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Abstract—We propose and analyze a new stochastic gradient
method, which we call Stochastic Unbiased Curvature-aided Gra-
dient (SUCAG), for finite sum optimization problems. SUCAG
constitutes an unbiased total gradient tracking technique that
uses Hessian information to accelerate convergence. We analyze
our method under the general asynchronous model of compu-
tation, in which each function is selected infinitely often with
possibly unbounded (but sublinear) delay. For strongly convex
problems, we establish linear convergence for the SUCAG
method. When the initialization point is sufficiently close to
the optimal solution, the established convergence rate is only
dependent on the condition number of the problem, making it
strictly faster than the known rate for the SAGA method.

Furthermore, we describe a Markov-driven approach of
implementing the SUCAG method in a distributed asynchronous
multi-agent setting, via gossiping along a random walk on an
undirected communication graph. We show that our analysis
applies as long as the graph is connected and, notably, estab-
lishes an asymptotic linear convergence rate that is robust to
the graph topology. Numerical results demonstrate the merits
of our algorithm over existing methods.

Index Terms— Distributed optimization, Incremental meth-
ods, Asynchronous algorithms, Randomized algorithms, Multi-
agent systems, Machine learning.

I. INTRODUCTION

We consider the finite sum optimization problem:

min
θ∈Rd

F (θ) where F (θ) :=
1

N

N∑
i=1

fi(θ) . (1)

Each component function fi : Rd → R is assumed to
be convex and twice continuously differentiable with Lip-
schitz continuous gradients, while the sum function F (θ)
is assumed to be strongly convex. Such problem custom-
arily arises in several multi-agent systems applications [1],
e.g., communication networks [2], sensor networks [3], and
distributed learning [4]. In a distributed setting, fi(·) is the
private function known only to agent i; for example, in a
learning task such as empirical risk minimization (ERM) [5],
this corresponds to a subset of data gathered by agent i.

This paper develops an efficient distributed algorithm for
(1) under a general communication topology. In particular,
we adopt a stochastic asynchronous setting that captures
activation of agents in networked decision and control appli-
cations. To this end, a large body of prior work has focused
on developing distributed algorithms based on the average
consensus protocol [6], e.g., as introduced by Nedić et al.

[7]. However, the convergence rate for this class of methods
is limited by the diameter of the communication graph [8].
To develop an algorithm that is robust to the graph structure,
we consider here an alternative pathway that is akin to that
described in [9], [10], for utilizing stochastic algorithms for
finite sum minimization via pairwise exchange of information
on a graph [1], [11]. Inspired by the classical work of Rob-
bins and Monro [12], stochastic algorithms have been actively
pursued for machine learning operations over the last decade,
with notable recent examples enlisting stochastic average
gradient (SAG) [13] and its unbiased variant (SAGA) [14],
and stochastic variance reduction gradient (SVRG) [15].
All these methods (including the one we propose here) are
incremental [16] and operate using the following key steps, at
each iteration: a) a random component function is selected,
and its gradient is evaluated at the current iterate, b) the
obtained gradient value is aggregated into the memory, and
c) a new iterate is obtained using the aggregated gradient.
Additionally, they require storing the gradient values to allow
for an asynchronous implementation.

Inspired by [9], [10], we make an observation that the
random selection-aggregate-update paradigm can be realized
in a fully distributed fashion via a random walk on a graph,
where a selected agent forwards information to one of its
neighbors, i.e., essentially implementing a Markov-driven
token passing protocol; cf. Section II-A. Most notably, while
stochastic algorithms such as SAG and SAGA are known to
converge linearly for strongly convex problems [13], [14],
their rates depend on the number of agents N . For example,
SAGA requires O((N+κ(F )) log(1/ε)) steps in expectation
to reach an ε-optimal solution, where κ(F ) denotes the
condition number for the sum function F (·).

In our recent work, we proposed the Curvature-aided In-
cremental Aggregated Gradient (CIAG) [17] method, which
utilizes curvature (i.e., Hessian) information to acquire ac-
celerated convergence. Under the asynchronous model of
computation [18] (where each component function is selected
by the algorithm infinitely often, with a uniformly bounded
delay), CIAG was shown to converge linearly at a rate that
is strictly faster than SAGA; see also [19] for a similar tech-
nique to variance reduction in stochastic gradient methods.
Nevertheless, CIAG is not directly amenable to a distributed
implementation, where it would require message-passing
among agents along a closed spanning walk following a
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fixed sequence. This is typically restrictive, especially in dis-
tributed wireless sensor networks where time synchronization
is challenging [20] and it is desirable that agents are activated
at random time instants for the sake of battery lifetimes.

This paper adopts a stochastic setting where the component
functions are selected at random, i.e., it allows for a Markov-
driven distributed implementation on a general topology.
Moreover, the proposed Stochastic Unbiased Curvature-
aided Gradient (SUCAG) method introduces an unbiased
curvature-aided gradient estimator. We analyze the conver-
gence of SUCAG for strongly convex problems and show
that it converges linearly with high probability (w.h.p.), for
a sufficiently small stepsize selection. Besides, for an initial-
ization sufficiently close to optimality, the algorithm requires
O(κ(F ) log(1/ε)) steps to reach an ε-optimal solution, robust
to the graph structure or network size. This can be beneficial
in the prelude of large-scale cyberphysical systems [21] that
feature millions of agents, for example in real-time learning
from streaming data [22], [23].

Notation. We denote vectors and matrices using boldface
lower-case letters and upper-case letters, respectively. We use
the notation (x)+ := max{0, x} for the positive part. We use
the standard Bachmann-Landau notation: for non-negative
functions f, g, h we write f(t) = O(g(t)) (resp. f(t) =
Ω(h(t))) when there exists a positive constant c (resp. C)
such that f(t) ≤ cg(t) (f(t) ≥ Ch(t)). We use ‖ · ‖ for the
standard Euclidean norm.

A. Overview of Gradient Tracking Techniques

Before we introduce the proposed SUCAG algorithm, we
briefly review the curvature-aided gradient tracking tech-
nique. In particular, we cast it as a specific variance reduction
method within the stochastic gradient paradigm.

When the number of components N is large, and especially
in a distributed setting, the total gradient ∇F is costly to
evaluate, whence a stochastic gradient (SG) scheme is usually
sought to tackle (1) in a tractable manner. To this end, a
SG scheme can be described as follows: at iteration k ∈ N,
a stochastic gradient surrogate gk is obtained, satisfying
E[gk] = ∇F (θk), Var(gk) ≤ σ2, i.e., an unbiased estimator
for ∇F (θk) with finite error variance. A common implemen-
tation selects one of the component functions uniformly at
random, i.e., the ik−th function (where ik ∈ [N ]) at iteration
k, and evaluates the gradient ∇fik(θk).

The SG method [12] then solves (1) using the recursion
θk+1 = θk − γkg

k
SG with gkSG := ∇fik(θk), where γk >

0 is the stepsize at the k−th iteration: when {γk} satisfies∑
k γk = ∞,

∑
k γ

2
k < ∞, the SG method converges to an

optimal solution of (1) almost surely (a.s.) [12]. However,
albeit its simplicity, a major drawback of SG remains that the
(expected) convergence rate is sublinear, i.e., E[‖θ?−θk‖] =
O(1/k) (where θ? denotes the optimal solution to (1)) when
the objective function is strongly convex [24].

On the other hand, one may adopt an incremental approach
to the problem. In this purview, a reasonable remedy to the
high cost of evaluating the total gradient is to aggregate
previous gradient component evaluations, i.e., approximate

∇fj(θk) ≈ ∇fj(θτ
k
j ) where τkj denotes the iteration count

when the j−th gradient was last evaluated (see (2) for the
precise definition of τki ). This is precisely the mechanism of
SAGA [14] that selects:

gkSAGA :=
[
∇fik(θk)−∇fik(θ

τk−1
ik )

]
+

1

N

N∑
j=1

∇fj(θτ
k−1
j ).

Besides, SAG is different only in that it multiplies the first
term above by 1

N and is, therefore, biased. When each
component function fj is smooth, the approximation error,
i.e., the variance of the total gradient estimator, is bounded
by O(

∑N
i=1 ‖θτ

k
i − θ?‖). Thanks to the variance reduction

property, the SAGA/SAG methods are shown to converge at
a linear rate [13], [14] and are therefore faster than SG, at
the cost of storing the past gradient component values. It
is worthwhile observing that in a multi-agent setting, past
values can be stored locally, and aggregated in a recursive
manner via message passing. The crucial implementation
detail in our algorithm is that aggregation can be performed
via simple gossiping, i.e., message exchange between an
agent and only one of its neighbors.

Under an additional smoothness condition (of Lipschitz-
continuous component Hessians), our recent work [17] con-
sidered a first-order Taylor approximation to the total gradient
in order to further reduce the estimation variance:

gkCIAG :=
1

N

N∑
j=1

[
∇fj(θτ

k
j ) +∇2fj(θ

τk
j )(θk − θτ

k
j )
]
,

A distinctive attribute is that the approximation error for
gkCIAG to the total gradient above can be bounded by
O(
∑N
j=1 ‖θk−θ

τk
j ‖2) in light of [25, Lemma 1.2.4], i.e., the

bound features squared norm of the distance to optimality;
specifically, when ‖θk − θτ

k
j ‖2 < 1 (as is the case for

large enough k), this bound allows a tighter convergence
analysis as compared to SAG/SAGA. In brief, it was shown
in [17] that CIAG method exhibits a faster linear convergence
rate than SAG by a factor of N , under the restriction
that the delays in gradient/Hessian evaluation are bounded
(i.e., |τki − k| ≤ K < ∞, e.g., when ik is chosen as
ik = (k mod N) + 1). Note, however, that in a stochastic
setup CIAG is biased, which motivates the development of
an unbiased variant in this paper.

II. THE SUCAG METHOD

We first introduce SUCAG method as a stochastic gradient
algorithm for finite sum optimization (1), and then proceed to
present protocols for implementing it in a distributed setting.

We adhere to the stochastic optimization setting: at itera-
tion k, the algorithm selects the ik−th component function
fik(·), where ik ∈ {1, ..., N}, and evaluates its gradi-
ent/Hessian at the current iterate. At first, we assume that the
selection mechanism is independent identically distributed
(i.i.d.), where a random integer is chosen uniformly at
random, i.e., P (ik = j) = 1/N for all j = 1, ..., N . We
define the random variable τkj as the iteration number where
the j−th function was last accessed (including iteration k
itself):

τkj := max{` ≥ 0 : i` = j, ` ≤ k} . (2)
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Algorithm 1 SUCAG method

1: Input: Initial point θ0 ∈ Rd
2: Set counter variables τ0i := −1 for all i.
3: Set ∇fi(θ−1) = 0 and ∇2fi(θ

−1) = 0 for all i.
4: for k = 0, 1, 2, . . . ,K do
5: Choose ik ∈ {1, . . . , N} uniformly at random.
6: Compute gkSUCAG using (4), (5).
7: Update:

θk+1 = θk − γgkSUCAG .
8: Update counter variables: τkik ← k, and τkj ← τk−1j

for all j 6= ik.
9: end for

10: Return θK+1.

Note that τkik = k and τkj = τk−1j for all j 6= ik.
Inspired by the curvature-aided gradient tracking tech-

nique [17], the SUCAG method adopts the update rule:

θk+1 = θk − γgkSUCAG, k ≥ 0 , (3)

where γ > 0 is a fixed step size and gkSUCAG is a curvature-
aided approximation on the actual gradient ∇F (θk). The
approximation is given as1:

gkSUCAG :=
[
∇fik(θk)− gkik(θk)

]
+ 1

N

∑N
i=1 g

k
i (θk) , (4)

where

gki (θ) := ∇fi(θτ
k−1
i ) +∇2fi(θ

τk−1
i )

(
θ − θτ

k−1
i

)
. (5)

A key property of gkSUCAG is that it is an unbiased estimator
for ∇F (θk). To see this, define the filtration Fk as the
collection of random variables (the chosen indices {ik})
realized prior to the update of θk+1, i.e., Fk := σ({i` : ` =
0, 1, . . . , k − 1}); note that this does not include the newly
selected index ik. The conditional expectation is given by:

Ek[gkSUCAG] = 1
N

∑N
i=1

(
gki (θk) +∇fi(θk)− gki (θk)

)
= ∇F (θk) ,

(6)

where Ek[·] := E[·|Fk], and therefore SUCAG is unbiased.
Note that SUCAG is a natural extension of SAGA to incor-
porate curvature information.

While our main focus is on applying SUCAG in a dis-
tributed setting, we note that one can also implement the
SUCAG method as a centralized incremental method just as
in CIAG [17]. In this case, the system stores O(Nd) real
numbers in the memory for the previous iterates and the per-
iteration complexity is O(d2), cf. [17].

A. Distributed Implementation

Consider a connected undirected graph G = (V,E) where
V = {1, . . . , N} is the set of N agents and E ⊆ V × V is
the edge set that prescribes the agent-to-agent communication
pairs. The neighborhood set of i is Ni := {j : (i, j) ∈ E}.

1Note that CIAG pre-multiplies the first term with 1
N

, in the same way
that SAG does for SAGA.

Hk−1, bk−1, θk

Hk, bk, θk+1

Agent ik−1

Agent ik
Agent ik+1

1. Compute (3), (7), (8).
2. Store θk in local memory.

Fig. 1: Distributed implementation of SUCAG; the agent sequence
{ik}k≥1 corresponds to a random walk on the graph G.

It is easy to verify that:

gkSUCAG =
[
∇fik(θk)− gkik(θk)

]
+ bk−1 +Hk−1θk, (7)

where

bk−1 := 1
N

∑N
i=1

(
∇fi(θτ

k−1
i )−∇2fi(θ

τk−1
i )θτ

k−1
i

)
,

Hk−1 := 1
N

∑N
i=1∇2fi(θ

τk−1
i ) .

These variables can be computed recursively as follows:

bk := bk−1 + 1
N

(
∇fik(θk)−∇fik(θ

τk−1
ik )

)
1
N

(
∇2fi(θ

τk−1
ik )θ

τk−1
ik −∇2fi(θ

k)θk
)

Hk := Hk−1 + 1
N

(
∇2fik(θk)−∇2fik(θ

τk−1
ik )

)
.

(8)

Leveraging these recursions, we can obtain distributed pro-
tocols for implementing SUCAG on G, via transmitting the
aggregated (previous) gradients and Hessians. To this end, a
key aspect is that the required updates for SUCAG [cf. (3),
(7), (8)] are locally computable by an activated agent ik,
given the latest estimate θk and aggregate gradient/Hessian
information bk−1,Hk−1.

First, for the special case when G is a star graph, a simple
protocol can be implemented by using the hub node as a
coordinator to store the tuple {bk−1,Hk−1,θk} and, at each
iteration: (i) the coordinator activates an agent independently
and uniformly at random and passes along this tuple, (ii)
the agent performs the required updates [cf. (8),(7),(3)] and
(iii) transmits back the updated values {bk,Hk,θk+1}. Such
protocol is ideal for cloud computing services.

A crucial point of our analysis (cf. Theorem 1) reveals that
the requirement of independent and uniform agent activation
can be relaxed. In fact, it is adopted primarily for demon-
stration purposes (to ensure unbiasedness, Ek[gkSUCAG] =
∇F (θk)) so as to portray our scheme within the popular
stochastic variance reduction framework. This important at-
tribute allows for distributed computations along a random
walk on a connected graph G as follows: at iteration k,
activated agent ik performs the update (3) and (i) stores θk2,
(ii) chooses one of its neighbors ik+1 ∈ Nik at random
as the next active agent, and (iii) transmits the updated

2In light of storage/computation trade-off, it is also possible for agent ik
to store {θk+1,∇fik (θk),∇2fik (θ

k)} in order to avoid re-evaluation at
the next activation instance.
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{bk,Hk,θk+1} to agent ik+1. This process is illustrated in
Fig. 1.

We remark that the above line of reasoning directly ap-
plies to any stochastic algorithm with the random selection-
aggregate-update paradigm, e.g., SG, SAG and SAGA; see
[9], [10].

III. CONVERGENCE ANALYSIS

This section establishes the linear convergence of the
SUCAG method with high probability. We begin by stating
the required assumptions on the objective function of (1):

A1 Each component function fi(θ) has LH,i-Lipschitz con-
tinuous Hessian. In other words, for any i ∈ {1, ..., N}, there
exists LH,i > 0, such that for all θ′,θ ∈ Rd

‖∇2fi(θ)−∇2fi(θ
′)‖ ≤ LH,i‖θ − θ′‖ . (9)

We define L̄H := maxi∈{1,...,N} LH,i.

A2 The gradient of sum function F (θ) is L-Lipschitz con-
tinuous, i.e., there exists L > 0, such that for all θ′,θ ∈ Rd,

‖∇F (θ)−∇F (θ′)‖ ≤ L‖θ − θ′‖ . (10)

A3 The sum function F (θ) is µ-strongly convex, µ > 0,
i.e., for all θ′,θ ∈ Rd,

F (θ′) ≥ F (θ) + 〈∇F (θ),θ′ − θ〉+
µ

2
‖θ′ − θ‖2 . (11)

Under A3, a unique optimal solution to problem (1) exists
and it is denoted by θ?. We denote the condition number
for F (θ) by κ(F ) := L/µ. Note that the above are standard
assumptions that can be satisfied in many applications; for ex-
ample, `2−regularized logistic regression [5], and quadratic
programming such as (overdetermined) least-squares and
Model Predictive Control (MPC) [26] applications.

We also state the following assumption on the delays in
the SUCAG method:

A4 For all k ≥ 1, it holds that |k − τk−1i | ≤ mk for all i,
where {mk}k≥1 is non-decreasing with m1 ≥ 1. Moreover,
it holds that

4 logmk ≤ c0 + log k , (12)

for all k ≥ 1 and some c0 ≥ 0.

Note that it follows that A4 implies that {mk}k≥1 satisfies

2mk ≤ m0 +
(
(1/3)− β

)
k, (13)

for proper selection of m0 > 0 and β ∈ (0, 13 ).
In the interest of space, the detailed proofs for the
below analysis can be found in our online appendix
(https://arxiv.org/abs/1803.08198).

Later, we will show that the distributed message passing
protocols in Section II-A satisfies A4 with high probability.
The following establishes the linear convergence of SUCAG:

Theorem 1 Assume that A1, A2, A3, A4 hold, and let3 µ ≥
1. Fix δ = 1−∆γ 2µL

µ+L for some sufficiently small ∆ ∈ (0, 1),
and step size γ that satisfies:

γ ≤ 2

µ+ L

γ ≤ min
j=1,...,4

(3m0

2

µL

µ+ L
∆ +

1

C ′j

)−1
,

(14)

where the constants are given by:

C ′j :=
e1−c0β∆(1−∆)

4q̃j‖θ0 − θ?‖2η̃j−2
( 2µL

µ+ L

)2
, j = 1, ..., 4 , (15)

with
q̃1 := 2L̄HL

2, q̃2 := 32L̄3
H , q̃3 := 8L̄2

HL
4, q̃4 := 2048L̄6

H ,

η̃1 := 3/2, η̃2 := 5/2, η̃3 := 2, η̃4 := 4 .

Then, the following properties hold:
1) The SUCAG method converges linearly as ‖θk−θ?‖2 ≤

δk‖θ0 − θ?‖2 for all k ≥ 0.
2) There exists an upper bound sequence {V̄ (k)}k≥0 such

that ‖θk − θ?‖2 ≤ V̄ (k) for all k ≥ 0 with the rate:

lim
k→∞

V̄ (k + 1)

V̄ (k)
= 1− 2γ

µL

µ+ L
. (16)

First, from Theorem 1, we consider the case when ‖θ0 −
θ?‖ ≈ 0. In particular, taking ∆ = ‖θ0 − θ?‖ 1

2 shows
that the right hand side of the second inequality in (14) is
at the order of Ω(‖θ0 − θ?‖− 1

2 ). When ‖θ0 − θ?‖ ≈ 0,
the SUCAG method is allowed to take the step size at
γ = 2/(µ + L) in (14). Substituting this into (16) shows
that the asymptotic linear convergence rate of the SUCAG
method is 1−4µL/(µ+L)2 = 1−Ω(1/κ(F )). Consequently,
the method finds an ε-optimal solution to (1) using just
O(κ(F ) log(1/ε)) steps.

Second, assumption A4 on the delays in the SUCAG
method allows for a sub-linear delay which grows unbound-
edly as fast as mk = O(k1/4). This is of relevance to the
two distributed implementations discussed in Section II-A.
In particular, in both cases the agents’ activations can be
captured by a finite state Markov chain, and the time delays
can be analyzed via the hitting time of the chain:

Lemma 1 Consider the sequence (ik)k≥0 that is governed
by a finite, irreducible and aperiodic Markov chain, and
suppose that the chain is stationary4. It holds that

P (|k− τk−1i | > x) ≤ exp
(
− x

1 + eτ̄i
+ 1
)
, ∀ x ≥ 0, (17)

for all i = 1, ..., N , where τ̄i is the expected first visit time.
In particular, the delay |k−τk−1i | can be bounded by O(τ̄i+
τ̄i log(Nk2/ε) with probability at least 1− ε.

In specific, for any connected undirected graph, the Markov
chain is stationary and τ̄i = N provided that the first acti-
vated agent is selected uniformly at random. Consequently,

3This is with absolutely no loss in generality, and is solely used in the
analysis so as to simply notation in the derived stepsize selection rule.

4We note that the analysis applies even to non stationary Markov chains;
we skip the details for length considerations.
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even though mk → ∞ as k → ∞, the time varying delay
mk satisfies assumption A4 w.h.p.

Importantly, combining Theorem 1 and Lemma 1 shows
that when the initialization is sufficiently close to the optimal
solution, w.h.p. the distributed implementation of SUCAG
converges linearly at an asymptotic rate that is independent
from the communication graph structure.

A. Proof of Theorem 1

The proof consists of two parts — first we prove a
descent lemma for the SUCAG method to characterize its per-
iteration progress; then we show that the resulting nonlinear
process converges linearly, with asymptotic rate as in (16).
Let us state the first result as follows:

Lemma 2 Assume that A1, A2, A3, A4 hold and γ ≤ 2/(µ+
L). The following holds for all k ≥ 0:

‖θk+1 − θ?‖2 ≤
(

1− 2γ
µL

µ+ L

)
‖θk − θ?‖2

+ γ3(mk)2 max
(k−2mk)≤`≤k

(
q̃1‖θ` − θ?‖3 + q̃2‖θ` − θ?‖5

)
+ γ6(mk)4 max

(k−2mk)≤`≤k

(
q̃3‖θ` − θ?‖4 + q̃4‖θ` − θ?‖8

)
(18)

An important fact observed is that the distance to optimal
solution at the (k + 1)−th iteration follows an inequality
system with high order terms of the distance to optimal
solution evaluated at delayed time instances.

Let R(k) := ‖θk − θ?‖2, the above motivates us to study
the system:

R(k+ 1) ≤ pR(k) +
J∑
j=1

qjm
(k)
1,j max

(k−m(k)
2,j )+≤`≤k

Rηj (`), (19)

where p ∈ (0, 1), ηj > 1 for all j and R(k) is non-negative.
Moreover, we have m(k)

1,j ,m
(k)
2,j ≥ 0. The following lemma

establishes the linear convergence for R(k) under a sufficient
condition:

Lemma 3 Fix δ ∈ (0, 1) such that δ > p. Assume that

log(m
(k)
1,j ) ≤ c0 + c1 log k, m

(k)
2,j ≤ m0 +

(η − 1

η
− β

)
k ,

(20)
for some m0, c0, c1 ≥ 1, 0 < β < (η − 1)/η, and η :=
minj=1,...,J ηj > 1. Moreover, assume that

qj ≤
1

Rηj−1(0)

δ−ξ
?
j (δ)(δ − p)
J

, j = 1, . . . , J , (21)

with the non-positive number ξ?j (δ) defined as:

ξ?j (δ) := min
k≥0

( logm
(k)
1,j

log δ
+ ηj

(
k −m(k)

2,j

)
+
− k
)
. (22)

It holds for (19) that (i) R(k) ≤ δkR(0) for all k ≥ 0, and
(ii) there exists an upper bound sequence {R̄(k)}k≥0 such
that R̄(k) ≥ R(k) for all k ≥ 0 and its convergence rate is:

lim
k→∞

R̄(k + 1)/R̄(k) = p . (23)

0 10 20 30 40 50 60 70 80 90

10−12

10−9

10−6

10−3

100

Iteration number ×N

O
pt

.G
ap

F
(θ

k
)
−
F
(θ

?
)

Determ. CIAG (γ = L−1)
D-SAG (γ = 0.2/L)
DIG-ing (γ = 0.02/L)
D-CIAG (γ = 0.1/L)
D-SUCAG (γ = 0.1/L)
D-CIAG (γ = 0.4/L)
D-SUCAG (γ = 0.4/L)

Fig. 2: Comparison of distributed optimization methods for solving
the logistic regression problem (24) over a time varying graph with
N = 250 agents, batch size B = 1, and d = 51 parameters.
The optimality gap against iteration number is obtained through
averaging over 10 trials (except for the deterministic CIAG method).

We remark that a crucial point to guaranteeing the linear
convergence rate is on the high order terms with power ηj >
1. In fact, for ηj = 1 with some j, it can be shown that R(k)

may diverge as m(k)
1,j ,m

(k)
2,j is growing sublinearly in (20).

Finally, we observe that (18) is a special case of (19) by
substituting R(k) = ‖θk − θ?‖2 and the parameters:

p = 1− 2γµL

µ+ L
, η1 =

3

2
, η2 =

5

2
, η3 = 2, η4 = 4 ,

q1 = γ3q̃1, q2 = γ3q̃2, q3 = γ6q̃3, q4 = γ6q̃4 ,

m
(k)
1,j = (mk)2d

j
2 e, m

(k)
2,j = 2mk, j = 1, . . . , 4 ,

Under A4, we observe that the above m(k)
1,j ,m

(k)
2,j satisfy (20)

in Lemma 3 with the same c0 . Moreover, in the online
appendix we show that the step size γ specified in (14) gives
the set of qj that satisfy (21). This concludes the proof.

IV. NUMERICAL EXPERIMENTS

We evaluate the performance SUCAG on the learning task
of training a linear classifier via logistic regression. In this
problem, the i−th component function is defined as:

fi(θ) :=
B∑
b=1

log(1+exp(−yi,b〈θ,xi,b〉))+
B

2N
‖θ‖2 , (24)

where (xi,b,yi,b)
B
b=1 represents data held by agent i, and

B is the size of the corresponding data subset. It can
be verified that (24) and its corresponding sum function
F (θ) satisfy A1–A3. We generate a synthetic dataset in the
experiment where the ground truth classifier θ0 is selected
as θ0 ∼ U [−1, 1]d, then each feature vector xi is generated
independently following xi ∼ U [−1, 1]d with the label yi
computed as yi = sign(〈xi,θ0〉). To simulate the distributed
optimization methods, we generate G as an Erdos-Renyi
graph with N agents and a connection probability of 2 logN

N
(where, if needed, we repeat the procedure until a connected
graph is obtained). The SUCAG method operates on the
aforementioned graph using the protocol in Section II-A
(see also Fig.1), where the probability for selecting the next
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agent is uniform over all neighbors. For benchmark purposes,
we compare the SUCAG method to the similarly modified
version of distributed CIAG [17] and SAG [13]. Moreover,
we compare the DIG-ing method [27], an average consensus-
based distributed optimization method that accounts for time
varying communication topologies. For this method, the
mixing matrix is designed in a similar fashion as the pairwise
gossip protocol [28], while the agents’ activation sequence
follows the same model as in our proposed scheme. The
deterministic CIAG method [17] implemented on a fixed ring
graph is also compared for benchmarking purpose.

Fig. 2 shows the numerical findings (averaged over 10
generated random walks) for a synthetic dataset example with
d = 51 parameters, N = 250 agents, where each agent has
a batch of B = 1 data tuple, i.e., there are NB = 250
data tuples in total. For both SAG and DIG-ing methods,
we have optimized their step sizes (as γ = 0.2/L and
γ = 0.02/L, respectively) used so that the methods converge
in the trials performed. For SUCAG and distributed CIAG
methods, two step size configurations are compared. The
numerical results show that the SUCAG method (as well as
the distributed CIAG method) outperform all other methods,
and thus clearly demonstrating the benefits of curvature-aided
gradient tracking in accelerating distributed optimization.

V. CONCLUSIONS

We have proposed an unbiased curvature-aided stochastic
gradient method for large-scale optimization. Our method is
implementable in a distributed setting, both via distributed
computations performed from agents activated by a single
coordinator, as well as via a fully distributed random walk
on the communication graph. Under usual assumptions, our
convergence analysis establishes linear convergence at a rate
that solely depends on the condition number, but is indepen-
dent from the network size provided that the initialization is
sufficiently close to optimality. Besides, we have established
more general results under rather weak requirements, i.e., in-
finitely often activation, even when activation delays grow
unbounded: our line of reasoning may be applied to a wide
class of stochastic optimization primitives. Our numerical
experiments verified faster convergence compared to various
methods for distributed and stochastic optimization.
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[16] A. Nedić and D. P. Bertsekas, “Incremental subgradient methods
for nondifferentiable optimization,” SIAM Journal on Optimization,
vol. 12, no. 1, pp. 109–138, 2001.
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