates for all methods, but is only significant while using MGC, HSIC, and HHG; there are

two other significant proteins from HSIC and HHG, but they do not further improve the

classification performance comparing to just using neurogranin. Note that the p-values from

MANTEL and PEARSON are always 1 after Benjamini-Hochberg correction, so their respective top

peptides are identified using raw p-values without correction.

method Top four identified peptides

MGC neurogranin fibrinogen protein 1 tropomyosin alpha-3 ras suppressor protein 1

p-value 0.03 0.33 0.49 0.52

DCORR neurogranin fibrinogen protein 1 kinase 6 twinfilin-2

p-value 0.41 0.60 0.60 0.93

MCORR neurogranin fibrinogen protein 1 kinase 6 tropomyosin alpha-3

p-value 0.45 0.80 0.80 0.83

HSIC neurogranin tropomyosin alpha-3 kinase 6 tripeptidyl-peptidase 2

p-value 0.01 0.01 0.09 0.09

HHG neurogranin fibrinogen protein 1 tropomyosin alpha-3 platelet basic protein

p-value 0.03 0.03 0.03 0.11

MANTEL neurogranin adenylyl cyclase tropomyosin alpha-3 alpha-actinin-1

p-value 1 1 1 1

PEARSON neurogranin adenylyl cyclase tropomyosin alpha-3 alpha-actinin-1

p-value 1 1 1 1

MIC kinase B S100-A9 ERF3A thymidine

p-value 0.15 0.15 0.15 0.15

DOI: https://doi.org/10.7554/eLife.41690.024

All three methods reveal the same unique protein for pancreas: neurogranin. HSIC

identifies another peptide (tropomyosin alpha-3 chain isoform 4), and HHG identifies a third

peptide (fibrinogen-like protein 1 precursor). However, fibrinogen-like protein 1 precursor is

not significant for p-value testing between pancreatic and normal subjects. On the other

hand, tropomyosin is a ubiquitously expressed protein, since normal tissues and other

cancers will also express tropomyosin and leak it into blood, whereas neurogranin is

exclusively expressed only in brain tissues. Moreover, there exists strong evidence of

tropomyosin 3 upregulated in other cancers (Karsani et al., 2014; Sun et al., 2016;

Lee et al., 2012; Lam et al., 2012). Therefore, it suggests that the other two peptides

identified by HHG and HSIC are likely false positives.

In fact, neurogranin is always one of the top 4 candidates in all methods except MIC; the

only difference is that the corrected p-values are not significant enough for other methods.

Along with the classification result in Figure 4D showing that neurogranin alone has the best

classification error, MGC discovers an ideal candidate for potential biomarker. Moreover, the

fact that MGC, HHG and HSIC discover the dependency while others cannot implies a nonlinear

relationship.
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MGC does not inflate false positive rates in screening
In this final experiment, we empirically determine that MGC does not inflate false positive

rates via a neuroimaging screening. To do so, we extend the work of Eklund et al.

(Eklund et al., 2012; Eklund et al., 2016), where a number of parametric methods are

shown to largely inflate the false positives. Specifically, we applied MGC to test whether there

is any dependency between brain voxel activities and random numbers. For each brain

region, MGC attempts to test the following hypothesis: Is activity of a brain region

independent of the time-varying stimuli? Any region that is selected as significant is a false

positive by construction. By testing each brain region separately, MGC provides a distribution

of false positive rates. If MGC is valid, the resulting distribution should be centered around

the significance level, which is set at 0.05 for these experiments.

We considered 25 resting state fMRI experiments from the 1000 Functional Connectomes

Project consisting of a total of 1583 subjects (Biswal et al., 2010). Appendix 1—figure

1 shows the false positive rates of MGC for each dataset, which are centered around the

critical level 0.05, as it should be. In contrast, many standard parametric methods for fMRI

analysis, such as generalized linear models, can significantly increase the false positive rates,

depending on the data and pre-processing details (Eklund et al., 2012; Eklund et al., 2016).

Moreover, even the proposed solutions to those issues make linearity assumptions, thereby

limiting detection to only a small subset of possible dependence functions.
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Appendix 1—figure 1. We demonstrate that MGC is a valid test that does not inflate the false

positives in screening and variable selection. This figure shows the density estimate for the

false positive rates of applying MGC to select the ’falsely significant’ brain regions versus

independent noise experiments; dots indicate the false positive rate of each experiment. The

mean ± standard deviation is 0.0538 ± 0.0394.

DOI: https://doi.org/10.7554/eLife.41690.025

Running time report in experiments
Appendix 1—table 3 lists the actual running time of MGC versus other methods for testing

on the real data, based on a modern desktop with a six core I7-6850K CPU and 32 GB

memory on MATLAB 2017a on Windows 10. The first two experiments are timed based on

1000 permutations, while the screening experiment is timed without permutation, that

is compute the test statistic only. Pearson runs the fastest, trailed by MIC and then DCORR.

PEARSON and MIC are only possible to run in the screening experiment, as the other two

experiments are multivariate. The running time of MGC is a constant times (about 10) higher
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than that of DCORR, and HHG is implemented in a running time of Oðn3Þ and thus significantly

slower.

Appendix 1—table 3. The actual testing time (in seconds) on real data.
Data Personality Creativity Screening

MGC 2.5 7.5 1.9

DCORR 0.2 0.4 0.18

HSIC 0.5 1.7 0.23

HHG 6.3 53.4 12.3

PEARSON NA NA 0.03

MIC NA NA 0.1

MRULE

DOI: https://doi.org/10.7554/eLife.41690.026
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