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Abstract—With the arrival of the big data era, more and more
data are becoming readily available in various real world appli-
cations and those data are usually highly heterogeneous. Taking
computational medicine as an example, we have both Electronic
Health Records (EHR) and medical images for each patient. For
complicated diseases such as Parkinson’s and Alzheimer’s, both
EHR and neuroimaging information are very important for dis-
ease understanding because they contain complementary aspects
of the disease. However, EHR and neuroimage are completely
different. So far the existing research has been mainly focusing on
one of them. In this paper, we proposed a framework, Memory-
Based Graph Convolution Network (MemGCN), to perform
integrative analysis with such multi-modal data. Specifically,
GCN is used to extract useful information from the patients’
neuroimages. The information contained in the patient EHRs
before the acquisition of each brain image is captured by a mem-
ory network because of its sequential nature. The information
contained in each brain image is combined with the information
read out from the memory network to infer the disease state at the
image acquisition timestamp. To further enhance the analytical
power of MemGCN, we also designed a multi-hop strategy that
allows multiple reading and updating on the memory can be
performed at each iteration. We conduct experiments using the
patient data from the Parkinson’s Progression Markers Initiative
(PPMI) with the task of classification of Parkinson’s Disease (PD)
cases versus controls. We demonstrate that superior classification
performance can be achieved with our proposed framework,
comparing with existing approaches involving a single type of
data.

I. INTRODUCTION

With the arrival of the big data era, more and more data are

becoming readily available in various real world applications.

Those data are like gold mines and data mining technologies

are like tools that can dig the gold out from those mines.

Taking medicine as an example, we have a large amount

of medical data of different types nowadays, from molecular

to cellular to clinical and even environmental. As has been

envisioned in [1], one key aspect of precision medicine, which

aims at recommending the right treatment to the right patient

at the right time, is to integrate those multi-scale data from

different sources to obtain a comprehensive understanding of

a health condition.

Many data mining approaches have been proposed for

analyzing medical data in recent years. For example, Ghas-

semi et al. [2] modeled the mortality risk in intensive care

unit with latent variable models. Caruana et al. [3] utilized

generalized additive model to predict the risk of pneumonia

and hospital readmission. Zhou et al. [4] developed a matrix

factorization approach for predictive modeling of the disease

onset risk based on patients’ Electronic Health Records (EHR)

data. Tensor modeling techniques have also been leveraged in

electronic phenotyping [5], [6] and clinical natural language

processing [7]. More recently, deep learning has emerged as

a powerful data mining approach that can disentangle the

complex interactions among data features and achieve superior

performance. Because of the complex nature of medical prob-

lems, researchers have also been exploring the applicability of

deep learning models in helping with medical problems using

medical images [8], [9], EHRs [4], [10], physiological signals

[11], [12], etc., and obtained promising results.

Despite the initial success, so far most of the existing works

on data mining for medicine have been focusing on one single

type of data (e.g., images or EHRs). However, typically dif-

ferent data sources contain complementary information about

the patients from different aspects. For example, concerning

neurological diseases, we can get general clinical information

of patients, such as diagnosis, medication, lab, etc., from

EHRs; while we can obtain specific biomarkers regarding

white matter, gray matter, and the change of different Regions-

of-Interest (ROI), from brain images. Integrative analysis of

both EHR and neuroimages can help us understand the disease

in a better and more comprehensive way. In reality, such

integrative analysis is challenging because of the following

reasons.

• Heterogeneity. The nature of patient EHR and neuroim-

ages are completely different: the EHR for each patient

can be regarded as a temporal event sequence, where at

each timestamp multiple medical events (e.g., diagnosis,

medications, lab tests, etc.) can appear; while each neu-

roimage is essentially a collection of pixels. Therefore

the ways to process these two types of data could be

very different.

• Sequentiality. EHR data are sequential and a specific

brain image is static. The brain status reflected in a

certain brain image can be related to the EHR of the

corresponding patient before the acquisition of the image.

Effective integration of such heterogeneous information

into a unified analytics pipeline is a challenging task.

With the above considerations, we proposed a novel Memory-
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based Graph Convolutional Network (MemGCN) to perform

integrative analysis with both patient EHRs and neuroimages.

As its name suggests, there are two major components in

MemGCN.

• Graph Convolutional Network (GCN) [13]. GCN is a

deep learning model that generalizes the Convolutional

Neural Nets (CNN) [14] on regular lattices to irregular

graphs. GCN has been proved to be very effective on

extracting useful features from graphs.

• Memory Network [15]. Memory network is a new type

of model that connects a regular learning process with a

memory module, which is usually represented as a matrix

that memorizes the historical status of the system. At

each iteration some useful information is extracted from

the memory to help the current inference while the same

time the memory unit will be updated.

In our framework, the GCN module extracts features from

the human brain networks constructed from the brain images.

The longitudinal patient EHRs are stored in the memory

network to encode the historical clinical information about the

patient before the acquisition of the image. The information

extracted from the memory network will be combined with the

feature from GCN to discriminate PD cases and controls. We

conduct experiments on real world data from the patients in the

Parkinson’s Progression Markers Initiative (PPMI) [16] and

obtained superior performance comparing with conventional

methodologies.

The rest of this paper is organized as follows. Section II

presents the technical details of our framework. The experi-

mental results are introduced in Section III, followed by the

related work in Section IV and conclusions in Section V.

II. METHOD

A. Overview

As illustrated in Fig. 1, the proposed method MemGCN

is a matching network that is designed for metric learning

on not only brain images but also clinical records. The pre-

processed brain connectivity graphs are transformed by graph

convolutional networks into representations, while memory

mechanism is in charge of iteratively (multiple hops) reading

clinical sequences and choosing what to retrieve from memo-

ries in order to augment the representations learned by graph

convolution. For the purpose of metric learning, inner product

similarity and bilinear similarity are separately introduced

in the matching layer. The output component is composed

of a fully connected layer and a softmax for relationship

classification of acquisition pairs. Accordingly, we present

MemGCN, a matching network embeds multi-hop memory-

augmented graph convolutions and can be trained in an end-

to-end fashion with stochastic optimization.

B. Graph Convolution

The brain connectivity graph is characterized by defining

its ROI nodes and the interactions among them. Since the

graph-structured data are non-Euclidean, it is not straight-

forward to use a standard convolution that has impressive

performances on grid. Hence, we resort to geometric deep

learning approaches [17], [18] to deal with the problem of

learning features on brain connectivity network.

In general, let G = ({1, · · · , n}, E ,W) be an undirected

weighted graph, where W = (wij) is a symmetric adjacency

matrix satisfying wij > 0 if (i, j) ∈ E and wij = 0 if

(i, j) /∈ E . According to spectral graph theory [19], the

graph Laplacian matrix can be computed as ∆ = I −
D−1/2WD−1/2, where D ∈ R

n×n is the diagonal degree

matrix with dii =
∑

j �=i wij , and I ∈ R
n×n is the identity

matrix. Note that ∆ is a positive-semidefinite matrix and

its eigendecomposition can be written as ∆ = ΦΛΦT,

where Φ = (φ0, · · · , φn) are the orthonormal eigenvectors

and Λ = diag(λ1, · · · , λ(n)) is the diagonal matrix of non-

negative eigenvalues 0 = λ0 ≤ · · · ≤ λn.

In our scenario, the vertices of graph G are corresponding

to ROIs. Define a brain connectivity acquisition as an input

signal x = (x1, · · · ,xn), where xi ∈ R
n is a feature

vector associated with vertex i. The convolution operation is

conducted on Fourier domain instead of the vertex domain.

Consider two signals x and g, it can be proved that the

following equation exists,

x � g = Φ(ΦTx)� (ΦTg) = Φgθ(Λ)ΦTx

= Φdiag(ĝ1, · · · ĝn)x̂ (1)

where � is the element-wise Hadamard product and x̂ = ΦTx

defines the Graph Fourier Transform. The function ĝθ(.) can

be regarded as learnable spectral filters. Previous studies [13],

[20]–[22] on geometric deep learning have proposed a variety

of filter functions to achieve promising properties such as

spatial localization and computational complexity. Chebyshev

spectral convolution network (ChebNet) [22] is utilized in our

model. Before introducing representation learning by Cheb-

Net, we first give the details about how to construct a graph

G and build its edges E with ROI vertices of the collection of

brain image acquisitions.

Spatial Graph Construction

The brain connectivity graph can be represented as a square

matrix x ∈ R
n×n with the numerical values indicating

the connectivity strength of ROI pairs. However, the region

coordinates of anatomical space can provide the crucial spatial

relations between ROIs which have not been taken into ac-

count in conventional works of the domain [23]. Motivated by

the work [24], which applied graph convolution on a functional

Magnetic Resonance Imaging (fMRI) task, a spatial graph

based on 3-dimensional coordinates is constructed for our

model.

which are associated with a predefined number of ROIs

and share a common coordinate system. The xyz-coordinates

{(vxi,m, vyi,m, vzi,m)}Mm=1 of region center are able to present

the spatial location of the corresponding ROI i. Specifically,

the global ROI coordinates are computed by the average aggre-

gation v̄i =
1

M (ΣM
m vxi,m,ΣM

m vyi,m,ΣM
m vzi,m), ∀i ∈ (1, · · · , n).

Thus, the edges E can be constructed by a Gaussian function
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Fig. 1. Memory-based Graph Convolutional Network for brain connectivity graphs with clinical records. For simplicity, we depict the clinical records via a
sequence of vectors in the figure. In practice, each clinical sequence is corresponding to a neuroimage acquisition.

based on k-Nearest Neighbor similarity, which is

wij =

{

exp(−‖v̄i−v̄j‖
2

2σ2 ), if i ∈ Nj or j ∈ Ni

0, otherwise.
(2)

where wij denotes the edge weights between vertex i and

vertex j, Ni and Nj denote the neighbors for i and j
respectively. In practice, we set G as a 10-Nearest Neighbor

graph. Therefore, the spatial information of ROI is formulated

into our model in terms of the graph structure.

ChebNet

With the constructed graph G, its graph Laplacian matrix

∆ can be obtained. Now our goal is to learn a high-level

representation for each image acquisition by feeding its input

signal x as well as the shared ∆ into the neural network.

From the general sense, it can capture the local traits of each

individual brain images and the global traits of the population

of subjects.

To address the issues of localization and computational

efficiency for convolution filters on graphs, ChebNet exploited

a series of polynomial filters represented in the Chebyshev

basis,

gθ(∆) =

r−1
∑

p=0

θpTp(∆̃) =

r−1
∑

p=0

θpΦTp(Λ̃)ΦT (3)

where ∆̃ = 2λ−1
n ∆ − I is the rescaled Laplacian which

leads to its eigenvalues Λ̃ = 2λ−1
n Λ − I in the interval

[−1, 1]. θ is the r-dimensional vector Chebyshev coefficients

parameterizing the filters. And Tp(λ̃) = 2λTj−1(λ)−Tj−2(λ)
defines the Chebyshev polynomial in a recursive manner with

T0(λ) = 1 and T1(λ) = λ.

To explicitly express filter learning of the graph convolution,

without loss of generality, let kl denote the index of feature

map in layer l, the kl+1-th feature map in its layer of sample

m is given by

ym,kl+1 =

fin
∑

kl=1

gθ
kl,l+1

(L)ym,kl ∈ R
n (4)

yielding fin×fout vectors of trainable Chebyshev coefficients

θkl,l+1 ∈ R
r. In detail, ym,kl denotes the feature maps of

the l-th layer. For the input layer, ym,kl can be simply set

as xm,i, i = 1, · · · , n, which is the i-th row vector of the

n × n brain connectivity matrix. Given a sample x ∈ R
n×n,

its output of graph convolution can be collected into a feature

matrix y = (y1,y2, · · · ,yfout
) ∈ R

n×fout , where each row

represents the learned high-level feature vector of an ROI.

C. Memory Augmentation

The key contribution of MemGCN is incorporating sequen-

tial records into the representation learning of brain connec-

tivity in terms of memories. Our model is proposed based on

Memory Networks [15], [25] which has a variety of successful

uses in natural language processing tasks [26], [27] including

complex reasoning or question answering. When we define a

memory, it could be viewed as an array of slots that can encode

both long-term and short-term context. By pushing the clinical

sequences into the memories, the continuous representations

of this external information are processed with brain graphs

together so that a more comprehensive diagnosis could be

made. Inspired by the observation, the memory-augmented

graph convolution are designed.

We start by introducing the MemGCN in the single hop

operation, and then show the architecture of stacked hops in

multiple steps. Concretely, the memory augmentation can be

divided into two procedures: reading and retrieving(see Fig. 1).

Clinical Sequences Reading

Suppose there is a discrete input clinical sequences sj , j =
1, · · · , t, where j is the index of a clinical record extracted

from the certain timestamp. In memory network, it needs to
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Fig. 2. Illustration of memory augmented graph convolution in a single hop
(the 1-st hop). See Section II-C for the details.

be transformed as continuous vectors zj , j = 1, · · · , t and

stored into the memory. We use a fixed number of timestamps

t to define the memory size. The dimension of the continuous

space is denoted as d while the dimension of the original

clinical features is denoted as D. To embed the sequential

vectors s1, · · · st, a d×D embedding matrix A is used. That

is zj = Asj . The matrix z = (z1, · · · , zt) can be regarded as

a new input memory representation.

Meanwhile, similar to the method in [25], an output memory

to generate continuous vectors {ej} is involved. The cor-

responding embeddings is obtained from ej = Bsj , where

B also is a d × D embedding matrix. Different from other

computational forms of attentive weights [28], two memories

in our model are maintained by the separate sequence reading

procedures, which are responsible for memory access and

integration respectively in the retrieving procedure.

Memory Representation Retrieving

To retrieve memory vectors from the embedding space,

we firstly need to decide which vector to choose. Not all

records in a sequence contribute equally when it comes to

the representation learning for brain graphs. Hence, attentive

weights are adopted here to make a soft combination of all

memory vectors. Mathematically, the weights are computed by

a softmax function on the inner product of the input memory

vectors zj and the learned ROI vectors yi,

αij = softmax(yizj) =
exp(yizj)

∑t
j′=1

exp(yizj′)
(5)

Once the informative memory vectors are indicated by weights

αij , the correspondence strength for attention are shown. As

Fig. 2 illustrated, our attention is 2-dimensional that describes

similarities between the representations generated from two

modality sources. To make this feasible, we assume that both

memory and ROI vectors are in the embedding space with

same dimension. Next we represent the contextual information

by the aggregation of weights and output memory vectors.

Specifically,

ci =
t

∑

j=1

αijei (6)

where ci is a row vector of the context matrix c, and is aware

of a new representation for the ROI.

To integrate the context vectors with feature maps of GCN,

element-wise sum is employed as ŷi = yi+ci. The intuition of

using the sum operator derives from the neural networks [29],

in which the learned features in the next layer would benefit

from both components in their networks.

The entire operations in a single hop are shown in Fig. 2,

which is regarded as one layer (hop) of our model MemGCN.

The output feature matrix of the single hop ŷ = (ŷ1, · · · , ŷn)
is fed into the next hop, and again as an input of the next

GCN.

D. Multi-hop Layer

Basically, memory mechanism allow the network to read the

input sequences multiple times to update the memory contents

at each step and then make a final output. Compared to single

step attention [28], contextual information from the memory

is collected iteratively and cumulatively for feature maps

learning. In particular, suppose there are L layer memories

for L hop operations, the output feature map ŷ at the l-th hop

can be rewritten as

yl+1 = Hyl + cl, l = 1, · · · , L (7)

where H is a linear mapping and can be beneficial to the

iteratively updating of y. Similarly, the computational equa-

tions for weights and context vectors in Eq.(5) and Eq.(6) are

rewritten as

αl
ij =

exp(yl
iz

l
j)

∑t
j′=1

exp(yl
iz

l
j′)

(8)

cli =

t
∑

j=1

αl
ije

l
i (9)

In addition, a layer-wise updating strategy [25] for input and

output memory vectors at multiple hops are used, which is

keeping the same embeddings as A1 = · · · = AL and B1 =
· · · = BL.

Notice that the contextual states c of the first hop are

determined by the two given modalities and then accumulated

into the generation of the contextual states in the following

hops. Consequently, the final output feature maps yL rely

on the conditional contextual states c1, · · · , cL−1 as well as

previous feature maps y1, · · · ,yL−1, where y1 is directly

generated from brain connectivity matrix x through one layer

graph convolution. The underlying rationale of the multi-hop

design is that it is easier for the model to learn what have

already been taken into account in previous hops and capture

a fine-grained attendance from memories in the current hop.
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E. Matching Layer

Metric learning for brain connectivity graphs with multiple

layers normally involves several non-linearities so that the

complex underlying data structure can be captured. To train

such a neural network, a large amount of training data are

necessary to prevent overfitting [30]. Although large-scale

labeled dataset are often limited in clinical practice, metric

learning between sample pairs allow us increase the training

data significantly because of the possible combination of two

samples [31]. In our case, take a brain image acquisition as a

sample, the goal of metric learning is to learn discriminative

properties to distinguish whether the sample pairs in the same

diagnosis class or not.

The basic hypothesis is that, if two samples share the same

diagnosis result, the matching score between their high-level

feature maps should be high. Here, two sorts of matching

function are explored to calculate the similarities between pairs

of acquisitions.

Inner Product Matching

Let xm and xm′ denote any pair of initial brain connec-

tivity matrices, yL
m,i and yL

m′,i denote their associated feature

vectors learned from the L-th hops by MemGCN, where i
is a vertex of ROI. The Euclidean distance computed in the

matching layer is a vector with each dimension corresponding

to each ROI, which is,

di(xm,xm′) = ‖yL
m,i − yL

m′,i‖2, i = 1, · · · , n (10)

Thus, d = (d1, · · · , dn) is the output of the matching layer.

Instead of computing the distance directly, the feature maps

are normalized along with dimension of hidden features and

then a inner product is used to get a similarity vector,

simi(xm,xm′) = (yL
m,i)

TyL
m′,i, i = 1, · · · , n. (11)

where simi is the inner product similarity on i-th dimension,

and it is equivalent to Euclidean distance if the vectors are

normalized.

Bilinear Matching

Above matching function in Eq.(11) only considers the

similarity of the corresponding ROI vectors of a given paired

brain graphs. The similarities computed by different ROI

are not modeled. To the aim, a simple bilinear matching

function [32] is used here. The matching score is defined as

simi,j(xm,xm′) = (yL
m,i)

TMyL
m′,j , i, j = 1, · · · , n. (12)

where simi,j is the similarity between ROI i and j based on

bilinear matching. M ∈ R
fL
out×fL

out is a matrix parameterizing

the matching between the paired feature maps. With the

matching procedure in Eq.(12), the output of the matching

layer is a matrix, with each element suggesting the strength

of ROI connections. It is worth to note that if the parameter

matrix M is an identity matrix, the bilinear matching reduces

to the inner product matching.

F. Model Training

As in MemGCN, our output layer models the probability of

each sample pair is matching or non-matching. The similarity

representation from matching layer is passed to a fully con-

nected layer and a softmax layer for the eventual classification.

For each pair, set the output of fully connected layer is a

feature vector r. We calculate the probability distribution over

the binary classes by

p = softmax(wT
c r) (13)

where wc ∈ R
2 is a trainable parameter.

We train our model using a regularized cross-entropy loss

function. Let X = {(xm,xm′)}N be the training set of N
acquisition pairs. N is the number of total pairwise combina-

tion of brain graphs. The number of acquisitions M is much

smaller than N . The loss function we minimize is

L =

N
∑

m,m′

ỹm,m′ logpm,m′ + (1− ỹm,m′) log(1− pm,m′)

+ γ‖Θ‖2 (14)

where ỹm,m′ denotes the label for sample pair (xm,xm′),
Θ is the collection of trainable parameters. The MemGCN is

trained on machines with NVIDIA TESLA V100 GPUs by

using Adam optimizer [33] with mini-batch.

III. EXPERIMENTS

A. Dataset

The data we used to evaluate MemGCN are obtained from

the Parkinson Progression Marker Initiative (PPMI) [16] study.

PPMI is an ongoing PD study that has meticulously collected

various potential PD progression markers that have been

conducted for more than six years. Neuroimages and EHRs

are considered as two modalities in this work.

To obtain brain connectivity graphs, a series of prepro-

cessing procedures are conducted. For the correction of head

motion and eddy current distortions, FSL eddy-correct tool

is used to align the raw data to the b0 image. Also, the

gradient table is corrected accordingly. To remove the non-

brain tissue from the diffusion MRI, the Brain Extraction

Tool (BET) from FSL [34] is used. To correct for echo-

planar induced (EPI) susceptibility artifacts, which can cause

distortions at tissue-fluid interfaces, skull-stripped b0 images

are linearly aligned and then elastically registered to their

respective preprocessed structural MRI using the Advanced

Normalization Tools (ANTs1) with SyN nonlinear registration

algorithm [35]. The resulting 3D deformation fields are then

applied to the remaining diffusion-weighted volumes to gen-

erate full preprocessed diffusion MRI dataset for the brain

network reconstruction. In the meantime, ROIs are parcellated

from T1-weighted structural MRI using Freesufer2.

The connectivity graphs computed by three whole brain

tractography methods [36] for are applied, which is a coverage

1http://stnava.github.io/ANTs/
2https://surfer.nmr.mgh.harvard.edu
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TABLE I
RESULTS FOR CLASSIFYING MATCHING VS. NON-MATCHING BRAIN GRAPHS ON THE TEST SETS OF TENSOR-FACT, ODF-RK2, AND HOUGH IN TERMS

OF ACCURACY AND AUC METRICS. PERFORMANCES WITHOUT AND WITH EXTRA MODALITIES ARE SHOWN. “FUSION” MODALITY MEANS CLINICAL

RECORDS OF BOTH MOTOR AND NON-MOTOR FEATURES. (HOP NUMBER L = 3 FOR MEMGCNS).

Extra Modalities Methods
tensor-FACT ODF-RK2 Hough

Accuracy AUC Accuracy AUC Accuracy AUC

None

Raw Edges 65.94±3.78 58.47±4.05 67.56±4.12 60.93±5.60 67.90±4.09 64.49±3.56

PCA 69.19±3.13 64.10±2.10 68.38±2.50 60.93±2.63 66.28±4.60 63.46±3.52

FCN 71.65±3.58 66.17±2.00 70.66±3.79 68.80±2.80 70.01±3.28 61.91±3.42

FCN-2layer 84.22±2.76 82.36±2.87 82.31±2.68 82.53±4.74 84.27±2.63 81.77±3.74

GCN-inner 93.69±2.15 92.67±4.94 93.23±2.63 93.04±5.26 92.80±2.51 93.90±5.48

GCN-bilinear 93.89±1.76 94.77±6.08 94.00±2.65 94.32±5.72 93.34±2.26 93.35±5.14

Fusion

AttGCN 93.62±2.99 94.25±5.88 94.76±3.31 94.33±5.23 94.01±1.94 94.74±5.35

AttLstmGCN 94.70±2.35 94.38±5.41 94.89±2.71 94.87±4.49 94.64±2.02 94.80±5.51

MemGCN-inner 95.43±2.22 96.42±6.36 95.54±2.98 96.59±6.44 95.48±2.34 96.49±6.41

MemGCN-bilinear 95.47±2.25 96.48±6.40 95.87±2.56 96.84±6.36 95.64±2.00 96.74±6.51

of the tensor-based deterministic approach (Fiber Assignment

by Continuous Tracking [37]), the Orientation Distribution

Function (ODF)-based deterministic approach (the 2nd-order

Runge-Kutta, RK2 [38]), as well as the probabilistic approach

(Hough voting [39]). 84 ROIs are finally obtained. We define

each the coordinates for ROIs using the mean coordinate for all

voxels in the corresponding regions (see Spatial Graph Con-

struction in Section II-B for the details). After preprocessing,

we collect a dataset of 754 DTI acquisitions, where 596 of

them are brain graphs of Parkinson’s Disease (PD) patients

and the rest 158 are from Healthy Control (HC) subjects. The

spatial graph we constructed has 84 vertices and 527 edges,

with each vertex is corresponding to a ROI.

Additionally, sequential EHR records are aligned with cor-

responding brain connectivity graphs. For each acquisition x,

a sequence of its associated input features (s1, · · · , st) can

be used for the external memories. Note that the sequences

are chunked at the time points of neruoimaging acquisition,

and we only use the subsequences before the time point to

make a reasonable experimental design. Usually, the number of

timestamps in sequences are different because subjects provide

their medical records with distinct frequencies, we set the

length of sequence as t = 12 according to the statistics of

the PPMI study. Padding is utilized for those sequences with

fewer timestamps. The specific clinical assessments we study

here are motor (MDS-UPDRS Part II-III [40]) and non-motor

(MDS-UPDRS Part I [40] and MoCA [41]) symptoms which

are crucial for evaluating a disease course of PD. There are 79
discrete clinical features and 331 dimensions after binarization,

then we have the original dimensions of clinical feature which

is D = 331. At last, an imputation strategy Last Occurrence

Carry Forward (LOCF) is adopted, since there are several

missing entries at timestamps.

B. Experimental Setup

Implementation Details

To learn similarities between brain connectivity matrices,

acquisitions in the same group (PD or HC) are labeled as

matching pairs while those from different groups are labeled

as non-matching pairs. Hence, we have 283, 881 pairs in total,

with 189, 713 matching pairs and 94, 168 non-matching pairs.

We selected hyperparameter values through random

search [42]. Batch size is 32. Initial learning rate is 5e-3,

and early stop is used once the model stops improving. The

L2-regularization weight is 1e-2. For each graph convolution

operation, the order of Chebyshev polynomials and the feature

map dimension are respectively set as r = 30 and fout = 32.

For the memory network, memory size and dimension of

embedding are respectively set as t = 12 and d = 32. The

code is available at https://github.com/sheryl-ai/MemGCN.

Baselines

To test the performance of MemGCN, we report the em-

pirical results of comparisons with a set of baselines. Here

are the methods that classify brain graphs without any other

modalities.

• Raw Edges. It is one simple approach that is to directly use

the numerical values from the connectivity matrix to represent

the brain network. The feature space is a 84× 84 vector.

• PCA. Principal Component Analysis (PCA) is used to reduce

the data dimensionality. After forming a sample-by-feature

input matrix, PCA is performed by keeping the first 100

principal components, which is an optimal setting in practice.

• FCN. Fully Connected Network (FCN) is employed as

feature extractor for raw connectivity matrix. The output

dimension of the model is set as fout = 1024. FCN is used

on brain networks in [43].

• FCN-2layer. 2-layers FCN has the same number of param-

eters in its first layer with FCN and reduces the dimension

down to 64 in layer 2.

• GCN-inner. Metric Learning for brain networks using GCN

is first introduced in [24], where a global loss function is used

to supervise pairwise similarities. The cross-entropy loss is

adopted in our experiments to be consistent with other models.

• GCN-bilinear. The bilinear matching layer proposed in

Section II-E is added on the basis of GCN to conduct metric

learning. It is a version of MemGCN-bilinear without memory.
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TABLE II
COMPARISONS FOR MEMGCN BY VARIOUS SETTING OF THE NUMBER OF HOPS AND THE MATCHING METHODS.

# of hops Matching
tensor-FACT ODF-RK2 Hough

Accuracy AUC Accuracy AUC Accuracy AUC

1 inner product 94.20±2.42 94.07±5.19 94.03±2.32 94.39±5.15 94.61±2.05 95.72±5.50

2 inner product 95.36±2.60 96.35±6.36 95.40±2.27 96.39±6.35 95.21±2.92 96.10±6.30

3 inner product 95.43±2.22 96.42±6.36 95.54±2.98 96.59±6.44 95.48±2.34 96.49±6.41

1 bilinear 94.68±2.04 95.32±5.98 93.88±2.22 94.17±5.49 94.37±1.89 95.17±4.95

2 bilinear 95.19±2.14 96.06±6.18 94.61±2.91 95.27±5.89 95.23±2.50 96.17±5.26

3 bilinear 95.47±2.25 96.48±6.40 95.87±2.56 96.84±6.36 95.64±2.00 96.74±6.51

Furthermore, neural networks without memory mechanism

that can embed the clinical data are built as baselines.

• AttGCN. Instead of using input and output memories on

sequences, only one embedding matrix for the computation

of attentive weights is incorporated with GCN via the sum

operation.

• AttLstmGCN. A standard bi-directional LSTM with atten-

tion [28] is established for sequential EHR data and then its

context states are combined with GCN feature maps.

Finally, two variants of our model are given.

• MemGCN-inner. The proposed MemGCN with the inner

product matching layer.

• MemGCN-bilinear. The proposed MemGCN with the bilin-

ear matching layer.

For a fair comparison, the reported models are built under

the same pairwise matching architecture for metric learning.

Inner product matching are employed in the baseline model

if it is not stated as a bilinear version. 5-fold cross validation

are conducted in all of our experiments.

C. Results

Matching vs. Non-matching Classification

Table I reports the performance for the binary classification

task. Three sorts of memory augmentation are configured as

motor sequences, non-motor sequences and a fusion of them.

The metrics for evaluation are Accuracy and Area Under the

Curve (AUC).

From the results we can observe that, the Raw Edges, and

simple feature extraction approach such as PCA and 1-layer

FCN cannot predict a reliable distance for sample pairs and

correspondingly achieve a promising results on the matching

classification task. More layers with extra non-linearities have

a good influence on the fully connected networks to capture

the complicated patterns from acquisitions. All the GCN based

methods can largely improve both of Accuracy and AUC

performance in three DTI sets generated by Tensor-FACT,

ODF-RK2, and Hough tractography algorithms, which demon-

strates the effectiveness of graph convolution on the brain

connectivity graphs. Overall, the bilinear matching strategy

is outperform the inner product matching strategy slightly

on both GCN and MemGCN. The best AUC performance is

96.48, 96.84, and 96.74, which are accomplish by MemGCN-

bilinear with fusion clinical sequences as the external modality.

With attention mechanism, AttGCN and AttLstmGCN also

perform well in the given circumstances. However, they cannot

boost the results significantly compared to the vanilla GCN.

The reason that MemGCN behaves better than them is proba-

bly separate memories for reading and retrieving are employed

in a multi-hop network.

Table III shows the concrete effects of increasing the

number of hops on inner product and bilinear matchings. The

number of hops is tuned from 1 to 3. The results on Accuracy

and AUC metrics illustrate that our multi-hop framework

indeed improves performance constantly.

Identical ROIs vs. Discriminative ROIs

The interpretability of MemGCN is investigated. As the

representation learned in the inner product matching layer can

be explained as pairwise similarities at 84 ROI dimensions,

it describes the significance of each ROI in metric learning.

Therefore, we compute the average similarities for all the

PD-PD pairs and the average similarities for all the PD-HC

pairs. ROIs with the highest scores in the PD group could be

considered as the identical ROIs for PD, while those with the

lowest scores in the PD versus HC group are regarded as the

discriminative ROIs.

The interpretable results depends on memory augmentation

of motor, non-motor, and the fusion data are presented in Ta-

ble III. While the whole functions of the human brain regions

are still unclear, it is quite intriguing that MemGCN can locate

some of the modality-related ROIs, which might be critical for

PD study. For instance, The most identical ROI for PD with

motor features as augmentation is the Thalamus with one of its

major role as motor control. Also, lingual gyrus discovered by

non-motor features is linked to processing vision, especially

related to letters. On the other hand, MemGCN can help us to

find which ROI is sufficiently discriminative to distinguish PD

patients with healthy controls. Several important ROIs belongs

to the current research of clinicians and domain experts are

detected, i.e., Caudate and Putamen areas.

To show the representation generated from the bilinear

matching layer, we draw the edges between ROIs with high

similarities in Fig.3. Similar to Table III, the most identical

edges for PD group and the most discriminative edges between

PD and HC groups are depicted. The interesting patterns we

found might be deserved to the further exploration in clinical

scenarios.

Longitudinal Alignment: Case Study

From Fig. 4(a) and 4(b) we observe that though the struc-
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TABLE III
THE INTERPRETABILITY OF THE OUTPUT REPRESENTATION OF MEMGCN’S INNER PRODUCT MATCHING LAYER. TOP-5 IDENTICAL ROIS IN PD

GROUP AND DISCRIMINATIVE ROIS BETWEEN PD AND HC GROUPS ARE LISTED. SIMILARITY SCORES ARE GIVEN.

Motor Non-motor Fusion

ROI Name Score ROI Name Score ROI Name Score

Identical ROIs

(PD Group)

Right Thalamus Proper 0.9258 Rh Paracentral 0.8563 Rh Pars Opercularis 0.9344

Lh Insula 0.9253 Rh Lingual 0.8180 Rh Lateral Occipital 0.8372

Right Pallidum 0.9226 Right Pallidum 0.8091 Left Accumbens Area 0.7887

Lh Rostral Middle Frontal 0.9210 Lh Parsorbitalis 0.6554 Rh Parahippocampal 0.7827

Parahippocampal 0.9206 Left Thalamus Proper 0.6387 Rh Frontalpole 0.7742

Discriminative ROIs

(PD vs. HC Group)

Right Putamen -0.9134 Left Putamen -0.7423 Right Thalamus Proper -0.8960

Right Accumbens Area -0.9075 Lh Frontal Pole -0.5754 Left Caudate -0.8439

Left Hippocampus -0.9059 Lh Supramarginal -0.5731 Lh Paracentral -0.8227

Right VentralDC -0.9058 Lh Inferior Parietal -0.5693 Lh Middle Temporal -0.7865

Left Caudate -0.9014 Lh Paracentral -0.4851 Lh Cuneus -0.7528

∗ Lh and Rh are the abbreviations of Left Hemisphere and Right Hemisphere respectively.

(a) (b)

Fig. 3. The connectivity patterns learned by the bilinear matching layer.
(a) The top identical edges for PD group; (b) The top discriminative edges
between PD and HC groups.

tures of three hops of memory layer are same, the values

of the attention weights they learned are quite different in

typical cases. The matrices we draw in terms of colormaps

in Fig.4 indicate the attentive weights α for one PD case

and one healthy control case. Here we abandon the first 2
padding dimensions of the shown cases and give 10 memory

positions (rows in the matrices). The attendance of all the

84 ROI vertices are depicted (columns in the matrices). A

darker color indicates where MemGCN is attending during

the multi-hop updating for representations. Basically, given a

specific case, which time point has more influences on his/her

PD progression and which ROI is more important according to

the clinical evidences can be analyzed through this longitudinal

alignment between DTIs and EHRs.

In general, the first hop attention appears to be primarily

concerned with identifying the salient interaction between

time-aware sequences and ROIs’ feature maps. In this hop, the

majority values are close to zero and only a few values are

close to one, such that a sketch of key ROIs and timestamps are

signified. The second and the third hops are then responsible

for the fine-grained interactions that are relevant to optimizing

the representation for the distance learning task.

Another important observation is that the PD case has

different interaction patterns compared to the healthy control.

At each hop, PD has a relatively narrow attention and fewer re-

sponses across memory positions. Consider the PD case shown

in Fig. 4(a), longitudinal alignments occur at timestamps 2, 4,

and 6 after 3-hop updating, meanwhile a series of ROIs might

function on the disease progression. By the Desikan-Killiany

Atlas, the darker ROI dimensions from 76 to 79 are Rh Insula,

Right Thalamus Proper, Right Caudate, and Right Putamen,

respectively, which matches our expectation for the PD case.

IV. RELATED WORK

We briefly review the existing research that is closely related

to the framework proposed in this paper.

EHR Mining. In recent years many algorithms have been

proposed to mine insights from patient EHRs. Initially those

methods were static in the sense that they first construct

patient vectors by aggregating their EHR with in a certain

observational time window and then build learning approaches

(e.g., predictive models and clustering methods) on top of

those vectors [2], [3]. Most of these methods are shallow

except the DeepPatient work which applied AutoEncoder to

further compress the patient vectors and obtain better repre-

sentations [44]. Recently researchers have also been exploring

CNN and RNN type of approaches to incorporate the temporal

information in patient EHRs into the modeling process [45]–

[47]. However, these methods compressed the patient EHRs

to a vector before it was fed to the final model, which is not

as flexible as the memory network we adopted.

GCN for Neuroimage Analysis. Many data mining ap-

proaches have been developed to perform neuroimage analysis

in recent years [48], among which deep learning models are

very popular because of their huge success in various computer

vision problems [49]. Recently, Ktena et al. [24] propose

to learn a metric from patients’ neuroimages on top of the

features constructed using GCN (where the graph is basically

the patients’ brain network constructed on the ROIs), which

can discriminate the cases versus controls with autism. Zhang

et al. [50] extend such approach to handle the multiple modal-

ities of the brain networks (e.g., constructed from different

tractography algorithms on DTI images). However, none of

them incorporated any clinical records from the patients. Our

work is the first step towards filling the gap.
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(a) (b)

Fig. 4. Visualizations of attention interaction matrices of MemGCN for one PD and one HC case during 3 memory hops. The rows and columns of the
matrices respectively denote memory positions and ROI vertices. The darker color in the colormaps means a larger value which is close to 1, and the lighter
color means a smaller value which is close to 0.

V. CONCLUSION

We propose a novel framework, memory-based graph con-

volution network (MemGCN), to perform integrative analysis

of patient clinical records and neuroimages. On the one hand,

our experiments on classification of Parkinson’s Disease case

patients with healthy controls demonstrate the superiority of

MemGCN over conventional approaches. On the other hand,

the interpretable high-level representations extracted from the

inner product or bilinear matching layers are capable of

indicating group patterns of brain connectivity via ROI nodes

or their edges for PD subjects and healthy controls.

Here we explored the operators of the graph convolution

via ChebNet and the embedding via memory mechanism as

feature extractors for neuroimages and patient health records

respectively. The pairwise distance under the metric learning

setting in our framework makes a progress in modeling a small

cohort data such as PPMI. An important future direction is

to design deep architectures that can lower the amount of

training data meanwhile learn meaningful representations. We

are especially interested in continuing to develop more general

end-to-end trainable models in the space of boosting system

performance on small data.
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