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ABSTRACT: Risk assessment of power transmission systems against strong winds requires models that
can accurately represent the realistic performance of the physical infrastructure. Capturing material
nonlinearity, p-delta effects in towers, buckling of lattice elements, joint slippage, and joint failure
requires nonlinear models. For this purpose, this study investigates the reliability of transmission line
systems by utilizing a nonlinear model of steel lattice towers, generated in OpenSEES platform. This
model is capable of considering various geometric and material nonlinearities mentioned earlier. In order
to efficiently estimate the probability of failure of transmission lines, the current study adopts an
advanced reliability method through Error rate-based Adaptive Kriging (REAK) proposed by the authors.
This method is capable of significantly reducing the number of simulations compared to conventional
Monte Carlo methods such that reliability analysis can be done within a reasonable time. Results indicate
that REAK efficiently estimates the reliability of transmission lines with a maximum of 150 Finite
Element simulations for various wind intensities.

in power outages for large geographical areas. For
example, transmission line failures in Hurricane
Irene (2011) and Hurricane Sandy (2012) resulted

1. INTRODUCTION

Electric power is transferred from power plants to
distant areas through transmission systems,
commonly supported by lattice towers. Although
lattice towers are usually designed to withstand
high intensity wind hazards, experience from past
weather related events such as hurricanes,
tornados, and downbursts has highlighted their
vulnerability (Campbell, 2012; Hoffman and
Bryan, 2013; Elawady and El Damatty, 2016;
Elawady et al., 2017). For example, Hurricane
Irene (2011) caused 280 transmission line failures
and hurricane Sandy (2012) led to 200
transmission line failures (Hoffman and Bryan,
2013). Moreover, as transmission lines perform
with minimum redundancy, any failure can result

in 6.69 million and 8.66 customers to lose their
power, respectively (Hoffman and Bryan, 2013).
A large percentage of current studies on
performance assessment of transmission lines,
assumed deterministic models for investigating
failure in lattice towers (Jiang et al., 2011; Jiang
et al., 2017; Ahmed et al., 2009). However, for
risk management purposes, there is a significant
need to estimate the reliability of transmission
towers through probabilistic models that account
for uncertainty in demand and capacity of lattice
towers as well as various failure modes. There are
a few studies that investigated the performance of
lattice towers through probabilistic models
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(Rezaei, 2016; Fu et al., 2016). However, as these
studies use simplified models that do not account
for post buckling and post yielding behavior of
tower elements as well as joint slippage and joint
failure behaviors, they are not necessarily
representative of the true performance of lattice
towers during high intensity wind hazards such as
hurricanes. In these studies, it is assumed that any
failure in the tower results in its total failure.
However, as lattice towers are significantly
indeterminate structures, they may not fail under
a single failure unless there is a failure mechanism
developed in the tower. To estimate the
probability of failure of lattice towers, first order
reliability methods have been used in the literature
(Rezaei, 2016). However, first order reliability
methods are not accurate when nonlinear behavior
of steel elements (such as post buckling and post
yielding behavior) is taken into account. Monte
Carlo simulation methods can also be used to
estimate the probability of failure of lattice
towers. However, these methods require a large
number of realizations to yield a reliable estimate
of probability of failure of the system especially
for small failure probabilities (Zamanian, 2016).
In order to address the aforementioned
limitations, this study investigates the probability
of failure of lattice transmission towers by
developing a high fidelity Finite Element model
that accounts for post buckling and post yielding
behavior of steel elements. In addition, joint
slippage and joint failure are modeled through a
nonlinear connection model developed in
OpenSEES (McKenna, 2000) Finite Element
platform based on the model suggested by
Ungkurapinan  (2000).  Subsequently, the
probability of failure of a lattice tower is estimated
through a set of pushover analyses along with an
Error rate-based Adaptive Kriging (REAK) model
developed by the authors (Wang and
Shafieezadeh, 2018). This model can efficiently
estimate the probability of failure with much less
number of Finite Element simulations compared
to ordinary Monte Carlo simulation methods.
Such reliability models can be used in risk
assessment procedures to enhance the resilience
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of power networks (Bhat et al., 2018; Darestani et
al., 2016a; Darestani et al. 2016b; Darestani et al.
2017; Darestani and Shafieezadeh, 2017).

2. FINITE ELEMENT MODELING OF
TRANSMISSION TOWERS

Due to various complexities such as post yielding
and post buckling nonlinearities, joint slippage,
and joint failure along with various modes of
failure, high fidelity nonlinear Finite Element
models are essential for a reliable estimation of
the performance of transmission lines during high
intensity wind hazards. For this purpose, a
nonlinear static pushover analysis is employed in
OpenSEES platform and elaborated in the
following subsections.

2.1 Modeling Steel
OpenSEES

In order to account for post yield elasticity,
Steel01 material model is considered in
OpenSEES, which assumes a bilinear relationship
for stress-strain behavior. Nonlinear
displacement-based beam column elements are
defined through five integration points with 10
fiber sections along the height and three fiber
sections along the width of angle elements at each
integration point. In addition, p-delta effects and
geometric nonlinearities are accounted for
through a co-rotational geometric transformation.
In order to consider buckling accurately,
according to Uriz et al. (2008), each element is
divided in half and a camber displacement equal
to 1/2000 to 1/1000 of the length of the element is
applied to the middle node.

Lattice Elements in

2.2 Modeling Connections

Under strong wind loads such as hurricanes, there
is a significant level of joint slippage in the
connections. Joint slippage considerably increases
the lateral displacement of the tower, which can
result in additional p-delta effects and structural
couplings between adjacent towers.
Ungkurapinan (2000) suggested a nonlinear
model for joint slippage behavior based on a set
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of experiments he performed for steel angle
members. The proposed model follows a
backbone curve similar to Fig.1. This study adopts
this model to consider joint slippage behavior. For
this purpose, joint slippage is modeled by
assigning zero-length elements in OpenSEES at
the connections and applying the joint slippage
behavior to the zero-length elements as a material
model (Fig. 2)
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Figure 1. Backbone curve of slippage behavior
(Ungkurapinan, 2000)
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Figure 2. Modeling joint slippage behavior in
OpenSEES using zero-length elements.

3. WIND LOAD ON LATTICE TOWERS

To estimate the wind induced load on lattice
towers, the static gust wind load suggested by
ASCEO07 (2016) is employed in this study.
ASCEOQ7 proposes the following equation for
calculating wind induced load on non-building
structures.

fw = quCf D (1)

where g, is the velocity pressure at height z on the
tower, G is the gust-effect factor, Cr is the force
coefficient, and D is the width of the element
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perpendicular to the wind direction. q, is
estimated from:

q, = 0.613K,K,K, K, V?> (2)
where K, is the velocity pressure exposure
coefficient, K; is the wind directionality factor,
K,: 1s the wind topographic factor, K, is the
elevation factor, and V is the 3-second gust wind
velocity at 10 m above the ground line. Since the
assumed lattice tower is located in a flat area,
therefore, K, isequalto 1. K, is is obtained from

max(4.75, Z))z/a 3)

Zg
where z is the height from the ground. Since the
lattice tower is located in an open terrain area,
exposure category is C, and a and z; are 9.5 and
274.32 m, respectively. The wind directionality
factor, K, is equal to 1. The gust-effect factor, G
is equal to 0.85. ASCEQ7 (2016) defines the force
coefficient, Cr , for squared trussed towers as
Cr=4€*~59€ +4 4)

where € is the ratio of solid area to gross area of
the tower face under consideration. Cr is equal to
1, for the conductors (ASCE 74, 2009).

K, = 2.01(

4. RELIABILITY ANALYSIS USING REAK
METHOD

As it was mentioned previously, reliability
analysis of lattice towers requires estimation of
the limit state function for a large number of
realizations of uncertain parameters to perform a
Monte Carlo simulation. However, as nonlinear
Finite Element analysis is computationally
expensive and considerably time consuming,
direct estimation of limit state function for the
entire set of realizations is practically impossible
(Ebad-Sichani et al. 2018; Fereshtehnejad et al.,
2016). In order to address this limitation, various
reliability analysis methods based on Kriging
have been developed in the literature (Echard et
al. 2011; Jones et al., 1998; Ranjan et al., 2008;
Wen et al., 2016; Wang and Shafieezadeh, 2018).
In Kriging-based reliability analysis, estimation
of the limit state function using computationally
expensive Finite Element method is limited to a
small number of candidate realizations, in which
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the limit state function (G(x)) is close to zero.
Subsequently, a Kriging model is used to estimate
the limit state function for the entire set of
realizations of uncertain parameters to efficiently
perform a Monte Carlo simulation. Therefore,
using Kriging-based reliability analysis, a large
number of Finite Element simulations are avoided
and subsequently, the probability of failure of
lattice towers are efficiently estimated. Further
discussion on limitations of different Kriging-
based reliability analyses can be found in the
paper by Wang and Shafieezadeh (2018).

In this study, in order to obtain the
probability of failure of lattice towers, the Error
rate-based Adaptive Kriging (REAK) proposed
by the authors (Wang and Shafieezadeh, 2018) is
adopted. This method has shown two advantages
over the existing adaptive Kriging reliability
methods. First, this method introduces an
effective adaptive sampling region, in which the
points with low joint probability density function
are removed from candidate samples. Second, an
upper bound for the rate of error is introduced
based on the Lindeberg’s condition for the Central
limit Theorem (CLT). Using this upper bound, a
faster convergence can be obtained for the
reliability analysis. In the following, REAK
algorithm is summarized:

Step 1: Generate N realizations of uncertain
parameters using Latin Hypercube Sampling
method.

Step 2: Define an effective sampling region
as

Pipoy>penr) = P *)
where p(x) is the joint probability density of
candidate design samples, a is a constant
coefficient and Pf”_l is the probability of failure

achieved by Kriging model. Points outside this
region will be later removed from training
samples.

Step 3: Randomly select a small number of
initial points from Step 1. These points will be
used for constructing the initial Kriging model.

Step 4: Construct a Kriging model for
estimating the limit state function using Finite
Element analysis of lattice tower.
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Step 5: Update the efficient sampling region
using Eq. (4).

Step 6: Among the samples that satisfy Eq.
(4), choose the one with the maximum EFF from

the following Eq.:
EFF(x) = (ug(x) — a) X

o5 () -+ (55™)
—ox(x) x
() o (i) ()
d)(a Ul(‘l(l?lf()(x}> B d)(a O'KZIC()(x)>
where ¢(-) denotes the standard normal
probability density function and ®(-) is the
standard normal cumulative density function, a =
0,a* = 204(x), and a~ = =20, (x). pg(x) and
ox(x) are the mean and standard deviation of

Kriging prediction for point x, respectively.
Step 7: If max(EFF)<0.001 go to step 8
otherwise go to step 4.

Step 8: Check if the upper bound of error rate
(€émax) 1s less than 0.05

)

+20,(x)

N ?—I_QZ
€ = max 2 <0.05 5
max Ig, ENRf NQ?+I_QZ ( )
.(22 1

where (2; and (), are the regions inside and
outside of the effective sampling region denoted
by Eq. (4), respectively. N denotes the size of the
set, and I is an indicator that takes one when the
sign of the limit state function is estimated
wrongly and takes zero when the sign of the limit
state function is estimated correctly.

Step 9: If €,,4,<0.05 is not satisfied, increase
the size of the effective sampling region by
reducing the value of a.

Step 10: Estimate the coefficient of variation
of failure probability

1-P
P¢Nycs
Step 11: If COVPf < 0.05, stop the process,

otherwise, increase the number of LHS samples.
A flowchart of REAK algorithm is provided
in Fig. 3. As it was mentioned, REAK algorithm
has a better efficiency compared to the existing
adaptive Kriging reliability methods as it provides
an adaptive effective sampling region denoted in

COVp, = (5)
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Step 2 and an upper bound for the maximum error
rate presented in Step 6.

REAK Algorithm

v

Generate large samples (xs)
using LHS

v

Select a few number of initial points
(x;) and estimate the limit state
function for the tower using FEM in
OpenSEES

v

Construct a Kriging model and
estimate G(x) for x;

v

Update the sampling region
for points with higher joint
PDF

v

Estimate Expected Learning
Function (EFF) for the
updated sampling region

v

\ 4
A

Choose a point with Update
max(EFF) as the next |4 samplmg
sampling point region
Yes
Update x5 by  |No
generating
extra samples
Yes

Estimate maximum
error rate €,y

cov,,
<0.05

Figure 3. REAK algorithm

5. NUMERICAL ANALYSIS

As it was noted previously, lattice towers
experience complex nonlinear behaviors at the
prior to and at the verge of failure especially under
strong winds. These complexities stem from post
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yielding and post buckling nonlinear behavior of
steel elements, joint slippage and joint failure,
uncertainties in demand and capacity as well as
various modes of failure. Due to these
complexities, Finite Element analysis methods are
necessary to estimate the performance of lattice
towers. However, estimation of reliability of
lattice towers through conventional Monte Carlo
simulation methods requires a large number of
time consuming evaluations of limit state
functions, which makes the process of reliability
analysis practically impossible. For this purpose,
in this study, a reliability analysis through Error
rate-based Adaptive Kriging is adopted to
efficiently generate a fragility model for a double
circuit vertical steel lattice tower. This tower is
27.4 m tall, located in a hurricane prone coastal
area in south of the United States. It carries 6 lines
of Drake ACSR (Aluminum Reinforce Steel
Conductors) and two line of Optical Ground wires
(OPGW). The span length is 258 m and it is
assumed that multiple spans with similar
properties exist in the system. Therefore, the
impact of structural couplings is negligible
(Darestani et al., 2016a; Darestani et al. 2016b;
Darestani et al. 2017). A sketch of the modeled
tower is provided in Fig. 4.

™

Figure 4. The assumed double circuit vertical steel
lattice tower

The tower is modeled in OpenSEES platform
as it was discussed in sections 2 and 3. In order to
perform the reliability analysis, uncertainty in
material and demand should be considered. Cha et
al. (2018), performed a sensitivity analysis on
various uncertainties in modeling of the current
lattice tower and they found the parameters
provided in Table 1 as significant uncertain
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parameters that can affect the performance of the
lattice tower. Therefore, in this study, the
parameters shown in Table 1 are assumed
uncertain. The other parameters are set to their
mean value.

In order to perform the reliability analysis, a
limit state function should be defined for the
tower. In this study, a pushover analysis is carried
out to obtain the maximum load bearing capacity
of the tower. The load bearing capacity is defined
as a factor of design wind speed. For the current
tower, the design wind speed is equal to 130 mph.
Subsequently, the limit state function for the
tower is defined as:

Gx)=F,—1 (5)
where F; is the failure load factor presented in
Fig. 5.
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Figure 5. Definition of limit State function through
pushover analysis
For the analysis performed in this figure, the
failure load equals 0.95, which shows that any
wind load greater than 0.95 times the design wind
load of the tower results in the failure of the tower.
Using REAK method a fragility model is
developed for the double circuit vertical lattice
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tower (Fig. 5). The results highlight that the
probability of failure of lattice transmission
towers can be efficiently estimated through
REAK. For the assumed lattice tower, the number
of calls to estimate the limit state function through
Finite Element analysis is less than 150.
Comparing this value with conventional Monte
Carlo simulations which require tens of thousands
of simulations highlights the efficiency and
importance of adaptive Kriging reliability
methods such as REAK to generate fragility
models for lattice towers. The fragility analysis
explained in this paper can be integrated with a
Generalized Linear Model (GLM) to provide
simple and accurate fragility models for
transmission towers with different configurations
including, type, height, span length, and number
and diameter of conductors, among others. A
similar approach was used by the authors in
(Darestani and Shafieezadeh, 2019) to generate
multi-dimensional wind fragility functions for

wood utility poles.
1 T )
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Figure 6. Fragility model developed for the double
circuit vertical lattice tower using REAK method

200

Table 1: Uncertain parameters assumed for reliability analysis

Properties Notation
Steel material Modulus of elasticity E
Yield stress of main leg fym
Yield stress of bracing fyb
members
Post yield elasticity Eg
Wind load Gust effect factor G
Force coefficient Cy
Velocity pressure exposure K,
coefficient
Wind directionality factor K,
Connection Type B Slippage length Phase 2

Type of Reference
Distribution Mean COV
LogNormal 2.0el1 0.06 ASCEO07 (2010) and ASCE 74
(N/m?) (2009)
LogNormal 4.02¢8(N/m?*) = 0.1
LogNormal 2.9¢8 (N/m?) 0.1
LogNormal 0.02E(N/m?) = 0.25
Normal Section 3 0.11 Ellingwood and Tekie (1999)
Normal Section 3 0.12
Normal Section 3 0.16
Normal Section 3 0.08
Uniform 0.45(mm) 0.15 Ungkurapinan (2000)
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3. SUMMARY AND CONCLUSIONS
Complex behavior of lattice towers during strong
wind necessitates use of Finite Element analysis
methods. The complexities stem from post
yielding and post buckling nonlinear behavior of
towers, joint slippage and joint failure, and
various modes of failure that can occur in a lattice
tower, among others. Given that conventional
Monte Carlo simulation methods require a large
number of time consuming Finite Element
simulations to estimate the probability of failure
accurately, Monte Carlo simulation methods
cannot be directly used.

In order to address this limitations, this study,
considers the impact of post yielding and post
buckling through a bilinear material model
integrated with a displacement beam column
element modeled in OpenSEES Finite Element
platform, in which each element is divided in half
and a camber displacement is applied to the mid-
node to capture the out of plane displacement of
steel elements under buckling effects. In order to
consider p-delta effects and instability caused by
buckling effects large deformations are accounted
for through a co-rotational geometric
transformation in OpenSEES. In addition, joint
slippage and joint failure are accounted for
through a nonlinear experimentally validated
model applied to each connection through
zerolength elements in OpenSEES. Second, to
estimate the probability of failure of the lattice
tower, a reliability analysis through Error rate-
based Adaptive Kriging (REAK) is employed in
this study. REAK has two advantages compared
to previous adaptive Kriging reliability analysis
methods. First, it defines an adaptive effective
sampling region that neglect realizations with low
joint probability density function, and second, it
defines an upper bound for the rate of error,
through which the convergence is obtained much
faster. Using REAK a fragility model is
developed for a double circuit vertical lattice
tower. The result indicate that for various wind
speeds, especially for those with low probability
of failure, REAK can efficiently estimate the
probability of failure. The number of calls to
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estimate the limit state function through Finite
Element analysis is less than 150, which
highlights the efficiency of the method,
considering the high accuracy of the results.
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