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Abstract Understanding the relationships between different properties of data, such as whether
a genome or connectome has information about disease status, is increasingly important. While
existing approaches can test whether two properties are related, they may require unfeasibly large
sample sizes and often are not interpretable. Our approach, ‘Multiscale Graph Correlation’ (MGC),
is a dependence test that juxtaposes disparate data science techniques, including k-nearest
neighbors, kernel methods, and multiscale analysis. Other methods may require double or triple
the number of samples to achieve the same statistical power as MGC in a benchmark suite
including high-dimensional and nonlinear relationships, with dimensionality ranging from 1 to 1000.
Moreover, MGC uniquely characterizes the latent geometry underlying the relationship, while
maintaining computational efficiency. In real data, including brain imaging and cancer genetics,
MGC detects the presence of a dependency and provides guidance for the next experiments to
conduct.

DOI: https://doi.org/10.7554/eLife.41690.001

Introduction

Identifying the existence of a relationship between a pair of properties or modalities is the critical ini-
tial step in data science investigations. Only if there is a statistically significant relationship does it
make sense to try to decipher the nature of the relationship. Discovering and deciphering relation-
ships is fundamental, for example, in high-throughput screening (Zhang et al., 1999), precision med-
icine (Prescott, 2013), machine learning (Hastie et al., 2001), and causal analyses (Pearl, 2000).
One of the first approaches for determining whether two properties are related to—or statistically
dependent on—each other is Pearson’s Product-Moment Correlation (published in 1895; Pear-
son, 1895). This seminal paper prompted the development of entirely new ways of thinking about
and quantifying relationships (see Reimherr and Nicolae, 2013 and Josse and Holmes, 2013 for
recent reviews and discussion). Modern datasets, however, present challenges for dependence-test-
ing that were not addressed in Pearson’s era. First, we now desire methods that can correctly detect
any kind of dependence between all kinds of data, including high-dimensional data (such as ‘omics),
structured data (such as images or networks), with nonlinear relationships (such as oscillators), even
with very small sample sizes as is common in modern biomedical science. Second, we desire meth-
ods that are interpretable by providing insight into how or why they discovered the presence of a
statistically significant relationship. Such insight can be a crucial component of designing the next
computational or physical experiment.

While many statistical and machine learning approaches have been developed over the last 120
years to combat aspects of the first issue—detecting dependencies—no approach satisfactorily
addressed the challenges across all data types, relationships, and dimensionalities. Hoeffding and
Renyi proposed non-parametric tests to address nonlinear but univariate relationships (Hoeffd-
ing, 1948; Rényi, 1959). In the 1970s and 1980s, nearest neighbor style approaches were
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elLife digest If you want to estimate whether height is related to weight in humans, what would
you do? You could measure the height and weight of a large number of people, and then run a
statistical test. Such ‘independence tests’ can be thought of as a screening procedure: if the two
properties (height and weight) are not related, then there is no point in proceeding with further
analyses.

In the last 100 years different independence tests have been developed. However, classical
approaches often fail to accurately discern relationships in the large, complex datasets typical of
modern biomedical research. For example, connectomics datasets include tens or hundreds of
thousands of connections between neurons that collectively underlie how the brain performs certain
tasks. Discovering and deciphering relationships from these data is currently the largest barrier to
progress in these fields. Another drawback to currently used methods of independence testing is
that they act as a ‘black box’, giving an answer without making it clear how it was calculated. This
can make it difficult for researchers to reproduce their findings — a key part of confirming a scientific
discovery. Vogelstein et al. therefore sought to develop a method of performing independence
tests on large datasets that can easily be both applied and interpreted by practicing scientists.

The method developed by Vogelstein et al., called Multiscale Graph Correlation (MGC,
pronounced ‘magic’), combines recent developments in hypothesis testing, machine learning, and
data science. The result is that MGC typically requires between one half to one third as big a sample
size as previously proposed methods for analyzing large, complex datasets. Moreover, MGC also
indicates the nature of the relationship between different properties; for example, whether it is a
linear relationship or not.

Testing MGC on real biological data, including a cancer dataset and a human brain imaging
dataset, revealed that it is more effective at finding possible relationships than other commonly used
independence methods. MGC was also the only method that explained how it found those
relationships.

MGC will enable relationships to be found in data across many fields of inquiry — and not only in
biology. Scientists, policy analysts, data journalists, and corporate data scientists could all use MGC
to learn about the relationships present in their data. To that extent, Vogelstein et al. have made the
code open source in MATLAB, R, and Python.

DOI: https://doi.org/10.7554/eLife.41690.002

popularized (Friedman and Rafsky, 1983; Schilling, 1986), but they were sensitive to algorithm
parameters resulting in poor empirical performance. ‘Energy statistics’, and in particular the distance
correlation test (Dcorr), was recently shown to be able to detect any dependency with sufficient
observations, at arbitrary dimensions, and structured data under a proper distance metric
(Székely et al., 2007; Székely and Rizzo, 2009; Szekely and Rizzo, 2013; Lyons, 2013). Another
set of methods, referred to a 'kernel mean embedding’ approaches, including the Hilbert Schmidt
Independence Criterion (Hsic) (Gretton and Gyorfi, 2010; Muandet et al., 2017), have the same
theoretical guarantees, which is shown to be a kernel version of the energy statistics
(Sejdinovic et al., 2013; Shen and Vogelstein, 2018). The energy statistics can perform very well
with a relatively small sample size on high-dimensional linear data, whereas the kernel methods and
another test (Heller, Heller, and Gorfine's test, HHg) (Heller et al., 2013) perform well on low-dimen-
sional nonlinear data. But no test performs particularly well on high-dimensional nonlinear data with
typical sample sizes, which characterizes a large fraction of real data challenges in the current big
data era.

Moreover, to our knowledge, existing dependency tests do not attempt to further characterize
the dependency structure. On the other hand, much effort has been devoted to characterizing ‘point
cloud data’, that is, summarizing certain global properties in unsupervised settings (for example,
having genomics data, but no disease data). Classic examples of such approaches include Fourier
(Bracewell and Bracewell, 1986) and wavelet analysis (Daubechies, 1992). More recently, topologi-
cal and geometric data analysis compute properties of graphs, or even higher order simplices
(Edelsbrunner and Harer, 2009). Such methods build multiscale characterization of the samples,
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much like recent developments in harmonic analysis (Coifman and Maggioni, 2006; Allard et al.,
2012). However, these tools typically lack statistical guarantees under noisy observations and are
often computationally burdensome.

We surmised that both (i) empirical performance in all dependency structures, in particular high-
dimensional, nonlinear, low-sample size settings, and (i) providing insight into the discovery process,
can be addressed via extending existing dependence tests to be adaptive to the data (Zhang et al.,
2012). Existing tests rely on a fixed a priori selection of an algorithmic parameter, such as the kernel
bandwidth (Gretton et al., 2006), intrinsic dimension (Allard et al., 2012), and/or local scale
(Friedman and Rafsky, 1983; Schilling, 1986). Indeed, the Achilles Heel of manifold learning has
been the requirement to manually choose these parameters (Levina and Bickel, 2004). Post-hoc
cross-validation is often used to make these methods effectively adaptive, but doing so adds an
undesirable computational burden and may weaken or destroy any statistical guarantees. There is
therefore a need for statistically valid and computationally efficient adaptive methods.

To illustrate the importance of adapting to different kinds of relationships, consider a simple illus-
trative example: investigate the relationship between cloud density and grass wetness. If this rela-
tionship were approximately linear, the data might look like those in Figure 1A (top). On the other
hand, if the relationship were nonlinear—such as a spiral—it might look like those in Figure 1A (bot-
tom). Although the relationship between clouds and grass is unlikely to be spiral, spiral relationships
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Figure 1. lllustration of Multiscale Graph Correlation (Mac) on simulated cloud density (x;) and grass wetness (y;).
We present two different relationships: linear (top) and nonlinear spiral (bottom; see Materials and methods for
simulation details). (A) Scatterplots of the raw data using 50 pairs of samples for each scenario. Samples 1, 2, and 3
(black) are highlighted; arrows show x distances between these pairs of points while their y distances are almost 0.
(B) Scatterplots of all pairs of distances comparing x and y distances. Distances are linearly correlated in the linear
relationship, whereas they are not in the spiral relationship. Dcorr uses all distances (gray dots) to compute its test
statistic and p-value, whereas Macc chooses the local scale and then uses only the local distances (green dots). (C)
Heatmaps characterizing the strength of the generalized correlation at all possible scales (ranging from 2 to n for
both x and y). For the linear relationship, the global scale is optimal, which is the scale that Mac selects and results
in a p-value identical to Dcorr. For the nonlinear relationship, the optimal scale is local in both x and y, so Mac
achieves a far larger test statistic, and a correspondingly smaller and significant p-value. Thus, Mac uniquely
detects dependence and characterizes the geometry in both relationships.

DOI: https://doi.org/10.7554/eLife.41690.003
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are prevalent in nature and mathematics (for example, shells, hurricanes, and galaxies), and are
canonical in evaluations of manifold learning techniques (Lee and Verleysen, 2007), thereby moti-
vating its use here.

Under the linear relationship (top panels), when a pair of observations are close to each other in
cloud density, they also tend to be close to each other in grass wetness (for example, observations 1
and 2 highlighted in black in Figure 1A, and distances between them in Figure 1B). Similarly, when
a pair of observations are far from each other in cloud density, they also tend to be far from each
other in grass wetness (see for example, distances between observations 2 and 3). On the other
hand, consider the nonlinear (spiral) relationship (bottom panels). Here, when a pair of observations
are close to each other in cloud density, they also tend to be close to each other in grass wetness
(see points 1 and 2 again). However, the same is not true for large distances (see points 2 and
3). Thus, in the linear relationship, the distance between every pair of points is informative with
respect to the relationship, while under the nonlinear relationship, only a subset of the distances are.

For this reason, we juxtapose nearest neighbor mechanism with distance methods. Specifically,
for each point, we find its k-nearest neighbors for one property (e.g. cloud density), and its I-nearest
neighbors for the other property (e.g. grass wetness); we call the pair (k, 1) the 'scale’. A priori, how-
ever, we do not know which scales will be most informative. We compute all distance pairs, then effi-
ciently compute the distance correlations for all scales. The local correlations (Figure 1C, described
in detail below) illustrate which scales are relatively informative about the relationship. The key,
therefore, to successfully discover and decipher relationships between disparate data modalities is
to adaptively determine which scales are the most informative, and the geometric implication for the
most informative scales. Doing so not only provides an estimate of whether the modalities are
related, but also provides insight into how the determination was made. This is especially important
in high-dimensional data, where simple visualizations do not reveal relationships to the unaided
human eye.

Our method, ‘Multiscale Graph Correlation’ (Mac, pronounced ‘magic’), generalized and extends
previously proposed pairwise comparison-based approaches by adaptively estimating the informa-
tive scales for any relationship — linear or nonlinear, low-dimensional or high-dimensional, unstruc-
tured or structured—in a computationally efficient and statistically valid and consistent fashion. This
adaptive nature of Mac effectively guarantees an improved statistical performance. Moreover, the
dependency strength across all scales is informative about the structure of a statistical relationship,
therefore providing further guidance for subsequent experimental or analytical steps. Mac is thus a
hypothesis-testing and insight-providing approach that builds on recent developments in manifold
and kernel learning, with complementary developments in nearest-neighbor search, and multiscale
analyses.

The multiscale graph correlation procedure
Mac is a multi-step procedure to discover and decipher dependencies across disparate data modali-

ties or properties. Given n samples of two different properties, proceed as follows (see Materials
and methods and (Shen et al., 2018) for details):

1. Compute two distance matrices, one consisting of distances between all pairs of one property
(e.g. cloud densities, entire genomes or connectomes) and the other consisting of distances
between all pairs of the other property (e.g. grass wetnesses or disease status). Then center
each distance matrix (by subtracting its overall mean, the column-wise mean from each col-
umn, and the row-wise mean from each row), and denote the resulting n-by-n matrices A and
B.

2. For all possible values of k and I from 1 to n:

a. Compute the k-nearest neighbor graphs for one property, and the Il-nearest neighbor
graphs for the other property. Let G, and H, be the adjacency matrices for the nearest
neighbor graphs, so that Gi(i,j) = 1 indicates that A(i,j) is within the k smallest values of
the i row of A, and similarly for H,.

b. Estimate the local correlations—the correlation between distances restricted to only the
(k,/)  neighbors—by  summing the products of the above matrices,
M =37 A(i,)) G (i,))B(i, ) Hii. J).

c. Normalize ¥ such that the result is always between —1 and +1 by dividing by

\/ZUAZ(i,j)Gk(i,j) x 3 B2 (i, ) Hi(i, ).
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3. Estimate the optimal local correlation ¢* by finding the smoothed maximum of all local correla-
tions {c!}. Smoothing mitigates biases and provides Mac with theoretical guarantee and bet-
ter finite-sample performance.

4. Determine whether the relationship is significantly dependent—that is, whether ¢* is more
extreme than expected under the null—via a permutation test. The permutation procedure
repeats steps 1-4 on each permutation, thereby eliminating the multiple hypothesis testing
problem by only computing one overall p-value, rather than one p-value per scale, ensuring
that it is a valid test (meaning that the false positive rate is properly controlled at the specified
type | error rate).

Computing all local correlations, the test statistic, and the p-value requires O(n? logn) time, which
is about the same running time complexity as other methods (Shen et al., 2018).

Results

Mac typically requires substantially fewer samples to achieve the same
power across all dependencies and dimensions

When, and to what extent, does Mac outperform other approaches, and when does it not? To
address this question, we formally pose the following hypothesis test (see Materials and methods for
details):

Hp : XandY are independent
Hj, : XandY arenotindependent.

The standard criterion for evaluating statistical tests is the testing power, which equals the proba-
bility that a test correctly rejects the null hypothesis at a given type one error level, that is
power = Prob(H, is rejected |Hy is false). The higher the testing power, the better the test proce-
dure. A consistent test has power converging to 1 under dependence, and a valid test controls the
type one error level under independence. In a complementary manuscript (Shen et al., 2018), we
established the theoretical properties of Mac, proving its validity and universal consistency for
dependence testing against all distributions of finite second moments.

Here, we address the empirical performance of Mac as compared with multiple popular tests: (i)
Dcorr, a popular approach from the statistics community (Székely et al., 2007; Székely and Rizzo,
2009), (i) Mcorr, a modified version of Dcorr designed to be unbiased for sample data
(Szekely and Rizzo, 2013), (iii) HHg, a distance-based test that is very powerful for detecting low-
dimensional nonlinear relationships (Heller et al., 2013). (iv) Hsic, a kernel dependency measure
(Gretton and Gyorfi, 2010) formulated in the same way as Dcorr except operating on kernels, (v)
MaNTEL, which is historically widely used in biology and ecology (Mantel, 1967). (vi) RV coefficient
(Pearson, 1895; Josse and Holmes, 2013), which is a multivariate generalization of PEarRsoN's prod-
uct moment correlation whose test statistic is the sum of the trace-norm of the cross-covariance
matrix, and (vii) the Cca method, which is the largest (in magnitude) singular value of the cross-
covariance matrix, and can be viewed as a different generalization of Pearson in high-dimensions
that is more appropriate for sparse settings (Hotelling, 1936; Witten et al., 2009, Witten and Tib-
shirani, 2011). Note that while we focus on high-dimensional settings, Appendix 1 shows further
results in one-dimensional settings, also comparing to a number of tests that are limited to one
dimension, including: (viii) PEARSON’s product moment correlation, (ix) SPEARMAN's rank correlation
(Spearman, 1904), (x) Kenpall's tau correlation (Kendall, 1970), and (xi) Mic (Reshef et al.,
2011). Under the regularity condition that the data distribution has finite second moment, the first
four tests are universally consistent, whereas the other tests are not.

We generate an extensive benchmark suite of 20 relationships, including different polynomial (lin-
ear, quadratic, cubic), trigonometric (sinusoidal, circular, ellipsoidal, spiral), geometric (square, dia-
mond, W-shape), and other functions. This suite includes and extends the simulated settings from
previous dependence testing work (Székely et al., 2007, Simon and Tibshirani, 2012;
Gorfine et al., 2012; Heller et al., 2013; Szekely and Rizzo, 2013). For many of them, we introduce
high-dimensional variants, to more extensively evaluate the methods; function details are in Materi-
als and methods. The visualization of one-dimensional noise-free (black) and noisy (gray) samples is
shown in Figure 2—figure supplement 1. For each relationship, we compute the power of each
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method relative to Mac for ~20 different dimensionalities, ranging from 1 up to 10, 20, 40, 100, or
1000. The high-dimensional relationships are more challenging because (1) they cannot be easily
visualized and (2) each dimension is designed to have less and less signal, so there are many noisy
dimensions. Figure 2 shows that MGc achieves the highest (or close to the highest) power given 100
samples for each relationship and dimensionality. Figure 2—figure supplement 2 shows the same
advantage in one-dimension with increasing sample size.

Moreover, for each relationship and each method we compute the required sample size to
achieve power 85% at error level 0.05, and summarize the median size for monotone relationships
(type 1-5) and non-monotone relationships (type 6-19) in Table 1. Other methods typically require
double or triple the number of samples as Mac to achieve the same power. More specifically, tradi-
tional correlation methods (Pearson, RV, Cca, SpearMAN, KENDALL) always perform the best in mono-
tonic simulations, distance-based methods including Mcorr, Dcorr, Mac, HHG and Hsic are slightly
worse, while Mic and ManNTEL are the worst. Mac's performance is equal to linear methods on mono-
tonic relationships. For non-monotonic relationships, traditional correlations fail to detect the exis-
tence of dependencies, Dcorr, Mcorr, and Mic, do reasonably well, but HHG and Mac require the
fewest samples. In the high-dimensional non-monotonic relationships that motivated this work, and
are common in biomedicine, Mac significantly outperforms other methods. The second best test
that is universally consistent (HHG) requires nearly double as many samples as Mac, demonstrating
that Mac could half the time and cost of experiments designed to discover relationships at a given
effect size.

Mac extends previously proposed global methods, such as ManTEL and Dcorr . The above experi-
ments extended McoRrRr , because McoRR is universally consistent and an unbiased version of Dcorr
(Szekely and Rizzo, 2013). Figure 2—figure supplement 3 directly compares multiscale generaliza-
tions of MANTEL and Mcorr as dimension increases, demonstrating that empirically, Mac nearly domi-
nates its global variant for essen- tially all dimensions and simulation settings considered here.
Figure 2—figure supplement 4 shows a similar result for one-dimensional settings while varying
sample size. Thus, not only does Mac empirically nearly dominate existing tests, it is a framework
that one can apply to future tests to further improve their performance.

Mac deciphers latent dependence structure

Beyond simply testing the existence of a relationship, the next goal is often to decipher the nature
or structure of the relationship, thereby providing insight and guiding future experiments. A single
scalar quantity (such as effect size) is inadequate given the vastness and complexities of possible
relationships. Existing methods would require a secondary procedure to characterize the relation-
ship, which introduces complicated ‘post selection’ statistical quandaries that remain mostly unre-
solved (Berk et al., 2013). Instead, Mcc provides a simple, intuitive, and nonparametric (and
therefore infinitely flexible) ‘map’ of how it discovered the relationship. As described below, this
map not only provides interpretability for how Macc detected a dependence, it also partially charac-
terize the geometry of the investigated relationship.

The Mac-Map shows local correlation as a function of the scales of the two properties. More con-
cretely, it is the matrix of c¥’s, as defined above. Thus, the Mcc-Map is an n-by-n matrix which enco-
des the strength of dependence for each possible scale. Figure 3 provides the Mac-Map for all 20
different one-dimensional relationships; the optimal scale to achieve 7. is marked with a green dot.
For the monotonic dependencies (1-5), the optimal scale is always the largest scale, that is the global
one. For all non-monotonic dependencies (6-19), Mac chooses smaller scales. Thus, a global optimal
scale implies a close-to-linear dependency, otherwise the dependency is strongly nonlinear. In fact,
this empirical observation led to the following theorem (which is proved in Materials and methods):

Theorem 1. When (X,Y) are linearly related (meaning that Y can be constructed from X by rota-

tion, scaling, translation, and/or reflection), the optimal scale of Mcc equals the global scale. Con-
versely, a local optimal scale implies a nonlinear relationship.
Thus, the Mac-Map explains how Mac discovers relationships, specifically, which scale has the most
informative pairwise comparisons, and how that relates to the geometry of the relationship. Note
that Mac provides the geometric characterization ‘for free’, meaning that no separate procedure is
required; therefore, Mac provides both a valid test and information about the geometric
relationship.
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Figure 2. An extensive benchmark suite of 20 different relationships spanning polynomial, trigonometric, geometric, and other relationships
demonstrates that Mac empirically nearly dominates eight other methods across dependencies and dimensionalities ranging from 1 to 1000 (see
Materials and methods and Figure 2—figure supplement 1 for details). Each panel shows the testing power of other methods relative to the power of
Mac (e.g. power of Mcorr minus the power of Mac) at significance level @ = 0.05 versus dimensionality for n = 100. Any line below zero at any point
indicates that that method's power is less than Mac's power for the specified setting and dimensionality. Mac achieves empirically better (or similar)
power than all other methods in almost all relationships and all dimensions. For the independent relationship (#20), all methods yield power 0.05 as
they should. Note that Mac is always plotted ‘on top’ of the other methods, therefore, some lines are obscured.

DOI: https://doi.org/10.7554/eLife.41690.004

The following figure supplements are available for figure 2:

Figure supplement 1. Visualization of the 20 dependencies at p = ¢ = 1.

DOI: https://doi.org/10.7554/eLife.41690.005

Figure supplement 2. The same power plots as in Figure 2, except the 20 dependencies are one-dimensional with noise, and the x-axis shows sample
size increasing from 5 to 100.

DOI: https://doi.org/10.7554/eLife.41690.006

Figure supplement 3. The same set-ups as in Figure 2, comparing different Mgc implementations versus its global counterparts.

DOI: https://doi.org/10.7554/eLife.41690.007

Figure supplement 4. The same power plots as in Figure 3, except the 20 dependencies are one-dimensional with noise, and the x-axis shows sample
size increasing from 5 to 100.

DOI: https://doi.org/10.7554/eLife.41690.008
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Table 1. The median sample size for each method to achieve power 85% at type one error level 0.05, grouped into monotone (type
1-5) and non-monotone relationships (type 6-19) for both one- and ten-dimensional settings, normalized by the number of samples
required by Mac.

In other words, a 2.0 indicates that the method requires double the sample size to achieve 85% power relative to Mac. PEARSON, Ry,
and Cca all achieve the same performance, as do SpearMAN and KenpalL. MGc requires the fewest number of samples in all settings,
and for high-dimensional non-monotonic relationships, all other methods require about double or triple the number of samples Mac
requires.

Dimensionality One-Dimensional Ten-Dimensional
Dependency type Monotone Non-Mono Average Monotone Non-Mono Average
Mac 1 1 1 1 1 1
Dcorr B 26 22 1 32 26
Mcorr o 28 24 1 3.1 26
HHe 71.4 1 1.1 1.7 1.9 1.8
Hsic 1.4 1.1 1.2 1.7 24 2.2
MANTEL 1.4 1.8 1.7 3 1.6 1.9
Pearson / Rv / Cca 1 >10 >10 0.8 >10 >10
SPEARMAN / KENDALL 71 >10 >10 n/a n/a n/a
Mic 72.4 2 2.1 n/a n/a n/a

DOV https://doi.org/10.7554/eLife.41690.009

The following source data is available for Table 1:
Source data 1. Testing power sample size data in one dimension.
DOV https://doi.org/10.7554/eLife.41690.010

Source data 2. Testing power sample size data in high-dimensions.
DOI: https://doi.org/10.7554/eLife.41690.011

Moreover, similar dependencies have similar Mcc-Maps and often similar optimal scales. For
example, logarithmic (10) and fourth root (11), although very different functions analytically, are geo-
metrically similar, and yield very similar Mcc-Maps. Similarly, (12) and (13) are trigonometric func-
tions, and they share a narrow range of significant local scales. Both circle (16) and ellipse (17), as
well as square (14) and diamond (18), are closely related geometrically and also have similar Mac-
Maps. This indicates that the Macc-Map partially characterizes the geometry of these relationships,
differentiating different dependence structures and assisting subsequent analysis steps. Moreover,
in Shen and Vogelstein, 2018, we proved that the sample Mac-Map (which Mac estimates) con-
verges to the true Mac-Map provided by the underlying joint distribution of the data. In other
words, each relationship has a specific map that characterizes it based on its joint distribution, and
Mac is able to accurately estimate it via sample observations. The existence of a population level
characterization of the joint distribution strongly differentiates Mac from previously proposed multi-
scale geometric or topological characterizations of data, such as persistence diagrams
(Edelsbrunner and Harer, 2009).

Mac is computationally efficient

Mac does not incur large computational costs and has a similar complexity as existing methods.
Though a naive implementation of Mac requires O(n*) operations, we devised a nested implementa-
tion that requires only O(n?logn) operations. Moreover, obtaining the Mcc-Map costs no additional
computation, whereas other methods would require running a secondary computational step to
decipher geometric properties of the relationship. Mac can also trivially be parallelized, reducing
computation to O(n?logn/T), where T is the number of cores (see Algorithm C1 for details). Since T
is often larger than logn, in practice, Mac can be O(n?), meaning only a constant factor slower than
Dcorr and Hsic, which is illustrated in Figure 6 of Shen and Vogelstein, 2018. For example, at sam-
ple size n = 5000 and dimension p = 1, on a typical laptop computer, Dcorr requires around 0.5 s to
compute the test statistic, whereas Mac requires no more than 5 s. But the cost and time to obtain
2.5x more data (so Dcorr has same average power as Mac) typically far exceeds a few seconds. In
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MGC Images Characterize the Geometry of Dependence
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Figure 3. The Mac-Map characterizes the geometry of the dependence function. For each of the 20 panels, the abscissa and ordinate denote the
number of neighbors for X and Y, respectively, and the color denotes the magnitude of each local correlation. For each simulation, the sample size is
60, and both X and Y are one-dimensional. Each dependency has a different Mcc-Map characterizing the geometry of dependence, and the optimal
scale is shown in green. In linear or close-to-linear relationships (first row), the optimal scale is global, that is the green dot is in the top right corner.
Otherwise the optimal scale is non-global, which holds for the remaining dependencies. Moreover, similar dependencies often share similar Mcc-Maps
and similar optimal scales, such as (10) logarithmic and (11) fourth root, the trigonometric functions in (12) and (13, 16) circle and (17) ellipse, and (14)
square and (18) diamond. The Mac-Maps for high-dimensional simulations are provided in Figure 3—figure supplement 1.

DOI: https://doi.org/10.7554/elife.41690.012
The following figure supplement is available for figure 3:

Figure supplement 1. The Mac-Map for the 20 panels for high-dimensional dependencies.
DOI: https://doi.org/10.7554/elife.41690.013

comparison, the cost to compute a persistence diagram is typically O(n®), which is orders of magni-
tude slower when n>10. The running time of each method on the real data experiments are
reported in Materials and methods.
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Mgc uniquely reveals relationships in real data

Geometric intuition, numerical simulations, and theory all provide evidence that Mac will be useful
for real data discoveries. Nonetheless, real data applications provide another necessary ingredient
to justify its use in practice. Below, we describe several real data applications where we have used
Mac to understand relationships in data that other methods were unable to provide.

Mac discovers the relationships between brain and mental properties

The human psyche is of course dependent on brain activity and structure. Previous work has studied
two particular aspects of our psyche: personality and creativity, developing quantitative metrics for
evaluating them using structured interviews (Costa and McCrae, 1992; Jung et al., 2009). However,
the relationship between brain activity and structure, and these aspects of our psyche, remains
unclear (DeYoung et al., 2010; Xu and Potenza, 2012; Bjornebekk et al., 2013; Sampaio et al.,
2014). For example, prior work did not evaluate the relationship between entire brain connectivity
and all five factors of the standard personality model (Costa and McCrae, 1992). We therefore uti-
lized Mac to investigate published open access data (see Materials and methods for details).

First, we analyzed the relationship between resting-state functional magnetic resonance (rs-fMRI)
activity and personality (Adelstein et al., 2011). The first row of Table 2 compares the p-value of dif-
ferent methods, and Figure 4A shows the Mcc-Map for the sample data. Mac is able to yield a sig-
nificant p-value (< 0.05), whereas all previously proposed global dependence tests under
consideration (MANTEL, Dcorr, Mcorr, or HHa) fail to detect dependence at a significance level of
0.05. Moreover, the Mcc-Map provides a characterization of the dependence, for which the optimal
scale indicates that the dependency is strongly nonlinear. Interestingly, the Mcc-Map does not look
like any of the 20 images from the simulated data, suggesting that the nonlinearity characterizing
this dependency is more complex or otherwise different from those we have considered so far.

Second, we investigated the relationship between diffusion MRI derived connectivity and creativ-
ity (Jung et al., 2009). The second row of Table 2 shows that Mac is able to ascertain a dependency
between the whole brain network and the subject’s creativity. The Mac-Map in Figure 4B closely
resembles a linear relationship where the optimal scale is global. The close-to-linear relationship is
also supported from the p-value table as all methods except Hsic are able to detect significant
dependency, which suggests that there is relatively little to gain by pursuing nonlinear regression
techniques, potentially saving valuable research time by avoiding tackling an unnecessary problem.
The test statistic for both Mcc and Mcorr equal 0.04, which is quite close to zero despite a signifi-
cant p-value, implying a relatively weak and noisy relationship. A prediction of creativity via linear
regression turns out to be non-significant, which implies that the sample size is too low to obtain
useful predictive accuracy (not shown), indicating that more data are required for single subject pre-
dictions. If one had first directly estimated the regression function, obtaining a null result, it would
remain unclear whether a relationship existed. This experiment demonstrates that for high-dimen-
sional and potentially structured data, Mac is able to reveal dependency with relatively small sample
size while parametric techniques and directly estimating regression functions can often be
ineffective.

Table 2. The p-values for brain imaging vs mental properties.
Mac always uncovers the existence of significant relationships and discovers the underlying optimal
scales. Bold indicates significant p-value per dataset.

Testing Pairs/Methods Mac Dcorr Mcorr HHa Hsic
Activity vs Personality 0.043 0.667 0.441 0.059 0.124
Connectivity vs Creativity 0.011 0.010 0.011 0.031 0.092

DOI: https://doi.org/10.7554/eLife.41690.015

The following source data is available for Table 2:
Source data 1. p-value data for activity vs personality.
DOI: https://doi.org/10.7554/eLife.41690.016

Source data 2. p-value data for connetivity vs creativity.
DOI: https://doi.org/10.7554/eLife.41690.017
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Figure 4. Demonstration that Mac successfully detects dependency, distinguishes linearity from nonlinearity, and identifies the most informative feature
in a variety of real data experiments. (A) The Mac-Map for brain activity versus personality. MGc has a large test statistic and a significant p-value at the
optimal scale (13, 4), while the global counterpart is non-significant. That the optimal scale is non-global implies a strongly nonlinear relationship. (B)
The Mac-Map for brain connectivity versus creativity. The image is similar to that of a linear relationship, and the optimal scale equals the global scale,
thus both Mac and Mcorr are significant in this case. (C) For each peptide, the x-axis shows the p-value for testing dependence between pancreatic
and healthy subjects by Mac, and the y-axis shows the p-value for testing dependence between pancreatic and all other subjects by Mac. At critical
level 0.05, Mac identifies a unique protein after multiple testing adjustment. (D) The true and false positive counts using a k-nearest neighbor (choosing
the best k € [1, 10]) leave-one-out classification using only the significant peptides identified by each testing method. The peptide identified by Mac
achieves the best true and false positive rates, as compared to the peptides identified by Hsic or HHa.

DOI: https://doi.org/10.7554/eLife.41690.014

The performance in the real data closely matches the simulations results: the first dataset exhibits
a strongly nonlinear relationship, for which Mac has the lowest p-value, followed by HHc and Hsic
and then all other methods; the second dataset exhibits a close-to-linear relationship, for which
global methods perform the best while HHG and Hsic are trailing. Moreover, Mac detected a com-
plex nonlinear relationship for brain activity versus personality, and a nearly linear but noisy
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relationship for brain network versus creativity, the only method able to make either of those claims.
In a separate experiment, we assessed the frequency with which Macc obtained false positive results
using brain activity data, based on experiments from Eklund et al. (2012), Eklund et al. (2016).
Appendix 1—figure 1 shows that MGc achieves a false positive rate of 5% when using a significance
level of 0.05, implying that it correctly controls for false positives, unlike typical parametric methods
on these data.

Mac identifies potential cancer proteomics biomarkers

Mac can also be useful for a completely complementary set of scientific questions: screening proteo-
mics data for biomarkers, often involving the analysis of tens of thousands of proteins, peptides, or
transcripts in multiple samples representing a variety of disease types. Determining whether there is
a relationship between one or more of these markers and a particular disease state can be challeng-
ing but is a necessary first step (Frantzi et al., 2014). We sought to discover new useful protein bio-
markers from a quantitative proteomics technique that measures protein and peptide abundance
called Selected Reaction Monitoring (SRM) (Wang et al., 2011). Specifically, we were interested in
finding biomarkers that were unique to pancreatic cancer, because it is lethal and no clinically useful
biomarkers are currently available (Bhat et al., 2012).

The data consist of proteolytic peptides derived from the blood samples of 95 individuals harbor-
ing pancreatic (n = 10), ovarian (n = 24), colorectal cancer (n = 28), and healthy controls (n = 33). The
processed data included 318 peptides derived from 121 proteins. Previously, we used these data
and other techniques to find ovarian cancer biomarkers (a much easier task because the dataset has
twice as many ovarian patients) and validated them with subsequent experiments (Wang et al.,
2017). Therefore, our first step was to check whether Mac could correctly identify ovarian bio-
markers. Indeed, the peptides that have been validated previously are also identified by Mac.
Emboldened, using the same dataset, we applied Mac to screen for biomarkers unique to pancreatic
cancer. To do so, we first screened for a difference between pancreatic cancer and healthy controls,
identifying several potential biomarkers. Then, we screened for a difference between pancreatic can-
cer and all other conditions, to find peptides that differentiate pancreatic cancer from other cancers.
Figure 4C shows the p-value of each peptide assigned by Mac, which reveals one particular protein,
neurogranin, that exhibits a strong dependency specifically with pancreatic cancer. Subsequent liter-
ature searches reveal that neurogranin is a potentially valuable biomarker for pancreatic cancer
because it is exclusively expressed in brain tissue among normal tissues and has not been linked with
any other cancer type (Yang et al., 2015; Willemse et al., 2018). In comparison, Hsic identified neu-
rogranin as well, but it also identified another peptide; HHG identified the same two by Hsic, and a
third peptide. A literature evaluation of these additional peptides shows that they are upregulated
in other cancers as well and are unlikely to be useful as a pancreatic biomarker (Helfman et al.,
2018; Lam et al., 2012). The rest of the global methods did not identify any markers at significance
level 0.05, see Materials and methods for more details and Appendix 1—table 2 for identified pep-
tide information using each method.

Since there is no ground truth yet in this experiment, we further carried out a classification task
using the biomarkers identified by the various algorithms, using a k-nearest-neighbor classifier to
predict pancreatic cancer, and a leave-one-subject-out validation. Figure 4D shows that the peptide
selected by Mac (neurogranin) works better than any other subset of the peptides selected by Hsic
or HHg, in terms of both fewer false positives and negatives. This analysis suggests Mac can effec-
tively be used for screening and subsequent classification.

Discussion

There are a number of connections between Macc and other prominent statistical procedures that
may be worth further exploration. First, MGc can be thought of as a regularized or sparsified variant
of distance or kernel methods. Regularization is central to high-dimensional and ill-posed problems,
where dimensionality is larger than sample size. Second, Mac can also be thought of as learning a
metric because it chooses the optimal scale amongst a set of n? truncated distances, motivating
studying the relationship between Mac and recent advances in metric learning (Xing et al., 2003). In
particular, deep learning can be thought of as metric learning (Giryes et al., 2015), and generative
adversarial networks (Goodfellow et al., 2014) are implicitly testing for equality, which is closely
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related to dependence (Sutherland et al., 2016). While Mac searches over a two-dimensional
parameter space to optimize the metric, deep learning searches over a much larger parameter
space, sometimes including millions of dimensions. Probably neither is optimal, and somewhere
between the two would be useful in many tasks. Third, energy statistics provide state of the art
approaches to other problems, including goodness-of-fit (Székely and Rizzo, 2005), analysis of vari-
ance (Rizzo and Székely, 2010), conditional dependence (Székely and Rizzo, 2014; Wang et al.,
2015), and feature selection (Li et al., 2012; Zhong and Zhu, 2015), so Mcc can be adapted for
them as well. Indeed, Mac can also implement a two-sample (or generally the K-sample) test
(Szekely and Rizzo, 2004; Heller et al., 2016; Shen and Vogelstein, 2018). Specifically, for more
than two modalities, one may use summation of pairwise Mac test statistics, similar to how energy
statistic is generalized to K-sample testing from two-sample testing (Rizzo and Székely, 2010;
Rizzo and Székely, 2016; Shen and Vogelstein, 2018), or how canonical correlation analysis is gen-
eralized into more than two modalities (Kettenring, 1971, Tenenhaus and Tenenhaus, 2011,
Shen et al., 2014). Finally, although energy statistics have not yet been explicitly used for classifica-
tion, regression, or dimensionality reduction, MGc opens the door to these applications by providing
guidance as to how to proceed. Specifically, it is well documented in machine learning literature that
the choice of kernel, metric, or scale often has a strong effect on the performance of different
machine learning algorithms (Levina and Bickel, 2004). Mac provides a mechanism to estimate scale
that is both theoretically justified and computationally efficient, by optimizing a metric for a task
wherein the previous methods lacked a notion of optimization. Nonlinear dimensionality reduction
procedures, such as Isomap (Tenenbaum et al., 2000) and local linear embedding (Roweis and
Saul, 2000) for example, must also choose a scale, but have no principled criteria for doing so. Mac
could be used to provide insight into multimodal dimensionality reduction as well.

The default metric choice of Mac in this paper is always the Euclidean distance, but other metric
choices may be more appropriate in different fields, and using the strong negative type metric as
specified in Lyons (2013) guarantees consistency. However, if multiple metric choices are experi-
mented to yield multiple Mac p-values, then the optimal p-value should be properly corrected for
multiple testing. Alternatively, one may use the maximum Mac statistic among multiple metric
choices, apply the same procedure in each permutation (i.e. in each permutation, use the same num-
ber of metric choices and take the maximum Mac as the permuted statistic), then derive a single
p-value. Such a testing procedure properly controls the type one error level without the need for
additional correction.

Mac also addresses a particularly vexing statistical problem that arises from the fact that methods
methods for discovering dependencies are typically dissociated from methods for deciphering them.
This dissociation creates a problem because the statistical assumptions underlying the ‘deciphering’
methods become compromised in the process of ‘discoverying’; this is called the ‘post-selection
inference’ problem (Berk et al., 2013). The most straightforward way to address this issue is to col-
lect new data, which is costly and time-consuming. Therefore, researchers often ignore this fact and
make statistically invalid claims. Mac circumvents this dilemma by carefully constructing its permuta-
tion test to estimate the scale in the process of estimating a p-value, rather than after. To our knowl-
edge, Mac is the first dependence test to take a step towards valid post-selection inference.

As a separate next theoretical extension, we could reduce the computational space and time
required by Mac. Mac currently requires space and time that are quadratic with respect to the num-
ber of samples, which can be costly for very large data. Recent advances in related work demon-
strated that one could reduce computational time of distance-based tests to close to linear via faster
implementation, subsampling, random projection, and null distribution approximation (Huo and
Székely, 2016; Huang and Huo, 2017; Zhang et al., 2018; Chaudhuri and Hu, 2018), making it
feasible for large amount of data. Alternately, semi-external memory implementations would allow
running MGc even as the interpoint comparison matrix exceeds the size of main memory (Da Zheng
et al., 2015; Da Zheng et al., 2016a; Da Zheng et al., 2016b; Da Zheng et al., 2016c).

Finally, Mac is easy to use. Source code is available in MATLAB, R, and Python from https://mgc.
neurodata.io/ (Bridgeford et al., 2018; experiments archived at https://github.com/elifesciences-
publications/MGC-paper). Code for reproducing all the figures in this manuscript is also available
from the above websites. We showed Mac's value in diverse applications spanning neuroscience
(which motivated this work) and an ‘omics example. Applications in other domains facing similar
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questions of dependence, such as finance, pharmaceuticals, commerce, and security, could likewise
benefit from Mac.

Materials and methods

Mathematical details

This section contains essential mathematical details on independence testing, the notion of the gen-
eralized correlation coefficient and the distance-based correlation measure, how to compute the
local correlations, and the smoothing technique. A statistical treatment on MGC is in Shen and
Vogelstein, 2018, which introduces the population version of Mac and various theoretical
properties.

Testing independence
Given pairs of observations (x;,y;) € R” x R? for i = 1,...,n, assume they are independently identi-

cally distributed as (X, Y)™Fyy. If the two random variables X and Y are independent, the joint distri-
bution equals the product of the marginals, that is Fxy = FxFy. The statistical hypotheses for testing
independence is as follows:

Hy : Fxy = FxFy,

HA Zny§£FxFy.

Given a test statistic, the testing power equals the probability of rejecting the independence
hypothesis (i.e. the null hypothesis) when it is false. A test statistic is consistent if and only if the test-
ing power increases to 1 as sample size increases to infinity. We would like a test to be universally
consistent, that is consistent against all joint distributions. Dcorr, Mcorr, Hsic, and HHG are all consis-
tent against any joint distribution of finite second moments and finite dimension.

Note that p is the dimension for x's, g is the dimension for y's. For Mac and all benchmark meth-
ods, there is no restriction on the dimensions, that is the dimensions can be arbitrarily large, and p is
not required to equal ¢. The ability to handle data of arbitrary dimension is crucial for modern big
data. There also exist some special methods that only operate on one-dimensional data, such as
(Reshef et al., 2011; Heller et al., 2016, Huo and Székely, 2016), which are not directly applicable
to multidimensional data.

Correlation measures
To achieve consistent testing, most state-of-the-art dependence measures operate on pairwise com-
parisons, either similarities (such as kernels) or dissimilarities (such as distances).

Let X, = {x1,---,x,} € R”" and Y, = {y, - -,¥,} € R”" denote the matrices of sample observa-
tions, and 8, be the distance function for x's and 8, for y's. One can then compute two n x n distance
matrices A = {@;} and B = {b;}, where @; = 8.(x;,x;) and b; = 8,(y;,y,). A common example of the
distance function is the Euclidean metric (L> norm), which serves as the starting point for all methods
in this manuscript.

Let A and B be the transformed (e.g., centered) versions of the distance matrices A and B, respec-
tively. Any ‘generalized correlation coefficient’ (Spearman, 1904; Kendall, 1970) can be written as:

1 n n
C(thyn) :EZ,‘:1 Zj:laijbijv (1)

where z is proportional to the standard deviations of A and B, that is z =n?c,0,. In words, ¢ is the
global sample correlation across pairwise comparison matrices A and B, and is normalized into the
range [—1,1], which usually has expectation O under independence and implies a stronger depen-
dency when the correlation is further away from 0.

Traditional correlations such as the Pearson's correlation and the rank correlation can be written
via the above correlation formulation, by using A and B directly from sample observations rather
than distances. Distance-based methods like DcorrR and MANTEL operate on the Euclidean distance
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by default, or other metric choices on the basis of domain knowledge; then transform the resulting
distance matrices A and B by certain centering schemes into A and B. Hsic chooses the Gaussian ker-
nel and computes two kernel matrices, then transform the kernel matrices A and B by the same cen-
tering scheme as Dcorr. For Mac, A and B are always distance matrices (or can be transformed to
distances from kernels by Sejdinovic et al. (2013)), and we shall apply a slightly different centering
scheme that turns out to equal DCORR.

To carry out the hypothesis testing on sample data via a nonparametric test statistic, for example
a generalized correlation, the permutation test is often an effective choice (Good, 2005), because a
p-value can be computed by comparing the correlation of the sample data to the correlation of the
permuted sample data. The independence hypothesis is rejected if the p-value is lower than a pre-
determined type 1 error level, say 0.05. Then the power of the test statistic equals the probability of
a correct rejection at a specific type 1 error level. Note that HHG is the only exception that cannot be
cast as a generalized correlation coefficient, but the permutation testing is similarly effective for the
HHG test statistic; also note that the iid assumption is critical for permutation test to be valid, which
may not be applicable in special cases like auto-correlated time series (Guillot and Rousset, 2013).

Distance correlation (Dcorr) and the Unbiased Version (MCORR)
Define the row and column means of A by a; =137 a; and a; = 1377, a;. Dcorr defines

_Jaj—ai—a;+a, itizj,
4= {0, ifi=,
and similarly for b;. For distance correlation, the numerator of Equation 1 is named the distance
covariance (Dcov), while o, and g}, in the denominator are the square root of each distance variance.
The centering scheme is important to guarantee the universal consistency of Dcorr, whereas Mantel
uses a simple centering scheme and thus not universally consistent.

Let ¢(X,Y) be the population distance correlation, that is, the distance correlation between the
underlying random variables X and Y. Székely et al. (2007) define the population distance correla-
tion via the characteristic functions of Fy and Fy, and show that the population distance correlation
equals zero if and only if X and Y are independent, for any joint distribution Fyy of finite second
moments and finite dimensionality. They also show that as n — «, the sample distance correlation
converges to the population distance correlation, that is, ¢(X,,),) — ¢(X,Y). Thus the sample dis-
tance correlation is consistent against any dependency of finite second moments and dimensionality.
Of note, the distance covariance, distance variance, and distance correlation are always non-nega-
tive. Moreover, the consistency result holds for a much larger family of metrics, those of strong neg-
ative type (Lyons, 2013).

It turns out that the sample distance correlation has a finite-sample bias, especially as the dimen-
sion p or g increases (Szekely and Rizzo, 2013). For example, for independent Gaussian distribu-
tions, the sample distance correlation converges to 1 as p,q — . By excluding the diagonal entries
and slightly modifies the off-diagonal entries of A and B, Szekely and Rizzo (Szekely and Rizzo,
2013; Székely and Rizzo, 2014) show that Mcorr is an unbiased estimator of the population dis-
tance correlation ¢(x,y) for all p, g,n, which is approximately normal even if p,g — . Thus it enjoys
the same theoretical consistency as Dcorr and always has zero mean under independence.

Local correlations

Given any matrices A and B, we can define a set of local correlations as follows. Let R(4,,i) be the
‘rank’ of x; relative to x;, that is, R(A;,i) = k if x; is the k™ closest point (or 'neighbor’) to x;, as deter-
mined by ranking the n — 1 distances to x;. Define R(B;,j) equivalently for the Y's, but ranking rela-
tive to the rows rather than the columns (see below for explanation). For any neighborhood size
around each x; and any neighborhood size I around each y; we define the local pairwise
comparisons:

)

o= aij, if R(Ahl) <k, ’i)’[ bij: lfR(B,,_]) <l
v 0, otherwise; Y 0, otherwise;
k

and then let af; = a;; —a*, where @" is the mean of {a}, and similarly for b};.
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The local correlation coefficient at a given scale is defined to effectively exclude large distances:
KX, V) = 122 =1 b, (3)
i

where zi; =n?ctol, with 0% and o/ is the standard deviations for the truncated pairwise comparisons.

The Mac-Map can be constructed by computing all local correlations, which allows the discovery of

the optimal correlation. For any aforementioned correlation (Dcorr, Mcorr, Hsic, MANTEL, PEARSON),

one can define its local correlations by using Equation 3 and plugging in the respective a; and b;

from Equation 1.

As most nonlinear relationships intrinsically exhibit a local linear structure, considering the near-
est-neighbors is able to amplify the dependency signal over the global correlation. There could be
two other scenarios: when the small distances in one modality mostly correspond to large distances
in another modality, or when the large distances in one modality correspond to large distance in
another modality. For the first scenario, the small distances become negative terms after centering
while the large distances become positive terms after centering, so adding their product to ¢ will
cause the test statistic to be smaller — in fact, as distance correlation is shown to be > 0 under
dependence (Székely et al., 2007), the first scenario cannot happen for all distances pairs. For the
second scenario, one can experiment using the large distances (or the furthest neighbors) only by
reversing the ranking scheme in local correlation to descending order. However, whenever the large
distances are highly correlated, the small distances must also be highly correlated after centering by
the mean distances, so global correlation coefficient like Dcorr already handles this scenario. There-
fore considering the nearest-neighbor may significantly improve the performance over global corre-
lation, while considering the other scenarios does not.

Mac as the optimal local correlation
We define the multiscale graph correlation statistic as the optimal local correlation, for which the
family of local correlation is computed based on Euclidean distance and Mcorr transformation.

Instead of taking a direct maximum, Mac takes a smoothed maximum, that is the maximum local
correlation of the largest connected component R such that all local correlations within R are signifi-
cant. If no such region exists, Mac defaults the test statistic to the global correlation (details in Algo-
rithm C2). Thus, we can write:

(X, V) = max (X, V)

(k,))eR

R = Largest Connected Component of {(k, ) such that ¢'>max(t,c™)}.

Then the optimal scale equals all scales within R whose local correlations are as large as ¢". The
choice of 1 is made explicit in the pseudo-code, with further discussion and justification offered in
Shen and Vogelstein, 2018.

Proof for theorem 1

Theorem 1. When (X,Y) are linearly related (rotation, scaling, translation, reflection), the optimal
scale of Mac equals the global scale. Conversely, that. the optimal scale is local implies a nonlinear
relationship.

Proof. It suffices to prove the first statement, then the second statement follows by contraposi-
tive. When (X, Y) are linearly related, Y = WX + b for a unitary matrix W and a constant b up-to possi-
ble scaling, in which case the distances are preserved, that is ||y; — yj|| = ||[Wx; — Wx;|| = ||x; — x;]|. It
follows that Mcorr(X,,Y,) = 1, so the global scale achieves the maximum possible correlation, and
the largest connected region R is empty. Thus the optimal scale is global and
Mge (X, V) = Mcorr(X,,),) = 1.

Computational complexity of each step
The distance computation takes O(n* max{p, q}), and the ranking process takes O(n? logn). Once the
distance and ranking are completed, computing one local generalized correlation requires O(n?)
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(see Algorithm C4). Thus, a naive approach to compute all local generalized correlations requires at
least O(n? max{n?,p,q}) by going through all possible scales, meaning possibly O(n*) which would
be computationally prohibitive. However, given the distance and ranking information, we devised an
algorithm that iteratively computes all local correlations in O(n?) by re-using adjacent smaller local
generalized correlations (see Algorithm C5). Therefore, when including the distance computation
and ranking overheads, the MGC statistic is computed in O(n?> max{logn, p,q})), which has the same
running time as the HHg statistic, and the same running time up to a factor of logn as global correla-
tions like Dcorr and Mcorr, which require O(n* max{p, ¢}) time. By utilizing a multi-core architecture,
Mac can be computed in O(n?> max{logn,p,q}/T) instead. As T = log(n) is often a small number, for
example T is no more than 30 at 1 billion samples, thus Mcc can be effectively computed in the
same complexity as Dcorr. Note that the permutation test adds another r random permutations to
the n? term, so computing the p-value requires O(n> max{logn,p,q,r}/T).

Mac algorithms and testing procedures
Six algorithms are presented in order:

o Algorithm C1 describes Mac in its entirety (which calls most of the other algorithms as
functions).

e Algorithm C2 computes the Mac test statistic.

e Algorithm C3 computes the p-value of Mac by the permutation test.

o Algorithm C4 computes the local generalized correlation coefficient at a given scale (k,[), for a
given choice of the global correlation coefficient.

e Algorithm C5 efficiently computes all local generalized correlations, in nearly the same running
time complexity as computing one local generalized correlation.

o Algorithm Cé evaluates the testing power of Mac by a given distribution.

For ease of presentation, we assume there are no repeating observations of X or ¥, and note that
Mcorr is the global correlation choice that Mac builds on.

Pseudocode C1 Multiscale Graph Correlation (Mcc); requires O(n? max(logn, p, q,r)/T) time, where r is the number
of permutations and T is the number of cores available for parallelization.

Input: n samples of (x;,y;) pairs, an integer r for the number of random permutations.
Output: (i) MGC statistic ¢*, (i) the optimal scale (k, 1), (iii) the p-value p(c*),

function MG((x;,y;), for i € [n])

(1) Calculate all pairwise distances:

fori,j:=1,...,ndo

a;j = 8x(xi,x;) S, is the distance between pairs of x samples
bij = 8,(vi,y;) 8y is the distance between pairs of y samples
end for

Let A = {a;} and B = {b;}.
(2) Calculate Multiscale Correlation Map C & Mac Test Statistic:

[¢*,C, k,I] = MGCSAMPLESTAT(A, B) Algorithm C2
(3) Calculate the p-value

pval(c*) = PERMUTATIONTEST(A, B, r, c*) Algorithm C3

end Function

Pseudocode C2 Mac test statistic. This algorithm computes all local correlations, take the smoothed maximum, and
reports the (k,[) pair that achieves it. For the smoothing step, it: () finds the largest connected region in the
correlation map, such that each correlation is significant, that is larger than a certain threshold to avoid correlation
inflation by sample noise, (i) take the largest correlation in the region, (iii) if the region area is too small, or the
smoothed maximum is no larger than the global correlation, the global correlation is used instead. The running time
is O(n?).

Input: A pair of distance matrices (A, B) € R™" x R™".
Output: The Mac statistic ¢* € R, all local statistics C € R™", and the corresponding local scale (k,1) € N x N.
Continued on next page
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—

function MGCSaAMPLESTAT(A, B)

2: C = MGCALLLOCAL(A, B) All local correlations
3 T = THRESHOLDING(C) find a threshold to determine large local correlations
4: fori,j:=1,...,ndo rj « I(c>1)end for identify all scales with large correlation
5: R—{ry:ij=1,...,n} binary map encoding scales with large correlation
6: R = CONNECTED(R) largest connected component of the binary matrix
7 ¢* —C(n,n) use the global correlation by default
8: k—nl—n

9: i <Zw‘ ’"t.'/‘) > 21 then proceed when the significant region is sufficiently large
10: [¢*,k, 1] < max(CoR) find the smoothed maximum and the respective scale
11: end if

12:  end Function
Input: C € R™".
Output: A threshold 1 to identify large correlations.

13: function THReSHOLDING C

14: T cho(cij)z/ Yol variance of all negative local generalized correlations
15: T« max{0.01,/7} x 3.5 threshold based on negative correlations
16: T — max{t,2/n,c"}

17: end Function

Pseudocode C3 Permutation Test. This algorithm uses the random permutation test with r random permutations for
the p-value, requiring O(rm?logn) for Mac. In the real-data experiment, we always set r = 10,000. Note that the
p-value computation for any other global generalized correlation coefficient follows from the same algorithm by
replacing Mac with the respective test statistic.

Input: A pair of distance matrices (A, B) € R™" x R™", the number of permutations r, and Mac statistic ¢* for the
observed data.

Output: The p-value pval € [0, 1].

1: function PerMUTATIONTEST(A, B, r, c*)

2: fort:=1,...,rdo

3 7 = RANDPERM(n) generate a random permutation of size n
4: c§[t] = MGCSAMPLESTAT(A, B(7r, 1)) calculate the permuted Mac statistic
5: end for

6: pval(c*) — 1370 I(c* < cjlr)) compute p-value of Mac
7 end function

Pseudocode C4 Compute local test statistic at a given scale. This algorithm runs in O(n?) once the rank information
is provided, which is suitable for Mcc computation if an optimal scale is already estimated. But it would take O(n*) if
used to compute all local generalized correlations. Note that for the default Mac implementation uses single
centering, the centering function centers A by column and B by row, and the sorting function sorts A within column
and B within row. By utilizing T = log(n) cores, the sorting function can be easily parallelized to take
O(n*log(n)/T) = O(n?).

Input: A pair of distance matrices (A, B) € R™" x R"™", and a local scale (k,I) € N x N.

Output: The local generalized correlation coefficient ¢ € [~1,1].

1: function LocatGENCORR(A, B, k, 1)

2: for Z := A, B do &% = Sor1(Z) end for parallelized sorting
3 for Z := A,B do Z = CENTER(Z) end for center distance matrices
4: H— (Ao EMNT x (Bo (EXYT)) un-normalized local distance covariance

Continued on next page
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5: V(Ao EHT x (Ao (EYHT)) local distance variances
é: VB — 1r((Bo E8YT x (Bo (£8)T))

7 et =Yl (Ao 5A);/ sample means
8 ef =31 (Bo 53),;/

9: e (- BAEB/}’[Z)/\/(VA 7 (eA/n)2> (VB - (eB/n)Q) center and normalize

10: end function

Pseudocode C5 Compute the multiscale correlation map (i.e., all local generalized correlations) in O(n?logn/T).
Once the distances are sorted, the remaining algorithm runs in O(n?). An important observation is that each product
a;by is included in ¢ if and only if (k,1) satisfies k < R(A,,i) and I < R(B;, i), so it suffices to iterate through a;b;; for

i,j:=1,...,n, and add the product simultaneously to all * whose scales are no more than (R(A;,i),R(B,,i)). To
achieve the above, we iterate through each product, add it to ¢ at (kI) = (R(A;, i), R(B,,i)) only (so only one local
scale is accessed for each operation); then add up adjacent ¢ for k,I1=1,...,n. The same applies to all local

covariances, variances, and expectations.

Input: A pair of distance matrices (4, B) € R™" x R™".

Output: The multiscale correlation map C € [—1,1]""for k,I=1,...,n.

1: function MGCALLLocAL(4, B)

2 for Z := A,B do £ = SorT(Z) end for

3: for Z := A, B do Z = CENTER(Z)end for

4 fori,j:=1,...,ndo iterate through all local scales

to calculate each term

5: k— g,.Zj

7: H — M+ ayby

8: Vi =i+ a

9: v — v+ b}

10: e — e tay

1 ef —ef +by

12: end for

13: fork:=1,...,n—1do iterate through each scale again
and add up adjacent terms

14 E],k+| — E‘l’k + ZIJH»I

’|5: Z./H»I,I «— E,k+1,] + Z,k+1.1

16: for Z:=A,B do{,, — v +v{,, end for

17: for Z:=A,Bdo¢f, —ef +ef,, end for

18: end for

19: fork,l:=1,...,n—1do

20: GRFLL gkl gkl kL] gk

21: end for

22: fork,l:=1,...,ndo

23: . 5 )

H o (& = efef i) [ (vt = el ) (oF — o /2)
24: end for

Continued on next page
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25: end function

Pseudocode Cé Power computation of Mac against a given distribution. By repeatedly sampling from the joint
distribution Fxy, sample data of size n under the null and the alternative are generated for r Monte-Carlo replicates.
The power of Mac follows by computing the test statistic under the null and the alternative using Algorithm C2. In
the simulations we use r = 10,000 MC replicates. Note that power computation for other benchmarks follows from
the same algorithm by plugging in the respective test statistic.

Input: A joint distribution Fyy, the sample size n, the number of MC replicates r, and the type 1 error level a.

Output: The power B of Mac.

1: function MGCPower(Fxy, n, r, a)

2: fort:=1,...,rdo

3 for i := [n] do

4: Wi gy Widp, sample from null

> (!, 1)@ Fyy, sample from alternative

6: end for

7: fori,j:=1,...,ndo

8: a) =8.(x0,x0), b =8,0,57) pairwise distances under the null
aly = 8.(x},x}), bj; = 8,(y/,}) pairwise distances under the alternative

10: end for

1 cylf] = MGCSampPLESTAT(A?, BY) Mac statistic under the null

12: c¢ilt] = MGCSAMPLESTAT(A!, B') Mac statistic under the alternative

13: end for

14: Wa — CDF_o(cjl], 2 € [r]) the critical value of Mac under the null

15: B— Y (clf>wa)/r compute power by the alternative distribution

16: end function

Simulation dependence functions

This section provides the 20 different dependency functions used in the simulations. We used essen-
tially the exact same relationships as previous publications to ensure a fair comparison
(Székely et al., 2007; Simon and Tibshirani, 2012; Gorfine et al., 2012). We only made changes to
add white noise and a weight vector for higher dimensions, thereby making them more difficult, to
better compare all methods throughout different dimensions and sample sizes. A few additional
relationships are also included.

For each sample x € R”, we denote xj;,d = 1,...,p as the d" dimension of the vector x. For the
purpose of high-dimensional simulations, w € R” is a decaying vector with wi; = 1/d for each d, such
that wlx is a weighted summation of all dimensions of x. Furthermore, U(a,b) denotes the uniform
distribution on the interval (a,b), B(p) denotes the Bernoulli distribution with probability p, N'(u,X)
denotes the normal distribution with mean p and covariance X, U and V represent some auxiliary
random variables, « is a scalar constant to control the noise level (which equals 1 for one-dimensional
simulations and O otherwise), and ¢ is a white noise from independent standard normal distribution
unless mentioned otherwise.

For all the below equations, (X, Y)"EFXY = Fy|xFx. For each relationship, we provide the space of
(X,Y), and define Fyx and Fx, as well as any additional auxiliary distributions.

1. Linear (X,Y) e R” x R,

X~U(-1,1),
Y =wlX +ke.

2. Exponential (X,Y) e R” x R:
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X~U(0,3),
Y = exp(w'X) + 10ke.

3. Cubic (X,Y) e R” x R:
X~U(-1,1),
1 1 1
Y =128(w'X —5)3 +48(w'X —3)2 - 12(WTX—§) + 80ke.

4. Joint normal (X,Y) e R” xR”: Let p=1/2p, I, be the identity matrix of size p xp, J, be the

matrix of ones of size px p, and = pI;p (1 +/())J.I;K)I,, . Then
(X,Y)~N(0,%).
5. Step Function (X,Y) e R” xR
X~U(-1,1),

Y=I(wTX>0)+e,

where I is the indicator function, that is I(z) is unity whenever z true, and zero otherwise.
6. Quadratic (X,Y) € R” x R:

X~U(=1,1)",
Y = (w'X)* 4 0.5xe.

7. W Shape (X,Y) eRP xR: U~U(-1,1),
X~U(-1,17,

n2
Y=4 ((WTX)Z—E) +wl U/500| 4 0.5ke.

8. Spiral (X,Y) e R? xR: U~U(0,5), e~N(0,1)

Xy = Usin(wU) cos® (wU) ford =1,...,p— 1,
Xjg = Ucos”(wU),
Y =Usin(wU) + 0.4pe.

9. Uncorrelated Bernoulli (X,Y) e R” x R: U~B(0.5)e; ~N(0,1,), e2~N (0, 1),

X~B(0.5)" +0.5¢1,
Y= QU - 1)w'X+0.5¢.

10. Logarithmic (X,Y) € R? x R” : e~N(0,1,)

XNN(Ovlﬂ)v
Yjq = 2logy(|Xg|) 4+ 3keg ford =1,...,p.

11. Fourth Root (X,Y) e R” x R” :
X~U(—1,1),
Y=|wTX|%+§e.

12. Sine Period 47 (X,Y) € R? xR? : U~U(—1,1),V~N(0,1)",0 = 4,

X[d] = U—l—0.0ZpV[d] ford = 1,....p,
Y =sin(6X) + ke.

13. Sine Period 167 (X,Y) € R” x R”: Same as above except 6 = 167 and the noise on Y is changed
to 0.5ke.
14. Square (X,Y) e R” x R”: Let U~U(-1,1), V~U(—-1,1), e~ N(0,1)", § = —Z. Then
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Xigy = Ucos 0+ Vsint +0.05pery,
Yy =—Usinf+Vcos?,

ford=1,....p
15. Two Parabolas (X,Y) € R” x R: e~4(0,1), U~B(0.5),

X~U(—1,1),
Y= ((WTX)Z n 2;«) (U— %).

16. Circle (X,Y) €R? xR: U~U(—1,1)",e~N(0,1,),r =1,
_r<

7TU

sin(mUp417) Hcos wUj) +0.4¢y )ford—l .p—1,

7TU[, +046LU]>

17. Ellipse (X,Y) € R” x R: Same as above except r=35.
18. Diamond (X, Y) € R” x R?”: Same as ‘Square’ except § = — 7.
19. Multiplicative Noise (x,y) € R” x R” : u~N(0,1,),

x~N(0,1,),
V) = Ugxg ford=1,....p.

20. Multimodal Independence (X,Y) € R? x R? : Let U~N(0,1,), V~N(0,1,),U’' ~B(0.5), V'~ B(0.5).
Then

X=U/3+2U —1,
Y=V/3+2V 1.

For each distribution, X and Y are dependent except (20); for some relationships (8,14,16-18)
they are independent upon conditioning on the respective auxiliary variables, while for others they
are 'directly’ dependent. A visualization of each dependency with D =D, =1 is shown in Figure 2—
figure supplement 1.

For the increasing dimension simulation in the main paper, we always set k = 0 and n = 100, with
p increasing. Note that ¢ = p for types 4, 10, 12, 13, 14, 18, 19, 20,, otherwise ¢ = 1. The decaying
vector w is utilized for p>1 to make the high-dimensional relationships more difficult (otherwise,
additional dimensions only add more signal). For the one-dimensional simulations, we always set
p=qg=1,k=1andn=100.
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Real data processing

Brain activity vs personality

This experiment investigates whether there is any dependency between resting brain activity
and personality. Human personality has been intensively studied for many decades; the most
widely used and studied approach is the NEO Personality Inventory-Revised the characterized
personality along five dimensions (Costa and McCrae, 1992).

This dataset consists of 42 subjects, each with 197 time-steps of resting-state functional
magnetic resonance activity (rs-fMRI) activity, as well as the subject’s five-dimensional
‘personality’. Adelstein et al. (Adelstein et al., 2011) were able to detect dependence
between the activity of certain brain regions and dimensions of personality, but lacked the
tools to test for dependence of whole brain activity against all five dimensions of personality.

For the five-factor personality modality, we used the Euclidean distance. For the brain
activity modality, we derived the following comparison function. For each scan, (i) run
Configurable Pipeline for the Analysis of Connectomes pipeline (Craddock et al., 2013) to
process the raw brain images yielding a parcellation into 197 regions of interest, (ii) run a
spectral analysis on each region and keep the power of band, (iii) bandpass and normalize it to
sum to one, (iv) calculate the Kullback-Leibler divergence across regions to obtain a similarity
matrix across comparing all regions. Then, use the normalized Hellinger distance to compute
distances between each subject.

Brain connectivity vs creativity

This experiment investigates whether there is any dependency between brain structural
networks and creativity. Creativity has been extensively studied in psychology; the ‘creativity
composite index’ (CCI) is an index similar to an ‘intelligence quotient’ but for creativity rather
than intelligence (Jung et al., 2009).

This dataset consists of 109 subjects, each with diffusion weighted MRI data as well as the
subject’s CCl. Neural correlates of CCl have previously been investigated, though largely using
structural MRI and cortical thickness (Jung et al., 2009). Previously published results explored
the relationship between graphs and CCl (Koutra et al., 2015), but did not provide a valid
test.

We used Euclidean distance to compare CCl values. For the raw brain imaging data, we
derived the following comparison function. For each scan we estimated brain networks from
diffusion and structural MRI data via Migraine, a pipeline for estimating brain networks from
diffusion data (Roncal et al., 2013). We compute the distance between the graphs using the
semi-parametric graph test statistic (Sussman et al., 2012; Shen et al., 2017; Tang et al.,
2017), embedding each graph into two dimensions and aligning the embeddings via a
Procrustes analysis.

Proteins vs cancer

This experiment investigated whether there is any dependency between abundance levels of
peptides in human plasma and the presence of cancers. Selected Reaction Monitoring (SRM) is
a targeted quantitative proteomics technique for measuring protein and peptide abundance in
complicated biological samples (Wang et al., 2011). In a previous study, we used SRM to
identify 318 peptides from 33 normal, 10 pancreatic cancer, 28 colorectal cancer, and 24
ovarian cancer samples (Wang et al., 2017). Then, using other methods, we identifed three
peptides that were implicated in ovarian cancer, and validated them as legitimate biomarkers
with a follow-up experiment.
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In this study, we performed the following five sets of tests on those data:

. Ovarian vs. normal for all proteins,

. Ovarian vs. normal for each individual protein,

. Pancreas vs. normal for all proteins,

. Pancreas vs. all others for each individual protein,
. Pancreas vs. normal for each individual protein.

a s wN =

These tests are designed to first validate the Mcc method from ovarian cancer, then
identify biomarkers unique to pancreatic cancer, that is, find a protein that is able to tell the
difference between pancreas and normals, as well as pancreas vs all other cancers. For each of
the five tests, we create a binary label vector, with 1 indicating the cancer type of interest for
the corresponding subject, and 0 otherwise. Then each algorithm is applied to each task. For
all tests we used Euclidean distances and the type 1 error level is set to @ = 0.05. The three
test sets assessing individual proteins provide 318 p-values; we used the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995) to control the false discovery rate. A summary of
the results are reported in Appendix 1—table 1.

Appendix 1—table 1. Results for cancer peptide screening. The first two rows report the
p-values for the tests of interest based on all peptides. The next four rows report the number of
significant proteins from individual peptide tests; the Benjamini-Hochberg procedure is used to
locate the significant peptides by controlling the false discovery rate at 0.05.

Testing pairs / Methods Mac MANTEL Dcorr Mcorr HHa
1 Ovar vs. Norm: p-value 0.0001 0.0001 0.0001 0.0001 0.0001
2 Ovar vs. Norm: # peptides 218 190 186 178 225
3 Pancr vs. Norm: p-value 0.0082 0.0685 0.0669 0.0192 0.0328
4 Panc vs. Norm: # peptides 9 7 6 7 11
5 Panc vs. All: # peptides 1 0 0 0 3
6 # peptides unique to Panc 1 0 0 0 2
7 # false positives for Panc 0 n/a n/a n/a 1

DOI: https://doi.org/10.7554/eLife.41690.020

The following source data is available for Appendix 1—table 2:

Appendix 1—table 1—Source data 1. Ovarian testing results.

DOI: https://doi.org/10.7554/eLife.41690.021

Appendix 1—table 1—Source data 2 Pancreatic testing results.

DOI: https://doi.org/10.7554/eLife.41690.022

Appendix 1—table 1—Source data 3. Peptide screening results for pancreatic.
DOI: https://doi.org/10.7554/eLife.41690.023

All methods are able to successfully detect a dependence between peptide abundances
in ovarian cancer samples versus normal samples (Appendix 1—table 1, line 1). This is likely
because there are so many individual peptides that have different abundance distributions
between ovarian and normal samples (Appendix 1—table 1, line 2). Nonetheless, Mac
identified more putative biomarkers than any of the other methods. While we have not
checked all of them with subsequent experiments to identify potential false positives, we do
know from previous experiments that three peptides in particular are effective biomarkers.

All three peptides have p-value = 0 for all methods including Mac, that is, they are all
correctly identified as significant. However, by ranking the peptides based on the actual test
statistic of each peptide, Mac is the method that ranks the three known biomarkers the
lowest, suggesting that it is the least likely to falsely identify peptides.

We then investigated the pancreatic samples in an effort to identify biomarkers that are
unique to pancreas. We first checked whether the methods could identify a difference using
all the peptides. Indeed, three methods found a dependence at the 0.05 level, with Mac
obtaining the lowest p-value (Appendix 1—table 1, line 3). We then investigated how many
individual peptides the methods identified; all of them found 6 to 11 peptides with a
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significant difference between pancreatic and normal samples (Appendix 1—table 1, line 4).
Because we were interested in identifying peptides that were uniquely useful for pancreatic
cancer, we then compared pancreatic samples to all others. At significance level 0.05, only
Mac, Hsic, and HHg identified peptides that expressed different abundances in this more
challenging case, and we list the top four peptides in Appendix 1—table 2 along with the
corrected p-value for each peptide.

Appendix 1—table 2. For each of Mac, Dcorr, Mcorr, HHG, Hsic, MANTEL, PEARSON, and Mic,
list the top four peptides identified for Panc vs All and the respective corrected p-value using
Benjamini-Hochberg. Bold indicates a significant peptide at type 1 error level 0.05. The top
candidates are very much alike except Mic. In particular, neurogranin is consistently among the
top candidates for all methods, but is only significant while using Mac, Hsic, and HHg; there are
two other significant proteins from Hsic and HHg, but they do not further improve the
classification performance comparing to just using neurogranin. Note that the p-values from
MaNTEL and PearRsON are always 1 after Benjamini-Hochberg correction, so their respective top
peptides are identified using raw p-values without correction.

method Top four identified peptides

Mac neurogranin fibrinogen protein 1 tropomyosin alpha-3 ras suppressor protein 1
e 033 0.49 052

DCORR neurogranin fibrinogen protein 1 kinase 6 twinfilin-2

rn O 0.60 0.60 093

MCORR neurogranin fibrinogen protein 1 kinase 6 tropomyosin alpha-3
p-value 0.45 0.80 0.80 0.83

Hsic neurogranin tropomyosin alpha-3 kinase 6 tripeptidyl-peptidase 2
sdle | OO 0.01 0.09 0.09

HHe neurogranin fibrinogen protein 1 tropomyosin alpha-3 platelet basic protein
Toe | OeE 0.03 0.03 0.11

MANTEL neurogranin adenylyl cyclase tropomyosin alpha-3 alpha-actinin-1

p-value 1 1 1 1

PEARSON neurogranin adenylyl cyclase tropomyosin alpha-3 alpha-actinin-1

p-value 1 1 1 1

Mic kinase B S100-A9 ERF3A thymidine

oo L5 0.15 0.15 0.15

DOI: https://doi.org/10.7554/eLife.41690.024

All three methods reveal the same unique protein for pancreas: neurogranin. Hsic
identifies another peptide (tropomyosin alpha-3 chain isoform 4), and HHG identifies a third
peptide (fibrinogen-like protein 1 precursor). However, fibrinogen-like protein 1 precursor is
not significant for p-value testing between pancreatic and normal subjects. On the other
hand, tropomyosin is a ubiquitously expressed protein, since normal tissues and other
cancers will also express tropomyosin and leak it into blood, whereas neurogranin is
exclusively expressed only in brain tissues. Moreover, there exists strong evidence of
tropomyosin 3 upregulated in other cancers (Karsani et al., 2014; Sun et al., 2016;

Lee et al., 2012; Lam et al., 2012). Therefore, it suggests that the other two peptides

identified by HHG and Hsic are likely false positives.

In fact, neurogranin is always one of the top 4 candidates in all methods except Mic; the
only difference is that the corrected p-values are not significant enough for other methods.
Along with the classification result in Figure 4D showing that neurogranin alone has the best
classification error, Macc discovers an ideal candidate for potential biomarker. Moreover, the
fact that Mac, HHG and Hsic discover the dependency while others cannot implies a nonlinear
relationship.
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Macc does not inflate false positive rates in screening

In this final experiment, we empirically determine that Mac does not inflate false positive
rates via a neuroimaging screening. To do so, we extend the work of Eklund et al.
(Eklund et al., 2012; Eklund et al., 2016), where a number of parametric methods are
shown to largely inflate the false positives. Specifically, we applied Mac to test whether there
is any dependency between brain voxel activities and random numbers. For each brain
region, Macc attempts to test the following hypothesis: Is activity of a brain region
independent of the time-varying stimuli? Any region that is selected as significant is a false
positive by construction. By testing each brain region separately, Mac provides a distribution
of false positive rates. If Mac is valid, the resulting distribution should be centered around
the significance level, which is set at 0.05 for these experiments.

We considered 25 resting state fMRI experiments from the 1000 Functional Connectomes
Project consisting of a total of 1583 subjects (Biswal et al., 2010). Appendix 1—figure
1 shows the false positive rates of Mac for each dataset, which are centered around the
critical level 0.05, as it should be. In contrast, many standard parametric methods for fMRI
analysis, such as generalized linear models, can significantly increase the false positive rates,
depending on the data and pre-processing details (Eklund et al., 2012; Eklund et al., 2016).
Moreover, even the proposed solutions to those issues make linearity assumptions, thereby
limiting detection to only a small subset of possible dependence functions.

Neuroimaging FPR

Density

0 0.05 0.1 0.15
False Positive Rate

Appendix 1—figure 1. We demonstrate that Mac is a valid test that does not inflate the false
positives in screening and variable selection. This figure shows the density estimate for the
false positive rates of applying Mac to select the falsely significant’ brain regions versus
independent noise experiments; dots indicate the false positive rate of each experiment. The
mean =+ standard deviation is 0.0538 + 0.0394.

DOI: https://doi.org/10.7554/¢Life.41690.025

Running time report in experiments

Appendix 1—table 3 lists the actual running time of Mac versus other methods for testing
on the real data, based on a modern desktop with a six core 17-6850K CPU and 32 GB
memory on MATLAB 2017a on Windows 10. The first two experiments are timed based on
1000 permutations, while the screening experiment is timed without permutation, that

is compute the test statistic only. Pearson runs the fastest, trailed by Mic and then Dcorr.
PearsoN and Mic are only possible to run in the screening experiment, as the other two
experiments are multivariate. The running time of Mac is a constant times (about 10) higher
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than that of Dcorr, and HHg is implemented in a running time of O(n?) and thus significantly

slower.

éggendlx 1—table 3. The actual *iestln

g time (in secondé)ron real data.

Personality eativity Screening

Mac 2.5 7.5 1.9

DCcoRR 0.2 0.4 0.18

Hsic 0.5 17 0.23

HHe 6.3 53.4 12.3
PeARsON NA NA 0.03

Mic NA NA 0.1

MRuLE

DOI: https://doi.org/10.7554/eLife.41690.026
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