
Heterogeneous Hyper-Network Embedding

Inci M. Baytas1, Cao Xiao2, Fei Wang3, Anil K. Jain1, and Jiayu Zhou1

1Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
2AI for Healthcare, IBM Research, Cambridge, MA, USA

3Healthcare Policy and Research, Weill Cornell Medical School, Cornell University, New York, NY, USA

Email: baytasin@msu.edu, cxiao@us.ibm.com, few2001@med.cornell.edu, jain@cse.msu.edu, jiayuz@msu.edu

Abstract—Heterogeneous hyper-networks is used to repre-
sent multi-modal and composite interactions between data
points. In such networks, several different types of nodes
form a hyperedge. Heterogeneous hyper-network embedding
learns a distributed node representation under such complex
interactions while preserving the network structure. However,
this is a challenging task due to the multiple modalities and
composite interactions. In this study, a deep approach is pro-
posed to embed heterogeneous attributed hyper-networks with
complicated and non-linear node relationships. In particular, a
fully-connected and graph convolutional layers are designed to
project different types of nodes into a common low-dimensional
space, a tuple-wise similarity function is proposed to preserve
the network structure, and a ranking based loss function is
used to improve the similarity scores of hyperedges in the
embedding space. The proposed approach is evaluated on
synthetic and real world datasets and a better performance
is obtained compared with baselines.

Keywords-Heterogeneous hypergraph, network embedding,
similarity learning

I. INTRODUCTION

Many real-world problems can be represented by net-

works, such as social networks, biological and brain net-

works. Analyzing and modeling the node relationships in a

network facilitate machine learning tasks on graph structured

data, such as node classification and link prediction. In

particular, network embedding aims to learn distributed

node representations by preserving the underlying network

structure. Edge structure is also important to decipher the

interactions between the nodes. In a standard network, edges

represent pairwise relationships between two nodes, e.g.,

pairwise connections in a social network. On the other hand,

some problems consider interactions between several nodes,

such as author-paper-conference and the disease-medication-

side effect networks [1], [2]. In particular, biomedical net-

works, such as a patient-drug-disease network, comprises

of complex interactions among entities of different modal-

ities [3]. Heterogeneous hyper-network embedding learns

node representations for such complex networks by captur-

ing the composite biomedical interactions.

In heterogeneous information networks, composite in-

teractions are defined as tuple-wise relationships between

several different types of nodes. The composite interactions

can be decomposed into pairwise connections between fixed

number of cross-type nodes, e.g., meta-paths. A hyperedge

can also be defined as an event and sub-events can be

sampled with a fixed number of nodes [2]. However, such

approaches ignore the tuple-wise interactions and thus limit

the flexibility of the embedding learning. In this paper, a

deep heterogeneous hyper-network embedding approach is

proposed, where the number of nodes and their types are not

fixed in a hyperedge. The proposed approach, coined HHNE,

learns low-dimensional embeddings for each node while

preserving the composite relations defined by the hyperedges

in an attributed hyper-network. Contributes of the proposed

HHNE model are as follows:

Cross-type and non-linear embedding: Attributes of dif-

ferent types of nodes do not necessarily share a common

representation, yet they are semantically related. Therefore,

we designed an embedding layer including non-linear fully-

connected layer along with a spatial graph convolutional

network (GCN) to learn a common latent space, where a

similarity score can be computed between cross-type nodes.

Tuple-wise similarity: A tuple-wise similarity function,

which does not decompose the hyperedge into predefined

meta-paths, is simultaneously learned with the embedding

layer. HHNE optimizes the proposed model based on the

hypothesis that the tuple-wise similarity of a hyperedge

embedding should be higher than that of unrelated nodes.

Thus, HHNE ensures that the composite interactions are

preserved in the embedding space without setting a limit

to the number of nodes in the hyperedge.

Loss function: The proposed model is optimized by penal-

izing lower rankings of the tuple-wise similarity scores of

hyperedges compared with the scores of unrelated nodes.

In practice, strictly assuming known interactions as positive

labels and the unknown ones as negative labels would ignore

the undiscovered relationships. Therefore, the loss function

of HHNE does not apply a binary classification scheme, but

a ranking approach. Experiments are conducted on synthetic

and real-world datasets for quantitative tasks and HHNE is

observed to perform better compared with baseline state-of-

the-art network embedding methods.

II. RELATED WORK

Embedding learning has always drawn attention in the lit-

erature [4]. Some of the embedding learning approaches in-

875

2018 IEEE International Conference on Data Mining

978-1-5386-9159-5/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDM.2018.00104

clude truncated random walks with online learning [5], mod-

ularized non-negative matrix factorization (M-NMF) [6],

and semi-supervised learning for networks with outliers [7].

Deep learning is also used for network embedding, such as a

deep embedding learning approach considering both content

and relational information for heterogeneous networks [1], a

deep random surfing model to capture the structural informa-

tion [8], a CNN to learn feature representation for arbitrary

graphs [9], and a structural semi-supervised deep embedding

model to preserve first and second order proximities [10].

Attributed networks are also addressed [11] where both

structural and attribute proximities need to be preserved.

Some deep models divide attributed graphs into graphlets

to learn node and edge features [12]. Distribution of the

attributes and topological structure are also important for

network embedding [13].

Network embedding approaches mentioned so far focus

on pairwise links, which are not sufficient to model complex

real world problems. On the other hand, heterogeneous

information networks, where various type of nodes are inter-

acting each other, provide an important opportunity to model

complex real-world problems. For instance, semi-supervised

representation learning [14] and meta-path based embedding

learning [15], [16] are commonly utilized in heterogeneous

text networks. In addition, heterogeneous hypergraph em-

bedding can also be used to address document recommen-

dation [3] and to preserve contextual information [17]. Re-

cently, heterogeneous hyper-network embedding approach

including deep auto-encoders was proposed [18]. However,

these studies rely on predefined number and type of nodes

in one hyperedge, and the similarity computations comprise

of pairwise similarities in meta-paths rather than tuple-wise

similarity of a hyperedge.

III. METHOD

In this section, background information for heterogeneous

hyper-network embedding is given and the proposed ap-

proach is presented.

A. Background

1) Heterogeneous hyper-network: A hyper-network can

be defined as a network where the links between its nodes

are defined in a tuple-wise manner. A formal definition of

heterogeneous hyper-network is given below.

Definition III.1. A heterogeneous hyper-network is defined

as a hypergraph G = (E, V) with a node set V =
V1

⋃

· · ·
⋃

VK , which is a union of node sets of K types, and

a hyperedge set E = {e1, · · · , e|E|}, where each hyperedge

ei contains more than two different types of nodes.

Hyperedges can be homogeneous and heterogeneous

when they contain the same type and different types of

nodes, respectively. In real world problems, a hyperedge

usually represents semantically related group of nodes. Fur-

thermore, hyperedges model entities with multiple modal-

ities. For instance, in a drug network, each hyperedge

contains various modalities of a drug such as its chemical

structure, indications and associated ADRs. Similarly, an

ADR reporting network contains hyperedges, where each

report is represented by one patient, several drugs and their

ADRs that the patient experiences. Thus, constructing a

hyper-network for datasets with various modalities assists

an analysis of the complex relationships of different types

of information. On the other hand, learning a distributed

representation that can capture the underlying structure of

such networks, known as network embedding, is crucial to

carry out the network analysis tasks.

2) Network embedding: Network embedding aims to

learn a low dimensional representation for each node while

preserving the local and global network structures in the

embedding space such that similarity of the node embed-

dings in an edge should be higher than that of unrelated

nodes. In heterogeneous hyper-networks, different types of

nodes may lie in different spaces. For this reason, network

embedding should project each node into a common space.

Furthermore, tuple-wise similarities should be defined to be

able to preserve the composite node relationships. In real

world applications, the composite interactions have a non-

linear nature that the embedding learning needs to address.

Therefore, in this study, a deep embedding approach along

with a tuple-wise similarity function is proposed to address

the aforementioned non-linear interactions.

B. Heterogeneous Hyper-Network Embedding (HHNE)

The proposed HHNE comprises of two modules: embed-

ding and similarity function learning. In this section, each

module and the loss function are explained in details.

1) Embedding Learning: The embedding layer comprises

of a fully connected layer with non-linear activation and

a two-layer spatial GCN. GCNs can be considered as a

generalization of CNNs for graph structured data, where

the graph structure is embedded into node-level represen-

tations [19]. The spatial GCN is based on weight sharing

principal among the local neighborhoods in the graph, where

multiple layers of the GCN architecture considers high-

order neighborhoods. In this study, node embeddings of a

hyperedge are expected to be similar in a tuple-wise manner.

In addition, the discrepancy between the embeddings of the

neighboring nodes should be small, which can be achieved

by GCN. Spatial GCN requires initial node representations

and normalized adjacency matrix as given in Eq. 1 [19].

Z1 = f
(

ÂXW
(1)
gcn

)

Z2 = f
(

ÂZ1W
(2)
gcn

) (1)

where Â = I + D
− 1

2AD
− 1

2 is normalized adjacency
matrix, D is the diagonal degree matrix, X is original node

876

Figure 1: Proposed framework for 3 types of nodes. In the embedding layer, a fully connected layer projects different types

of nodes into a common space and 2-layer GCN produces the final embeddings. The similarity layer computes the tuple-wise

similarity in the embedding space.

representations, {W
(1)
gcn,W

(2)
gcn} are spatial GCN weights,

and f (·) is a non-linear function, such as tanh. Adjacency

matrix of a hyper-network is computed as A = HΦH
T −

D [20], where H ∈ R
|V |×|E| and h (v, e) = 1 if node

v ∈ e, Φ is a diagonal matrix of hyper edge weights w (e)
(equals to identity matrix in this study), and D comprises

of dv =
∑

e∈E w (e)h (v, e).
GCN approach described above requires same dimen-

sional node representations. However, heterogeneous hyper-

network has nodes with different initial dimensionalities, but

with semantic relationships. As in a patient-drug-adverse

reaction network, it is not possible to model a direct link

between patient, drug, and disease attributes. For this reason,

a fully connected layer is used to project different types

of nodes into a common space before the GCN layer. The

first layer embedding, xki , of the ith node of type k, v
k
I ,

is computed as v
k
i = f

(

Wk
fullv

k
i + bk

full

)

, where f (·)

is a non-linear activation function, Wk
full ∈ R

r
′

×dk and

bfull ∈ R
r
′

are the weight and bias of the fully connected

layer, and dk and r are the dimensionalities of type k and

the projection space, respectively. Different weights are used

for different node types. After mapping the nodes to an r
′

dimensional space, graph signal X can be formed with the

first layer node embeddings. The output of the GCN layer

produces the final embeddings.

2) Similarity Function: The tuple-wise similarity score

of the learned node embeddings in a hyperedge is desired

to be higher compared with unknown nodes to preserve the

hyper-network structure. To ensure the learned embeddings

satisfy this hypothesis, a similarity function is simultane-

ously learned with the embedding layer. Bilinear similarities

between cross-type nodes are computed by neural tensor

network (NTN) idea proposed in [21]. NTN has bilinear

and linear tensor layers to model the relationship between

two entities across multiple dimensions. The NTN model

computes a similarity score that represents the likelihood of

two entities being in a certain type of relationship [21].

The proposed similarity function, given in Eq. 2, adopts

the bilinear neural tensor, where the number of dimensions

equal to the number of different cross-type interactions in

hyperedges. Unlike NTN, the proposed model considers the

composite relationship between all the nodes in the hyper-

edge rather than enforcing the pairwise nodes belonging to

an event.

S (e) = f

(

h
[1:L] +

∑

xi∈e

WSxi + bS

)T

Wo

h
� =

∑

xi,xj∈e

(xi)
T
U

�
xj

(2)

where f is a non-linear activation function, e is a hyperedge,

U
�
S ∈ R

r×r, � ∈ {1, · · · , L} bS ∈ R
L, WS ∈ R

L×r.

h
[1:L] is an L dimensional vector, in which each element

represents the bilinear similarity between cross-type nodes,

and {xi,xj} are the learned node embeddings. For instance,

if there are 3 different node types, {1, 2, 3}, in a hyperedge,

the bilinear similarities are computed between 1− 2, 1− 3,

and 2 − 3 with U
[1:3]
S resulting in a 3 dimensional tensor

h
[1:3]. Thus, each slice of the neural tensor represents a

different type of interaction. To capture linear contributions

of different types, a linear layer is added to unify the

embeddings of all the types in the hyperedge. In the last

layer, similarity scores of L dimensions are combined by

Wo ∈ R
L×1 such that the final similarity score is a

linear combination of the contributions of different types

of relationships. The overall architecture is illustrated in

Figure 1.

3) Loss Function: Hyperedges in information networks

usually represent the known interactions between the nodes.

On the other hand, unknown interactions cannot be simply

considered as negative samples since some of them might

not be discovered yet. For this reason, a strict binary

classification scheme, which relies on randomly sampled

negative hyperedges as in contrastive learning [22], can

be problematic for network embedding since the unknown

nodes may, in fact, form hyperedges and belong to existing

ones. In the proposed framework, unknown edges denoted

by E0 are still sampled, however the loss function is based

on a ranking rather than classification. The loss function,

given in Eq. 3, aims to maximize the number of tuple-wise

hyperedge similarity scores that are higher than the average

tuple-wise similarity score of the unknown nodes [23].

L =
1

|E|

∑

ei∈|E|
�

⎛

⎝

1

|E0|

∑

e0k∈|E0|

S (e0k)− S (ei)

⎞

⎠ (3)

877

where S (ei) is the tuple-wise similarity score of hyperedge

ei defined in Eq. 2. Similarly, S (e0k) is the similarity

score of unknown hyperedge and � can be chosen as a

non-decreasing function such as the logistic loss, � (x) =
log (1 + exp (x)). Back-propagation algorithm with mini-

batch stochastic gradient descent framework, where equal

number of known and unknown edges are sampled in each

batch, is utilized to learn the embedding and similarity lay-

ers. The sampling strategy for unknown nodes is presented

in the next section.

4) Unknown Hyperedge Sampling Strategy: In the hyper-

network, an unknown group of nodes for each known hyper-

edge is sampled via the following strategy: First, for each

hyperedge, the nodes that do not belong to any hyperedge

together with the nodes of the corresponding hyperedge are

obtained. Then an unknown hyperedge is formed, including

an identifier node from the original hyperedge, and random

sub-samples of the unrelated nodes of the remaining types.

The number of nodes in unknown hyperedges is chosen the

same as their known counterparts to avoid a possible bias

that might caused by imbalance in hyperedge sizes.

IV. EXPERIMENTS

Performance of the proposed approach was compared

with popular network embedding approaches on two real-

world datasets. The proposed model is implemented in

Python using Tensorflow 1. Hidden dimesionalities of GCN

embedding layers were set to 128 and 64, and the embedding

dimensionality was set to 32 throughout the experiments.

A. Synthetic Experiment

To simulate a heterogeneous attributed hyper-network,

three different datasets of size 100, 350, 300 were randomly

generated from normal distribution with means 1.5, 0, 2.5
and variances 1.8, 0.4, 3.6, respectively. Same dimension-

ality, 256, was chosen for the visualization of original

node features of different types, while the embedding di-

mensionality was set to 32. A hyperedge was formed by

randomly choosing one node from the dataset sized 100 and

several nodes from the remaining types. Since the hyper-

network was constructed randomly, hyperedges could share

nodes and some of the nodes might be isolated. Unknown

hyperedges were generated using the strategy discussed in

Section III-B4.

Original nodes and the nodes after HHNE are visualized

using t-Stochastic Neighbor Embedding (t-SNE) [24]. t-SNE

is a dimensionality reduction and visualization technique

that captures the Euclidean distances between data points.

Since HHNE is designed to increase the tuple-wise simi-

larity of hyperedge embeddings, t-SNE is expected to map

the hyperedge nodes closer to each other compared with

unrelated nodes. Result for a hyperedge and corresponding

1https://github.com/illidanlab/HHNE.git

Figure 2: A synthetic hyperedge and unknown hyperedge

nodes before and after HHNE. Hyperedges are highlighted

by the darker colors and the rest of the nodes can be seen in

the background. After HHNE, hyperedge nodes get closer,

while the unrelated nodes are still distant to each other.

unknown counterpart in Figure 2 shows that the HHNE

approach satisfies the hypothesis such that cross-type nodes

in a hyperedge get closer after HHNE and the embeddings

of the unrelated nodes remain distant to each other.

B. Baselines

In this study, we compare the proposed approach with

popular network embedding approaches such as Deep-

Walk [5], node2vec [25], LINE [4], DHNE [18], and

HIN2Vec [17]. We report the performance of first order

LINE-1, second order LINE-2, and LINE-1-2, which is a

concatenation of LINE-1 and LINE-2. LINE-1 considers lo-

cal pairwise proximities, whereas LINE-2 considers second

order neighborhood. To convert hyper-network to a standard

graph, the pairwise links in hyperedges were considered.

For HIN2Vec [17], different types of edges were formed,

such as T1-T2, T1-T3, T2-T3, T1-T2-T3, when there are

three types of nodes as T1,T2, and T3. For DHNE [18],

hyperedges were decomposed into hyperedges of size 3.

Baseline configurations suggested by the authors were used,

except the embedding dimension was set to 32. The baseline

algorithms do not provide a mechanism to compute the

tuple-wise similarities of the hyperedges. For this reason,

the tuple-wise similarities are compared using the equation

below:

S (e) =
1

|e|

∑

{xi,xj}∈e,i �=j

x
T
i xj (4)

where |e| is the number of nodes in hyperedge e and xi

denotes the normalized learned embedding.

C. Real-World Datasets

In this study, two real-world datasets were used to evaluate

the HHNE performance.

878

1) Drug-Drug Interactions (DDI) Dataset: For evalua-

tion of HHNE performance on real-world tasks, a DDI

dataset is used with 526 drugs and the following views: (1)

Drug Indication: 1, 702 conditions that the drugs cure were

downloaded from SIDER database 2. (2) Chemical Struc-

ture: 582 dimensional drug features were extracted from

an open chemisty database, PubChem 3. (3) Single Drug

Adverse Reaction: 327 high low level hierarchy Adverse

Drug Reactions (ADRs) were extracted from ADReCS 4. In

summary, a drug hyper-network was manually constructed

with 2, 555 nodes and 3 types. For drug indication and

ADR, one-hot representations were used as the initial node

features. For every drug, a hyperedge was formed including

its chemical structure, several indications and ADRs. DDI

network had, in total, 526 hyperedges with an average of 79
nodes, where every node belongs at least one hyperedge.

2) FAERS Dataset: The FDA Adverse Event Reporting

System (FAERS) is a self-reported adverse event and associ-

ated medications database 5. In the experiments, the cleansed

version of 2016 FAERS data [26] was used. Each report

comprises of a patient, several drugs and their ADRs. After

eliminating patients with missing values, 32, 955 hyperedges

were formed including a patient, drugs and ADRs he expe-

rienced. Age group, gender, weight and report type were

used as patient node features, where the categorical ones

were coded as one-hot vectors. In total, there were 32, 955
patient, 20, 154 drug and 6, 605 ADR nodes in the network.

D. Hyperedge Detection

In this experiment, the performance of the proposed

hyper-network embedding approach is evaluated for hyper-

edge detection. In this task, which can also be considered

as link prediction, 20% of the known hyperedges were

hidden during the training. 80% of the known edges and

randomly generated unknown hyperedges were used to train

the proposed model. Test similarity scores were sorted in

decreasing order to compute the average precision (AP)

and precision@k (Prec@k), where k equals to the number

of known hyperedges. Tuple-wise similarities of baselines

were computed by Eq. 4. HHNE performance for DDI

and FAERS data is summarized in Table I. Experimental

results indicate that simultaneously learning the embeddings

with the similarity function can improve the tuple-wise

similarity scores. DeepWalk also performed well for DDI

dataset. HHNE-2 row in the table reports the performance

of the embeddings learned by the proposed HHNE with

the similarity function in Eq. 4 without using the learned

similarity function. Baseline performance for FAERS dataset

were very poor compared with HHNE. This result shows that

learning a similarity function can be relevant in such cases.

2http://sideeffects.embl.de/
3https://pubchem.ncbi.nlm.nih.gov/
4http://bioinf.xmu.edu.cn/ADReCS/
5https://open.fda.gov/data/faers/

Table I: Hyperedge detection performance for DDI and

FAERS datasets. Prec@k stands for precision@k where k

equals to the number of hyperedges and AP is the average

precision. Average performance of 5 random splits are

shown for HHNE. HHNE-2 denotes computing the tuple-

wise similarity using Eq. 4 after embedding learning by

HHNE.

DDI FAERS

Method Prec@k AP Prec@k AP

HHNE 0.98 0.99 0.95 0.98

HHNE-2 0.86 0.94 0.89 0.96

HIN2Vec 0.57 0.66 0.47 0.48

DHNE 0.89 0.96 0.25 0.35

DeepWalk 1.00 1.00 0.28 0.34

node2vec 0.58 0.63 0.68 0.68

LINE-1 0.84 0.94 0.55 0.55

LINE-2 0.59 0.66 0.62 0.63

LINE-1-2 0.63 0.73 0.57 0.56

Table II: DDI detection performance. AUC and F1-score

are computed for the ranked similarity of the positive and

negative DDI pairs.

Methods AUC F1-Score

HHNE 0.64 0.61

HIN2Vec 0.69 0.64

DHNE 0.60 0.56

DeepWalk 0.55 0.50

node2vec 0.56 0.52

LINE-1 0.53 0.48

LINE-2 0.59 0.55

LINE-1-2 0.61 0.57

On the other hand, HHNE-2 could still outperform baselines

when Eq. 4 was used.

1) DDI Detection: DDI detection is a crucial step to pre-

vent mortalities and injuries caused by adverse reactions due

to DDI. In the DDI dataset, 222 drugs out of 526, resulting in

8, 576 pairs, have adverse interactions. In addition to known

DDI pairs, 17, 152 unknown pairs were sampled from the

rest of the drugs. After the embedding learning, pairwise

similarities between known and unknown pairs are computed

and ranked in a decreasing order. Top 8, 576 similarity scores

are assumed to be predicted as the DDI pairs. Based on this

assumption, AUC and F1 scores in Table I are computed.

Overall performance is poor, however HHNE and HIN2Vec

produced the best results among other baselines. This result

indicates that considering composite relationships can be

more helpful for inference from heterogeneous neighboring

relationships.

V. CONCLUSION

In this study, a deep embedding learning approach is pro-

posed for heterogeneous hyper-networks, where hyperedges

contain several different types of nodes. HHNE simulta-

neously learns an embedding and a tuple-wise similarity

879

function to preserve hyperedges in the embedding space.

The proposed fully-connected and GCN layers capture non-

linear interactions between nodes and project them into a

common space. The similarity function defines the tuple-

wise similarities without decomposing them into pair-wise

predefined interactions. Experiments on real-world datasets

showed that HHNE preserves the heterogeneous composite

interactions better than the baseline methods. In the future

work, model complexity will be investigated.

ACKNOWLEDGMENT

This research is supported in part by the Office of Naval

Research (ONR) under grants number N00014-17-1-2265

(to JZ and AKJ), N00014-14-1-0631 (to JZ and AKJ) and

National Science Foundation under grants IIS-1565596, IIS-

1615597, and IIS-1749940 (to JZ). This research of Fei

Wang is supported by ONR N00014-18-1-2585, NSF IIS-

1716432 and NSF IIS-1750326.

REFERENCES

[1] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and
T. S. Huang, “Heterogeneous network embedding via deep
architectures,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. ACM, 2015, pp. 119–128.

[2] H. Gui, J. Liu, F. Tao, M. Jiang, B. Norick, L. Kaplan, and
J. Han, “Embedding learning with events in heterogeneous
information networks,” IEEE Transactions on Knowledge and
Data Engineering, vol. 29, no. 11, pp. 2428–2441, 2017.

[3] Y. Zhu, Z. Guan, S. Tan, H. Liu, D. Cai, and X. He,
“Heterogeneous hypergraph embedding for document recom-
mendation,” Neurocomputing, vol. 216, pp. 150 – 162, 2016.

[4] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei,
“Line: Large-scale information network embedding,” in Pro-
ceedings of the 24th International Conference on World Wide
Web. International World Wide Web Conferences Steering
Committee, 2015, pp. 1067–1077.

[5] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online
learning of social representations,” in Proceedings of the
20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2014, pp. 701–710.

[6] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang,
“Community preserving network embedding,” in AAAI 17,
2017.

[7] J. Liang, P. Jacobs, and S. Parthasarathy, “SEANO: semi-
supervised embedding in attributed networks with outliers,”
CoRR, vol. abs/1703.08100, 2017. [Online]. Available:
http://arxiv.org/abs/1703.08100

[8] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning
graph representations,” in Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. AAAI Press, 2016, pp.
1145–1152.

[9] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convo-
lutional neural networks for graphs,” in Proceedings of the
33rd International Conference on International Conference
on Machine Learning - Volume 48. JMLR.org, 2016, pp.
2014–2023.

[10] D. Wang, P. Cui, and W. Zhu, “Structural deep network
embedding,” in Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. ACM, 2016, pp. 1225–1234.

[11] L. Liao, X. He, H. Zhang, and T.-S. Chua, “Attributed social
network embedding,” CoRR, vol. abs/1705.04969, 2017.
[Online]. Available: https://arxiv.org/abs/1705.04969

[12] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Deep feature
learning for graphs,” CoRR, vol. abs/1704.08829, 2017.
[Online]. Available: https://arxiv.org/abs/1704.08829

[13] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive
representation learning on large graphs,” CoRR, vol.
abs/1706.02216, 2017. [Online]. Available: http://arxiv.org/
abs/1706.02216

[14] J. Tang, M. Qu, and Q. Mei, “PTE: predictive text
embedding through large-scale heterogeneous text networks,”
CoRR, vol. abs/1508.00200, 2015. [Online]. Available:
http://arxiv.org/abs/1508.00200

[15] J. Shang, M. Qu, J. Liu, L. M. Kaplan, J. Han, and
J. Peng, “Meta-path guided embedding for similarity
search in large-scale heterogeneous information networks,”
CoRR, vol. abs/1610.09769, 2016. [Online]. Available:
http://arxiv.org/abs/1610.09769

[16] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec:
Scalable representation learning for heterogeneous networks,”
in KDD ’17. ACM, 2017, pp. 135–144.

[17] T.-y. Fu, W.-C. Lee, and Z. Lei, “Hin2vec: Explore meta-paths
in heterogeneous information networks for representation
learning,” in Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management. ACM, 2017,
pp. 1797–1806.

[18] K. Tu, P. Cui, X. Wang, F. Wang, and W. Zhu,
“Structural deep embedding for hyper-networks,” CoRR, vol.
arXiv preprint arXiv:1711.10146, 2017. [Online]. Available:
https://arxiv.org/pdf/1711.10146

[19] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” in 5th International
Conference on Learning Representations, 2017.

[20] F. Wu, Y.-H. Han, and Y.-T. Zhuang, “Multiple hypergraph
clustering of web images by miningword2image correlations,”
Journal of Computer Science and Technology, vol. 25, no. 4,
pp. 750–760, Jul 2010.

[21] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning
with neural tensor networks for knowledge base completion,”
in Advances in Neural Information Processing Systems 26.
Curran Associates, Inc., 2013, pp. 926–934.

[22] N. A. Smith and J. Eisner, “Contrastive estimation: Training
log-linear models on unlabeled data,” in Proceedings of the
43rd Annual Meeting on Association for Computational Lin-
guistics. Association for Computational Linguistics, 2005,
pp. 354–362.

[23] Y. Liu, S. Qiu, P. Zhang, P. Gong, F. Wang, G. Xue, and
J. Ye, “Computational drug discovery with dyadic positive-
unlabeled learning,” in Proceedings of the 2017 SIAM Inter-
national Conference on Data Mining, 2017, pp. 45–53.

[24] L. van der Maaten and G. Hinton, “Visualizing data using t-
sne,” Journal of Machine Learning Research, vol. 9, no. 2008,
pp. 2579–2605, 2008.

[25] A. Grover and J. Leskovec, “node2vec: Scalable feature
learning for networks,” in Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2016.

[26] C. I. L. at National University of Kaohsiung. (2016)
Interactive adverse drug reactions system. [Online]. Available:
http://iadr.csie.nuk.edu.tw/Resource.aspx

880

