
eOTD: An Efficient Online Tucker Decomposition

for Higher Order Tensors

Houping Xiao

J. Mack Robinson College of Business

Georgia State University

hxiao@gsu.edu

Fei Wang

Weill Cornell Medical School

Cornell University

few2001@med.cornell.edu

Fenglong Ma, Jing Gao

Computer Science and Engineering

SUNY at Buffalo

{fenglong, jing}@buffalo.edu

Abstract—A tensor (i.e., an N -mode array) is a natural
representation for multidimensional data. Tucker Decomposition
(TD) is one of the most popular methods, and a series of batch
TD algorithms have been extensively studied and widely applied
in signal/image processing, bioinformatics, etc. However, in many
applications, the large-scale tensor is dynamically evolving at all
modes, which poses significant challenges for existing approaches
to track the TD for such dynamic tensors. In this paper, we pro-
pose an efficient Online Tucker Decomposition (eOTD) approach
to track the TD of dynamic tensors with an arbitrary number
of modes. We first propose corollaries on the multiplication of
block tensor matrix. Based on this corollary, eOTD allows us 1) to
update the projection matrices using those projection matrices
from the previous timestamp and the auxiliary matrices from
the current timestamp, and 2) to update the core tensor by a
sum of tensors that are obtained by multiplying smaller tensors
with matrices. The auxiliary matrices are obtained by solving a
series of least square regression tasks, not by performing Singular
Value Decompositions (SVD). This overcomes the bottleneck in
computation and storage caused by computing SVDs on large-
scale data. A Modified Gram-Schmidt (MGS) process is further
applied to orthonormalize the projection matrices. Theoretically,
the output of the eOTD framework is guaranteed to be low-
rank. We further prove that the MGS process will not increase
Tucker decomposition error. Empirically, we demonstrate that the
proposed eOTD achieves comparable accuracy with a significant
speedup on both synthetic and real data, where the speedup can
be more than 1,500 times on large-scale data.

Index Terms—Tucker Decomposition, Low Rankness, Online
Learning

I. INTRODUCTION

In many applications, data can be naturally represented by

a tensor (i.e., a multidimensional or N -mode array) [1]–[4],

[6], [10], [18], [24], [25]. Decompositions of higher-order

tensors (i.e., N -mode arrays with N ≥ 3) are popular tools

for analyses on multi-mode arrays, such as feature extrac-

tion, dimensionality reduction, and knowledge discovery. Two

particular tensor decompositions, CANDECOMP/PARAFAC

(CP) and Tucker Decomposition (TD), can be considered as

higher-order extensions of matrix Singular Value Decompo-

sition (SVD). CP decomposes a tensor as a sum of rank-

1 tensors while the TD is a higher-order form of principal

component analysis. Once the core tensor in TD is restricted

to be diagonal, TD is degenerated to CP. Recently, TD has a

broad range of applications in signal processing [3], [6], [18],

anomaly detection [23]–[25], neuroscience [1], [2], [4], etc.

In the era of big data, data, represented by a tensor, is

usually dynamically changing over time. Especially, in many

applications all modes of a data tensor dynamically evolve. For

example, in collaborative filtering for movie recommendation,

we have the user-movie-date tensor where the (i, j, k)-th value

represents the rating user i gave to movie j on the k-th

day. TD can obtain the latent time-sensitive user and movie

representations which can be used for rating prediction [9],

[27]. Clearly, all three modes of this tensor evolve from time

to time. Existing batch TD methods cannot handle data tensors

that evolve on all modes due to the high computation and

storage costs [5], [8], [11], [22], [25]. Therefore, an effective

and efficient online Tucker Decomposition method is desired

for decomposing real-time large-scale tensors.

Online tensor decomposition aims to dynamically update a

tensor while preserving the low-rank structure. While online

matrix decomposition has been intensively studied, online

tensor decomposition remains largely under-explored. The

problem is extremely challenging due to the inherent com-

plexity of tensor analysis. For the low-rankness, although

nuclear norm is widely used as the rank constraints and

algorithms are developed to solve the problem, the solutions

of these algorithms can easily get stuck in suboptimal ones.

Moreover, solving an optimization problem with nuclear norm

regularization is computationally expensive. It is difficult to

apply nuclear norm regularization on large-scale applications

in which TD is needed. There are also some online TD meth-

ods that works well in the scenario where data only evolves

in one single mode [7], [20], [21]. However, in many real

applications (e.g., movie recommendation), data continuously

arrive at every mode. Existing online TD methods are not able

to solve this problem where data evolve at all modes.

In this paper, we propose an efficient Online Tucker De-

composition (eOTD) approach to on-the-fly track the TD for

dynamic large-scale tensors (i.e., tensors that have an arbitrary

large order and evolve at all modes). We first introduce the

block tensor matrix multiplication corollary. Based on this

corollary, eOTD allows us (1) to update the projection matri-

ces using the projection matrices from the previous timestamp

and the auxiliary matrices from the current timestamp, and

(2) to update the core tensor by a sum of tensors that are

obtained by multiplying smaller tensors with matrices. Dur-

ing the update of projection matrices, the auxiliary matrices

1326

2018 IEEE International Conference on Data Mining

978-1-5386-9159-5/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDM.2018.00180



are obtained by solving a series of least square regression

tasks, instead of conducting singular value decomposition or

eigenvalue decomposition are used by conventional methods.

Consequently, we overcome the bottleneck in computation and

storage caused by performing SVD on large-scale data. We

further apply a Modified Gram-Schmidt (MGS) process for

orthonormalization of the projection matrices.

Theoretically, we make the following contributions in this

paper. First, we are the first to investigate block tensor matrix

multiplication (i.e., Corollaries 3.1 and 3.2), which show the

rule for conducting block multiplication between a tensor and a

matrix and lay the foundation for the proposed eOTD. Second,

the output of the proposed eOTD is guaranteed to be low-rank

and is a proximal point. And finally, we prove that the MGS

process, used for orthonormalization of projection matrices,

does not increase the decomposition error.

Experimentally, on both synthetic and real data, we demon-

strate that the proposed eOTD can achieve comparable per-

formance with the most accurate method, i.e., Alternative

Least Square method, while being computationally much more

efficient. Specifically, on small and moderate datasets, eOTD

is tens to hundreds of times faster than batch TD algorithm,

while for large-scale datasets, the speedup can be more than

1,500 times. As a side outcome, eOTD can be a strategy to

decompose a large-scale tensor in a batch way by a two-step

procedure: (1) Conduct an SVD on a very small partition of

the large-scale tensor, and (2) apply the proposed eOTD. In

this way, the bottleneck of computation and memory caused

by batch TD algorithms on large-scale tensors can be solved.

II. DEFINITIONS AND PRELIMINARIES

Following [10], we denote tensors with calligraphic letters

(e.g. X ), matrices with uppercase bold letters (e.g. U), row

vectors with lowercase bold letters (e.g. x), and scalars with

lowercase normal font (e.g. n). A tensor is said to evolve

over time, if there is at least one mode whose size increases

over time. For example, X (t) ∈ R
N

(t)
1 ···N

(t)
K evolving on all

modes means that N
(t+1)
k ≥ N

(t)
k , ∀k ∈ [K]. Here, [K] ≡

{1, · · · ,K}. For simplification, we say that (r1, · · · , rK) � r

if rk � r, ∀k ∈ [K], and X ×1U1×· · ·×K UK ≡ X ×{Uk}.

Definition 2.1 (Mode-k Multiplication): The k-mode mul-

tiplication between a tensor X ∈ R
N1×···×Nk×···×NK and a

matrix U ∈ R
Ik×Nk is defined as (X ×k U)n1···ik···nK

=∑Nk

nk=1 Xn1···nk···nK
Uiknk

.

For distinct modes in a series of multiplications, X ×k U×k′

U
′ = X ×k′ U

′ ×k U(k′ �= k). If the modes are the same,

then X ×k U×k U
′ = X ×k (U′

U).
Definition 2.2 (Mode-k Matricization): The mode-k matri-

cization or unfolding of an tensor X ∈ R
N1×···×NK , denoted

as X(k), is obtained by treating k as the first mode of the

matrix and orderly concatenating other modes.

Definition 2.3 (Frobenius Norm): The Frobenius norm

of a tensor X ∈ R
N1×···×NK is defined as ‖X‖2F =∑N1

n1=1 · · ·
∑NK

nK=1 X
2
n1···nK

.

Definition 2.4 (Tensor Rank): Given X ∈ R
N1×···×NK , its

rank is defined as rank(X ) = (R1, · · · , RK) s.t. rank(X(k)) =

Fig. 1. Demo of online Tucker Decomposition for a third-order tensor.

Rk, where rank(X(k)) is the matrix rank of the mode-k

matricization X(k) which is also referred to the k-rank of X .

III. METHODOLOGY

A. Tucker Decomposition

Given a tensor X ∈ R
N1×···×NK , its Low-Rank Tucker

Decomposition is generally formulated as the following op-
timization problem with constraints:

minX̂

∥∥X − X̂
∥∥2

F
, s.t.X̂ = G × {Uk}, and, rank(X̂ ) � r, (1)

where G is a core tensor and {Uk} is a set of projection

matrices. Usually, {Uk} are restricted to be unitary. However,

there is some work [24], [25] which does not assume this con-

dition. In this paper, we propose algorithms for both scenarios.

For existing TD methods, such as HOSVD [22], ALS [5], also

known as HOOI, TUCKALS3 [8], [11] etc, they suffer from

the following drawbacks: 1) They are time-consuming when

X is large-scale, as SVD operation is extremely expensive,

let alone conducting SVD on every mode iteratively. 2) These

algorithms need too much space in online settings, because

they need to store all data at previous timestamps.

In the following, we will propose a novel framework for

Tucker Decomposition which can overcome these challenges.

B. Online Tucker Decomposition

In real-world applications, data evolves over time at all

modes. Denote a tensor stream until time t as {X (t′) ∈

R
Nt′

1 ×···×Nt′

K }t′∈[t], and their TDs are {G(t′),U
(t′)
k }. X (t+1)

is the data at time T +1. The proposed eOTD framework can

obtain the TD of X (t+1) such that(1) it does not require to

conduct SVD operation on all mode-k matricization matrices;

and (2) instead of storing the data X (t′) in previous timestamp

t′ ∈ [t], it only requires to store its TD result at previous time

t, {G(t),U
(t)
k }, which needs much smaller space to store.

Problem Setting. Assume that there is a tensor stream,

{X
(t)
m ∈ R

Nt
1×···×Nt

K : m ∈ [M ]}, along with its TD

X (t) = G(t) × {Uk}. At time t + 1, the tensor is X (t+1) ∈

R
N

t+1
1 ×···×N

t+1
K = (X

(t+1)
i1···iK

)ik∈[2], where X
(t+1)
1···1 = X (t) and

the remaining subtensors newly arrive. Our goal is to find a

new TD for X (t+1) given (X
(t+1)
i1···ik

)(i1,··· ,iK)�=(1,··· ,1), G
(t) and

{U
(t)
k }. The problem setting for a third-order tensor in a online

setting is visually shown in Figure 1.

C. Basic ideas for eOTD

Corollary 3.1 (Block Tensor Matrix Multiplication i): Sup-

pose X ∈ R
N1×···×Nk···×NK and Y ∈ R

N1×···×N ′

k···×NK are

two tensors, and U
x
k ∈ R

Rk×Nk and U
y
k ∈ R

Rk×N ′

k are two

1327



matrices. Let Z ∈ R
N1×···×(Nk+N ′

k)···×NK be a tensor which

is concatenated by X and Y along mode-k. Thus,

1) if k′ = k and U
z
k ∈ R

Rk×(Nk+N ′

k) = [Ux
k U

y
k], then

Z ×k′ U
z
k′ = X ×k U

x
k + Y ×k U

y

k; (2)

2) if k′ �= k and U
z
k′ ∈ R

Rk′×Nk′ , then Z ×k U
z
k′ is

concatenated by X ×k′ U
z
k′ and Y ×k′ U

z
k′ along the mode-k.

Corollary 3.2 (Block Tensor Matrix Multiplication ii): Sup-
pose X ∈ R

N1×···×NK is a tensor. We split X into 2K

tensors, (Xi1i2···iK )ik∈[2], such that
∑

ik∈[2] Nk,ik = Nk, and

U
�
k = [U�

k,1U
�
k,2] ∈ R

(Nk,1+Nk,2)×Rk . Then, we have that

X × {Uk} =
∑

(i1,··· ,iK)∈[2]K
Xi1i2···iK × {Uk,ik}. (3)

As illustrates below, these two corollaries are the footstones

of the proposed eOTD framework.

IV. EOTD FRAMEWORK

Given the TD (i.e., Tucker decomposition) at t-th times-

tamp, that is, X (t) = G(t) × {U
(t)
k }, at time t + 1 we are

going to (a) update {U
(t+1)
k } using the new coming data

(X
(t+1)
i1···iK

)(i1,··· ,iK) �=(1,··· ,1) and (b) update the core tensor.

The full tensor at (t + 1)-th timestamp is X (t+1) =

(X
(t+1)
i1···iK

), with X
(t+1)
1···1 = X (t) = G(t)×{U

(t)
k }. For any other

sub-tensor X
(t+1)
i1···iK

, it should be used to update one or more

from {U′
k ∈ R

(N
(t+1)
k

−N
(t)
k

)×Ik} which is defined as auxiliary

matrices. After spliting the full tensor into 2K sub-tensors (as

shown in Figure 1), the subindex of every sub-tensor implies

which auxiliary matrices will be updated. If a subindex of a

sub-tensor equals to 2, it will update one specific auxiliary

matrix. For example, in the third-order tensor setting, X
(t+1)
212

is used for the update of both U
′
1 and U

′
3. Next, we first

illustrate the eOTD framework on third-order tensors and then

extend it to higher-order tensors.

A. Third-order Tensors

Now, we show the update rules for both the projection

matrices {U
(t+1)
k } and the core tensor G(t+1) at time t+ 1.

1) Update Projection Matrices {Uk}: At time t + 1, the

full tensor X (t+1) is split into 23 subtensors {X
(t+1)
i1i2i3

}ik∈[2]

such that X
(t+1)
111 = X (t). Note that X

(t+1)
111 is irrelevant

to the auxiliary matrices {U′
k}. The remaining subtensors,

however, can be partitioned into three categories according

to the number of subindices that equal to 2s (i.e., indi-

cating how many auxiliary matrices to update). For third-

order tensors, we have that C1 = {X
(t+1)
211 ,X

(t+1)
121 ,X

(t+1)
112 },

C2 = {X
(t+1)
221 ,X

(t+1)
212 ,X

(t+1)
122 }, and C3 = {X

(t+1)
222 }.

For each subtensor X
(t+1)
i1i2i3

, Corollary 3.2 gives us that

X
(t+1)
i1i2i3

= G(t)×{Uk}, where U
(t)
k if ik = and U

′
k if ik = 2.

Let Gi1,i2,i3 = G(t)×{Uk}, where if a subindex is missing, it

represents an auxiliary tensor constructed by multiplying G(t)

with the remaining projection matrices. For instance, G·,i2,i3 =
G(t) ×2 U2 ×3 U3. Next, we show the update rule of the

auxiliary matrices using every subtensor category by category.
Update {U′

k} with C1. In C1, each subtensor is used once
for updating a corresponding auxiliary matrix. We show the

procedure of updating U
′
1 using X

(t+1)
211 ; update rules for other

auxiliary matrices are similar. We first construct an auxiliary

tensor G·,1,1 = G(t) ×2 U
(t)
2 ×3 U

(t)
3 . Then, we update U

′
1:

U
′
1 ← (X

(t+1)
211 )(1)(G·,1,1(1))

†, (4)

where † denotes matrix pseudo-inverse. Similarly,

U
′
2 ← (X

(t+1)
121 )(2)(G1,·,1(2))

†, and U
′
3 ← (X

(t+1)
112 )(3)(G1,1,·(3))

†;

where G1,·,1 = G(t) ×1 U
(t)
1 ×3 U

(t)
3 and G1,1,· = G(t) ×1

U
(t)
1 ×2 U

(t)
2 . Although all auxiliary matrices have been

updated using sub-tensors within C1, we need to update them

again using sub-tensors in C2 and C3, because all these sub-

tensors contribute to one or more auxiliary matrices.
Update {U′

k} with C2. Every subtensor in C2 is used
twice for updating two corresponding auxiliary matrices. For

example, X
(t+1)
221 is used for updating both U

′
1 and U

′
2. To

update U
′
1, we use the auxiliary matrix U

′
2 obtained from C1.

Namely, G·,2,1 = G(t) ×2 U
′
2 ×3 U

(t)
3 . Then,

U
′
1

new
← αU′

1
old

+ (1− α)(X
(t+1)
211 )(1)(G·,2,1(1))

†. (5)

Here, α is a memory rate deciding how much information is
inherited from previous step. For U′

2, we have that

U
′
2

new
← αU′

2
old

+ (1− α)(X
(t+1)
211 )(2)(G2,·,1(2))

†, (6)

where G2,·,1 = G(t) ×1 U
′
1 ×3 U

(t)
3 . Similar procedure is

conducted for X
(t+1)
212 and X

(t+1)
122 . Namely,

U
′
1

new
← αU′

1
old

+ (1− α)(X
(t+1)
212 )(1)(G·,1,2(1))

†, (7)

U
′
3

new
← αU′

2
old

+ (1− α)(X
(t+1)
212 )(3)(G2,1,·(3))

†, (8)

where G·,1,2 = G(t)×2U
(t)
2 ×3U

′
3; G2,1,· = G(t)×1U

′
1×2U

(t)
2 .

U
′
2

new
← αU′

2
old

+ (1− α)(X
(t+1)
122 )(2)(G1,·,2(2))

†, (9)

U
′
3

new
← αU′

2
old

+ (1− α)(X
(t+1)
122 )(3)(G1,2,·(3))

†, (10)

where G1,·,2 = G(t)×1U
(t)
1 ×3U

′
3; G1,2,· = G(t)×1U

(t)
1 ×2U

′
2.

Update {U′
k} with C3. Note that X

(t+1)
222 = G(t)×{U′

k} is
related to all auxiliary matrices. Following the same procedure,
we iteratively update all auxiliary matrices as follows:

U
′
1

new
← αU′

1
old

+ (1− α)(X
(t+1)
222 )(1)(G·,2,2(1))

†;
(11)

U
′
2

new
← αU′

2
old

+ (1− α)(X
(t+1)
222 )(2)(G2,·,2(2))

†; (12)

U
′
3

new
← αU′

3
old

+ (1− α)(X
(t+1)
222 )(3)(G2,2,·(3))

†; (13)

where G·,2,2 = G(t)×2U
′
2×3U

′
3, G2,·,2 = G(t)×1U

′
1×3U

′
3,

and G2,2,· = G(t) ×1 U
′
1 ×2 U

′
3.

Update U
(t+1)
k . At time t + 1, the new projection matri-

ces {U
(t+1)
k } are updated based on {U

(t)
k } from the previ-

ous step and the auxiliary matrices {U′
k} from the current

step. One strategy to update U
(t+1)
k (∀k ∈ [K]) is to

concatenate U
(t)
k and U

′
k along the second mode. Namely,

(V
(t+1)
k )� = [(U

(t)
k )� (U′

k)
�] ∈ R

N
(t+1)
k

×Ik(∀k ∈ [K]).

However, {V
(t+1)
k } are not guaranteed to be unitary. Modified

Gram-Schmidt (MGS) process is further conducted on V
(t+1)
k

to create orthonormal projection matrices {U
(t+1)
k }.

Throughout the update of the projection matrices, we only

apply cheap tensor matrix multiplication and matrix pseudo-

inverse instead of conducting the expensive SVD operations on

large matrices. This makes it easy for the proposed framework

to apply to large-scale applications.

1328



TABLE I
COMPUTATION AND STORAGE COMPARISON

Method Computation Storage

eOTD O(rd2(m−1)
N

2(K−m) O(KdN
K−1 + d

K + r
K)

HOSVD O(K(N + d)2k−1) O((N + d)K

2) Update G: Given the new coming data at (t + 1)-

th timestamp (X
(t+1)
ijk )(i,j,k) �=(1,1,1), associated with G(t) and

{U
(t+1)
k }, to update G(t+1), we first split U

(t+1)
k into two ma-

trices: U
(t+1)
k,1 ∈ R

N(t)×Ik and U
(t+1)
k,2 ∈ R

(N(t+1)−N(t))×Ik .

As {U
(t+1)
k } are unitary matrices and according to Corollary

3.2, X (t+1) = G(t+1) × {U
(t+1)
k } implies that

G(t+1) = X (t+1) × {U
(t+1)
k

�
}

= G(t) × {U
(t+1)
k,1

�
U

(t)
k }+

∑
(i1,i2,i3)�=(1,1,1)

X
(t+1)
i1i2i3

× {U
(t+1)
k,ik

�
}.

It shows that the core tensor is updated by taking the sum

of tensors which are obtained by multiplying the new coming

subtensors with the submatrices of projection matrices. These

subtensors is much smaller compared with that of the original

tensor. It is proven to be faster than multiplying the original

tensors with the transport of the updated projection matrices.

B. Extension to Higher-order Tensors

Let X (t) ∈ R
N1,1×···×NK,1 and its TD X (t) = G(t)×{U

(t)
k }.

X (t+1) ∈ R
(N1,1+N1,2)×···×(NK,1+NK,2) is split into 2K sub-

tensors (X
(t+1)
i1···iK

)ik∈[2] such that X
(t+1)
1···1 = X (t).

1) Update Projection Matrices {Uk}: The procedure is
similar to that in the third-order tensor scenario. However,
in the higher-order tensor setting, there are K categories
{Cm}m∈[K]. Every subtensor within Cm will be used m times

for auxiliary matrix update. For X
(t+1)
i1···iK

in Cm, Corollary 3.2

shows that X
(t+1)
i1···iK

= G(t) × {Uk}, where Uk = U
(t)
k , if

ik = 1 or Uk = U
′
k if ik = 2. Denote the to-be-updated

subindex set as S = {ik1
, · · · , ikm

}. For each subindex
ikj

∈ S, the update rules are as follows:

U
′new
ikj

← αU′old
ikj

+ (1− α)(X
(t+1)
i1···iK

)(ikj
)(Gikj

)†(ikj
), (14)

where Gikj
� Gi1,··· ,ikj

,··· ,iK = G(t) ×−ikj
{Uk}. After

obtaining {U′
k}, we augment them to {U

(t)
k } and then apply

the MGS to orthogonalize and normalize the constructed

matrices for {U
(t+1)
k }.

2) Update G: Based on the split of the tensor at current time

t + 1, U
(t+1)
k can also be split into two matrices: U

(t+1)
k,1 ∈

R
N(t)×Ik and U

(t+1)
k,2 ∈ R

(N(t+1)−N(t))×Ik . Corollary 3.2 and

the fact that {U
(t+1)
k } are unitary matrices yield that

G(t+1) = X (t+1) × {U
(t+1)
k

�
}

= G(t) × {U
(t+1)
k,1

�
U

(t)
k }+

∑
(i1,··· ,iK)�=(1,··· ,1)

X
(t+1)
i1···iK

× {U
(t+1)
k,ik

�
} .

C. Complexity Analysis

We conduct the complexity comparison between eOTD and

HOSVD in terms of computation and storage. For ALS and

Tuck-ALS3, as they usually adopt the results from HOSVD

as initialization, we do not include them in this comparison.

We show the advantages of the proposed eOTD over HOSVD

in Table I in both computation and storage.

V. THEORETICAL ANALYSIS OF EOTD

Now, we provide theoretical analysis of eOTD in terms

of low-rankness, the behavior of the Modified Gram-Schmidt

process as well as approximation accuracy.

Lemma 5.1 (Low-Rankness): Suppose X (t) = G(t)×{U
(t)
k }.

Let the new full tensor be X (t+1) = (X
(t+1)
i1···iK

) s.t. X
(t+1)
1···1 =

X (t). Thus, for the reconstructed tensor X̃ (t+1) returned by

the eOTD, its k-rank is no greater than r for all modes.

Lemma 5.2: Suppose {V
(t+1)
k } is concatenated by {U

(t)
k }

and {U′
k} along the second mode, then we have unique

{U
(t+1)
k } s.t. (1) {U

(t+1)
k } are orthogonormal matrices ob-

tained via conducting Modified Gram-Schmidt process on

{V
(t+1)
k }, and (2) the reconstructed tensors on {U

(t+1)
k } and

{V
(t+1)
k } are X̃ (t+1) = G̃(t+1) × {U

(t+1)
k } and X̂ (t+1) =

Ĝ(t+1) × {V
(t+1)
k }, respectively, where G̃(t+1) = X (t+1) ×

{U
(t+1)
k

�
} and Ĝ(t+1) = X (t+1) × {(V

(t+1)
k )−1

left}. Also, we

have that ‖X̃ (t+1) −X (t+1)‖2F = ‖X̂ (t+1) −X (t+1)‖2F .

Lemma 5.2 shows that the Modified Grem-Schmidt process

does not introduce extra error for the reconstruction of a tensor.
Lemma 5.3: Given a tensor X (t+1), the proposed eOTD

computes a proximal point X̃ (t+1) such that
X̃ (t+1) = argmin

X̂

‖X̂ (t+1) −X (t+1)‖2F , s.t. rank(X̂ (t+1)) ≤ R.

VI. EXPERIMENTS

A. Experiment Setup

Methods. We compare our algorithms with the following

baselines: HOSVD [22], ALS (i.e., HOOI) [5], and TUCK-

ALS3 [8], [11]. The details of the baselines are deferred

to the related work (Section VII). We propose two online

Tucker decomposition approaches: eOTD and eOTD-NC.

For eOTD, the projection matrices are orthonormal via the

modified Grem-Schmidt process. For eOTD-NC, however, the

projection matrices are not restricted to be orthonormal.

Evaluation Measure. The reconstruction error is defined

as error(X̂ ,X ) =
‖X−X̂‖2

F

‖X‖2
F

. As the scale of the measure is

small, we report the logarithm value of the error in following

experiments. Threfore, the error and Logarithm value of error

is interchangeably used in the experiments. The lower the

measure, the closer the reconstructed tensor to the original

one, the better the TD method.

B. Experiments on Synthetic Data

In this part, we report the accuracy and efficiency of the

proposed eOTD(-NC) approaches, compared with baselines in

two scenarios: 1) the dimensionality of the new coming tensor

is much less than that of the previous one (i.e., N � d), and

2) the dimensionality of new coming tensor is much larger

than that of the previous one (i.e., N 	 d).

Data Generation. For experiments when N � d, we first

generate a three-mode tensor X ∈ R
600×600×600 whose rank is

(3, 3, 3). X0 is set to be (500, 500, 500) in size. We randomly

generate a tensor stream with 10 timestamps by a stepsize of

10 on all modes from X . When N 	 d, we generate a three-

mode tensor X ∈ R
620×620×620 with the rank of (3, 3, 3).

X0 is set to be (20, 20, 20) in size and there are 10 stream

1329



520 540 560 580 600

−25

−20

−15

Dimensionality of Tensors

L
o
g
 o

f 
E

r
r
o
r

 

 

eOTD

eOTD−NC

HOSVD

ALS

TUCKALS3

(a) Reconstruction Error

520 540 560 580 600
−2

0

2

4

6

8

Dimensionality of Tensors

R
u

n
n

in
g
 T

im
e
 (

lo
g
(S

e
c
))

 

 

eOTD

eOTD−NC

HOSVD

ALS

TUCKALS3

(b) Run Time
Fig. 2. Synthetic data where N � d over 10 timestamps.

3 4 5 6 7
−30

−28

−26

−24

−22

−20

Modes

L
o
g
 o

f 
E

r
r
o
r

 

 

eOTD

eOTD−NC

HOSVD

ALS

TUCKALS3

Fitting

(a) Reconstruction Error

3 4 5 6 7

−4

−2

0

2

4

6

Modes

R
u

n
 T

im
e
 (

lo
g
(S

e
c
))

 

 

eOTD

eOTD−NC

HOSVD

ALS

TUCKALS3

Fitting

(b) Running Time
Fig. 3. Experiments w.r.t. # of tensor modes.

tensors at different timestamps by a stepsize of 60 on all

modes. Assuming the rank is known, we run all TD methods.

Result Analysis. Figure 2 presents the results for the pro-

posed eOTD(-NC) approaches and baselines on synthetic data

when N � d. eOTD(-NC) can achieve comparable accuracy

compared with baselines, although eOTD(-NC) access less

original data than batch baselines. In Figure 2(a), the negative

value of y-axis actually indicates that the reconstruction error

is very small because it is in log scale. eOTD(-NC) can even

achieve higher accuracy than HOSVD. The reason could be

the following: At each timestamp, we add additional rows

into the projection matrices. It prevents the algorithm from

being stuck in local optimal which is common in HOSVD.

Figure 2(b) shows the running time for all TD methods. We

can see that the running time of the eOTD(-NC) algorithms

is much less than that of baselines. Actually, our methods are

tens to hundreds of times faster than baselines. Especially,

as the tensor continues to increase, the speedup can be more

than a thousand times. We can conduct similar conclusions

on the scenario when N 	 d (the details of experiments are

omitted due to page limit). Experimental results show that the

proposed eOTD(-NC) can achieve comparable accuracy with

a significant speedup in either N � d or N 	 d scenarios.

Performance w.r.t. # of Modes K. We conduct experiments

to show the performance of the proposed algorithms on higher-

order tensors. A tensor stream with 2 timestamps is generated,

that is, X 0 ∈ R
8×···×8and X 1 ∈ R

10×···×10 where the

number of modes K increases from 3 to 7. The logarithm

value of reconstruction error and running time are respectively

presented in Figures 3(a) and 3(b), along with a linear fitting

line. For both the reconstruction error and running time, they

almost exponentially increase as the number of modes of a

tensor increases. As the figures show the logarithm values, the

results imply that they are exponential to the number of modes.

Actually, eOTD(-NC) can achieve comparable accuracy when

compared with baselines. As the dimensionality on each mode

is small (i.e., 10 in total), the running time of baselines is

comparable or even lower than the eOTD when K ≤ 5.

However, when K ≥ 6, baselines take much more time.

C. Experiments on Real Data

We conduct experiments on three real world applications

and their data are listed in Table II. The details for all datasets

are omitted due to the page limit, but they can be obtained on

requests or be found in the corresponding references. For each

real application, we split the data into tensor streams with T

timestamps where each tensor is randomly chosen from the

original input data. The goal is to evaluate the performance of

the proposed algorithms and baselines at the final timestamp.

Result Analysis. For all applications, the proposed eOTD(-

NC) approaches show very promising results in accuracy as

well as efficiency. All baselines have almost the same accuracy

which is slightly better than that of the proposed eOTD(-NC)

algorithms. However, eOTD(-NC) algorithms have shown a

significant speedup in running time. It is 662 times (on HSC-

HDA), and even 1,628 times (on COIL-100) faster than the

baselines. The TUCKALS3 algorithm is the worst in terms

of efficiency in all applications. The underlying reason is

that it needs to compute the Kronecker product over K − 1
projections on each mode. Although both proposed algorithms

can achieve comparable results with baselines, eOTD algo-

rithm outperforms eOTD(-NC). This implies that the modified

Gram-Schmidt process can help to increase the accuracy.

VII. RELATED WORK

Batch Tucker Decomposition (BTD) has witnessed great

success in real applications. In [22], “Tucker1” method, known

as the higher-order singular value decomposition (HOSVD)

algorithm, aims to find the components that best capture the

variation in mode k, independent of the other modes. Later

in [8], [11], based on the alternative least square techniques,

Kroonenberg and De Leeuwcalled propose TUCKALS3. In

[5], De Lathauwer et al. propose more efficient techniques to

calculate the factor matrices, called higher-order orthogonal

iteration (HOOI). HOOI computes only the dominant singular

vectors of X(k) using a SVD rather than an eigenvalue decom-

position or even just computing an orthonormal basis of the

dominant subspace. However, these BTD methods have issues

in terms of computation and storage. In contrast, the proposed

eOTD(-NC) is efficient in both computation and storage.

[20], [21], propose both offline tensor analysis (OTA) for

a tensor sequence and incremental tensor analysis (ITA) for

a tensor stream. In OTA, projection matrices are updated by

diagonalizing the variance matrix. To overcome the issues of

computation and space, the approach conducts ITA. There

are several variants of ITA in [21], such as dynamic tensor

analysis, streaming tensor analysis, and window-based tensor

analysis. They use different methods to incrementally update

the variance matrix. As all methods need to diagonalize the

variance on each mode, they are inefficient in computation.

Additionally, another trend for improving the efficiency of

BTD in online setting is to replace SVD by incremental

SVD methods. Several applications of this idea can be found

in computer vision and anomaly detection [7], [12], [15],

[19]. However, all these methods can only handle the case

where data only evolve at one single mode. In contrast, the

1330



TABLE II
REAL DATASETS DESCRIPTION AND COMPARISON BETWEEN EOTD(-NC) WITH BASELINES. THE RATIOS OF THEIR RUNNING TIME BETWEEN BASELINES

AND THE PROPOSED EOTD ALGORITHM ARE SHOWN IN PARENTHESIS.

Method
Dataset Dimensionality Source Measure HOSVD ALS TUCKALS3 eOTD-NC eOTD

Climate Data 19× 125× 12× 12
[14] Error/log(Error) -6.702 -6.713 -6.713 -4.788 -6.784
[13] Running Time/s (Ratio) 4.767(8.21) 5.242(9.02) 7.641(13.2) .5365(.923) .5810

PCOIL-20 20× 72× 128× 128
[17] Error/log(Error) -8.229 -8.241 -8.241 -8.032 -8.032
[16] Running Time/s (Ratio) 108.1(40.1) 110.7(41.2) 130.3(48.5) 2.689(1.00) 2.684

UCOIL-20 5× 72× 416× 448
[17] Error/log(Error) -8.257 -8.263 -8.263 -7.406 -7.966
[16] Running Time/s (Ratio) 27.52(9.51) 29.25(10.1) 298.1(103) 2.863 (.990) 2.894

USC-HAD 12× 5× 14× 500× 6 [26]
Error/log(Error) -12.34 -12.35 -12.35 -12.25 -13.39

Running Time/s (Ratio) 4635(891) 4524(870) 8464(1628) 4.431(.852) 5.198

proposed frameworks only involve tensor-matrix multiplica-

tion and pseudo-inverse of small matrices which make them

computationally efficient. Moreover, the proposed frameworks

can easily handle tensors with arbitrarily large modes.

VIII. CONCLUSIONS

In this paper, we propose a simple and efficient framework,

named eOTD, to track Tucker decomposition for a tensor

stream. We introduce the block tensor matrix multiplication

to build rules for updating the projection matrices as well as

the core tensor. More specifically, the auxiliary matrices are

obtained by solving a series of optimization problems, where

close-form solutions are available. The projection matrices are

then obtained by augment, orthorgonalization, and normaliza-

tion via a Modified Gram-Schmidt process. Theoretically, we

prove that the reconstructed tensor obtained by the proposed

eOTD framework is guaranteed to be low-rank as well as a

proximal point. Moreover, we show that the Modified Gram-

Schmidt process will not introduce extra error. We demonstrate

that the proposed algorithms can produce comparable accuracy

and significantly reduce the computational and storage costs.

IX. ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees

for their valuable comments and suggestions. This work is

supported in part by the ONR N00014-18-1-2585, NSF IIS-

1716432, IIS-1750326 and IIS-1747614. Any opinions, find-

ings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily

reflect the views of the ONR or NSF.

REFERENCES

[1] E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and B. Yener. Multiway
analysis of epilepsy tensors. Bioinformatics, 23(13):i10–i18, 2007.

[2] C. F. Beckmann and S. M. Smith. Tensorial extensions of indepen-
dent component analysis for multisubject fmri analysis. Neuroimage,
25(1):294–311, 2005.

[3] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and H. A. Phan. Tensor decompositions for signal processing applica-
tions: From two-way to multiway component analysis. IEEE Signal

Processing Magazine, 32(2):145–163, 2015.

[4] F. Cong, Q.-H. Lin, L.-D. Kuang, X.-F. Gong, P. Astikainen, and
T. Ristaniemi. Tensor decomposition of eeg signals: a brief review.
Neuroscience Methods, 248:59–69, 2015.

[5] L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1
and rank-(r 1, r 2,..., rn) approximation of higher-order tensors. SIAM

Journal on Matrix Analysis and Applications, 21(4):1324–1342, 2000.

[6] L. De Lathauwer and J. Vandewalle. Dimensionality reduction in higher-
order signal processing and rank-(r1, r2,..., rn) reduction in multilinear
algebra. Linear Algebra and its Applications, 391:31–55, 2004.

[7] W. Hu, X. Li, X. Zhang, X. Shi, S. Maybank, and Z. Zhang. Incremental
tensor subspace learning and its applications to foreground segmentation
and tracking. IJCV, 91(3):303–327, 2011.

[8] A. Kapteyn, H. Neudecker, and T. Wansbeek. An approach ton-mode
components analysis. Psychometrika, 51(2):269–275, 1986.

[9] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver. Multiverse
recommendation: n-dimensional tensor factorization for context-aware
collaborative filtering. In Proc. of RecSys, pages 79–86, 2010.

[10] T. G. Kolda and B. W. Bader. Tensor decompositions and applications.
SIAM review, 51(3):455–500, 2009.

[11] P. M. Kroonenberg and J. De Leeuw. Principal component analysis
of three-mode data by means of alternating least squares algorithms.
Psychometrika, 45(1):69–97, 1980.

[12] X. Li, W. Hu, Z. Zhang, X. Zhang, and G. Luo. Robust visual tracking
based on incremental tensor subspace learning. In Proc. of ICCV, pages
1–8, 2007.

[13] Y. Liu, A. Niculescu-Mizil, A. C. Lozano, and Y. Lu. Learning temporal
causal graphs for relational time-series analysis. In Proc. of ICML, pages
687–694, 2010.

[14] A. C. Lozano, H. Li, A. Niculescu-Mizil, Y. Liu, C. Perlich, J. Hosking,
and N. Abe. Spatial-temporal causal modeling for climate change
attribution. In Proc. of KDD, pages 587–596, 2009.

[15] X. Ma, D. Schonfeld, and A. Khokhar. Dynamic updating and down-
dating matrix svd and tensor hosvd for adaptive indexing and retrieval
of motion trajectories. In Proc. of ICASSP, pages 1129–1132, 2009.

[16] S. Nayar, S. Nene, and H. Murase. Columbia object image library (coil
100). Technical report CUCS-006-96, 1996.

[17] S. A. Nene, S. K. Nayar, H. Murase, et al. Columbia object image
library (coil-20). Technical report CUCS-005-96, 1996.

[18] D. Nion and N. D. Sidiropoulos. Tensor algebra and multidimensional
harmonic retrieval in signal processing for mimo radar. IEEE Transac-

tions on Signal Processing, 58(11):5693–5705, 2010.

[19] A. Sobral, C. G. Baker, T. Bouwmans, and E.-h. Zahzah. Incremental
and multi-feature tensor subspace learning applied for background
modeling and subtraction. In Proc. of ICIAR, pages 94–103, 2014.

[20] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: dynamic
tensor analysis. In Proc. of KDD, pages 374–383, 2006.

[21] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos. Incremental
tensor analysis: Theory and applications. TKDD, 2(3):11, 2008.

[22] L. R. Tucker. Some mathematical notes on three-mode factor analysis.
Psychometrika, 31(3):279–311, 1966.

[23] H. Xiao. Multi-sourced Information Trustworthiness Analysis: Applica-

tions and Theory. PhD thesis, SUNY at Buffalo, 2018.

[24] H. Xiao, J. Gao, D. S. Turaga, L. H. Vu, and A. Biem. Temporal multi-
view inconsistency detection for network traffic analysis. In Proc. of

WWW, pages 455–465, 2015.

[25] H. Xiao, Y. Li, J. Gao, F. Wang, L. Ge, W. Fan, L. H. Vu, and
D. S. Turaga. Believe it today or tomorrow? detecting untrustworthy
information from dynamic multi-source data. In Proc. of SDM, 2015.

[26] M. Zhang and A. A. Sawchuk. Usc-had: a daily activity dataset for
ubiquitous activity recognition using wearable sensors. In Proc. of

Ubicomp, pages 1036–1043, 2012.

[27] V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang. Collaborative
filtering meets mobile recommendation: A user-centered approach. In
Proc. of AAAI, volume 10, pages 236–241, 2010.

1331


