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Abstract—A tensor (i.e., an N-mode array) is a natural
representation for multidimensional data. Tucker Decomposition
(TD) is one of the most popular methods, and a series of batch
TD algorithms have been extensively studied and widely applied
in signal/image processing, bioinformatics, etc. However, in many
applications, the large-scale tensor is dynamically evolving at all
modes, which poses significant challenges for existing approaches
to track the TD for such dynamic tensors. In this paper, we pro-
pose an efficient Online Tucker Decomposition (€OTD) approach
to track the TD of dynamic tensors with an arbitrary number
of modes. We first propose corollaries on the multiplication of
block tensor matrix. Based on this corollary, €OTD allows us 1) to
update the projection matrices using those projection matrices
from the previous timestamp and the auxiliary matrices from
the current timestamp, and 2) to update the core tensor by a
sum of tensors that are obtained by multiplying smaller tensors
with matrices. The auxiliary matrices are obtained by solving a
series of least square regression tasks, not by performing Singular
Value Decompositions (SVD). This overcomes the bottleneck in
computation and storage caused by computing SVDs on large-
scale data. A Modified Gram-Schmidt (MGS) process is further
applied to orthonormalize the projection matrices. Theoretically,
the output of the eOTD framework is guaranteed to be low-
rank. We further prove that the MGS process will not increase
Tucker decomposition error. Empirically, we demonstrate that the
proposed eOTD achieves comparable accuracy with a significant
speedup on both synthetic and real data, where the speedup can
be more than 1,500 times on large-scale data.

Index Terms—Tucker Decomposition, Low Rankness, Online
Learning

I. INTRODUCTION

In many applications, data can be naturally represented by
a tensor (i.e., a multidimensional or N-mode array) [1]-[4],
[6], [10], [18], [24], [25]. Decompositions of higher-order
tensors (i.e., N-mode arrays with N > 3) are popular tools
for analyses on multi-mode arrays, such as feature extrac-
tion, dimensionality reduction, and knowledge discovery. Two
particular tensor decompositions, CANDECOMP/PARAFAC
(CP) and Tucker Decomposition (TD), can be considered as
higher-order extensions of matrix Singular Value Decompo-
sition (SVD). CP decomposes a tensor as a sum of rank-
1 tensors while the TD is a higher-order form of principal
component analysis. Once the core tensor in TD is restricted
to be diagonal, TD is degenerated to CP. Recently, TD has a
broad range of applications in signal processing [3], [6], [18],
anomaly detection [23]-[25], neuroscience [1], [2], [4], etc.
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In the era of big data, dara, represented by a tensor, is
usually dynamically changing over time. Especially, in many
applications all modes of a data tensor dynamically evolve. For
example, in collaborative filtering for movie recommendation,
we have the user-movie-date tensor where the (3, j, k)-th value
represents the rating user ¢ gave to movie j on the k-th
day. TD can obtain the latent time-sensitive user and movie
representations which can be used for rating prediction [9],
[27]. Clearly, all three modes of this tensor evolve from time
to time. Existing batch TD methods cannot handle data tensors
that evolve on all modes due to the high computation and
storage costs [5], [8], [11], [22], [25]. Therefore, an effective
and efficient online Tucker Decomposition method is desired
for decomposing real-time large-scale tensors.

Online tensor decomposition aims to dynamically update a
tensor while preserving the low-rank structure. While online
matrix decomposition has been intensively studied, online
tensor decomposition remains largely under-explored. The
problem is extremely challenging due to the inherent com-
plexity of tensor analysis. For the low-rankness, although
nuclear norm is widely used as the rank constraints and
algorithms are developed to solve the problem, the solutions
of these algorithms can easily get stuck in suboptimal ones.
Moreover, solving an optimization problem with nuclear norm
regularization is computationally expensive. It is difficult to
apply nuclear norm regularization on large-scale applications
in which TD is needed. There are also some online TD meth-
ods that works well in the scenario where data only evolves
in one single mode [7], [20], [21]. However, in many real
applications (e.g., movie recommendation), data continuously
arrive at every mode. Existing online TD methods are not able
to solve this problem where data evolve at all modes.

In this paper, we propose an efficient Online Tucker De-
composition (€OTD) approach to on-the-fly track the TD for
dynamic large-scale tensors (i.e., tensors that have an arbitrary
large order and evolve at all modes). We first introduce the
block tensor matrix multiplication corollary. Based on this
corollary, eOTD allows us (1) to update the projection matri-
ces using the projection matrices from the previous timestamp
and the auxiliary matrices from the current timestamp, and
(2) to update the core tensor by a sum of tensors that are
obtained by multiplying smaller tensors with matrices. Dur-
ing the update of projection matrices, the auxiliary matrices
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are obtained by solving a series of least square regression
tasks, instead of conducting singular value decomposition or
eigenvalue decomposition are used by conventional methods.
Consequently, we overcome the bottleneck in computation and
storage caused by performing SVD on large-scale data. We
further apply a Modified Gram-Schmidt (MGS) process for
orthonormalization of the projection matrices.

Theoretically, we make the following contributions in this
paper. First, we are the first to investigate block tensor matrix
multiplication (i.e., Corollaries 3.1 and 3.2), which show the
rule for conducting block multiplication between a tensor and a
matrix and lay the foundation for the proposed eOTD. Second,
the output of the proposed €eOTD is guaranteed to be low-rank
and is a proximal point. And finally, we prove that the MGS
process, used for orthonormalization of projection matrices,
does not increase the decomposition error.

Experimentally, on both synthetic and real data, we demon-
strate that the proposed eOTD can achieve comparable per-
formance with the most accurate method, i.e., Alternative
Least Square method, while being computationally much more
efficient. Specifically, on small and moderate datasets, €OTD
is tens to hundreds of times faster than batch TD algorithm,
while for large-scale datasets, the speedup can be more than
1,500 times. As a side outcome, €OTD can be a strategy to
decompose a large-scale tensor in a batch way by a two-step
procedure: (1) Conduct an SVD on a very small partition of
the large-scale tensor, and (2) apply the proposed eOTD. In
this way, the bottleneck of computation and memory caused
by batch TD algorithms on large-scale tensors can be solved.

II. DEFINITIONS AND PRELIMINARIES

Following [10], we denote tensors with calligraphic letters
(e.g. &), matrices with uppercase bold letters (e.g. U), row
vectors with lowercase bold letters (e.g. x), and scalars with
lowercase normal font (e.g. n). A tensor is said to evolve
over time, if there is at least one mode whose size increases
over time. For example, X € RNV evolving on all
modes means that N,itﬂ) > N,it),Vk: € [K]. Here, [K] =
{1,---, K}. For simplification, we say that (ry,--- ,7x) <r
ifry <r,Vke[K],and X x; Uy x - X Ug = X x {Ug}.

Definition 2.1 (Mode-k Multiplication): The k-mode mul-
tiplication between a tensor X € RNtXxNex--XNK apnd g
matrix U € R**Nr s defined as (X Xz U)p,oiponge =
DI S, ¢ P
For distinct modes in a series of multiplications, X x; U Xy
U’ = X xp U x4 U(K' # k). If the modes are the same,
then X x;, U x;, U = X x; (U'U).

Definition 2.2 (Mode-k Matricization): The mode-k matri-
cization or unfolding of an tensor X € RN1* XNk denoted
as X, is obtained by treating k as the first mode of the
matrix and orderly concatenating other modes.

Definition 2.3 (Frobenius Norm): The Frobenius norm
of a tensor X € RN > >Nk 5 defined as ||X|%

N N
anlzl e Zn;i(:l 7%1'“7”('

Definition 2.4 (Tensor Rank): Given X € RN X XNk _jtg
rank is defined as rank(X') = (Ry,--- , Rx) s.t. rank (X)) =
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Fig. 1. Demo of online Tucker Decomposition for a third-order tensor.
Ry, where rank(X(;)) is the matrix rank of the mode-k
matricization X which is also referred to the k-rank of X.

III. METHODOLOGY

A. Tucker Decomposition

Given a tensor X € RN XNk jts Low-Rank Tucker
Decomposition is generally formulated as the following op-
timization problem with constraints:

minA;”X — /\A’”ZF,s.t,)? =G x {Uk},and,rank(i’\) <, (@))]

where G is a core tensor and {U}} is a set of projection
matrices. Usually, {U}} are restricted to be unitary. However,
there is some work [24], [25] which does not assume this con-
dition. In this paper, we propose algorithms for both scenarios.
For existing TD methods, such as HOSVD [22], ALS [5], also
known as HOOI, TUCKALS3 [8], [11] etc, they suffer from
the following drawbacks: 1) They are time-consuming when
X is large-scale, as SVD operation is extremely expensive,
let alone conducting SVD on every mode iteratively. 2) These
algorithms need too much space in online settings, because
they need to store all data at previous timestamps.
In the following, we will propose a novel framework for
Tucker Decomposition which can overcome these challenges.

B. Online Tucker Decomposition

In real-world applications, data evolves over time at all
modf:s. Denote a tensor stream until time ¢ as {X ) ¢
RN xNicy, o, and their TDs are {G(t), U}, ¢+
is the data at time 7'+ 1. The proposed eOTD framework can
obtain the TD of X(*+1) such that(1) it does not require to
conduct SVD operation on all mode-k matricization matrices;
and (2) instead of storing the data X’ CORT previous timestamp
t' € [t], it only requires to store its TD result at previous time
t, {G (t),U,(:)}, which needs much smaller space to store.

Problem Setting. Assume that there is a tensor stream,
(P e RNDC-xNi . ¢ [M]}, along with its TD
XM = g x {U,}. At time ¢ + 1, the tensor is X1 ¢
RN (D ) here 28D = X©) and
the remaining subtensors newly arrive. Our goal is to find a
new TD for X1 given (Xi(ltﬂZ)(ih... ir )2 (L 1) G® and
{U,(Ct) }. The problem setting for a third-order tensor in a online
setting is visually shown in Figure 1.

C. Basic ideas for eOTD

Corollary 3.1 (Block Tensor Matrix Multiplication i): Sup-
pose X € RV1XxNeXNk apnd ) ¢ RN XN XNk gpe
two tensors, and Uy, € REXNk and U‘Z € REXNi are two



matrices. Let Z € RN XX (Ni+Ni)-xNk pe 3 tensor which
is concatenated by X and )Y along mode-k. Thus,
1) if ¥ = k and U} € R®>*(NetNo) — [UF UY), then

Z % Uz = X x, UE + Y x5 UY; )

2) if k¥ # k and U}, € REw*Nv then Z x; UZ, is
concatenated by X X Ilji, and ) X U}, along the mode-k.

Corollary 3.2 (Block Tensor Matrix Multiplication ii): Sup-
pose X € RN XXNk ig a tensor. We split X into 2
tensors, (Aj,i,ix )iye[2), such that 3 o Nig, = N, and

U, = [U; U, ,] € RWkat+Ne2)xEx Then, we have that
X x {Uk} = Z XiliQ'“iK X {Uk ik}'
(i1, i) €L ’ @

As illustrates below, these two corollaries are the footstones
of the proposed eOTD framework.

IV. EOTD FRAMEWORK

Given the TD (i.e., Tucker decomposition) at ¢-th times-
tamp, that is, X® = G® x {U,(:)}, at time t + 1 we are

going to (a) update {U,(fﬂ) } using the new coming data
(t+1)

(X, ir ) (i ix)#(1,-- 1) and (b) update the core tensor.
The full tensor at (¢t + 1)-th timestamp is X(+D
(Xi(ltfiz(), with Xl(,tfll) =x® =g {U,(p}. For any other

sub-tensor Xi(ltfr_? , it should be used to update one or more

from {U}, € RV:"=N)xIk ) which is defined as auxiliary
matrices. After spliting the full tensor into 2% sub-tensors (as
shown in Figure 1), the subindex of every sub-tensor implies
which auxiliary matrices will be updated. If a subindex of a
sub-tensor equals to 2, it will update one specific auxiliary
matrix. For example, in the third-order tensor setting, Xégl)
is used for the update of both U’ and Uj. Next, we first
illustrate the €OTD framework on third-order tensors and then
extend it to higher-order tensors.

A. Third-order Tensors

Now, we show the update rules for both the projection
matrices {Ugﬂ)} and the core tensor G(*+'1) at time ¢ + 1.

1) Update Projection Matrices {Uy}: At time ¢ + 1, the
full tensor X'(*+1) is split into 2 subtensors {Xi(ltg/ilg}ike[Q]
such that XU = x®. Note that XF" s irrelevant
to the auxiliary matrices {U},}. The remaining subtensors,
however, can be partitioned into three categories according
to the number of subindices that equal to 2s (i.e., indi-
cating how many auxiliary matrices to update). For third-

order tensors, we have that C; = {Xéﬁl),XSTD,Xﬁ;U},
)

t+1 t+1 t+1 t+1
Cy = {X2(21 )7X2(12 )»Xftz 1)}’ and C3 = {X2(22 2
For each subtensor Xm‘t n) Corollary 3.2 gives us that
x5 = G« [y}, where U if iy, = and U, if i = 2.

Let Gi, 4,45 = G® x {Uy}, where if a subindex is missing, it
represents an auxiliary tensor constructed by multiplying G®)
with the remaining projection matrices. For instance, G. ;, i, =
GW® %, Uy x3 Us. Next, we show the update rule of the

auxiliary matrices using every subtensor category by category.
Update {U},} with C;. In Cy, each subtensor is used once
for updating a corresponding auxiliary matrix. We show the
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procedure of updating U’ using XQ(ED; update rules for other
auxiliary matrices are similar. We first construct an auxiliary

tensor G. 11 = G x, Ugt) X3 Ugt). Then, we update U/l:
UL (i) (G 10) @
where 1 denotes matrix pseudo-inverse. Similarly,
U + (Xféj’l))(Q)(gl,.,l(Q))T, and Uj «+ (Xﬁ;l))(a)(g1,1,-(3))T§

where G .1 = G x, Ugt) X3 Ugf) and Gy 1. = G x,
Ugf’) X9 Ugt). Although all auxiliary matrices have been
updated using sub-tensors within C;, we need to update them
again using sub-tensors in Cy and Cs, because all these sub-

tensors contribute to one or more auxiliary matrices.
Update {U}} with C,. Every subtensor in Cy is used
twice for updating two corresponding auxiliary matrices. For

example, Xégl) is used for updating both U} and Uj. To

update U, we use the auxiliary matrix U, obtained from C;.
Namely, G. o1 = G® x5 Uj x3 Uét). Then,

U™ = U™ + (1= ) (X517 ) )Gz ) ®)
Here, « is a memory rate deciding how much information is
inherited from previous step. For U, we have that

UL™ U™ + (1 — o) (X)) (G212, ©)

211
where Go.1 = G x, U] x3 Uét). Similar procedure is

conducted for Xégl) and Xl(;;l). Namely,
U™ = aUr™ + (1= ) (X513 ) ) (G 12y ™
U™ U™ + (1= o) (X35 ) () (G0, () ®)

where 9.712 = g(t)XgUét) XgUé; ggﬁl’. = Q(t) XlUlngUg).

UL™ — aUy™ + (1 — a)(ngl))(z)(gl,-z(g))]\, (&)
U™ — aU™ + (1 — a)( )(3)(91,2,-(3))T7 (10)

Xy
where G, . » = G(¥) xlUgt> x3U%; Gio. = GW xlUgt) x5 Ub.
Update {U}} with Cs. Note that X{.5" = G x {U} } is
related to all auxiliary matrices. Following the same procedure,
we iteratively update all auxiliary matrices as follows:

U™ aU™ + (1 - a)(X53 ) 1) (G 2.200))'s

222 (11)
U™ aUp™ + (1 — a)(X55 ) (2) (G2, 2(2)) s (12)
Us™ ¢ aUs™ + (1 - ) (X531 )y (Goq)s (13)

where 9.72,2 = g(t) X9 U/Q X3 Ug, gg’.,z = Q(t) X1 Ull X3 U/ .
and gg’g,. = Q(t) X1 U/l X9 Ug

Update Ugfﬂ). At time ¢ + 1, the new projection matri-
ces {U,(fﬂ)} are updated based on {Ul(f)} from the previ-
ous step and the auxiliary matrices {Uj}} from the current
step. One strategy to update UgH) (Vk € [K]) is to
concatenate U,(:) and Uj, along the second mode. Namely,
(V)T = (U)T (U)T] € RNk (wk € [K)).
However, {V,(f+1>} are not guaranteed to be unitary. Modified
Gram-Schmidt (MGS) process is further conducted on Vl(:+1>
to create orthonormal projection matrices {Ugfrl)}.

Throughout the update of the projection matrices, we only
apply cheap tensor matrix multiplication and matrix pseudo-
inverse instead of conducting the expensive SVD operations on
large matrices. This makes it easy for the proposed framework
to apply to large-scale applications.



TABLE 1
COMPUTATION AND STORAGE COMPARISON

Method Computation Storage
eOTD  O(rd2(m-VN2EK-m)  O(KdNK-1 4 gK 4 rK)
HOSVD O(K(N + d)2k—1) O((N + d)

2) Update G: Given the new coming data at (¢ + 1)-
th timestamp (Xi(jtjjl))(i,j,k);ﬁ(l,l,l)y associated with G and
{US’H)}, to update G(*+1), we first split U(tH) into two ma-
trices: U(t+1) RNOxIc and Ul t+1) c RW““) —NO)xI,

As {U(tJrl } are unitary matrices and according to Corollary
3.2, XD = g1 {U,(:H)} implies that

T
G+ — x(+1) {USH) }

T
= g(t> % {Ugj’*l'l) U;:)} +
(i1,i2,i3)#(1,1,1)

PG

123

U(t+1)

k,ig

x{ }
It shows that the core tensor is updated by taking the sum
of tensors which are obtained by multiplying the new coming
subtensors with the submatrices of projection matrices. These
subtensors is much smaller compared with that of the original
tensor. It is proven to be faster than multiplying the original
tensors with the transport of the updated projection matrices.
B. Extension to Higher-order Tensors
Let X(1) € RMx Nkt andits TD X®) = GO x (UM},
XD ¢ RINVL1+N12) 3 x (N +Nie2) g split into 2% sub-
tensors (Xz( b +Jire[2) such that YO
1) Update Pro;ecnon Matrices {Uk} The procedure is
similar to that in the third-order tensor scenario. However,
in the higher-order tensor setting, there are K categories
{Crn}melk- Every subtensor within C,,, will be used m times

for auxiliary matrix update. For X, (H}}){ in C,,, Corollary 3.2

shows that X(Hl) G® x {U}, where Uy = U(t)
i, = 1 or Uk = Uk if 7, = 2. Denote the to-be- updated

subindex set as S = {ig,, - %k, }. For each subindex
ig; € S, the update rules are as follows

( )(u )(glk )<Hc )

£ Gi = g X iy, {U}. After
(f)}

obtaining {U},}, we augment them to {U) and then apply

the MGS to orthogonalize and normalize the constructed

matrices for {U(H'1
2) Update G: Based on the split of the tensor at current time

t+1, U, (1) can also be split into two matrices: U](;'fl) €
RN“)M and U'TY € ROV =N)xIi Corollary 3.2 and
the fact that {U(Hl)} are unltary matrices yield that
g(t+1) — D) {U;Hl) }
=GO (U U+
i1y

20D

new old
U/ikj <~ aU/ik]. )( SRS (14)

where Qikj T

(t+1)
Xil“'iK

)

)y

R )AL 1

x {U

kyig
C. Complexity Analysis

We conduct the complexity comparison between €OTD and
HOSVD in terms of computation and storage. For ALS and
Tuck-ALS3, as they usually adopt the results from HOSVD
as initialization, we do not include them in this comparison.
We show the advantages of the proposed eOTD over HOSVD
in Table I in both computation and storage.

+nT

}

V. THEORETICAL ANALYSIS OF EOTD

Now, we provide theoretical analysis of eOTD in terms
of low-rankness, the behavior of the Modified Gram-Schmidt
process as well as approximation accuracy.

Lemma 5.1 (Low-Rankness): Suppose X(t) = GO x {U!}.
Let the new full tensor be X(t+1) = (Xi(ltﬂi) s.t. Xl(tﬁl =
X® . Thus, for the reconstructed tensor X+1) returned by
the eOTD, its k-rank is no greater than r for all modes.

Lemma 5.2: Suppose {Vgﬂ)} is concatenated by {UE:)}
and {U}} along the second mode, then we have unique
{U,(:“)} s.t. (1) {USH)} are orthogonormal matrices ob-
tained via conducting Modified Gram-Schmidt process on
{V(Hl)} and (2) the reconstructed tensors on {U(Hl)} and
v t*“} are X0+ = GO 5 (U} and XOHD =
G+ {V(t+ )}, respectively, where G+ = x(t+1)

{U t+1) } and g(t+1) _ X(t+1) % {(V(tJrl))leﬂ} Also, we
have that || XD — x (D)2, = || X0+ — p(t+D))2,
Lemma 5.2 shows that the Modified Grem-Schmidt process

does not introduce extra error for the reconstruction of a tensor.
Lemma 5.3: Given a tensor X1, the proposed eOTD
computes a proximal point X1 such that
X0+ — argminHAA’(tH) — X2 s rank()?“'*’”) <R.
x VI. EXPERIMENTS

A. Experiment Setup

Methods. We compare our algorithms with the following
baselines: HOSVD [22], ALS (i.e., HOOI) [5], and TUCK-
ALS3 [8], [11]. The details of the baselines are deferred
to the related work (Section VII). We propose two online
Tucker decomposition approaches: eOTD and eOTD-NC.
For eOTD, the projection matrices are orthonormal via the
modified Grem-Schmidt process. For eOTD-NC, however, the
projection matrices are not restricted to be orthonormal.

Evaluation Measure. The reconstruction error is defined
as error(X,X) = . As the scale of the measure is
small, we report the logarlthrn value of the error in following
experiments. Threfore, the error and Logarithm value of error
is interchangeably used in the experiments. The lower the
measure, the closer the reconstructed tensor to the original
one, the better the TD method.

B. Experiments on Synthetic Data

In this part, we report the accuracy and efficiency of the
proposed eOTD(-NC) approaches, compared with baselines in
two scenarios: 1) the dimensionality of the new coming tensor
is much less than that of the previous one (i.e., N > d), and
2) the dimensionality of new coming tensor is much larger

"than that of the previous one (i.e., N < d).
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Data Generation. For experiments when N > d, we first
generate a three-mode tensor X' € R600x600x600 whoge rank is
(3,3,3). Xy is set to be (500, 500,500) in size. We randomly
generate a tensor stream with 10 timestamps by a stepsize of
10 on all modes from X. When N < d, we generate a three-
mode tensor X € R620x620x620 ywith the rank of (3,3, 3).
Xp is set to be (20,20,20) in size and there are 10 stream
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tensors at different timestamps by a stepsize of 60 on all
modes. Assuming the rank is known, we run all TD methods.
Result Analysis. Figure 2 presents the results for the pro-
posed eOTD(-NC) approaches and baselines on synthetic data
when N > d. eOTD(-NC) can achieve comparable accuracy
compared with baselines, although eOTD(-NC) access less
original data than batch baselines. In Figure 2(a), the negative
value of y-axis actually indicates that the reconstruction error
is very small because it is in log scale. €OTD(-NC) can even
achieve higher accuracy than HOSVD. The reason could be
the following: At each timestamp, we add additional rows
into the projection matrices. It prevents the algorithm from
being stuck in local optimal which is common in HOSVD.
Figure 2(b) shows the running time for all TD methods. We
can see that the running time of the eOTD(-NC) algorithms
is much less than that of baselines. Actually, our methods are
tens to hundreds of times faster than baselines. Especially,
as the tensor continues to increase, the speedup can be more
than a thousand times. We can conduct similar conclusions
on the scenario when N < d (the details of experiments are
omitted due to page limit). Experimental results show that the
proposed eOTD(-NC) can achieve comparable accuracy with
a significant speedup in either NV > d or N < d scenarios.

Performance w.r.t. # of Modes K. We conduct experiments
to show the performance of the proposed algorithms on higher-
order tensors. A tensor stream with 2 timestamps is generated,
that is, XY € R®*8and X! € R *10 where the
number of modes K increases from 3 to 7. The logarithm
value of reconstruction error and running time are respectively
presented in Figures 3(a) and 3(b), along with a linear fitting
line. For both the reconstruction error and running time, they
almost exponentially increase as the number of modes of a
tensor increases. As the figures show the logarithm values, the
results imply that they are exponential to the number of modes.
Actually, eOTD(-NC) can achieve comparable accuracy when
compared with baselines. As the dimensionality on each mode
is small (i.e., 10 in total), the running time of baselines is
comparable or even lower than the eOTD when K < 5.
However, when K > 6, baselines take much more time.

C. Experiments on Real Data

We conduct experiments on three real world applications
and their data are listed in Table II. The details for all datasets
are omitted due to the page limit, but they can be obtained on
requests or be found in the corresponding references. For each
real application, we split the data into tensor streams with 7’
timestamps where each tensor is randomly chosen from the
original input data. The goal is to evaluate the performance of
the proposed algorithms and baselines at the final timestamp.

Result Analysis. For all applications, the proposed eOTD(-
NC) approaches show very promising results in accuracy as
well as efficiency. All baselines have almost the same accuracy
which is slightly better than that of the proposed eOTD(-NC)
algorithms. However, eOTD(-NC) algorithms have shown a
significant speedup in running time. It is 662 times (on HSC-
HDA), and even 1,628 times (on COIL-100) faster than the
baselines. The TUCKALS3 algorithm is the worst in terms
of efficiency in all applications. The underlying reason is
that it needs to compute the Kronecker product over K — 1
projections on each mode. Although both proposed algorithms
can achieve comparable results with baselines, eOTD algo-
rithm outperforms €OTD(-NC). This implies that the modified
Gram-Schmidt process can help to increase the accuracy.

VII. RELATED WORK

Batch Tucker Decomposition (BTD) has witnessed great
success in real applications. In [22], “Tuckerl” method, known
as the higher-order singular value decomposition (HOSVD)
algorithm, aims to find the components that best capture the
variation in mode k, independent of the other modes. Later
in [8], [11], based on the alternative least square techniques,
Kroonenberg and De Leeuwcalled propose TUCKALS3. In
[5], De Lathauwer et al. propose more efficient techniques to
calculate the factor matrices, called higher-order orthogonal
iteration (HOOI). HOOI computes only the dominant singular
vectors of Xy using a SVD rather than an eigenvalue decom-
position or even just computing an orthonormal basis of the
dominant subspace. However, these BTD methods have issues
in terms of computation and storage. In contrast, the proposed
eOTD(-NC) is efficient in both computation and storage.

[20], [21], propose both offline tensor analysis (OTA) for
a tensor sequence and incremental tensor analysis (ITA) for
a tensor stream. In OTA, projection matrices are updated by
diagonalizing the variance matrix. To overcome the issues of
computation and space, the approach conducts ITA. There
are several variants of ITA in [21], such as dynamic tensor
analysis, streaming tensor analysis, and window-based tensor
analysis. They use different methods to incrementally update
the variance matrix. As all methods need to diagonalize the
variance on each mode, they are inefficient in computation.
Additionally, another trend for improving the efficiency of
BTD in online setting is to replace SVD by incremental
SVD methods. Several applications of this idea can be found
in computer vision and anomaly detection [7], [12], [15],
[19]. However, all these methods can only handle the case
where data only evolve at one single mode. In contrast, the
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TABLE II
REAL DATASETS DESCRIPTION AND COMPARISON BETWEEN EOTD(-NC) WITH BASELINES. THE RATIOS OF THEIR RUNNING TIME BETWEEN BASELINES
AND THE PROPOSED EOTD ALGORITHM ARE SHOWN IN PARENTHESIS.

Dataset Dimensionality Source Measure MeIt-?OOCSlVD ALS TUCKALS3 eOTD-NC  eOTD
Climate Data 19 x 125 x 12 x 12 Hé‘{ Ruﬂffgﬁigff&m> 4.?66§7(g?21) 5‘2_4?;;302) 7.6&?32) .53_215?9823) -g.gls(;t
PCOIL-20 20 X 72 x 128 x 128 HQ Rurﬁlr;r?;/%%n(gi 1r(Oer)aio) 1055&4%3.1) 116?7%2} 2) 136?3%3;5) 2‘6_88;2?%0) _28.g542
vcorL-20 5 X 72 x 416 x 448 HQ Rufnrirsngoiisgs r(Oertio) 27.?;3.751) 29.—55%?8.1) 29?&?%3) 2.8_673;“((.);)90) _27.'899646
USC-HAD 125X 14x500x 6 [26] Ruﬂffgr’%n(gsr r((;{rztio) 463152(231) 45-214%(;;0) 84éz%i3(5528) 4.4-31 12(28552) 51319389
proposed frameworks only involve tensor-matrix multiplica- [6] L.De Lathauwer and J. Vandewalle. Dimensionality reduction in higher-

tion and pseudo-inverse of small matrices which make them
computationally efficient. Moreover, the proposed frameworks
can easily handle tensors with arbitrarily large modes.

VIII. CONCLUSIONS

In this paper, we propose a simple and efficient framework,
named eOTD, to track Tucker decomposition for a tensor
stream. We introduce the block tensor matrix multiplication
to build rules for updating the projection matrices as well as
the core tensor. More specifically, the auxiliary matrices are
obtained by solving a series of optimization problems, where
close-form solutions are available. The projection matrices are
then obtained by augment, orthorgonalization, and normaliza-
tion via a Modified Gram-Schmidt process. Theoretically, we
prove that the reconstructed tensor obtained by the proposed
eOTD framework is guaranteed to be low-rank as well as a
proximal point. Moreover, we show that the Modified Gram-
Schmidt process will not introduce extra error. We demonstrate
that the proposed algorithms can produce comparable accuracy
and significantly reduce the computational and storage costs.
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