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Abstract—Heterogeneous hyper-networks is used to repre-
sent multi-modal and composite interactions between data
points. In such networks, several different types of nodes
form a hyperedge. Heterogeneous hyper-network embedding
learns a distributed node representation under such complex
interactions while preserving the network structure. However,
this is a challenging task due to the multiple modalities and
composite interactions. In this study, a deep approach is pro-
posed to embed heterogeneous attributed hyper-networks with
complicated and non-linear node relationships. In particular, a
fully-connected and graph convolutional layers are designed to
project different types of nodes into a common low-dimensional
space, a tuple-wise similarity function is proposed to preserve
the network structure, and a ranking based loss function is
used to improve the similarity scores of hyperedges in the
embedding space. The proposed approach is evaluated on
synthetic and real world datasets and a better performance
is obtained compared with baselines.

Keywords-Heterogeneous hypergraph, network embedding,
similarity learning

I. INTRODUCTION

Many real-world problems can be represented by net-
works, such as social networks, biological and brain net-
works. Analyzing and modeling the node relationships in a
network facilitate machine learning tasks on graph structured
data, such as node classification and link prediction. In
particular, network embedding aims to learn distributed
node representations by preserving the underlying network
structure. Edge structure is also important to decipher the
interactions between the nodes. In a standard network, edges
represent pairwise relationships between two nodes, e.g.,
pairwise connections in a social network. On the other hand,
some problems consider interactions between several nodes,
such as author-paper-conference and the disease-medication-
side effect networks [1], [2]. In particular, biomedical net-
works, such as a patient-drug-disease network, comprises
of complex interactions among entities of different modal-
ities [3]. Heterogeneous hyper-network embedding learns
node representations for such complex networks by captur-
ing the composite biomedical interactions.

In heterogeneous information networks, composite in-
teractions are defined as tuple-wise relationships between
several different types of nodes. The composite interactions
can be decomposed into pairwise connections between fixed
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number of cross-type nodes, e.g., meta-paths. A hyperedge
can also be defined as an event and sub-events can be
sampled with a fixed number of nodes [2]. However, such
approaches ignore the tuple-wise interactions and thus limit
the flexibility of the embedding learning. In this paper, a
deep heterogeneous hyper-network embedding approach is
proposed, where the number of nodes and their types are not
fixed in a hyperedge. The proposed approach, coined HHNE,
learns low-dimensional embeddings for each node while
preserving the composite relations defined by the hyperedges
in an attributed hyper-network. Contributes of the proposed
HHNE model are as follows:

Cross-type and non-linear embedding: Attributes of dif-
ferent types of nodes do not necessarily share a common
representation, yet they are semantically related. Therefore,
we designed an embedding layer including non-linear fully-
connected layer along with a spatial graph convolutional
network (GCN) to learn a common latent space, where a
similarity score can be computed between cross-type nodes.
Tuple-wise similarity: A tuple-wise similarity function,
which does not decompose the hyperedge into predefined
meta-paths, is simultaneously learned with the embedding
layer. HHNE optimizes the proposed model based on the
hypothesis that the tuple-wise similarity of a hyperedge
embedding should be higher than that of unrelated nodes.
Thus, HHNE ensures that the composite interactions are
preserved in the embedding space without setting a limit
to the number of nodes in the hyperedge.

Loss function: The proposed model is optimized by penal-
izing lower rankings of the tuple-wise similarity scores of
hyperedges compared with the scores of unrelated nodes.
In practice, strictly assuming known interactions as positive
labels and the unknown ones as negative labels would ignore
the undiscovered relationships. Therefore, the loss function
of HHNE does not apply a binary classification scheme, but
a ranking approach. Experiments are conducted on synthetic
and real-world datasets for quantitative tasks and HHNE is
observed to perform better compared with baseline state-of-
the-art network embedding methods.

II. RELATED WORK

Embedding learning has always drawn attention in the lit-
erature [4]. Some of the embedding learning approaches in-
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clude truncated random walks with online learning [5], mod-
ularized non-negative matrix factorization (M-NMF) [6],
and semi-supervised learning for networks with outliers [7].
Deep learning is also used for network embedding, such as a
deep embedding learning approach considering both content
and relational information for heterogeneous networks [1], a
deep random surfing model to capture the structural informa-
tion [8], a CNN to learn feature representation for arbitrary
graphs [9], and a structural semi-supervised deep embedding
model to preserve first and second order proximities [10].
Attributed networks are also addressed [11] where both
structural and attribute proximities need to be preserved.
Some deep models divide attributed graphs into graphlets
to learn node and edge features [12]. Distribution of the
attributes and topological structure are also important for
network embedding [13].

Network embedding approaches mentioned so far focus
on pairwise links, which are not sufficient to model complex
real world problems. On the other hand, heterogeneous
information networks, where various type of nodes are inter-
acting each other, provide an important opportunity to model
complex real-world problems. For instance, semi-supervised
representation learning [14] and meta-path based embedding
learning [15], [16] are commonly utilized in heterogeneous
text networks. In addition, heterogeneous hypergraph em-
bedding can also be used to address document recommen-
dation [3] and to preserve contextual information [17]. Re-
cently, heterogeneous hyper-network embedding approach
including deep auto-encoders was proposed [18]. However,
these studies rely on predefined number and type of nodes
in one hyperedge, and the similarity computations comprise
of pairwise similarities in meta-paths rather than tuple-wise
similarity of a hyperedge.

III. METHOD

In this section, background information for heterogeneous
hyper-network embedding is given and the proposed ap-
proach is presented.

A. Background

1) Heterogeneous hyper-network: A hyper-network can
be defined as a network where the links between its nodes
are defined in a tuple-wise manner. A formal definition of
heterogeneous hyper-network is given below.

Definition III.1. A heterogeneous hyper-network is defined
as a hypergraph G (E,V) with a node set V
ViU - U Vk, which is a union of node sets of K types, and
a hyperedge set & = {e1,--- , e|g|}, where each hyperedge
e; contains more than two different types of nodes.

Hyperedges can be homogeneous and heterogeneous
when they contain the same type and different types of
nodes, respectively. In real world problems, a hyperedge
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usually represents semantically related group of nodes. Fur-
thermore, hyperedges model entities with multiple modal-
ities. For instance, in a drug network, each hyperedge
contains various modalities of a drug such as its chemical
structure, indications and associated ADRs. Similarly, an
ADR reporting network contains hyperedges, where each
report is represented by one patient, several drugs and their
ADRs that the patient experiences. Thus, constructing a
hyper-network for datasets with various modalities assists
an analysis of the complex relationships of different types
of information. On the other hand, learning a distributed
representation that can capture the underlying structure of
such networks, known as network embedding, is crucial to
carry out the network analysis tasks.

2) Network embedding: Network embedding aims to
learn a low dimensional representation for each node while
preserving the local and global network structures in the
embedding space such that similarity of the node embed-
dings in an edge should be higher than that of unrelated
nodes. In heterogeneous hyper-networks, different types of
nodes may lie in different spaces. For this reason, network
embedding should project each node into a common space.
Furthermore, tuple-wise similarities should be defined to be
able to preserve the composite node relationships. In real
world applications, the composite interactions have a non-
linear nature that the embedding learning needs to address.
Therefore, in this study, a deep embedding approach along
with a tuple-wise similarity function is proposed to address
the aforementioned non-linear interactions.

B. Heterogeneous Hyper-Network Embedding (HHNE)

The proposed HHNE comprises of two modules: embed-
ding and similarity function learning. In this section, each
module and the loss function are explained in details.

1) Embedding Learning: The embedding layer comprises
of a fully connected layer with non-linear activation and
a two-layer spatial GCN. GCNs can be considered as a
generalization of CNNs for graph structured data, where
the graph structure is embedded into node-level represen-
tations [19]. The spatial GCN is based on weight sharing
principal among the local neighborhoods in the graph, where
multiple layers of the GCN architecture considers high-
order neighborhoods. In this study, node embeddings of a
hyperedge are expected to be similar in a tuple-wise manner.
In addition, the discrepancy between the embeddings of the
neighboring nodes should be small, which can be achieved
by GCN. Spatial GCN requires initial node representations
and normalized adjacency matrix as given in Eq. 1 [19].

z, = f (AXW(),)
1
z, = f (AZWE),) v

where A = I+ D 2AD~ 2 is normalized adjacency
matrix, D is the diagonal degree matrix, X is original node



Graph Convolutional Network

— K\ P— w,— s
—\ ws ————

Neural Tensor Network
Output Similarity
Layer

Linear Similarity

i Layer )

Y
Embedding
Layers

Y
Similarity
Layers

Figure 1: Proposed framework for 3 types of nodes. In the embedding layer, a fully connected layer projects different types
of nodes into a common space and 2-layer GCN produces the final embeddings. The similarity layer computes the tuple-wise

similarity in the embedding space.

representations, {W((ch)n,WgZC)n} are spatial GCN weights,
and f (-) is a non-linear function, such as tanh. Adjacency
matrix of a hyper-network is computed as A = H®H” —
D [20], where H € RIVIXIZl and h(v,e) = 1 if node
v € e, ® is a diagonal matrix of hyper edge weights w (e)
(equals to identity matrix in this study), and D comprises
of dy = .cpw(e)h(v,e).

GCN approach described above requires same dimen-
sional node representations. However, heterogeneous hyper-
network has nodes with different initial dimensionalities, but
with semantic relationships. As in a patient-drug-adverse
reaction network, it is not possible to model a direct link
between patient, drug, and disease attributes. For this reason,
a fully connected layer is used to project different types
of nodes into a common space before the GCN layer. The
first layer embedding, x¥, of the ith node of type k, v¥,
is computed as v¥ f(WhuvE+b%,,), where f ()

is a non-linear activation function, W?u” € R *dr and

b, € R are the weight and bias of the fully connected
layer, and d; and r are the dimensionalities of type k and
the projection space, respectively. Different weights are used
for different node types. After mapping the nodes to an r
dimensional space, graph signal X can be formed with the
first layer node embeddings. The output of the GCN layer
produces the final embeddings.

2) Similarity Function: The tuple-wise similarity score
of the learned node embeddings in a hyperedge is desired
to be higher compared with unknown nodes to preserve the
hyper-network structure. To ensure the learned embeddings
satisfy this hypothesis, a similarity function is simultane-
ously learned with the embedding layer. Bilinear similarities
between cross-type nodes are computed by neural tensor
network (NTN) idea proposed in [21]. NTN has bilinear
and linear tensor layers to model the relationship between
two entities across multiple dimensions. The NTN model
computes a similarity score that represents the likelihood of
two entities being in a certain type of relationship [21].

The proposed similarity function, given in Eq. 2, adopts
the bilinear neural tensor, where the number of dimensions
equal to the number of different cross-type interactions in
hyperedges. Unlike NTN, the proposed model considers the
composite relationship between all the nodes in the hyper-
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edge rather than enforcing the pairwise nodes belonging to

an event. T
S(e)=f (h[l:L] + Z Wex; + bs) W,
xice @)
h[’ = Z (XZ‘)TUEXJ'
X;,X;j€€e

where f is a non-linear activation function, e is a hyperedge,
Uy € R, ¢ e {1,---,L} bg € RL, Wg € REX7,
h{t:L] is an L dimensional vector, in which each element
represents the bilinear similarity between cross-type nodes,
and {x;,x;} are the learned node embeddings. For instance,
if there are 3 different node types, {1,2, 3}, in a hyperedge,
the bilinear similarities are computed between 1 — 2, 1 — 3,
and 2 — 3 with ngs] resulting in a 3 dimensional tensor
h(3], Thus, each slice of the neural tensor represents a
different type of interaction. To capture linear contributions
of different types, a linear layer is added to unify the
embeddings of all the types in the hyperedge. In the last
layer, similarity scores of L dimensions are combined by
W, € REX! guch that the final similarity score is a
linear combination of the contributions of different types
of relationships. The overall architecture is illustrated in
Figure 1.

3) Loss Function: Hyperedges in information networks
usually represent the known interactions between the nodes.
On the other hand, unknown interactions cannot be simply
considered as negative samples since some of them might
not be discovered yet. For this reason, a strict binary
classification scheme, which relies on randomly sampled
negative hyperedges as in contrastive learning [22], can
be problematic for network embedding since the unknown
nodes may, in fact, form hyperedges and belong to existing
ones. In the proposed framework, unknown edges denoted
by FEy are still sampled, however the loss function is based
on a ranking rather than classification. The loss function,
given in Eq. 3, aims to maximize the number of tuple-wise
hyperedge similarity scores that are higher than the average
tuple-wise similarity score of the unknown nodes [23].

1 1
L= @ZeielElg @ Z

eor€|Eo

S (eor) — S(ei) | 3)
\



where S (e;) is the tuple-wise similarity score of hyperedge
e; defined in Eq. 2. Similarly, S (eox) is the similarity
score of unknown hyperedge and ¢ can be chosen as a
non-decreasing function such as the logistic loss, £ (x)
log (1 4 exp (z)). Back-propagation algorithm with mini-
batch stochastic gradient descent framework, where equal
number of known and unknown edges are sampled in each
batch, is utilized to learn the embedding and similarity lay-
ers. The sampling strategy for unknown nodes is presented
in the next section.

4) Unknown Hyperedge Sampling Strategy: In the hyper-
network, an unknown group of nodes for each known hyper-
edge is sampled via the following strategy: First, for each
hyperedge, the nodes that do not belong to any hyperedge
together with the nodes of the corresponding hyperedge are
obtained. Then an unknown hyperedge is formed, including
an identifier node from the original hyperedge, and random
sub-samples of the unrelated nodes of the remaining types.
The number of nodes in unknown hyperedges is chosen the
same as their known counterparts to avoid a possible bias
that might caused by imbalance in hyperedge sizes.

IV. EXPERIMENTS

Performance of the proposed approach was compared
with popular network embedding approaches on two real-
world datasets. The proposed model is implemented in
Python using Tensorflow '. Hidden dimesionalities of GCN
embedding layers were set to 128 and 64, and the embedding
dimensionality was set to 32 throughout the experiments.

A. Synthetic Experiment

To simulate a heterogeneous attributed hyper-network,
three different datasets of size 100, 350, 300 were randomly
generated from normal distribution with means 1.5, 0, 2.5
and variances 1.8, 0.4, 3.6, respectively. Same dimension-
ality, 256, was chosen for the visualization of original
node features of different types, while the embedding di-
mensionality was set to 32. A hyperedge was formed by
randomly choosing one node from the dataset sized 100 and
several nodes from the remaining types. Since the hyper-
network was constructed randomly, hyperedges could share
nodes and some of the nodes might be isolated. Unknown
hyperedges were generated using the strategy discussed in
Section III-B4.

Original nodes and the nodes after HHNE are visualized
using t-Stochastic Neighbor Embedding (t-SNE) [24]. t-SNE
is a dimensionality reduction and visualization technique
that captures the Euclidean distances between data points.
Since HHNE is designed to increase the tuple-wise simi-
larity of hyperedge embeddings, t-SNE is expected to map
the hyperedge nodes closer to each other compared with
unrelated nodes. Result for a hyperedge and corresponding

"https://github.com/illidanlab/HHNE.git
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Figure 2: A synthetic hyperedge and unknown hyperedge
nodes before and after HHNE. Hyperedges are highlighted
by the darker colors and the rest of the nodes can be seen in
the background. After HHNE, hyperedge nodes get closer,
while the unrelated nodes are still distant to each other.

unknown counterpart in Figure 2 shows that the HHNE
approach satisfies the hypothesis such that cross-type nodes
in a hyperedge get closer after HHNE and the embeddings
of the unrelated nodes remain distant to each other.

B. Baselines

In this study, we compare the proposed approach with
popular network embedding approaches such as Deep-
Walk [5], node2vec [25], LINE [4], DHNE [18], and
HIN2Vec [17]. We report the performance of first order
LINE-1, second order LINE-2, and LINE-1-2, which is a
concatenation of LINE-1 and LINE-2. LINE-1 considers lo-
cal pairwise proximities, whereas LINE-2 considers second
order neighborhood. To convert hyper-network to a standard
graph, the pairwise links in hyperedges were considered.
For HIN2Vec [17], different types of edges were formed,
such as T1-T2, T1-T3, T2-T3, T1-T2-T3, when there are
three types of nodes as T1,T2, and T3. For DHNE [18],
hyperedges were decomposed into hyperedges of size 3.
Baseline configurations suggested by the authors were used,
except the embedding dimension was set to 32. The baseline
algorithms do not provide a mechanism to compute the
tuple-wise similarities of the hyperedges. For this reason,
the tuple-wise similarities are compared using the equation

below:
>

{xix;}€e,i#]

T
X

le]

where |e| is the number of nodes in hyperedge e and x;
denotes the normalized learned embedding.

S (e) X; 4)

C. Real-World Datasets

In this study, two real-world datasets were used to evaluate
the HHNE performance.



1) Drug-Drug Interactions (DDI) Dataset: For evalua-
tion of HHNE performance on real-world tasks, a DDI
dataset is used with 526 drugs and the following views: (1)
Drug Indication: 1, 702 conditions that the drugs cure were
downloaded from SIDER database 2. (2) Chemical Struc-
ture: 582 dimensional drug features were extracted from
an open chemisty database, PubChem 3. (3) Single Drug
Adverse Reaction: 327 high low level hierarchy Adverse
Drug Reactions (ADRs) were extracted from ADReCS #. In
summary, a drug hyper-network was manually constructed
with 2,555 nodes and 3 types. For drug indication and
ADR, one-hot representations were used as the initial node
features. For every drug, a hyperedge was formed including
its chemical structure, several indications and ADRs. DDI
network had, in total, 526 hyperedges with an average of 79
nodes, where every node belongs at least one hyperedge.

2) FAERS Dataset: The FDA Adverse Event Reporting
System (FAERS) is a self-reported adverse event and associ-
ated medications database °. In the experiments, the cleansed
version of 2016 FAERS data [26] was used. Each report
comprises of a patient, several drugs and their ADRs. After
eliminating patients with missing values, 32, 955 hyperedges
were formed including a patient, drugs and ADRs he expe-
rienced. Age group, gender, weight and report type were
used as patient node features, where the categorical ones
were coded as one-hot vectors. In total, there were 32,955
patient, 20, 154 drug and 6,605 ADR nodes in the network.

D. Hyperedge Detection

In this experiment, the performance of the proposed
hyper-network embedding approach is evaluated for hyper-
edge detection. In this task, which can also be considered
as link prediction, 20% of the known hyperedges were
hidden during the training. 80% of the known edges and
randomly generated unknown hyperedges were used to train
the proposed model. Test similarity scores were sorted in
decreasing order to compute the average precision (AP)
and precision@k (Prec@k), where k equals to the number
of known hyperedges. Tuple-wise similarities of baselines
were computed by Eq. 4. HHNE performance for DDI
and FAERS data is summarized in Table I. Experimental
results indicate that simultaneously learning the embeddings
with the similarity function can improve the tuple-wise
similarity scores. DeepWalk also performed well for DDI
dataset. HHNE-2 row in the table reports the performance
of the embeddings learned by the proposed HHNE with
the similarity function in Eq. 4 without using the learned
similarity function. Baseline performance for FAERS dataset
were very poor compared with HHNE. This result shows that
learning a similarity function can be relevant in such cases.

Zhttp://sideeffects.embl.de/
3https:/pubchem.ncbi.nlm.nih.gov/
“http://bioinf. xmu.edu.cn/ADReCS/
Shttps://open.fda.gov/data/faers/
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Table I: Hyperedge detection performance for DDI and
FAERS datasets. Prec@Fk stands for precision@k where k
equals to the number of hyperedges and AP is the average
precision. Average performance of 5 random splits are
shown for HHNE. HHNE-2 denotes computing the tuple-
wise similarity using Eq. 4 after embedding learning by
HHNE.

DDI FAERS
Method Prec@k AP Prec@k AP
HHNE 0.98 0.99 0.95 0.98
HHNE-2 0.86 0.94 0.89 0.96
HIN2Vec 0.57 0.66 0.47 0.48
DHNE 0.89 0.96 0.25 0.35
DeepWalk 1.00 1.00 0.28 0.34
node2vec 0.58 0.63 0.68 0.68
LINE-1 0.84 0.94 0.55 0.55
LINE-2 0.59 0.66 0.62 0.63
LINE-1-2 0.63 0.73 0.57 0.56

Table II: DDI detection performance. AUC and F1-score
are computed for the ranked similarity of the positive and
negative DDI pairs.

Methods AUC  Fl1-Score
HHNE 0.64 0.61
HIN2Vec 0.69 0.64
DHNE 0.60 0.56
DeepWalk  0.55 0.50
node2vec 0.56 0.52
LINE-1 0.53 0.48
LINE-2 0.59 0.55
LINE-1-2 0.61 0.57

On the other hand, HHNE-2 could still outperform baselines
when Eq. 4 was used.

1) DDI Detection: DDI detection is a crucial step to pre-
vent mortalities and injuries caused by adverse reactions due
to DDI. In the DDI dataset, 222 drugs out of 526, resulting in
8, 576 pairs, have adverse interactions. In addition to known
DDI pairs, 17,152 unknown pairs were sampled from the
rest of the drugs. After the embedding learning, pairwise
similarities between known and unknown pairs are computed
and ranked in a decreasing order. Top 8, 576 similarity scores
are assumed to be predicted as the DDI pairs. Based on this
assumption, AUC and F1 scores in Table I are computed.
Overall performance is poor, however HHNE and HIN2Vec
produced the best results among other baselines. This result
indicates that considering composite relationships can be
more helpful for inference from heterogeneous neighboring
relationships.

V. CONCLUSION

In this study, a deep embedding learning approach is pro-
posed for heterogeneous hyper-networks, where hyperedges
contain several different types of nodes. HHNE simulta-
neously learns an embedding and a tuple-wise similarity



function to preserve hyperedges in the embedding space.
The proposed fully-connected and GCN layers capture non-
linear interactions between nodes and project them into a
common space. The similarity function defines the tuple-
wise similarities without decomposing them into pair-wise
predefined interactions. Experiments on real-world datasets
showed that HHNE preserves the heterogeneous composite
interactions better than the baseline methods. In the future
work, model complexity will be investigated.
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