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The hierarchical structure and dynamics of polymer solutions control the transport of nanoparti-
cles (NPs) through them. Here, we perform multi-particle collision dynamics simulations of solu-
tions of semiflexible polymer chains with tunable persistence length lp to investigate the effect of
chain stiffness on NP transport. The NPs exhibit two distinct dynamical regimes – subdiffusion on
short time scales and diffusion on long time scales. The long-time NP diffusivities are compared
with predictions from the Stokes-Einstein relation (SER), mode-coupling theory (MCT), and a re-
cent polymer coupling theory (PCT). Increasing deviations from the SER as the polymer chains
become more rigid (i.e. as lp increases) indicate that the NP motions become decoupled from the
bulk viscosity of the polymer solution. Likewise, polymer stiffness leads to deviations from PCT,
which was developed for fully flexible chains. Independent of lp, however, the long-time diffusion
behavior is well-described by MCT, particularly at high polymer concentration. We also observed
that the short-time subdiffusive dynamics are strongly dependent on polymer flexibility. As lp is
increased, the NP dynamics become more subdiffusive and decouple from the dynamics of the
polymer chain center-of-mass. We posit that these effects are due to differences in the segmental
mobility of the semiflexible chains.

1 Introduction
Transport of nanoparticles (NPs) through complex heterogeneous
fluids underlies the efficacy of targeted drug delivery methods,1–3

the ability of NPs to modify rheological or surface tension prop-
erties of fluids,4–7 and the functionalization of nanocompos-
ites.8,9 Traditionally, the Brownian motion of spherical parti-
cles is described by the Stokes-Einstein relation (SER), in which
the mobility is inversely related to the viscous drag, via D =

kBT/(zπη0σNP), where D is the particle diffusivity, kB is Boltz-
mann’s constant, T is the temperature, η0 is the zero-shear viscos-
ity of the solution, σNP is the NP diameter, and z= 2 or 3 for slip or
no-slip boundary conditions at the particle surface, respectively.
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This relationship can be extended for complex fluids by incorpo-
rating a complex (frequency-dependent) solution viscosity η̃ ac-
cording to the generalized Stokes-Einstein relation (GSER).10,11

Both the SER and GSER assume that the suspended particle is
large enough that any heterogeneity of the fluid is negligible over
the particle surface. This assumption is broken, however, if the
particle size is comparable to or smaller than characteristic length
scales of the medium, which is commonly encountered for NPs
suspended in polymer solutions or melts. In this limit, dynam-
ics deviate from the prediction of the GSER,12–19 confirming that
complex viscosity η̃ alone is insufficient to predict the motion of
particles in heterogeneous polymer solutions.

To describe the diffusion of NPs through polymer meshes, early
theoretical arguments used obstruction,20,21 hydrodynamic,22–24

and free volume25 approaches. More recently, mode-coupling
theory (MCT)26,27 and self-consistent Langevin equations28 have
been used to relate the fluctuations in the polymer mesh to the NP
dynamics. These methods provide predictions of the NP long-time
diffusivity, but do not access their short time dynamics. A recent
polymer coupling theory (PCT),29 based on scaling arguments
for polymer dynamics,30,31 assumes that the NP dynamics fully
couple to segmental relaxations of the polymers on comparable
length scales. This model, which predicts that the dynamics are
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controlled by the ratio of σNP to the polymer correlation length ξ ,
correctly captures the change in long-time diffusivity as the par-
ticle size or polymer concentration is changed.18 On short length
and time scales, however, experiments and simulations suggest
that the particle dynamics are incompletely coupled to the seg-
mental dynamics of flexible polymers and additionally couple to
the center-of-mass relaxations of the polymers.18,32–34

For semiflexible polymers, theoretical descriptions based on
simple scaling laws are expected to be even less fruitful because
stiff macromolecules cannot be described by a self-similar fractal
structure. Instead, semiflexible chains are characterized by sev-
eral crossover length scales, such as the persistence and contour
lengths, which introduce a large number of disparate time and
length scales that are relevant to describing their dynamics. Ac-
cordingly, it has been shown that even modest stiffness affects
both static35–38 and dynamic39–41 properties of polymer liquids.
This scenario is relevant for understanding transport through the
intracellular space, crowded by actin, microtubules, and other
semiflexible biopolymers.42,43 On short time scales the motion
of microscale particles (larger than the mesh size or correlation
length) is subdiffusive, scaling with time with an exponent of
3/444,45 as predicted from the microscopic relaxations of semi-
flexible polymers.46,47 Surprisingly, how smaller particles couple
to the dynamics of semiflexible chains has not been systematically
explored and is the focus of this study.

In this work, we use a combination of simulation and the-
ory to probe NP dynamics in solutions of semiflexible polymers,
whose stiffnesses are characterized by the persistence length lp.
The colloidal suspensions are simulated using a hybrid molecular
dynamics–multi-particle collision dynamics (MD–MPCD) scheme,
which accounts for hydrodynamic interactions through the use of
an explicit coarse-grained solvent. The simulation results are also
compared with predictions from MCT26 for concentrated polymer
solutions. The NP dynamics are subdiffusive on short time scales
and diffusive on long time scales. The long-time diffusivities scale
with the polymer correlation length at low polymer concentra-
tions in agreement with PCT, but depend on polymer stiffness at
higher concentrations. Good agreement is also observed with the
long-time diffusivities calculated from MCT at high polymer con-
centrations, where the theory is expected to be most accurate.
The short-time subdiffusive dynamics, by contrast, vary strikingly
with the flexibility of the polymers. For fully flexible polymers
whose characteristic length scales are comparable to the NP size,
we observe that the subdiffusive behavior of the NPs is coupled to
the polymer center-of-mass motion, in accord with our previous
study.34 As lp is increased such that the polymer chains become
more rigid, however, the dynamics of the NPs become more sub-
diffusive and decouple from the dynamics of the polymer chain
center-of-mass. These effects likely arise from changes in the seg-
mental relaxations as the chain stiffness is increased.

2 Methods
Molecular dynamics simulations of the NP–polymer systems were
performed with LAMMPS.48 For convenience in describing the
model system, we define σ , m, and ε as the fundamental base
units for length, mass, and energy, respectively. The correspond-

ing unit of time is τ =
√

mσ2/ε. All physical quantities are re-
duced using these fundamental base units and reported in dimen-
sionless form.

We adopted similar models to those used in our previous study
of NP dynamics in solutions of fully flexible polymer chains.34

Nanoparticles were modeled as large spheres with diameter
σNP = 5. Polymers were represented by the Kremer-Grest (KG)
model49 as linear chains composed of Nm = 32 smaller beads with
diameter σP = 1. Excluded volume interactions were modeled us-
ing the shifted Weeks-Chandler-Andersen (sWCA) potential50

UsWCA(ri j)=

4εi j
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ri j−∆i j

)12
−
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]
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i j
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i j

,

(1)
where ri j is the scalar separation distance between particles i
and j, εi j = 1 is the parameter controlling the strength of the
repulsion, and the potential is truncated and shifted at rc

i j =

21/6σi j +∆i j. For NP–NP and monomer–monomer interactions we
used σi j = σNP and σi j = σP, respectively, and set ∆i j = 0. For NP–
monomer interactions, we chose σi j = σP and ∆i j = (σNP−σP)/2
to account for their size asymmetry.

Adjacent beads on each polymer chain were connected by
spring-like bonds described using the finitely extensible nonlin-
ear elastic (FENE) potential,51

UFENE(ri j) =
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2 ln

[
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r02

]
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with spring constant k = 30 and a maximum bond extension r0 =

1.5. Chain stiffness was incorporated into the KG model using the
bending potential40,41,52–54

Ubend(Θi jk) = κ(1− cosΘi jk) (3)

where Θi jk is the angle between the bonds connecting consecutive
beads i to j and j to k (an angle of Θi jk = 0◦ corresponds to three
beads in a line). The parameter κ modulates the strength of the
potential and stiffness of the chains. For sufficiently stiff polymers
(κ > 2), it is related to the chain persistence length via lp ≈ bκ,40

where b is the equilibrium bond length (b≈ 0.97 for the standard
parameterization of the KG model). The contour length of the
chain is given by Lc = (Nm−1)b≈ 30.

To study the influence of chain flexibility on NP dynamics, we
performed simulations using different values of κ ranging from
0 (fully flexible) to 32 (lp/Lc ≈ 1) (Table 1; Fig. 1). The edge
length of the box (L = 64) was chosen to be approximately eight
times the radius of gyration Rg,0 of the stiffest polymer (κ = 32)
at infinite dilution to minimize finite-size effects. All simulations
were conducted in a cubic box with periodic boundary conditions
in each direction. For highly flexible polymers (κ ≤ 2), the num-
ber of polymer chains Nc was varied from 200 to 4900, to achieve
monomer concentrations c = NcNmL−3 ranging from 0.025 to 0.5.
At higher values of κ, however, the maximum value of c was
further limited to avoid the well-characterized isotropic-nematic
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transition in this system37 and stay within the isotropic phase
(Table 1). The number of NPs was fixed at 20 in each simulation
(volume fraction ≈ 0.005) to improve sampling while keeping
NP–NP interactions negligible.

Table 1 Properties of the polymer systems investigated in this study

κ lp/Lc Rg,0 ν cmin cmax
0 0.03 3.63 0.61 0.025 (0.16 c∗) 0.50 (3.13 c∗)
2 0.06 4.37 0.62 0.025 (0.27 c∗) 0.40 (4.37 c∗)
5 0.15 5.62 0.62 0.025 (0.58 c∗) 0.40 (9.29 c∗)
10 0.31 6.82 0.66 0.025 (1.04 c∗) 0.40 (16.61 c∗)
20 0.63 7.73 0.74 0.025 (1.51 c∗) 0.25 (15.12 c∗)
32 1.01 8.15 0.81 0.025 (1.77 c∗) 0.25 (17.72 c∗)

.

Notes: cmin and cmax are the minimum and maximum monomer concen-
trations investigated in this study, and c∗ = 3Nm(4πR3

g,0)
−1 is the overlap

concentration.

(a) κ = 0 (b) κ = 5

(c) κ = 10 (d) κ = 32

Fig. 1 Nanoparticles (red) in solutions of (a) fully flexible, (b,c) semiflex-
ible, and (d) stiff polymer chains with monomer concentration c = 0.05.
Polymers simulated using a given κ are identical, but have been colored
by chain index to enhance visual clarity. Snapshots rendered using Vi-
sual Molecular Dynamics 1.9.3. 55

Molecular dynamics trajectories were propagated using a
velocity-Verlet integrator with time step 0.005. Simulations for
κ ≤ 10 were equilibrated for at least 105τ, whereas longer periods
of ≈ 106τ were used for κ ≥ 20 to account for slower relaxation of
these systems. Equilibration was followed by a production period
of ≈ 106τ during which trajectories were saved for subsequent
analysis. Ensemble averages were computed from three indepen-
dent simulations (60 NP trajectories), and statistical uncertainties
were estimated from the standard error. Hydrodynamic inter-
actions (HI) were incorporated by coupling the MD particles to
a coarse-grained solvent modeled using the multi-particle colli-
sions dynamics (MPCD) method.56–59 Implementation details of

the hybrid MD–MPCD algorithm are identical to those reported
in our previous study.34 Briefly, the MD–MPCD simulations were
performed using a collision cell edge length a = 1, a solvent parti-
cle mass ms = 1, an average solvent density ρ = 5 (5 solvent par-
ticles per collision cell), and a collision time step 0.09. Solvent
collisions were handled using a momentum-conserving version of
the Andersen thermostat60,61 with a set temperature T = 1. Fur-
ther, the reference positions of the cells were randomly shifted
before each collision step to ensure Galilean invariance.62 These
choices give an MPCD solvent with Schmidt number Sc ≈ 12.0
and dynamic viscosity ηs ≈ 4.0. Solvent–polymer collisions were
handled using the scheme discussed in ref. 63, whereas momen-
tum transfer between the solvent and NPs was treated using the
stochastic boundary algorithm described in ref. 64 with slip con-
ditions. To achieve neutral buoyancy in the background solvent,
the masses of the polymer beads and NPs were set to mP = ρσ3

P
and mNP = ρπσ3

NP/6, respectively.
To compare the simulated NP diffusivities to the SER, the shear

viscosities of the polymer solutions were determined through
reverse nonequilibrium molecular dynamics (RNEMD) simula-
tions41,65 using HOOMD-blue with MD66–68 and MPCD69 ac-
celerated on graphics processing units. Stress was imposed on
the solutions by generating a momentum flux, and the shear rate
was extracted from the emerging flow profile. For the fully flex-
ible chains we were able to directly access the linear response
regime and measure the zero-shear viscosity η0. As the stiffness
was increased, however, the polymer relaxation slowed down sig-
nificantly, making a direct measurement of η0 computationally
infeasible. In these cases, we extracted the zero-shear viscosity
by fitting our data to the Cross model (ESI).41,70,71 Uncertainties
in η0 from this fitting procedure were estimated and propagated
using standard relationships to calculate errors in other quantities
derived from these values.

3 Results and Discussion
We first characterized the structure of the polymer chains as the
stiffness κ was varied. Polymer chains are fractal, and their ra-
dius of gyration in dilute solution Rg,0 scales with the number of
monomer beads Nm as Rg,0 ∼ Nν

m, where ν is the excluded volume
exponent. For fully flexible chains (i.e. κ = 0), we found ν ≈ 0.61
(Fig. 2; Table 1), which is in good agreement with theoretical pre-
dictions and previous simulation results of self-avoiding chains in
a good solvent.34,72 As the chain stiffness increased, the polymer
chains became more rod-like, which is reflected by the increas-
ing excluded volume exponent ν . However, ν remained below
the physical limit for hard rods (ν = 1) and reached a value of
ν ≈ 0.81 for the largest investigated stiffness of κ = 32 (Fig. 2;
Table 1).

After confirming that the simulated polymer structure agrees
with theoretical predictions, we analyzed the dynamics of the
constituents of the suspensions. From the MPCD simulations,
we calculated the mean-squared displacement

〈
∆r2〉 for the

monomers in the reference frame of the polymer centers-of-mass
(COM), for the polymer COM, and for the dispersed NPs as func-
tions of chain stiffness κ (Fig. 3). For fully flexible chains (i.e.
κ = 0), monomers are hydrodynamically coupled and move ac-
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Fig. 2 Scaling of radius of gyration Rg,0 in dilute solution as a function of
the number of monomer beads Nm for polymers with stiffness κ = 0 (4)
and 32 (©). Dashed lines are power law fits.
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Fig. 3 Mean-squared displacement
〈
∆r2〉 as a function of lag time ∆t

at multiple polymer stiffnesses and monomer concentration c = 0.20 for
(a) the monomers in the reference frame of the polymer centers-of-mass
(COM), (b) the polymer COM, and (c) the NPs. Dashed and solid lines in-
dicate diffusive (∼ t1) and subdiffusive (∼ tα ,α < 1) scaling, respectively.

cording to Zimm dynamics on short time scales with
〈
∆r2〉∼ t2/3,

as expected.72 As κ increases, the monomers remain hydrody-
namically coupled, but the chains become stiffer and their seg-
mental mobility decreases (Fig. 3(a)).

The chain stiffness also affects the motion of the polymer COM
(Fig. 3(b)). On short time scales, the mean-squared displacement
of the polymer COM develops a subdiffusive region as κ increases,
in which

〈
∆r2〉 ∼ tα and α < 1 is the subdiffusive exponent. On

long time scales, the MSD of the polymer COM recovers diffusive
scaling α = 1 with the diffusivity decreasing with κ due to lower
segmental mobility and larger size of the stiffer chains. The mo-
tion of the NPs (Fig. 3(c)) is qualitatively similar to that of the
polymer COM with a pronounced subdiffusive region when dis-
persed in solutions of stiff chains.

3.1 Long-time nanoparticle diffusivity

The effect of polymer stiffness on the dynamics of NPs was fur-
ther characterized by calculating their long-time diffusivity D and
short-time subdiffusive exponent αNP. To facilitate quantitative
comparisons with theory, the NP diffusivities measured in the sim-
ulations, D(L), were corrected for finite-size effects using73

D =

(
1− ζ σNP

3L

)−1
×D(L)≈ 1.08×D(L) (4)

where ζ = 2.837297. Equation 4 corrects for finite-size effects as-
sociated with long-range hydrodynamic interactions between pe-
riodic images of the simulation box, which vanish as L→ ∞ and
are thus not present in infinite systems. This expression is valid
for NPs with a slip boundary condition at their surface, but anal-
ogous expressions have also been derived for no-slip boundary
conditions.73 For the system considered here (L = 64, σNP = 5),
the correction is relatively small and increases the diffusivity by
≈ 8%.

The values of D from simulation are significantly larger than
the diffusivities predicted by the SER (Fig. 4), indicating that the
motions of the NPs are incompletely coupled to the bulk viscos-
ity of the background polymer solutions. Deviations from SER
predictions have also been observed in experimental studies per-
formed on NPs in solutions of similarly sized polymers,16,18 rang-
ing from D/DSER ≈ 2 when σNP/2Rg,0 ≈ 0.9 to D/DSER ≈ 30 when
σNP/2Rg,0 ≈ 0.6. They arise because the NPs are comparably sized
to the polymer chains, which violates the homogeneity assump-
tion underlying the SER.14 The deviations from SER predictions
become more pronounced as the chains become stiffer, indicat-
ing that the NPs become increasingly decoupled from the bulk
solution viscosity. For simulations of NPs in solutions of infinitely
rigid rods, these deviations were posited to develop because of
constraint release mechanisms in the rod matrix.74

We also compared our simulation results to calculations per-
formed using a variant of MCT developed for dense polymer so-
lutions.26,27 Details of the MCT calculations follow those in ref.
26 and are thus not repeated here. Within MCT, the overall NP
diffusion coefficient DMCT is written as a sum of hydrodynamic
and non-hydrodynamic (microscopic) terms.26,27 The former is
given by DSER, whereas the latter contribution, Dmicro, arises due
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Fig. 4 NP diffusivity obtained from MD–MPCD simulations with finite
size correction following ref. 73 (D), from MCT calculations (DMCT), and
from the SER (DSER). Closed symbols in (a) and (b) indicate diffusivities
and open symbols in (c) and (d) indicate ratios of diffusivities. Dashed
lines in (c) and (d) indicate a diffusivity ratio of unity.
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Fig. 5 NP diffusivity obtained from the MCT calculations broken down
into hydrodynamic (DSER) and non-hydrodynamic (Dmicro) contributions
for polymer concentrations (a) c = 0.05 and (b) c = 0.20.

to the coupling of the NP motion to polymer collective density
modes.26,27 Calculation of Dmicro requires several structural (NP–
monomer and monomer–monomer radial distribution functions
and Rg,0) and dynamical (monomer diffusion coefficient) quanti-
ties as input.26 These quantities can be calculated directly from
theory,26 but here we use input from the MD–MPCD simulation,
as our main interest is to test the approximations inherent in MCT.
In computing Dmicro, we also include the contribution arising from
the coupling to the self-transverse current mode given in ref. 75,
which affects the dynamic shear viscosity and has been shown
to play an important role in treating diffusion in low-density flu-
ids.75 Although this additional contribution is negligible in dense
systems, we nonetheless include it in all MCT calculations and
evaluate it using input from the MD–MPCD simulation.

The relative contributions of DSER and Dmicro to DMCT depend
on polymer concentration for the small particles examined here;
DSER is comparable to Dmicro at low polymer concentrations (c =
0.05, Fig. 5(a)) but much smaller than Dmicro at high polymer
concentrations (c = 0.20, Fig. 5(b)), as also seen in an earlier
MCT study.26 The overall diffusivities DMCT predicted by MCT
are in excellent agreement with those calculated from the MD–
MPCD simulations (Fig. 4) at polymer concentration c = 0.20 for
all values of κ examined.

For lower concentration c = 0.05, however, deviations between
MCT and simulation are observed. Even with incorporation of
the contribution from the coupling to the self-transverse current
mode, MCT systematically underestimates the NP diffusivity at
c = 0.05. This discrepancy is presumably due to the fact that addi-
tional collective modes, which have not been taken into account,
are important at these conditions. Nevertheless, the overall agree-
ment with simulation is reasonable, and MCT correctly captures
the increasingly significant deviations from SER as the polymers
become stiffer.

Lastly, we compared the behavior of the NP diffusivity with pre-
dictions from the PCT developed in ref. 29 for fully flexible poly-
mers to explain deviations from the SER. This theory assumes
that the NPs are locally caged by polymers until the surrounding
chains relax over the particle surface. Accordingly, the long-time
NP diffusivity is predicted to depend on the length-scale ratio of
NP diameter to polymer correlation length σNP/ξ and to scale
as D/D0 ∼ (σNP/ξ )−2, where D0 is the nanoparticle diffusivity in
pure solvent. For c/c∗ > 1 we used ξ = Rg,0(c/c∗)−ν/(3ν−1) from
scaling theory,72 where c∗ = 3Nm(4πR3

g,0)
−1 is the overlap con-

centration (Table 1). For c/c∗ ≤ 1, we calculated ξ according to
the mean geometric separation distance Rg,0(c/c∗)−1/3. We veri-
fied this PCT prediction experimentally18 and with simulations34

in previous work for fully flexible chains. By contrast, tests of
PCT in computational studies of nanoparticle-polymer composites
modeled using flexible chains have yielded inconclusive results.76

Here, we extend tests of this scaling relation to semiflexible poly-
mer systems (Fig. 6).

At very low polymer concentrations, the NP diffusivities remain
mostly unaffected by the polymers so that D/D0 ≈ 1. The dif-
fusivities decrease with increasing polymer concentration solely
as a function of length-scale ratio σNP/ξ . In solutions of flexi-
ble chains (κ ≈ 0), the NP diffusivities eventually cross over and
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scale according to D/D0 ∼ (σNP/ξ )−2 at large σNP/ξ , in agree-
ment with the PCT predictions of ref. 29. Similar behavior for
flexible chains was also observed in our previous study,34 where
the agreement with PCT was even more clear due to the use of
longer polymer chains (Nm = 50), which provided access to larger
σNP/ξ .34 Slightly shorter chains (Nm = 32) were used in this study
to avoid approaching the isotropic-nematic transition in systems
with stiff chains.37 Agreement with PCT was also observed ex-
perimentally for flexible chains,18 although vertically offset from
the simulation results due to differences in solution viscosity.34

For stiffer chains (large κ), however, the NP diffusivities decrease
more rapidly and deviate from the predicted scaling. According
to PCT, the long-time dynamics depend on the segmental relax-
ations of the polymer chains. Thus, the different diffusivity de-
pendences likely arise from the slower monomer dynamics of the
stiffer chains (Fig. 3(a)). As the monomer dynamics slow down
with increasing κ, the time required for the polymer mesh to relax
over the particle surface increases. This longer relaxation thereby
slows the long-time NP motion.
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D
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∙=20
∙=32

Fig. 6 Normalized NP diffusivity D/D0 as a function of size ratio σNP/ξ

for polymers with varying stiffness κ. Open symbols are experimental
data from ref. 18 with σNP/2Rg,0 = 0.56 (4), 0.74 (�). Solid lines are
scaling predictions 29 D/D0 ∼ (σNP/ξ )−2.

3.2 Short-time subdiffusion

Beyond segmental mobility, the dynamics of the polymer COM
also play an important role in controlling the subdiffusive motion
of dispersed NPs.34 For flexible chains, both Rouse and Zimm the-
ories assume that the COM of polymer chains move diffusively on
all time scales.72 Experimentally, however, the COM dynamics of
polymers deviate from this diffusive assumption and move subd-
iffusively on short time scales.77 Our simulations reveal that the
subdiffusive dynamics of the polymer COM depend on both poly-
mer concentration and chain stiffness (Fig. 7). For both concen-
trations, the subdiffusive exponent αP for the polymer COM ini-
tially decays with increasing κ before reaching a plateau. Higher
polymer concentrations lead to lower values of αP for all κ. The
NP subdiffusive exponent αNP also decreases as the polymer con-
centration and κ are increased, similar to αP. It does not, how-

ever, reach a plateau at high κ for the higher polymer concentra-
tion (c = 0.20), unlike αP.
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Fig. 7 Subdiffusive exponent of NPs αNP (closed) and polymer centers-
of-mass αP (open) as a function of bending constant κ, for monomer
concentrations of c = 0.05 (orange) and c = 0.20 (purple).

When particles are much larger than characteristic length
scales in the polymer, (σNP � 2Rg,0), their short-time dynam-
ics directly follow the segmental relaxations of the free polymer.
This coupling results in subdiffusive particle dynamics in the mi-
crorheological limit, with αNP = 0.5 in solutions of flexible poly-
mer18,29,78 and αNP = 3/4 in solutions of semiflexible chains.44,45

The PCT developed for smaller (nano)particles in ref. 29 still as-
sumes direct coupling of the NP to segmental relaxations of the
surrounding polymer chains on short time scales, so that αNP

exhibits a step change and abruptly decreases from 1 to 0.5 at
σNP/ξ = 1 (Fig. 8). For flexible chains, such a step change is
not observed in experiments18 or simulations.34 Instead, αNP

smoothly decreases as the size ratio σNP/ξ increases. For stiff
chains, the shape of this decay changes (Fig. 8). At low polymer
concentrations, αNP decreases with increasing polymer concen-
tration independent of κ. At higher polymer concentrations (i.e.
larger σNP/ξ ), the NP dynamics become increasingly subdiffusive
with increasing polymer stiffness. The steeper decays suggest that
the NP dynamics couple differently to the segmental mobility of
stiffer chains.

In previous work,34 we attributed the deviation from scaling
predictions on short time scales to the coupling of the NP dynam-
ics to both the segmental relaxations of the polymer chains and to
the dynamics of the polymer COM. To assess the degree to which
NP dynamics couple to segmental relaxations and the dynamics of
polymer COM in solutions of semiflexible chains, we analyze the
correlation between αNP and αP (Fig. 9). At low polymer concen-
trations, the dynamics of the NPs and polymer COM are largely
diffusive for all κ with αNP = αP ≈ 1. As the polymer concentra-
tion increases, αNP decreases concomitant with αP for all κ, indi-
cating that the NP and polymer COM dynamics are correlated in
these solutions. At higher polymer concentrations, however, αNP

decouples from αP and decreases more rapidly with increasing
chain stiffness. The stronger subdiffusion of NPs in solutions of
stiff chains is a marked difference from the predicted microrhe-
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Fig. 8 Subdiffusive exponent of NP αNP as a function of particle diam-
eter σNP to polymer correlation length ξ size ratio for chains with vary-
ing stiffness κ. Open symbols are experimental data from ref. 18 with
σNP/2Rg,0 = 0.56 (4), 0.74 (�). Dashed lines are predictions from PCT
in solutions of flexible polymer chains. 29

ological behavior of micron-sized particles in solutions of semi-
flexible chains in which αNP = 3/4.44,45 The decorrelation of the
short-time dynamics of nanoparticles and polymer COM suggests
that the NPs couple more strongly to the decreased monomer
dynamics of the surrounding chains in solutions of semiflexible
chains. This hypothesis is consistent with the steeper decay of
αNP with polymer concentration (Fig. 8).
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Fig. 9 Correlations between subdiffusive exponent of NPs αNP and poly-
mer centers-of-mass αP for polymers with varying stiffness κ. Dashed
line indicates αNP = αP, and solid lines are guides to the eye.

4 Conclusions
Understanding the effects of polymer stiffness on NP transport
is critical to improving the efficacy of composite processing and
drug delivery. Here, we performed hybrid MD–MPCD simulations
of semidilute solutions of polymers with tunable stiffness to in-
vestigate the influence of polymer flexibility on the dynamics of
NPs of comparable size. The NPs exhibit subdiffusive dynamics
on short time scales and diffusive dynamics on long time scales.

With increasing polymer stiffness the long-time diffusivities of the
NPs more markedly deviate from the SER, consistent with de-
coupling from the bulk polymer solution viscosity, and from PCT,
which was developed for flexible polymers. The long-time diffu-
sivities are adequately predicted by MCT, however, especially at
high concentrations of the polymers where the theory is expected
to be most accurate. On short time scales, the dynamics of the
NPs become progressively more subdiffusive and decouple from
the dynamics of the polymer chain center-of-mass as the stiffness
of the polymer chains is increased. These changes in dynamics
likely arise from differences in the segmental relaxations of the
semiflexible chains. We anticipate that these predictions can be
tested experimentally using, e.g., nematic elastomers,79,80 den-
dronized polymers,81 or the well-characterized biopolymers ds-
DNA or actin. Finally, the results from our computational study
may aid in extending existing theories for describing NP trans-
port in systems of flexible chains (e.g., PCT) to solutions of stiff
polymers.
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