
Pre-Print Copy: Garlock et al. (2019). “Post-buckling mechanics of a square slender steel 
plate in pure shear.” Engineering Journal (AISC), Vol. 56, No. 1, pp. 27-46. 

 1 

Post-buckling mechanics of a square slender steel plate in pure shear 1 

Maria E. Moreyra Garlock1, Spencer E. Quiel2, Peter Y. Wang3, José Alós-Moya 4, Jonathan D. 2 

Glassman5 3 

Abstract 4 

Thin (slender) steel plates possess shear strength beyond the elastic buckling load which is 5 

commonly referred to as the post-buckling capacity.  Semi-empirical equations based on 6 

experimental tests of plate girders have been used for decades to predict the ultimate post-7 

buckling strength of slender webs. However, several recent studies have shown that the 8 

current models for predicting the ultimate shear post-buckling capacity of thin plates are 9 

based on some incorrect assumptions regarding their mechanical behavior. As a result, the 10 

current design equations provide an approximate estimate of capacity for the range of 11 

parameters in the test data upon which they are founded. This paper explores the 12 

fundamental behavior of thin plates under pure shear.  Such a fundamental examination of 13 

shear post-buckling behavior in thin plates is needed to enable design procedures that can 14 

optimize a plate’s shear strength and load-deformation performance for a wider range of 15 

loading and design parameters. Using finite element analyses, which are validated against 16 

available results of previous experimental tests, outputs such as plastic strains, von Mises 17 

stresses, principal stresses, and principal stress directions are examined on a buckled plate 18 

acting in pure shear. The internal bending, shear, and membrane stresses in the plate’s 19 

finite elements are also evaluated. In this study, these evaluations are performed for a 20 
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simply-supported plate with an aspect ratio equal to 1.0 and slenderness ratio equal to 134. 21 

Results show that localized bending in the plates due to the out-of-plane post-buckling 22 

deformations appear to be a significant factor in the ultimate shear post-buckling capacity 23 

of the plate. Also, the compressive stresses continue to increase beyond the onset of elastic 24 

buckling in some regions of the plate, contrary to current design assumptions. Overall, this 25 

study provides new insights into the mechanics of shear post-buckling behavior of thin 26 

plates that can be exploited for design procedures that are consistent with mechanical 27 

behavior. 28 

Keywords:  Shear, Buckling, Tension Field, Slender Plates, Web, Plate Girder 29 

 30 

1. Introduction 31 

Deep steel beams (i.e., plate girders) have thin webs and are commonly used in steel 32 

construction for buildings but most notably in bridges.  The design of these elements is 33 

often controlled by the shear strength of the slender web plate.  Web plates that elastically 34 

buckle due to shear load still possess a significant amount of post-buckling shear strength.  35 

Post-buckling capacity is utilized in the design of many bridge girders due to high web 36 

slenderness, which is necessitated by large girder depths and weight/material savings.  37 

This post-buckling behavior has attracted the attention of researchers and engineers since 38 

the 1880s (e.g., Basler, 1961; Wagner 1931; Wilson 1886).  Since 1931, more than a dozen 39 

proposals have been developed to explain and predict the post-buckling shear strength of 40 

thin webs in plate girders (e.g., Höglund, 1997; Porter et al., 1975).  A detailed discussion of 41 

the differences between several of the aforementioned proposals is provided by White and 42 

Barker (2008). Despite these numerous proposals, the true mechanics and post-buckling 43 
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behavior are still not fully understood, particularly the contributions of the compression 44 

field and vertical stiffeners to the ultimate post-buckling shear strength.  Previous 45 

publications have provided extensive discussions on the various proposed plate shear 46 

buckling models throughout the literature (Ziemian, 2010; White & Barker, 2008; Yoo & 47 

Lee, 2006), and all the models are based on tension field action.  Tension field theory posits 48 

that the main source of this post-buckling shear strength is the development of tensile 49 

stresses in a defined diagonal field, which is mobilized after the onset of elastic shear 50 

buckling.  Recent research, however, has shown that the fundamental assumptions upon 51 

which tension field action is based do not represent the full mechanical response of web 52 

shear buckling (Yoo & Lee, 2006; Glassman & Garlock, 2016; Jha 2016).   53 

 54 

In addition, the current AISC Specification (2016) recognizes that the vertical stiffener does 55 

not carry the full vertical component of the tension field force.  In previous editions, this 56 

stiffener was designed for an area consistent with the assumed vertical component of the 57 

tension field force, whereas it is currently designed for flexural stiffness only.  This change 58 

rightly recognizes that the vertical stiffener provides lateral stiffness to define the web 59 

panelization – it does not act as an anchor for the tension field.  As noted in the AISC 60 

Specification’s commentary: “…transverse stiffeners in I-girders designed for shear post-61 

buckling strength, including tension field action, are loaded predominantly in bending due 62 

to the restraint they provide to lateral deflection of the web. Generally, there is evidence of 63 

some axial compression in the transverse stiffeners due to the tension field, but even in the 64 

most slender web plates permitted by this Specification, the effect of the axial compression 65 

transmitted from the post-buckled web plate is typically minor compared to the lateral 66 
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loading effect. Therefore, the transverse stiffener area requirement from prior AISC 67 

Specifications is no longer specified.” (AISC 2016).  However, the design equations that 68 

predict the post-buckling capacity are still based on the original tension field design 69 

procedures. Using the current approach, the load path for the tension field action is, 70 

therefore, incomplete - the vertical component of the diagonal tension field must be 71 

resolved via a different mechanism.  The study presented in this paper provides, for the 72 

first time, insights to the behavior of thin web plates that, with more investigation, can lead 73 

to updated design recommendations that include a completed load path.  74 

 75 

This paper explores the fundamental behavior of thin plates under pure shear. Using 76 

validated finite element analyses, outputs such as plastic strains, von Mises stresses, 77 

principal stresses, and principal stress directions are examined on the buckled plate. The 78 

through-thickness bending and membrane stresses in the plate elements are also 79 

evaluated. These evaluations are performed for a plate with an aspect ratio equal to 1.0 and 80 

slenderness ratio equal to 134.  Examining this single case provides novel insights into 81 

plate shear buckling behavior that will be used as a basis for future work, which will 82 

examine a wider range of plate parameters. 83 

 84 

2. Finite Element Model 85 

The plate used for this study is based on standard plans for typical steel girder highway 86 

bridges specified by the Federal Highway Administration (FHWA, 1982).  A 90 foot (27.4-87 

meter) span design was used as a prototype, where the depth, D, equals 58 inches (1473 88 

mm), and the web thickness, tw, equals 7/16 inches (11 mm).  In practice, many of these 89 
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girders are designed with a transverse stiffener spacing, a, greater than D; however, in this 90 

study we assume a = D.  Future work will examine other stiffener spacings. The steel was 91 

modeled with a yield stress equal to 50 ksi (345 MPa), a modulus of elasticity equal to 92 

29,000 ksi (200 GPa), and Poisson’s ratio equal to 0.3.  It will be shown that the steel 93 

remained in the elastoplastic region for the range of strains encountered in the analyses 94 

(well before strain-hardening occurs).  95 

 96 

The finite element (FE) model was developed in the software Abaqus (Dassault Systemes 97 

2011) using the simply-supported boundary conditions shown in Fig. 1.  Note that the 98 

boundary conditions used here represent an approximation of the actual boundary 99 

conditions which may incorporate flanges and stiffeners, each of varying stiffnesses.  To 100 

achieve perfectly symmetric stress results, the boundary conditions used by the authors 101 

differ only slightly from those used by Glassman and Garlock (2016), which restrained the 102 

Y-translation on the left side instead of applying a load.  The elastic critical shear buckling 103 

load, Vcr, and the ultimate post-buckling shear load, Vu, are not affected by this slight 104 

modification in boundary condition.  105 

 106 

Yoo and Lee (2006) used boundary conditions that were different from both configurations 107 

mentioned above.  In their studies, the z-direction translation is free on all four sides.  Such 108 

a boundary condition represents a lower-bound solution for Vu.  The current study’s 109 

boundary conditions assume axially rigid flanges and are thus closer to an upper-bound 110 

solution.  All boundary conditions discussed here result in the same Vcr.  Comparing Vu 111 

using the Yoo and Lee (2006) boundary conditions to that produced by the current study’s 112 
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boundary conditions (Fig. 1), one obtains Vu values equal to 437 kips and 593 kips, 113 

respectively, when analyzing the prototype plate.  The current study’s results match those 114 

of Glassman and Garlock (2016), which correlated well to experimental results (as will be 115 

discussed later in this paper). The authors, therefore, proceed with the boundary 116 

conditions of Fig. 1 for the remainder of this paper. 117 

 118 

The thin plate was meshed using S4 shell elements (doubly curved, general-purpose, finite 119 

membrane strains) with 4 integration points on the surface as shown in Fig. 2.  A 120 

preliminary study was conducted to determine an appropriate number of section points 121 

through the depth, in which 3, 5, 7, and 9 section points at each surface integration point 122 

were evaluated by examining stress values and shear load sustained at V = Vu. The results 123 

for 5, 7, and 9 section points differed by less than 1%, and 5 section points as shown in Fig. 124 

2 are therefore used for all other analyses discussed in this paper. 125 

 

Figure 1: Boundary conditions of the FE model (left), and mesh density in first mode buckled shape (right).  
Location 3 is a point (Pt) on the upper left corner. 
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Figure 2: Integration points and section points on each shell finite element 

 126 

To capture the plate transition from its initial unbuckled state to post-buckling behavior to 127 

ultimate shear strength, nonlinear analyses were conducted using a modified Riks 128 

procedure.  These analyses require the insertion of an initial geometric imperfection to 129 

perturb the mesh prior to loading, which allows the load-displacement curve to proceed 130 

beyond the buckling bifurcation point and progress into the postbuckled behavior until Vu 131 

is reached (Glassman et al., 2016). To create this initial geometric imperfection, the 132 

eigenmode shape associated with the lowest elastic positive eigenvalue is multiplied by a 133 

defined scale factor. Previous research by Garlock and Glassman (2014) found that a scale 134 

factor of D/10,000 was sufficient for these models, and this scale factor was therefore 135 

selected for the present study.  Mesh convergence studies were conducted using an 136 

eigenvalue extraction analysis. The final mesh selected is shown in Fig. 1, and equal to 37 x 137 

37 elements (approximately 1.57 inches (40 mm) square each).   138 

 139 

Using this approach, the FE solution for the elastic shear buckling load, Vcr, equaled 345 140 

kips (1535 kN).  This value has less than 1% error compared to a theoretical solution of 141 

343 kips (1526 kN), which is obtained from Eq. (1): 142 
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In Eq. (1), cr is the elastic shear buckling stress, E is Young’s modulus, ν is Poisson’s ratio, D 143 

is the depth of the plate, tw is the plate thickness, and k is the elastic shear buckling 144 

coefficient. The value of k is a function of the span-to-depth (aspect) ratio (a/D) of the plate 145 

and the boundary conditions applied to its edges (Timoshenko and Gere, 1961). For a plate 146 

with a/D = 1 and simply supported on all four edges, k equals 9.34. D/tw is the slenderness 147 

ratio, which is a measure of how susceptible the plate girder is to web shear buckling. The 148 

elastic critical shear buckling load, Vcr, is calculated by multiplying Eq. (1) by D·tw.   149 

 150 

The modeling approach described above has also been validated via comparison to 151 

experimental test data for various a/D and D/tw ratios. Glassman and Garlock (2016) 152 

considered the results of 16 previous experiments whose results are published in Basler et 153 

al., 1960; Bergfelt et al., 1968; Kamtekar et al., 1972; Rockey and Skalmoud, 1972; Evans et 154 

al., 1977; Narayanan and Rockey, 1981.  Glassman and Garlock’s (2016) FE models used the 155 

same setup conditions as discussed above and showed very close agreement with the 156 

ultimate post-buckling shear capacity, Vu, of each plate.  Specifically, the FE models 157 

predicted Vu values to within ~10% of the published experimental values with one 158 

exception where the flange-to-web thickness ratio (tf/tw) was quite large compared to 159 

other tests (thus influencing that plate’s boundary conditions more so than the other 160 

validation cases).  161 
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3. Results  162 

3.1 Sign Conventions and Definitions 163 

To properly interpret the finite elements results, the definitions and sign conventions of the 164 

stresses, moments, and rotations are defined in this paper as follows, in the context of the 165 

Abaqus output: 166 

 Tensile stresses are positive and compressive stresses are negative. 167 

 SP:1 and SP:5 refer to the section points on the two surfaces of the plate as shown in 168 

Fig. 2. 169 

 The element stresses, 1, 2, and 12 are defined in Fig. 3a in the positive direction.  170 

 Maximum principal stresses (max) are the maximum positive value, thus typically 171 

corresponding to maximum tensile stresses.  If no tension is present, the value will be 172 

negative, thus corresponding to the minimum compressive value (see Fig. 3b). 173 

 Minimum principal stresses (min) are the maximum negative value, thus typically 174 

corresponding to maximum compressive stresses.  If no compression is present, the 175 

value will be positive, thus corresponding to the minimum tensile value (see Fig. 3b). 176 

 Von Mises stresses are defined for the principal plane stress condition defined by Eq. 177 

(2), where σy is the yield stress. Fig. 4 plots this yield surface. 178 

 
s y

2 =smax
2 +smin

2 -smaxsmin         (2) 179 
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Figure 3: (a) Positive stresses on element; (b) Principal stresses and principal stress direction (with Abaqus 
sign convention in parenthesis). 

 

Figure 4: von Mises yield surface 

 180 

Fig. 5 shows the shear force-deformation plot with Vcr and Vu for this plate labeled for 181 

clarity.  Deformation is measured at the lower right corner of the plate as shown by the dot 182 

in the inset figure.  Note that the plot can be divided into three phases of shear loading.  183 

Phase I represents the elastic state prior to buckling.  In Phase II, the plate has exceeded Vcr 184 

but still exhibits nearly linear behavior.  In Phase III, the plate’s force-deformation behavior 185 

becomes highly nonlinear.  For this plate, the boundary between Phases II and III lies 186 

approximately at the shear halfway between Vcr and Vu.  In the following sections, the 187 
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stresses and strains throughout the plate will be evaluated at two values of loading: (1) in 188 

Phase II at V  = 1.15·Vcr (when the plate has recently buckled), and (2) in Phase III at Vu 189 

(when the plate has reached its peak shear load during post-buckling response).   190 

 

Figure 5.  Shear displacement of the plate, with Vcr and Vu labeled. 

 191 

3.2 Ultimate Shear Post-buckling Load, Vu, and Deformation 192 

Fig. 6 illustrates the final deformed shape at the ultimate (post-buckling) shear load, Vu, 193 

which for this plate equals 593 kips (2636 kN).  The out-of-plane deformations are 194 

manifested in three half-wavelengths or bulges from Point B to Point D.  The surface shown 195 

in Fig. 6 represents the SP:5 face from Fig. 2.  Therefore, along the ‘tension field’ (from 196 

Point A to Point C, where the red color represents maximum out-of-plane positive 197 

displacement), it will be shown that the SP:5 stresses will be in tension and SP:1 stresses 198 

will be in compression due to the significant bending in the plate.  Conversely, in Fig. 6 199 
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where the dark blue color shows large negative displacement, SP:5 stresses will be in 200 

compression and SP:1 stresses will be in tension.  A thorough analysis of the stresses will 201 

be discussed in sections to follow, where it will be shown that the plate bending due to this 202 

post-buckling out-of-plane deformation dominates the response when Vu is reached. 203 

 

 

Figure 6: Deformed shape contour at Vu, with out of plane deformation plot superimposed (dark black line).  
The face shown (front face) corresponds to SP:5; the back face (not shown) corresponds to SP:1 (see Fig. 2). 

 204 

3.3 Plate Behavior Just After Elastic Buckling 205 

Before the plate reached the elastic shear buckling load Vcr, the FE results were consistent 206 

with the theoretical behavior of a plate under pure shear: the angle of the principal stress, 207 

p, was 45o and the principal stresses in tension and compression (σmax and σmin, 208 

respectively) were equal and opposite to one another and also equal to the shear stress 209 

(V/(D·tw), where V is the applied load).  Note that Abaqus does not output p - this value 210 

was derived using 1, 2, and 12 with the well-established equation based on Mohr’s circle.  211 

In this section, the state of the plate when the shear V = 1.15·Vcr (i.e. near the beginning of 212 
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post-buckling behavior) is examined to enable a comparison to ultimate post-buckling 213 

behavior when Vu is reached.  The following behavior is observed: 214 

 Principal Stress Direction, p:  Fig. 7 plots the p contours for V/Vcr = 1.15.  It can be seen 215 

that this angle has not changed significantly from the pre-buckling state when this angle 216 

was 45 degrees.  217 

 Principal Stresses:  Fig. 8 plots the min and max contours for V/Vcr = 1.15.  None of these 218 

stresses have reached yield (50 ksi, 345 MPa), and the magnitude of min (compressive 219 

principal stress) is comparable to that of max (tension principal stress).  At an elastic 220 

buckling load of 344 kips (1532 KN), the elastic buckling stress theoretically equals 221 

13.7 ksi (95 MPa).  At V = 1.15·Vcr, Fig. 8 shows that both min and max have generally 222 

increased beyond 13.7 ksi.   223 

 von Mises Stresses:  Fig. 9 plots the von Mises stress contours for V/Vu = 1.15.  As would 224 

be expected, the stresses are shown to be well below yield (50 ksi). 225 

 

Figure 7: Principal stress direction, p, for V/Vcr = 1.15 in degrees.  Left = SP:1, Right = SP:5 (See Figs. 2, 3). 
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Figure 8: Principal stresses min (top) and max (bottom) for V/Vcr = 1.15 (ksi).  Left = SP:1, Right = SP:5 (See 
Figs. 2, 3) 

 



Pre-Print Copy: Garlock et al. (2019). “Post-buckling mechanics of a square slender steel 
plate in pure shear.” Engineering Journal (AISC), Vol. 56, No. 1, pp. 27-46. 

 15 

 

Figure 9: von Mises Stresses for V/Vcr = 1.15 (ksi).  Left = SP:1, Right = SP:5 (See Figs. 2, 3, 4). 

 226 

Though the contour patterns are similar, Figs. 7 through 9 all show some variation in the 227 

magnitudes of plotted results between the SP:1 and SP:5 faces of the plate.  More significant 228 

levels of variation are shown for the principal and von Mises stresses in Figs. 8 and 9.  The 229 

stress patterns on the opposing SP:1 and SP:5 faces highlight the emergence of bending 230 

moment through the thickness of the postbuckled plate in addition to in-plane stress.  231 

These moments are caused by second-order bending due to in-plane compression of the 232 

buckled plate.  Each of the three half-wavelengths of this prototype’s buckled shape 233 

experiences “bulging” as the top right and bottom left corners of the plate (from B to D in 234 

Fig. 6) are pushed closer together by the pure shear force. 235 

 236 

3.4 Plate Behavior at the Ultimate Shear Post-buckling Load, Vu 237 

The following observations are made regarding the stress state of the plate when the shear, 238 

V, equals the ultimate shear post-buckling load, Vu = 593 kips (2636 kN).   239 
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 Principal Stress Direction, p:  Fig. 10 plots the p contours for V = Vu.  It can be seen that 240 

this angle is no longer ~45 degrees and now varies between 15 and -65 degrees.  Also, 241 

the values are now significantly different on each face (SP:1 and SP:5) since the 242 

principal stresses are also different on each face.  p is shown to be largely dependent 243 

on the out-of-plane postbuckled deformation. 244 

 
Figure 10: Principal stress direction, p, for V = Vu in degrees.  Left = SP:1, Right = SP:5 (See Figs. 2, 3). 

 Principal Stresses:  Fig. 11 plots the min and max contours for V = Vu.  Both min and max 245 

have reached yield in the regions marked by the bold lines encircling grey shading.  The 246 

magnitudes, signs (positive, negative), and locations of these stresses are related to the 247 

out-of-plane postbuckled deformation (and bending) of the plate at Vu as seen 248 

previously in Fig. 6.  The max contours for SP:5 in Fig. 11 show a distinct band of 249 

yielding in the tension field direction, which generally supports the assumptions in the 250 

current state of practice.  However, the max contours for SP:1 show much lower 251 

maximum stress (actually remaining negative in compression) in this same region due 252 

to bending. The min stresses at yield are located along the tension field for SP:1 and 253 
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along two smaller bands that are parallel to the tension field at SP:5. These stresses 254 

represent the compression face of bending in the buckled half-wavelength bulges along 255 

the diagonal.  The emergence of these large compressive stresses on the SP:1 face 256 

indicates that the large tensile stresses in the tension field on the SP:5 face are caused 257 

by a combination of in-plane stress and second-order bending. 258 

 

 

Figure 11: Principal stresses min (top) and max (bottom) for V = Vu (ksi).  Left = SP:1, Right = SP:5 (See 
Figs. 2, 3). Grey shaded regions represent areas that have reached yield. 
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 259 
 von Mises Stresses:  Fig. 12 plots the von Mises stress contours for V = Vu.  Nearly the 260 

entire plate surface has reached the von Mises yield condition (at 50 ksi, again shown 261 

with bold lines and grey shading) on both faces.  At ultimate shear, the plate 262 

experiences a near saturation of von Mises yielding due to the combination of internal 263 

forces that develops in its buckled shape.  Fig. 12 shows that face SP:5 experiences a 264 

more widespread saturation of von Mises yielding than SP:1, which has a distinct band 265 

of yielding along the tension field diagonal and two other ‘pockets’ of yield parallel to it.  266 

Note that bending-induced compression stress has caused von Mises yielding in the 267 

tension field diagonal on face SP:1 rather than in-plane tensile stresses.  This deviates 268 

from the current state of practice, which assumes in-plane stress to be the primary 269 

contributor to reaching ultimate shear capacity. 270 

 Equivalent Plastic Strains:  Fig. 13 plots (for V = Vu) the equivalent plastic strains 271 

normalized by the yield strain (y = 0.001725) to provide a relative measurement of 272 

ductility utilization.  This value quantifies the plastic strain as related to von Mises 273 

plasticity.  Comparing to Figure 12, one sees that these strain values are greater than 274 

zero only where yield has been reached.  In the tension field region, the equivalent 275 

plastic strains are larger than 2 times y on one face and just slightly greater than y on 276 

the other face.  The material model assumes strain hardening begins at a strain value 277 

equal to 0.02.  From Fig. 12, one can infer that the strains in the plates are well below 278 

this value. 279 
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Figure 12: von Mises Stresses for V = Vu (ksi).  Left = SP:1, Right = SP:5 (See Figs. 2, 4). Grey shaded regions 
represent areas that have reached yield. 

 
Figure 13: Equivalent plastic strains normalized by yield strain (y = 0.001725) for V = Vu.  Left = SP:1, Right = 
SP:5. 
 280 

3.4 Bending Stresses at the Ultimate Shear Post-buckling Load, Vu 281 

The results presented thus far indicate that bending through the thickness of the plate due 282 

to postbuckled out-of-plane deformations has a large effect on the stress distribution.  In 283 

this section, the axial stress is distinguished from the bending stress for both 1 and 2 (see 284 
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Fig. 3).  The stresses are output at the 5 section points (SPs, i.e. the through-thickness 285 

integration points) through the shell element thickness (see Fig. 2).  Abaqus outputs the 286 

total stress and the average section stress (i.e., membrane axial stress) at each SP.  The 287 

bending stress is calculated by subtracting the membrane stress from the total stress. 288 

 289 

Fig. 14 presents the axial (in-plane) and bending (second-order) stresses through the plate 290 

thickness for V = Vu (ksi). The left plot represents stress patterns typically seen along the 291 

tension field.  These stresses are nearly linear through the depth and become slightly 292 

nonlinear as it approaches the top and bottom surface, where the stresses, considering von 293 

Mises plasticity, have reached yield. The right plot represents stress patterns typically seen 294 

outside of the tension field (near upper right and lower left corners).  In these regions the 295 

stresses are linear through the depth and smaller than those in the tension field.   296 

 
Figure 14: Plot of axial and bending stresses in the 1 direction through the plate thickness for V = Vu.  Left = 
representative stresses along tension field; Right = representative stresses outside of tension field (near 
upper right and lower left corners). 

 297 
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Fig. 15 presents the axial stress (top row) and bending stress at SP:1 and SP:5 (middle and 298 

lower rows) for both 1 (left column) and 2 (right column). It is clearly seen that bending 299 

stresses dominate since their magnitudes are nearly 2 times larger than axial stress for 1 300 

and on the order of 10 times larger for 2. These plots clearly show that second-order 301 

moment in the postbuckled shape makes a significant contribution to the onset of ultimate 302 

shear capacity.   303 
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(a1) axial stress – for 1 direction 

 
(a2) axial stress – for 2 direction 

 
(b1) bending stress – for 1 direction; SP:1 face 

 
(b2) bending stress – for 2 direction; SP:1 face 

 
(c1) bending stress – for 1 direction; SP:5 face 

 
(c2) bending stress – for 2 direction; SP:5 face 

Figure 15: Axial and bending stresses for V = Vu (ksi). Left figures are for 1 and right are for 2.  
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Fig. 16 provides additional illustration of the bending in the plate by plotting min and max 304 

at the shell element in the center of the plate against the vertical plate displacement at the 305 

bottom corner for both SP:1 and SP:5.  The point of elastic shear buckling when Vcr is 306 

reached is clearly shown where SP:1 and SP:5 bifurcate for both min and max.  This 307 

increasing divergence clearly indicates the onset of second-order bending moment through 308 

the thickness of the plate. At Vu, SP:1 and SP:5 are significantly different for both min and 309 

max. 310 

 
Figure 16:  min (Smin) and max (Smax) for the shell element in the center of the plate on both surfaces SP:1 
and SP:5.  Elastic shear buckling, Vcr, and ultimate shear post-buckling, Vu, are labeled.  

 311 

3.5 Membrane Stresses at the Ultimate Shear Post-buckling Load, Vu 312 

It is worthwhile to observe the influence of stresses independent of bending effects.  Thus, 313 

this section discusses the membrane stresses (i.e., the axial stresses), which are equal to 314 

the membrane forces divided by the plate thickness.  Fig. 17 plots the membrane stresses 315 

along the diagonal directions of the compression and tension paths (at negative 45 degrees 316 

and positive 45 degrees, respectively) when the shear load equals Vu.  Fig. 17(a) marks with 317 
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a thick bold line the 13.7 ksi (95 MPa) contour, which represents the stress at the elastic 318 

shear buckling load, Vcr.  Inside the dark bold line, stresses are at or below 13.7 ksi, while 319 

outside of this region compressive stresses reach up to 26 ksi.  This figure illustrates that 320 

compression continues to grow beyond Vcr, which is contrary to tension field theory 321 

assumption.  Yoo & Lee (2006) have similarly shown that compression stresses will 322 

increase beyond elastic buckling, predominantly along the edges of the web panel.  Fig. 323 

17(b) shows that tension stresses range from 24 to 40 ksi – the tension field has a stiffer 324 

load path as illustrated in Fig. 17’s conceptual sketches, which translates into larger 325 

stresses.     326 

 327 
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 328 

 329 

Figure 17: (a) Compressive and (b) tensile membrane stresses (ksi) at Vu acting along the 45-330 
degree diagonal directions shown.  331 
 332 

Fig. 18 plots the diagonal membrane stresses vs. shear load for every element along the 333 

corner-to-corner diagonal of the tension path (Fig. 18(a)) and compression path (Fig. 334 

18(b)).  One curve is plotted for each element, and since the results are perfectly 335 

symmetrical, it appears as though only half the elements on each diagonal are plotted.  The 336 

orange curves represent the elements that are inside of the bold black contour of Fig. 17(a), 337 

i.e. with compressive stresses equal to or less than 13.7 ksi at Vu.  Green lines represent the 338 

elements that fall outside of this region.   Fig. 18(a) shows that all of the elements in the 339 

tension diagonal continue to increase beyond the 13.7 ksi reached at Vcr.   340 
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 341 

Fig. 18(b) shows that after elastic buckling, compressive stresses continue to increase for 342 

all elements along the compression diagonal. An overall reduction in the rate of stress 343 

increase is observed after elastic buckling, with elements inside of the 13.7 ksi ring 344 

experiencing a larger reduction than elements outside of the ring.  While Fig. 17(a) shows 345 

that at Vu some compressive stresses are below 13.7 ksi (σmin at Vcr), Fig. 18(b) shows that 346 

these elements reached stresses larger than 13.7 ksi before decreasing prior to failure.   347 

 348 

The “intermediate” shear load Vi marked in Fig. 18(b) represents the point at which an 349 

element along the compression diagonal first experiences a stress decrease.  Note how Vi 350 

correlates to the transition from Phase II to Phase III in Figure 5.  A change in stiffness in 351 

the load-deformation behavior occurs when the compression diagonal elements near the 352 

center of the plate experience reduced membrane stresses.  The additional load carrying 353 

capacity of a plate beyond Vcr is equal to Vu minus Vcr (see Fig. 5).  Figs. 5 and 18 together 354 

show that about half of that additional capacity occurs while the compression load path is 355 

still in place and compressive stresses are increasing throughout.  Compression is thus 356 

playing a clear role in developing the post-buckling shear strength. 357 

 358 

The membrane stresses along the diagonal directions of the compression and tension paths 359 

(at negative 45 degrees and positive 45 degrees, respectively) at Vi are shown in Fig. 19.  It 360 

is observed that the compressive stresses in all elements do indeed exceed that at Vcr (13.7 361 

ksi).   In the center of the plate, the tensile membrane stresses are larger than the 362 
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compressive membrane stresses (24 ksi vs 15.5 ksi, respectively), but at the edges of the 363 

web panel they are similar. 364 

 365 

Figure 18: Plot of membrane stresses versus applied shear load for finite elements 366 
along the (a) tension diagonal and (b) compression diagonal. 367 

 368 
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 369 

 370 

Figure 19: (a) Compressive and (b) tensile membrane stresses (ksi) at the intermediate 371 
shear load Vi (see Fig. 18(b)) acting along the 45-degree diagonal directions shown. 372 
 373 

4. Interrupting the Compression Path  374 

The results presented in Section 3 indicate that compression and second-order bending 375 

stresses (due to large out-of-plane deformations) play an important role in the post-376 

buckling performance of this slender plate.  While it is not clear yet how the compression 377 

behavior directly contributes to Vu, studies that interrupt the compression field, as 378 

presented in this section, can provide some clues.  To this end, the plate was modified in 379 

two ways: (1) by cutting the compression field corners by 16% of the depth D (model name 380 

= CUT), thus reducing the area by 3%; and (2) by cutting slits near the corners along the 381 
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compression field (model name = SLITS), thus reducing the area by 1%.  Images of these 382 

models and the resulting Vcr and Vu values obtained from finite element analysis are shown 383 

in Table 1.   Contour plots of the von Mises stress when the plate reaches Vu are shown for 384 

each case in Fig. 20.  Contour plots of the equivalent plastic strains at Vu are shown for each 385 

case in Fig. 21.   386 

Table 1: Finite element results of modified plates. 

  
 

 
Figure 20: von Mises stresses at V=Vu for the FULL plate, the CUT plate, and the plate with SLITS (units = ksi). 
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Figure 21: Equivalent plastic strains at V = Vu for the FULL plate, the CUT plate, and the plate with SLITS 

 387 

Table 1 shows that interrupting the compression field delays the onset of elastic buckling 388 

and increases Vcr up to 24%.  For the CUT case, Vu is unaffected since the cut corners do not 389 

deter the development of von Mises stress patterns similar to the FULL original plate, as 390 

shown in Fig. 20. For the SLITS case, the slits alter the von Mises stress patterns on the top 391 

face of the plate (by interrupting the edges of the von Mises stress saturation), thus 392 

reducing the ultimate shear capacity below the full plate model (a 5% reduction).  393 

 394 

The plots of equivalent plastic strains in Fig. 21 show similar patterns to the von Mises 395 

stress patterns. On the SP:1 face, these strains exceed zero only in the tension field, and all 396 

three plates show similar strain patterns despite their modifications. Furthermore, the 397 
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magnitude of strain values is similar for all three plates.  Although not shown, bending 398 

stresses again dominate over membrane axial stresses for the CUT and SLITS cases as 399 

discussed previously for the FULL case (described in detail via Fig. 15). 400 

 401 

These results suggest that the elastic buckling load could be strategically modified to meet 402 

a given design objective with relatively minor modifications to the plate.  The ultimate 403 

shear post-buckling load, however, is not significantly affected by these modifications.  404 

Based on these results, the authors are now exploring new potential models of ultimate 405 

plate post-buckling mechanics for thin plates which incorporate second-order bending of 406 

the postbuckled shape.  Also, the mechanical impact and construction/life-cycle 407 

implications of the plate modifications will be examined in future research by the authors.  408 

 409 

5. Summary and Conclusions 410 

Post-buckling behavior of slender webs in steel plate girders has been a mainstay of plate 411 

girder design for several decades on the basis of semi-empirical equations that were 412 

originally developed in the 1960s.  Though the existing state of practice is generally 413 

conservative, the assumption of pure in-plane stress in response to shear loads after the 414 

web has buckled does not capture the full mechanical responses of the thin plate.  New 415 

research by the authors has begun to reexamine the post-buckling behavior of thin steel 416 

plates by considering the combined effects of in-plane stress and out-of-plane (second-417 

order) bending.  This study utilized a previously validated finite element modeling 418 

approach in Abaqus to analyze a prototype simply supported plate with an aspect ratio 419 

equal to 1.0.  The results of these analyses showed that out-of-plane bulging of the 420 
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postbuckled plate produces second-order bending moments due to compression along the 421 

diagonal opposite the tension field.   422 

 423 

Although the conclusions summarized below are based only on the plate dimensions of this 424 

initial study, these results point to future research that is needed. The results are also 425 

relevant to plates of other proportions that demonstrate shear post-buckling behavior that 426 

is physically characterized by significant bulging/wrinkling on the diagonal (thus 427 

generating potentially significant bending stresses through the thickness). 428 

 At the ultimate shear post-buckling load, Vu, the angle of principal stress direction is no 429 

longer 45 degrees and instead varies between 15 degrees (counter clockwise) and 65 430 

degrees (clockwise). 431 

 The stress distribution through the plate thickness was separated into pure planar (i.e. 432 

axial) and bending (second-order) stresses.  Bending stresses were found to be 433 

significantly higher than the pure planar stresses at the ultimate post-buckling shear 434 

load.  These stresses are created by second-order compression of the plate’s buckled 435 

shape (i.e., the buckled half-wavelengths that bulge out-of-plane along the length of the 436 

compression field diagonal). 437 

 At the ultimate post-buckling shear load, almost the entire plate has reached the von 438 

Mises yield boundary due to a combination of planar and bending stresses.  The 439 

contours of von Mises yielding show some differences, however, for the opposing faces 440 

of the plate. 441 

 Compression membrane stresses (which are independent of the second-order bending 442 

effects) continue to increase beyond elastic buckling, contrary to the current tension 443 
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field theory assumption. These results suggest that compression effects can play a 444 

significant role in the post-buckling shear response. 445 

 446 

Building from these results, and with the intent to further investigate the plate behavior, 447 

the authors examined some simple modifications of the plate that interrupted the 448 

compression diagonal.  The results of two cases, with small through-plate cuts removed 449 

from the compression diagonal, showed (1) an increase of 10% to 24% in the shear load 450 

needed to induce buckling (i.e., the elastic shear buckling load) and (2) a negligible effect 451 

on the ultimate shear post-buckling load.  These results indicate that the onset of elastic 452 

buckling can be delayed by interrupting the compression field, which may prove useful for 453 

designing girder webs.   454 
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