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Abstract

Owning to the rapid development of computer technologies, an increasing number of relational data have been emerging in

modern biomedical research. Many network-based learning methods have been proposed to perform analysis on such data,

which provide people a deep understanding of topology and knowledge behind the biomedical networks and benefit a lot of

applications for human healthcare. However, most network-based methods suffer from high computational and space cost.

There remain challenges on handling high dimensionality and sparsity of the biomedical networks. The latest advances in

network embedding technologies provide new effective paradigms to solve the network analysis problem. It converts

network into a low-dimensional space while maximally preserves structural properties. In this way, downstream tasks such

as link prediction and node classification can be done by traditional machine learning methods. In this survey, we conduct a

comprehensive review of the literature on applying network embedding to advance the biomedical domain. We first briefly

introduce the widely used network embedding models. After that, we carefully discuss how the network embedding

approaches were performed on biomedical networks as well as how they accelerated the downstream tasks in biomedical

science. Finally, we discuss challenges the existing network embedding applications in biomedical domains are faced with

and suggest several promising future directions for a better improvement in human healthcare.

Key words: biomedical networks; biomedical knowledge graphs; biomedical informatics; network embedding; graph

embedding; network-based learning

Introduction

Recent advances in biomedical research as well as computer

software and hardware technologies have led to an inrush of

a large number of relational data interlinking drugs, genes,

proteins, chemical compounds, diseases and medical concepts

extracted from clinical data [1–3]. The representation of a

biomedical object contains its relationship to other objects; in

other words, the data is in the form of a network comprised of

nodes (biomedical entities) and edges (relations between nodes).

The availability of such relational data has greatly facilitated

the biomedical studies, such as network biology [4–6], network

medicine [7, 8], pharmacogenomics [9], disease diagnosis [10, 11],

clinical phenotyping [12], etc.

Analyzing and modeling the biomedical data with network

structure rely on a thorough understanding of network topology.

Numerous network-based learning methods have been devel-

oped to explore reliable tools for multiple applications. Although

existing methods show capacity of processing networks and

demonstrate great promises [2, 13–16], they usually suffer from

high computational and space cost, owning to high dimension-

ality and sparsity of the networks. The challenges are further

complicated by various emerging heterogeneous biomedi-

cal networks, including the biomedical knowledge graphs
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2 Su et al.

Figure 1. Illustration of network embedding in biomedical research. Traditional network-based learning conforms to network structure, hence suffers from high

computational and space cost. In contrast, network embedding projects biomedical network into a low-dimensional space while preserving structural properties,

hence traditional machine learning methods can be easily applied to the low-dimensional embedding vectors for downstream biomedical tasks.

(e.g. PharmGKB [17], DrugBank [18] and TTD [19]), biomedical

ontologies [i.e. gene ontology (GO) [20], human phenotype

ontology [21] and disease ontology [22]] and heterogeneous

networks extracted from clinical data, which commonly consist

of multiple types of nodes and edges and complex biomedical

rules.

Network embedding provides another effective yet efficient

way to address the network analysis problem (as shown in

Figure 1). Specifically, network embedding aims at converting

the network into a low-dimensional space while structural

information of the network is preserved [23–26]. In this way,

nodes and/or edges of the network can be represented as

compacted yet informative vectors in the embedding space.

Therefore, typical non-network-based machine learning meth-

ods such as linear regression, Support Vector Machine (SVM) and

decision forest, which have been demonstrated to be effective

and efficient as the state-of-the-art techniques, can be applied

to such vectors. Network embedding methods have showed

effectiveness and potential on network analysis and hence have

introduced exciting opportunities for biomedical data science.

Efforts of applying network embedding to improve biomedical

data analysis are already planned or underway. However,

network embedding has not been extensively evaluated for

a broad range of biomedical issues that could benefit from

its capabilities. The biomedical networks are sparse, noisy,

incomplete, heterogeneous and usually consist of biomedical

text and other domain knowledge. It makes embedding tasks

more complicated than other application fields. To address

this, it is important to understand and compare the existing

network embedding models, as well as to investigate how

they were implemented on biomedical data. Therefore, it

can help us gain better insights on directions for future

work.

In this article, we discuss existing and forthcoming applica-

tions of network embedding in biomedical informatics, while

highlighting the key aspects to significantly accelerate biomed-

ical data science. Here we do not provide a comprehensive

network embedding background on technical details that has

been well reviewed by previous works [23–26]. Instead of general

applications of network embedding, we focus on biomedical

data only, including drug-related networks and knowledge

graphs, multi-omics networks, biomedical knowledge graphs

and heterogeneous networks extracted from clinical data. To

the best of our knowledge, there is no detailed review discussing

any insights of impacts of network embedding techniques on

biomedical science. To fill in this gap, we briefly introduce

the state-of-the-art network embedding models and review

their applications in biomedical domain. We further discuss

challenges and future research directions toward a better

usage of network embedding to improve the human healthcare

research.

Network embedding methodologies

In this section, we introduce the state-of-the-art network

embedding methods and propose taxonomy by grouping

the methods into two categories: non-attributed network

embedding and attributed network embedding (as shown in

Table 1 and Figure 2).

Non-attributed network embedding

A non-attributed network is also known as homogeneous net-

work, of which all nodes and edges belong to a unique type,

respectively. In practice, learning embeddings is to preserve local

and/or global structural property measured by the 1st-order

proximity and/or high-order proximity, respectively. We next

introduce the non-attributed network embeddingmethods lying

in how they define the proximity to preserve.

Matrix factorization-based methods

The 1st category of non-attributed network embedding is the

matrix factorization-basedmethods.The pioneer efforts, such as

the locally linear embedding (LLE) [27] and Laplacian eigenmaps

(LE) [28], first construct the network from the non-relational data

by using some constructing strategies, e.g. k-nearest neighbor

approach. Then they extract the adjacency matrix that holds

proximity in terms of similarity between nodes and their neigh-

bors and factorize it to obtain the embedding vectors of nodes.

The distinction is that LLE defines objective based on a linear

neighborhood combination assumption,while LE transforms the

embedding task into eigenvector problem of graph Laplacian

matrix.

Some other works directly factorize the proximity matri-

ces. A simple version is the graph factorization (GF) [29],

which models the proximity matrix regarding the presence

of each edge. GraRep [30] is a further work similar to GF,

which constructs the high-order proximity matrix based on

transition probability by a random walk with specific length.

HOPE [31] aims at preserving high-order proximity according

to the asymmetric transitivity for directed networks and
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Network embedding in biomedical data science 3

Table 1.Network embedding models surveyed in this study. The 1st column is the subcategory of network embedding models. The 2nd and 3rd
columns present the names and release years of network embedding models, respectively. The 4th column introduces the main architectures
of the network embedding models. The 5th column presents the learning methods of the network embedding models. The 6th column gives
the time complexities of the methods. The last column lists URLs linked to the source codes of the network embedding models. n and m are
numbers of nodes (entities) and edges (relations) in the network, respectively; d and k are dimensions of embedding spaces of node and edge,
respectively; l is the predefined length of random walk, µ is the average degree of node

Category Algorithm Year Architecture Learning method Time complexity Source code

Non-attributed network embedding

Matrix

Factorization

LLE [27] 2000 Eigenvector

problem

Unsupervised O
(

d2m
)

http://cseweb.u

csd.edu/~saul/ma

tlab/manifolds.ta

r.gz

LE [28] 2002 Laplacian

eigenvector

problem

Unsupervised O
(

d2m
)

http://scikit-lea

rn.org/stable/mo

dules/manifold.

html

GF [29] 2013 Adjacency matrix

factorization

Unsupervised O(dm) -

GraRep [30] 2015 Transition

probability-based

proximity matrix,

SVD

Unsupervised O
(

n3
)

https://github.co

m/ShelsonCao/

GraRep

HOPE [31] 2016 Asymmetric

transitivity-based

proximity matrix,

SVD

Unsupervised O
(

d2m
)

http://git.thume

dia.org/embeddi

ng/HOPE

Random walk DeepWalk [32] 2014 Truncated

random

walk + SkipGram

Unsupervised O(dn) https://github.co

m/phanein/dee

pwalk

node2vec [34] 2016 BFS, DFS modified

random

walk + SkipGram

Unsupervised O(dn) https://github.co

m/aditya-grover/

node2vec

Walklets [35] 2016 Random walk

with

skips + SkipGram

Unsupervised O(dn) -

DCA [41] 2015 Diffusion state by

random walk

with restart

Unsupervised O
(

dn2
)

https://github.co

m/hhcho/diffusio

n-component-a

nalysis

Deep learning Structual Deep

Network

Embedding

(SDNE) [38]

2016 Deep

autoencoder +

Laplacian

eigenmaps

Semi-supervised O(nm) https://github.co

m/suanrong/

SDNE

Deep Neural

Networks for

Graph

Representation

(DNGR) [39]

2016 Deep

autoencoder +

random surfing

Unsupervised O
(

n2
)

https://github.co

m/ShelsonCao/

DNGR

Others MDS [40] 1995 Euclidean

distance

Unsupervised O
(

n2
)

-

Isomap [41] 2000 Euclidean

distance

Unsupervised O
(

d2m
)

http://web.mit.e

du/cocosci/isoma

p/isomap.html

LINE [42] 2015 Local and global

context

Unsupervised O(dm) https://github.co

m/tangjianpku/LI

NE

Attributed network embedding

Semantic

Matching Models

RESCAL [46,47] 2011 Bilinear model Supervised O
(

d2
)

https://github.co

m/mnick/rescal.

py

DistMult [49] 2014 Bilinear model Supervised O(d) -

HolE [50] 2016 Holographic

model

Supervised O
(

d log(d)
)

https://github.co

m/mnick/hologra

phic-embeddings

Continued
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4 Su et al.

Table 1. (continued)

Category Algorithm Year Architecture Learning method Time complexity Source code

SME [51] 2014 Neural network Supervised O
(

d3
)

https://github.co

m/glorotxa/SME

MLP [52] 2014 Multi-layer

perceptron

Supervised O
(

d2
)

-

NTN [53] 2013 Neural tensor

network

Supervised O
(

d2k
)

-

Translational

Distance Models

SE [54] 2011 Naive distance

model

Supervised O
(

d2
)

https://github.co

m/glorotxa/SME

TransE [55] 2013 Translation model Supervised O
(

d
)

https://github.co

m/glorotxa/SME

TransH [56] 2014 Translation

model;

relation-specific

hyperplane

Supervised O
(

d
)

https://github.co

m/mrlyk423/rela

tion_extraction

TransR/CTransR

[57]

2015 Translation

model;

relation-specific

space

Supervised O
(

dk
)

https://github.co

m/mrlyk423/rela

tion_extraction

TransD [58] 2015 Translation

model; entity and

relation diversity

Supervised O
(

max
(

d, k
))

https://github.co

m/thunlp/Tenso

rFlow-TransX

TransF [60] 2016 Flexible

translation model

Supervised O
(

d
)

-

TranSparse [59] 2017 Translation

model; adaptive

sparse matrices

Supervised O
(

dk
)

-

Meta-path PGHNE [62] 2017 Meta-path

specific matrices

Supervised O
(

dm
)

https://github.co

m/chentingpc/Gui

dedHeteEmbeddi

ng

HINE [63] 2017 Heterogeneous

proximity

Unsupervised O
(

nlµ
)

-

metapath2vec

[64]

2017 Meta-path-based

random walk +

SkipGram

Unsupervised O
(

dn
)

https://ericdo

ngyx.github.io/me

tapath2vec/m2v.

html

Others LANE [65] 2017 Laplacian matrix Unsupervised O
(

n2
)

-

EOE [66] 2017 Based on LINE,

harmonious

matrix

Unsupervised O
(

d2n
)

http://www2.co

mp.polyu.edu.

hk/&#x007E;

cslcxu/#publicatio

ns

defines the proximity matrix using different global structural

measurements. GraRep and HOPE optimize the objectives

by introducing the singular value decomposition (SVD) tech-

nique.

Random walk-based methods

In graph theory, random walk is exploited to capture struc-

tural relationships between nodes. By performing truncated

random walks, a network is transformed into node sequences,

i.e. paths, which preserve structural proximity of the network.

Inspired by SkipGram [32], a famous deep model for neuro-

linguistic programming (NLP) that embeds words into a low-

dimensional space by incorporating the context of words in

sentences, DeepWalk [33] considers the paths as sentences

and implements SkipGram to learn embedding of each node.

Compared to DeepWalk, node2vec [34] introduces a more

flexible random walk strategy with a trade-off of breadth-

first searching and depth-first searching. Therefore, global

and local proximities are encoded in the sampled paths.

Walklets [35], another extension to DeepWalk, modifies the

basic random walk strategy by skipping some nodes in each

walk, analogous to constructing the proximity matrix of GraRep.

Hence, Walklets is confident in preserving global structural

information. Besides, diffusion component analysis (DCA) [36]

was proposed to deal with biological networks, which encodes

inherent structural properties as diffusion state by random

walk with restart (RWR) [37]. Particularly, for each node v in

a biological network, DCA computes its diffusion state that

is defined as probability distribution that a diffusion path

starting from v will reach other nodes based on RWR strategy.

RWR captures both global and local structural properties

and enables DCA to overcome noise and sparsity of biology

networks.
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Network embedding in biomedical data science 5

Figure 2. Taxonomy of network embedding models.

Deep learning-based methods

Over the past years, deep learning methods have shown impres-

sive improvement across diverse domains. The idea of building

deep architecture was also introduced to deal with the network

embedding issue. SDNE [38] and DNGR [39] were designed based

on the deep autoencoder architecture. Specifically, SDNE rep-

resents nodes by their high-dimensional neighborhood vectors

and feeds to the autoencoder to preserve high-order proximity;

meanwhile, it also incorporates LE’s proximity measure into the

autoencoder to preserve 1st-order proximity. On the other hand,

DNGR constructs a positive pointwisemutual information (PPMI)

matrix by using random surfing, which can capture more global

information than random walk. DNGR achieves embeddings

by applying autoencoder to the PPMI matrix and shows better

performance in preserving high-order proximity thanDeepWalk.

Other methods

Two previous works, multidimensional scaling (MDS) [40] and

Isomap [41], learn node embedding by preserving the Euclidean

distances of node pairs in the embedding spaces. A common

drawback of them is that they need to compute the shortest

lengths of node pairs. Another widely used method, LINE [42],

aims at embedding by preserving both local and global structure

properties. To this end, it defines 1st-order proximity and 2nd-

order proximity as connection weight and node’s context simi-

larity, respectively.

Attributed network embedding

The attributed networks, also known as heterogeneous net-

works, allow nodes and/or edges to belong to multiple types,

including the multimedia networks, knowledge graphs, e.g.

Freebase [43], DBpedia [44] and YAGO [45], as well as recently

emerged biomedical knowledge graphs, e.g. PharmGKB [17],

DrugBank [18] and TTD [19]. To embed an attributed network,

people should explore structural consistency between different

types of objects. The semantic matching models and transla-

tional distance models try to address this issue by building

energy functions. Specifically, they define a fact as a triple
(

h, r, t
)

such that h and t are head and tail entities (i.e. nodes) and r is a

relation (i.e. edge) connecting h to t. Let D+ denote the collection

of facts observed from the network, and D− the collection of

false or missing facts. Then the task of network embedding is to

train a model based on an energy function f
(

h, r, t
)

to preserve

the ranking of facts in D+ over D−. In addition, some other efforts

are also able to capture heterogeneity of network by using other

insightful techniques, e.g. meta-path.

Semantic matching models

The semantic matching models exploit similarity-based energy

functions by matching latent semantics of entities and relations

in embedding spaces. RESCAL [46, 47] was proposed based on the

idea that entities are similar if connected to similar entities via

similar relations [48]. By associating each relation rwith amatrix

Mr, it defines the energy function by a bilinear model f
(

h, r, t
)

=

hTMrt, where h, t∈Rd are d-dimensional (d � n) embedding

vectors for entities h and t, respectively. RESCAL jointly learns

embedding results for entities by h and t and for relation by

Mr. DistMult [49] simplifies RESCAL by restricting matrix Mr for

relation r as a diagonalmatrix. ThoughDistMult ismore efficient

than RESCAL, it can only deal with the undirected networks.

To address this, HolE [50] composes h and t by their circular

correlation. Consequently, power of RESCAL and efficiency of

DistMult are inherited by HolE.

Other works refer to the neural network architecture by

considering embedding as the input layer and energy function as

the output layer. For example, semantic matching energy (SME)

model [51] designs the hidden layer as gleft
(

h, r
)

= M1h + M2r + bh

and gright(t, r) = M3t + M4r + bt. Then its energy function is

given as inner product of gleft
(

h, r
)

and gright(t, r). Since all facts

share M1, M2, M3 and M4, the number of parameters of SME to

learn ismuch less thanRESCAL.Multi-layer perceptron (MLP) [52]

associates each relation r with a vector r and designs a hidden

layer with weight w ∈ Rd. MLP defines the energy function as

f
(

h, r, t
)

= wTtanh
(

M1h + M2r + M3t
)

with shared M1, M2 and

M3. Neural tensor network [53] constructs the hidden layer by

specifying each relation r a tensor Mr. Therefore, it is expressive

but has more parameters to learn compared to RESCAL.
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6 Su et al.

Translational distance models

The basic idea of the translational distance models is that, for

each fact
(

h, r, t
)

, relation r is considered as a translation from

head entity h to tail entity t, namely h + r � t in embedding

space. They exploit distance-based energy functions to model

the facts. A former approach with analogous idea is the struc-

tured embedding (SE)model [54] that assumes that relation r can

project h close to t by using M1
r and M2

r and defines f
(

h, r, t
)

=
∥

∥M1
rh − M2

r t
∥

∥

1
. However, massive number of M1

r and M2
r usually

lead to inefficiency in training. TransE [55] is the pioneer of

translational distance models. Given an observed fact
(

h, r, t
)

,

TransE represents relation r as translation vectorr, such that h

and t is closely connected by r. Therefore, energy function is

defined as f
(

h, r, t
)

=
∥

∥ h + r − t
∥

∥

2
. Since all parameters to learn

are entity and relation embedding vectors lying in a same low-

dimensional space, TransE is obviously easy to train. A drawback

of TransE is that it cannot do well with N-to-1, N-to-1 and N-to-

N structures. To address this issue, TransH [56] extends TransE

by introducing a hyperplane for each relation r and projecting

h and t into the hyperplane before constructing the transla-

tion scheme. TransH improves model capacity while preserving

efficiency. Similarly, TransR [57] extends TransE by introducing

relation-specific space. h and t are projected by a matrixMr w.r.t.

relation r. Further, for more fine-grained embedding, TransD

[58] extends TransE by constructing two matrices M1
r and M2

r

for each r to project h and t, respectively. In this way, TransD

captures not only diversity of relations but also diversity of

entities.TranSparse [59] is a simplified version of TransR by using

adaptive sparse matrices to model different types of relations,

and TransF [60] achieves a flexible embedding result by relaxing

the translation restriction to h + r � αt.

Meta-path-based methods

A meta-path is defined as a sequence of node types separated

by edge types [61]. For example, a meta-path of length l is

in form of a1
b1
→ a2

b2
→ · · ·

bl−1
→ al, where {a1,a2, · · · ,al} and

{

b1,b2, · · · ,bl−1

}

are sets of node type and relation type, respec-

tively. Therefore, a meta-path is able to capture both structure

and attribute information. Several attributed network embed-

dingmodels have been proposed by using themeta-path concep-

tion. By defining an adjacency matrix Mp by node connectivity

undermeta-path p, path-augmented general heterogeneous net-

work embedding model [62] learns node embeddings by using

a neighbor prediction framework on adjacency matrices {Mp}

of selected meta-paths. Following this idea, HINE [63] defines

meta-path-based proximity in two ways: count of specific path

between nodes or probability of meta-path-based randomwalks

linking two nodes. HINE preserves heterogeneous structure by

minimizing difference between meta-path-based proximity and

expected proximity in embedding space. Moreover, similar to

DeepWalk, metapath2vec [64] formalizes meta-path-based ran-

dom walks and introduces a heterogeneous-version SkipGram

to learn node embeddings.

Other methods

Like LE, LANE [65] constructs proximity matrices by incorpo-

rating node attributes, network structure and labels and learns

embeddings based on Laplacianmatrix. In addition, EOE [66] was

designed to embed network coupled by two non-attribute net-

works. Particularly, EOE first embeds the non-attribute networks

separately by LINE and next jointly embeds them by introducing

a harmonious embedding matrix.

Connection to machine learning

Intuitively, network embedding is proposed to bridge the gap

between network topology and traditional machine learning,

which is only able to process subjects in vector space. A usual

use of the network embedding techniques is to translate net-

work structural information into low-dimensional vectors and

feed to machine learning models to address downstream tasks

such as link prediction, node classification and clustering and

network visualization, etc. In this case, embedding model and

the downstreammachine learning model are trained separately.

For ease of use, some integrated open-source software packages

of network embedding have been developed as shown in Table 2.

Moreover, in many domains such as biomedicine, a network

or relational data usually contains non-topological information,

e.g. texts, images and domain roles. To comprehensively incor-

porate such heterogeneous information attached to the network,

there arise increasing needs of deep combination of network

embedding andmachine learning. For example, as deep learning

has achieved great success in representation learning of text

and image [67], a deep architecture was designed to simultane-

ously incorporate and train network embedding, text embedding

and image embedding components [68]. As network embedding

has been the focus of network analysis, how to adapt network

embedding to data and applications in practice has become a

crucial point. In brief, a network embedding method should

not only efficiently learn informative network representation

but also adapt to practical application. With this in mind, we

will introduce how the network embedding is applied to the

biomedical data to advance the biomedical study in the next

section.

Applications in biomedical data science

The use of network embedding for biomedical data analysis

is recent and not thoroughly explored. In this section, we will

review some of the main literatures related to applications of

network embedding techniques to pharmaceutical data analy-

sis, multi-omics data analysis and clinical data analysis. Table 3

lists all the papers mentioned in this literature review.

Pharmaceutical data analysis

Drug repositioning

Computational drug repositioning, also known as drug repurpos-

ing, is a promising and efficient tool for exploring new usage for

existing drugs to save drug development cost and increase pro-

ductivity [3, 69]. Drugs bind with target proteins and affect their

downstream activity, consequently lead to impact on human

body to treat the disease. A drug repositioning tool usually aims

at predicting unknown drug–target or drug–disease interactions.

The reviewed studies introduced network embedding into the

drug–target and drug–disease interaction network analysis to

facilitate drug repositioning.

Drug–target interaction prediction. Previous drug–target inter-

action (DTI) prediction efforts performed matrix factorization

based embedding methods on proximity matrices of the

bipartite DTI networks andmade predictions based on distances

in the learned low-dimensional embedding spaces. For example,

Yamanishi et al. [70] constructed the graph-based proximity

matrix by knownDTIs anddeveloped an eigenvalue factorization

algorithm similar to LLE. Cobanoglu et al. [71] directly applied

probabilistic matrix factorization to the DTI network to learn
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Network embedding in biomedical data science 7

Table 2.Open-source software packages of the network embedding techniques. The 1st column is the software package names. The 2nd column
presents the network embedding algorithms included in the package. The 3rd column is the platforms that the software runs. The 4th column
presents the URLs linked to the software packages

Package name Algorithms included Platform URLs

OpenNE DeepWalk, LINE, node2vec,

GraRep, TADW, GCN, HOPE, GF,

SDNE and LE

Python https://github.com/thunlp/Ope

nNE

TensorFlow-TransX TransE, TransH, TransR and TransD C++ https://github.com/thunlp/Tenso

rFlow-TransX

Fast-TransX TransE, TransH, TransR, TransD

and TranSparse

C++ https://github.com/thunlp/Fast-

TransX

knowledge-graph-embeddings RESCAL, TransE, DistMult, HoLE,

etc.

Python https://github.com/mana-ysh/kno

wledge-graph-embeddings

scikit-kge RESCAL, TransE, HoLE, etc. Python https://github.com/mnick/scikit-

kge

Graph-Embedding DeepWalk, LINE, node2vec, etc. Python https://github.com/dedekinds/Gra

ph-Embedding

Graph-Embedding-Methods (GEM) LLE, LE, GF, HOPE, SDNE, node2vec Python https://github.com/palash1992/GE

M

embeddings. Ezzat et al. [72] applied LE, SVD-basedmatrix factor-

ization and another dimensionality reduction technique, Partial

Least Squares [73], to the DTI network embedding. Further,

many studies tried to integrate external information into the

factorization. For example, in the further work by Yamanishi

et al. [74], drug side effect and protein domain information

were integrated into the proximity matrix. Zheng et al. [75]

incorporated external chemical and genomic information as

regularization terms of the factorization to improve embedding

and prediction. For the purpose of incorporating new drugs and

targets that do not have any DTI record, Ezzat et al. [76] modified

proximity matrix of DTI network by using k-nearest known

neighbors’ interaction profiles of each new drug or target.

More recent works focused on heterogeneous frameworks

that contain diverse types of drug-related interactions besides

DTIs. Luo et al. [77] proposed DTINet by extending DCA by sep-

arately performing RWR on drug–drug, drug–disease, drug side

effect and drug similarity networks for drug embedding and

on protein–protein, protein–disease and protein similarity net-

works for target protein embedding. After that, DTINet projected

drugs into the embedding space of target proteins andmade pre-

diction based on geometric proximity.Otherworks implemented

embedding on heterogeneous networks integrated from hetero-

geneous interaction data. For example, Zong et al. [78] introduced

DeepWalk to a tripartite network consisting of drug–target, drug–

disease and target–disease interactions. Alshahrani et al. [79]

integrated GO, protein–protein interactions (PPIs), DTIs, gene–

disease interactions, drug side effect and disease–phenotype

pairs into a heterogeneous biological knowledge graph. To cap-

ture the heterogeneity, they modified DeepWalk by incorpo-

rating the types of relations into the random walk sequences.

Therefore, structural properties combining with relation-type

information were preserved when projecting biological entities

into the embedding space. Afterwards, a logistic regression clas-

sifier was trained for prediction. The results showed that imple-

mentation of network embedding on such heterogeneous frame-

works effectively integrates chemical, genomic, pharmacological

and phenotypic information, and hence accelerates accurate DTI

prediction and provides new insights into drug repositioning.

Drug–disease interaction prediction. Other studies upon drug

repositioning focused on computationally predicting drug–

disease associations, in which network embedding techniques

were also involved. Dai et al. [80] first embedded genes by

applying eigenvalue decomposition to a gene–gene interaction

network and next calculated genomic representations for drugs

and diseases from the gene embedding vectors via neighbor-

ing information of drug–gene and disease–gene interaction

networks, respectively. Afterwards, they developed a matrix

factorization method, of which the genomic representations of

drugs and disease served as initial states of the final embedding

vectors during training. The results revealed that introducing

genomic space produced by network embedding provides rich

molecular-level biological information and helps learn more

informative representations for drugs and diseases. Wang et al.

[81] proposed to detect unknown drug–disease interactions from

the medical literature by using NLP and network embedding

techniques.Using treatment and inducement drug–disease pairs

extracted from 27million PubMed articles, they first constructed

a heterogeneous network. They next expanded the network

embedding method, LINE, by modifying the 1st-order proximity

to encode treatment and inducement relations as positive and

negative effects to the objective function, respectively. The result

showed that the embeddings lead to significant improvement

in predictions of both types of drug–disease interactions.

Adverse drug reaction analysis

An adverse drug reaction (ADR) is defined as any undesirable

effect from the medical use of drugs beyond its anticipated

therapeutic effects that occurs at a usual dosage [82]. The study

of ADRs is the concern of drug development especially before

a drug is launched on clinical application. Detecting poten-

tial ADRs is always time consuming and expensive. To address

this, computationalmethods based on network embedding have

been introduced to ADR analysis. Stanovsky et al. [83] proposed

to recognize ADR mentions in social media by infusing a knowl-

edge graph, DBpedia [44]. Similar to translational distance mod-

els, such as SE, TransE and TransH, they trained a deep learning

model by incorporating distance-based energy function. The

embedding was infused into a recurrent neural network (RNN)

transducer model [84] that was then trained for recognizing

ADR mentions. The results showed that embedding of DBpedia

knowledge graph is able to provide additional improvements

to RNN.
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8 Su et al.

Table 3. Biomedical applications of network embedding surveyed in this study. The 1st column presents the biomedical tasks. The 2nd column
lists authors and references of the studies. The 3rd column introduces data used in the biomedical tasks. The 4th column presents the concrete
applications. The 5th column introduces the network embedding methods used in the biomedical studies

Tasks Authors Data Application Embedding method

Computational drug development and discovery

Drug repositioning Yamanishi et al. [70,74] DTI network, external

drug and protein domain

information

DTI prediction Eigenvalue factorization

algorithm

Cobanoglu et al. [71] DTI network DTI prediction Probabilistic matrix

factorization

Zheng et al. [75] DTI network, external

chemical and genomic

information

DTI prediction Matrix factorization

Ezzat et al. [76] Modified DTI network,

external chemical and

genomic information

DTI prediction Matrix factorization

Ezzat et al. [72] DTI network DTI prediction LE, SVD, PLS

Luo et al. [77] Heterogeneous drug

related network

DTI prediction DCA

Zong et al. [78] tripartite drug-related

network

DTI prediction DeepWalk

Alshahrani et al. [79] biological knowledge

graph

DTI prediction Modified DeepWalk

Dai et al. [80] Gene–gene, gene–drug,

gene–disease interactions

Drug–disease interaction

prediction

Eigenvalue decomposition

and matrix factorization

Wang et al. [81] Drug–disease pairs Drug–disease interaction

prediction

Modified LINE

Adverse drug reaction

analysis

Stanovsky et al. [83] Drug knowledge graph Recognizing ADR

mentions in social media

Distance-based model

similar to SE, TransE and

TransH

Zitnik and Zupan [85] DTIs and DDIs DDI prediction Extended RESCAL

Abdelaziz et al. [86] Drug knowledge graph DDI prediction TransH and HolE

Wang et al. [87] Drug knowledge graph

and biomedical text

information

DDI prediction Extended TransH

Zitnik et al. [88] Drug knowledge graph DDI prediction Deep autoencoder similar

to SDNE and DNGR

Multi-omics data analysis

Genomics data analysis Cho et al. [36] Biological network Learning informative but

low-dimensional

representations for nodes

in biological networks

DCA, a model based on

RWR

Wang et al. [91] Biological network Gene function prediction clusDCA, an extension of

DCA

Wang et al. [92] Heterogeneous network

comprised of gene

expression and drug

response–gene

information

Pathway identification

associated with

chemosensitivity data

DCA

Li et al. [93] Cell-ContexGene and

Gene-ContexGene

networks

Learning representation

for single cell RNA-seq

data

Extended LINE

Zeng et al. [95] Gene–disease network Prediction of pathogenic

human genes

Matrix factorization

Proteomics data analysis Airoldi et al. [99] PPI networks Learning latent

representation for

proteins

Mixed membership

stochastic block model

Kuchaiev et al. [101] PPI networks PPI network de-noising Extended MDS

You et al. [102] PPI networks Assessing and predicting

PPIs

Isomap

Lei et al. [103] PPI network, genomic and

proteomic data

PPI network embedding Extended Isomap

Continued
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Network embedding in biomedical data science 9

Table 3. (continued)

Tasks Authors Data Application Embedding method

Cannistraci et al. [105,106] PPI networks Assessing and predicting

PPIs

Minimum curvilinear

embedding

Zhu et al. [107] PPI networks Assessing PPIs Logistic metric embedding

Josifoski and Trivodaliev

[109]

PPI networks Protein function

prediction

node2vec

Wang et al. [110] PPI networks Protein function

prediction

Extended DCA based on

meta-path

Transcriptomics data

analysis

Shen et al. [114] miRNA–disease bipartite

network, miRNA

functional similarity and

disease semantic

similarity

Prediction of Esophageal

Neoplasms-related

miRNAs

Matrix factorization

Li et al. [117] miRNA–disease bipartite

network

Prediction of associated

miRNAs of 22 disease

DeepWalk

Clinical data analysis

Medical knowledge graph

embedding

Zhao et al. [118] Bipartite medical

knowledge graphs

Learning medical entity

embeddings

A method by extending

RESCAL and TransE

Wang et al. [119] Medical knowledge graph Recommending proper

medicine to patients

A method by extending

TransR and LINE

Zhao et al. [120] Symptom–disease

network extracted from

medical forum data

Representation learning

for disease prediction,

disease category

prediction and disease

clustering

Extended TransE

Electronic health/medical

record embedding

Choi et al. [121] EHR + medical ontology

graph

Learning EHR

representation with the

help of medical

ontologies.

GRAM

Huang et al. [122] EMR + biomedical

knowledge graph

Visualizing EMR of patient ProSNet, i.e. extended DCA

Liu et al. [12] Medical temporal graphs

extracted from EHR

Learning representations

of EHR record sequences,

i.e., temporal phenotyping

Graph reconstruction

Choi et al. [126] Medical concepts Medical concept

embedding

Factorization of PPMI

matrix analogous to DNGR

Other works on ADR analysis aimed at predicting drug–drug

interactions (DDIs) because the majority of preventable ADRs

occur between pairs of drugs. Zitnik and Zupan [85] proposed

a collective relational learning method, Copacar, based on the

intuition of RESCAL to identify the most meaningful relations

from multi-relational data. To predict novel DDIs, Copacar was

applied to medical relational data composed of known DTIs

and DDIs. Most recent works implemented network embedding

on knowledge graphs that contain drug-related entities and

relations. For example, Abdelaziz et al. [86] proposed Tiresias

that utilizes TransH and HolE to embed a drug knowledge graph.

The embedding results then served as global features for DDI

prediction. The predictive results showed that combination of

network embeddings, text embeddings and similarity-based

local features helps reach a significant prediction. Wang et al.

[87] developed a new framework, PRD, which aims at encoding

drug knowledge graph and biomedical text information into

a common embedding space for DDI prediction. In particular,

TransH was extended by replacing each fact
(

h, r, t
)

as
(

h, I, t
)

,

where I keeps text information over relation r. Accordingly, a

deep autoencoder model was developed. The results showed

that joint learning of embedding results in PRD outperforming

Tiresias, TransE and TransR in DDI prediction. In a recent work

by Zitnik et al. [88], they proposed a deep autoencoder method,

Decagon, following the intuition of SDNE and DNGR to predict

labeled DDIs. Decagon consists of two components: an encoder

by convolutional network for producing embeddings [89, 90]

and a decoder by tensor factorization model for prediction

by using the embeddings. The results showed that Decagon

outperformed baselines, including RESCAL and DeepWalk,

up to 69%.

Multi-omics data analysis

Omics aims at quantitatively and qualitatively studying struc-

tures, functions and dynamics of molecules of the organisms.

Network embedding is a valuable tool for implementations of

relational data analysis in omics. The reviewed studies tried

to introduce network embedding methods to accelerate com-

putational tasks in multi-omics from the following subclasses:

genomics, proteomics and transcriptomics.

Genomics data analysis

Several works applied network embedding to predictive tasks

in genomics data analysis. A widely used biological network

embedding method, DCA, was introduced to interaction

prediction studies in genomics analysis. For example, Wang

et al. [91] proposed clusDCA to predict gene function, by applying

DCA to gene–gene interaction and GO to learn low-dimensional
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10 Su et al.

representations for genes and GO labels, respectively. Based

on such embedding results, they trained a projection model

from gene space to GO space such that genes geometrically

closed to their known GO labels. It bridges latent gene features

and GO labels and results in desirable prediction of sparsely

annotated gene functions. In a recent work by Wang’s group

[92], they developed PACER that introduced DCA to embed

a heterogeneous network comprised of gene expression and

drug response-gene information. As genes and pathways are

embedded in to a unified space, PACER is able to rank pathways

by similarities to response-correlated genes for specific com-

pound. PACER was applied to pathway identification associated

with chemosensitivity data. Other embedding techniques were

also involved in genomics data analysis. Li et al. [93] proposed

SCRL to address representation learning for single cell RNA-seq

data by network embedding. The basic idea is to extend the

network embedding method, LINE, to two bipartite networks,

Cell-ContexGene and Gene-ContexGene networks. The low-

dimensional representations of cells and genes were jointly

learnedwhile context genes appeared in both networks bridging

information from gene expression data and pathway priors. The

experimental results showed that SCRL outperforms traditional

dimensional reduction methods, e.g. PCA [94]. Besides, Zeng

et al. [95] extended matrix factorization to embed gene–disease

network for prediction of pathogenic human genes.

Proteomics data analysis

PPIs produced by high-throughput experimental technologies

[96–98] play crucial roles inmost cell functions. Network embed-

ding has also been introduced to PPI networks for proteomics

data analysis, such as assessing and predicting PPIs and pre-

dicting protein functions, etc. Airoldi et al. [99] applied their

mixed membership stochastic block (MMSB) model to learn

embeddings for PPI networks [100]. The MMSB was originally

proposed to detect community structure in complex networks.

For each protein,MMSB generated a latent representation vector

of which each element denotes the probability that the protein

belongs to a specific cluster/community. Such latent represen-

tation vectors construct the embedding space for the proteins.

To address the high false positive and false negative rate of

PPIs by the high-throughput experimental techniques, Kuchaiev

et al. [101] proposed an embedding algorithm based on MDS for

PPI network de-noising. By using the embeddings of proteins,

they predicted new PPIs and assessed the confidence of existing

PPIs. You et al. [102] proposed to use Isomap to embed PPI net-

works by preserving geodesic distances between protein nodes.

The task of assessing and predicting PPIs was transformed into

measuring similarity between proteins in the embedding space.

Lei et al. [103] constructed PPI network by incorporating both

genomic and proteomic data and extended Isomap for PPI net-

work embedding. Czekanowski–Dice distance index [104] was

applied to the protein embeddings for PPI assessment and pre-

diction. Cannistraci et al. [105, 106] proposed minimum curvi-

linear embedding (MCE) that encoded structural properties by

extracting the minimum spanning tree (MST; MST is a subset

of edges of a connected (un)directed graph that connects all

nodes in the graph without cycles). The results showed that

MCE can result in a better performance compared to MDS and

Isomap. Zhu et al. [107] developed a logistic metric embedding

(LME) model based on Euclidean distance analogous to SE. LME

can also outperformMDS and Isomap in assessing PPIs. Besides,

network embedding was also used to predict protein functions.

For example, Kulmanov et al. [108] used modified DeepWalk to

learn protein embeddings, which were further input into a deep

model to predict protein functions. Josifoski and Trivodaliev [109]

proposed to adapt node2vec to PPI networks to embed proteins

by preserving both local and global topologies. The embeddings

were then used to train a binary classifier for protein function

prediction. Wang et al. [110] proposed ProSNet for protein func-

tion prediction by introducing DCA to a heterogeneous molec-

ular network. A meta-path was introduced to modify DCA to

preserve heterogeneous structural information. The prediction

performance was greatly improved due to embeddings of the

heterogeneous network.

Transcriptomics data analysis

Transcriptomics focuses on the study of an organism’s tran-

scriptome. MicroRNAs (or miRNAs), a class of short non-coding

RNA molecules, normally regulate gene expression and have

been found to highly associate with complex human diseases

[111–113]. Identifying miRNA-disease associations has become

a crucial component of the study of pathogenicity. Network

embedding has been also involved in transcriptomics for

prediction of miRNA-disease associations. Shen et al. [114]

developed CMFMDA that introduced matrix factorization to

bipartite miRNA-disease network for embedding to predict

new associations. In CMFMDA, miRNA functional similarity and

disease semantic similarity were involved in factorization in

terms of regularizations to improve embedding. The evaluation

was performed to discover esophageal neoplasms-related

miRNAs that were previously confirmed by miR2Disease [115]

and dbDEMC [116]. The results showed that CMFMDA can

outperform other computational methods. Besides, Li et al. [117]

proposed a method by using DeepWalk to embed the bipartite

miRNA-disease network. After that, the topological similarities

of disease pairs were calculated by using the low-dimensional

embedding vectors of diseases. The method was applied to

prediction of associated miRNAs of 22 diseases. The results

showed that, by preserving both local and global topology of

miRNA-disease network, DeepWalk can result in significant

improvements in association prediction, especially AUC ranging

from 0.805 to 0.973.

Clinical data analysis

Recent network embedding-based computational methods were

applied to the clinical data, such as medical knowledge graph,

electronic health records (EHRs) and electronic medical records

(EMRs), to provide useful assistance for clinicians.

Medical knowledge graph embedding

Embedding of medical knowledge graph is similar to other

knowledge graphs. For example, Zhao et al. [118] derived a new

method to learn embeddings of medical entities in medical

knowledge graph. By modifying the energy functions of RESCAL

and TransE, two arbitrarily derivable energy functions were

proposed and resulted in better performances than RESCAL and

TransE. Wang et al. [119] recently proposed to learn embeddings

from a heterogeneous medical knowledge graph to recommend

proper medicine to patients. They constructed objective by

using both TransR’s energy and Line’s 2nd-order proximity

measurement. Upon a bipartite symptom–disease network,

Zhao et al. [120] proposed ContexCareto to learn representation

of medical forum data. Specifically, they defined energy

function by considering the relation between the symptoms

of a patient and a specific disease as a translation vector
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Network embedding in biomedical data science 11

analogous to TransE. To alleviate sparseness, they incorporated

symptomco-occurrence anddisease evolutionnetworks into the

construction of objective function. Evaluations on real medical

forum data revealed significance of ContexCare in disease

prediction, disease category prediction and disease clustering.

Electronic health/medical record embedding

EHR and EMR commonly include medical and clinical infor-

mation of patients. Using network embedding techniques to

learn representations for EHR and EMR can help both medical

research and clinical decision. Yet, EHR and EMR data are het-

erogeneous because they contain multiple types of information

and usually have no obvious relationships. To address this issue,

some works incorporated external knowledge. Choi et al. [121]

developed GRAM to learn EHR representation with the help of

hierarchical information inherent to medical ontologies. Specif-

ically, embedding vector of a node (i.e. a medical code) was

generated by its ancestors in the medical ontology graph by

using an attention mechanism. Using representations by GRAM

to predict heart failure resulted in 10% higher accuracy and 3%

higher AUC than RNN. For visualizing EMR of patient,Huang et al.

[122] introduced ProSNet to an integrated biomedical knowledge

graph to learn the embeddings of medical entities. Afterwards

such embeddings were used to calculate a similarity matrix

of medical features to enrich a profile matrix. The proposed

method was applied to the visualization of Parkinson’s disease

data set. In addition, some other efforts aimed at construct-

ing network from EHR and EMR directly. As EHR of a patient

typically records sequence of his/her medical events, it can be

represented as a temporal graph [123–125]. By assuming that

each medical temporal graph can be reconstructed by multiple

latent graph bases, Liu et al. [12] proposed to extract latent graph

bases and learn embedding vectors for the temporal graphs. The

results showed effectiveness on personalized medicine, disease

diagnosis and patient segmentation in heart failure. In another

work by Choi’s group [126], they tried to embed medical con-

cepts, including diseases, medications, procedures and labora-

tory tests, into a unified space with dimensionality around 100.

To this aim, they proposed to introduce two strategies: one is to

sample connected concepts as word pairs to put into word2vec

[127] and another is to factorize the shifted PPMI matrix analo-

gous to DNGR, which has been demonstrated to be equivalent

to word2vec. The learned embeddings were then applied to

the study of medical relatedness property. Figure 3 provides an

overview of the different applications of network embedding in

biomedicine.

Challenges and opportunities

Despite the promising results obtained using network embed-

ding techniques, there remain several unsolved challenges the

biomedical application is faced with. In particular, we highlight

the following key issues:

• Data quality. Unlike other domain where the data are clean

and well structured, networks constructed from the biomed-

ical data are usually noisy and incomplete. For example, the

PPI data produced by high-throughput techniques, such as

Y2H and TAP-MS, suffer from high false negative rates up to

70% and high false positive rates up to 64% [128]. Meanwhile,

relational data extracted fromEHRs are usually highly incom-

plete. Though efforts have focused on the issues including

network sparsity, redundancy and incompleteness, training

an effective model to thoroughly overcome undesirable data

quality and accurately embed the biomedical networks is still

challenging.
• Local and global. Performances of the network embedding

model and its downstream tasks rely on the type of structural

property to preserve. Preserving local property will gather

connected nodes in the embedding space, while preserving

global property will project topologically similar (even far

separated) nodes together. Designing embedding method by

properly considering local and global structure properties

according to application scenarios is an important aspect

that will require the development of novel solutions.
• Network evolution.Networks are always not static, especially

in the biomedical domain. For example, increasing number of

omics data are being produced thanks to the well-developed

high-throughput experimental techniques and database sys-

tems. Existing network embedding models mainly focused

on the static networks, and the settings of network evolu-

tion were overlooked. To learn embeddings for a dynamic

network, existing methods should be trained repeatedly for

each timestamp, which is definitely time consuming and

may not capture the temporal properties. Therefore, most of

the existing network embedding methods cannot be directly

applied to evolving biomedical networks.
• Domain complexity. Different from network embedding

application in other domains, the issue on biomedicine

and health care is much more complicated. For example,

in a biomedical network, each interaction between entities

usually represents a complex genetic, pathological or

pharmacological event or process, and there is usually no

complete knowledge on how it progresses. When applying

an embedding model, the biomedical domain knowledge is

also needed to better understand the network structure.

All above challenges introduce several opportunities and

future research possibilities to improve biomedical informat-

ics. Therefore, with all of them in mind, we point out the fol-

lowing directions, which we believe would be promising for

the future application of network embedding in biomedical

field.
• Local and global trade-off embedding. Preserving local and

global structure properties will result in distinct embedding

results. It is hard to assert which conception works better

due to the complexity of application scenarios. In fact, some

network embedding methods such as LINE and node2vec

aim at preserving both local and global structure properties.

Yet, how to better balance local and global information to

benefit biomedical informatics is rarely discussed. Therefore,

designing embedding model that is able to flexibly reach

a trade-off local and global structure properties according

to application scenarios, especially biomedicine, would be a

promising direction of our future work.
• Dynamic embedding.Considering that networks in biomedicine

and health care are growing rapidly, embedding results

should also evolve following the changes of network topology.

Therefore, training a time-sensitive model for network

embedding is crucial for a better understanding of temporal

properties and for settings of downstream applications.

For example, learning embeddings from a drug knowledge

graph in real time helps involve newly released in vitro

experimental results to improve analysis in silico, such as

drug repositioning and drug side effect prediction. Unlike

static network embedding, the models for dynamic networks

need to be scalable and flexible to deal with the changes of

networks effectively and efficiently and remains a promising

issue.
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Figure 3. Illustration of applications of network embedding in biomedical data science.

• Text-associated embedding.Networks in biomedical domain,

especially the well-organized biomedical knowledge graphs,

always contain rich text information such as descriptions

of entities and relations, which would have high potential

to address network incompleteness and improve under-

standing of topological properties. However, to the best of

our knowledge, text information is rarely used to assist

the network embedding applications in biomedical domain.

Taking full advantage of biomedical text information for

network embedding needs to properly concatenate network

embedding with NLP techniques, which is still challenging

for researchers and needs more efforts in the future.
• Domain-knowledge-associated embedding. The existing

expert knowledge is invaluable for computational analysis

in biomedical informatics. Incorporating domain knowledge

into the network embedding process to guide it toward the

right direction is an important research topic in addressing

undesirable data quality and domain complexity. For

example, some previous works have incorporated external

information, such as drug similarity and protein similarity,

into matrix factorization-based embedding methods of DTI

prediction [70, 74–76]. In fact, well-developed ICD-9, ICD-10,

GO, online medical encyclopedia, PubMed abstracts, etc., also

provide abundant biomedical domain knowledge but are

rarely involved in network embedding applications. There

remain large room and desirable potential for incorporating

such external domain knowledge into network embedding

in biomedical informatics, and we expect more consummate

domain-knowledge-associated embedding models will be

launched soon.

Conclusions

Network is an important data format for data-driven issues in

biomedical science. Network embedding approaches, lying in

the overlapping of network analytics and representation learn-

ing, are powerful tools to learn compact yet informative repre-

sentations for networks and raise the possibility of using effi-

cient traditional machine learning to solve network-based prob-

lems. These methods have been used in numerous biomedical

applications. All the results available in the literatures reviewed

in this work illustrate the capabilities of network embedding

for biomedical network analysis. In fact, processing biomedi-

cal networks with network embedding increased the predictive

power for several specific applications in different biomedical

domains. By carefully reviewing and comparing applications of

network embedding in biomedicine, we summarize the chal-

lenges the current network embedding applications are faced

with and consequently point promising future directions in this

domain.

Key Points

• Advances in biomedical research have generated a large

volume of biomedical networks, which are high dimen-

sional, sparse, noisy and heterogeneous.
• Early applications of network-based learning to

biomedical networks helped understand topology

and knowledge from the complex networks and

benefited human healthcare research but suffered

from high computational and space cost.
• Network embedding can open a new way toward effec-

tive yet efficient network analysis, which projects net-

work into the low-dimensional yet informative space

that is friendly to state-of-the-art machine learning

methods.
• Network embedding has been widely applied to

biomedical data science, including pharmaceutical data

analysis, multi-omics data analysis and clinical data

analysis and showed robust performances in biomed-

ical tasks.
• Balancing local and global structural properties, han-

dling dynamics of evolving networks as well as incor-

porating rich text and domain knowledge would be

promising directions of network embedding for better

improving human healthcare in future study.
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