
Jan 31, 2019 rmk 
 
 
Extreme Thermophiles as Emerging Metabolic Engineering Platforms 
 

James R. Crosby1, Tunyaboon Laemthong1, April M. Lewis1, Christopher T. Straub1, Michael 
W.W. Adams2, and Robert M. Kelly1* 

 
1Department of Chemical and Biomolecular Engineering, North Carolina State University, 

Raleigh, NC 27695-7905 
 

2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 300602 
 
 
 
 
 
 
Submitted to:  Curr Opin Biotechnol - Issue on Tissue, Cell and Pathway Engineering 2019 
 

Keywords: Extreme thermophiles, metabolic engineering, industrial biotechnology 
 
 

COBIOT_2018_146  
 

Submitted: October, 2018 
 

Revision submitted: February, 2019 
 
 
 

*Address correspondence to:  Robert M. Kelly 
       Dept. of Chemical and Biomolecular Engineering 
       North Carolina State University 
       EB-1, 911 Partners Way 
       Raleigh, NC 27695-7905 
       Phone: (919) 515-6396 
       Fax:      (919) 515-3465 
       Email: rmkelly@ncsu.edu 

 

  



 

 
 

2 

Abstract  

Going forward, industrial biotechnology must consider non-model metabolic engineering 

platforms if it is to have maximal impact. This will include microorganisms that natively possess 

strategic physiological and metabolic features but lack either molecular genetic tools or such 

tools are rudimentary, requiring further development. If non-model platforms are successfully 

deployed, new avenues for production of fuels and chemicals from renewable feedstocks or 

waste materials will emerge. Here, the challenges and opportunities for extreme thermophiles 

as metabolic engineering platforms are discussed. 

 

Introduction 

Microbial metabolic engineering has achieved notable scientific successes (e.g., [1,2]), but is 

still limited by the challenges of bringing laboratory successes to industrial scale. Fortunately, 

genome-scale modeling, ever-improving -omics tools, and increased understanding of microbial 

metabolism can be leveraged to push past barriers and allow metabolic engineering to reach its 

potential. Such advances have opened the door for utilization of non-model metabolic 

engineering platforms, including extreme thermophiles [3]. Here, we focus on metabolic 

engineering opportunities for microorganisms growing optimally above 70°C, primarily from the 

genera Caldicellulosiruptor, Pyrococcus, Thermococcus, Thermotoga, and Sulfolobus. 

 

Genetic systems of extremely thermophilic organisms  

Utilization of extremely thermophilic microbes as metabolic engineering platforms 

requires establishing genetic techniques for generating recombinant strains (Table 1). First, this 

requires that the genome sequence of the selected organism be available to guide targeted 

mutations. Next, the microbe must be culturable at high temperatures on solid media at a 

sufficient efficiency to select successful clones. As many extreme thermophiles can take several 
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days to generate colonies, this may become a rate-limiting step. Once a satisfactory plating 

efficiency is reached, the transformation method must be chosen, and its efficiency evaluated. 

While there are some naturally competent extreme thermophiles, such as Pyrococcus furiosus 

COM1 [4], T. kodakarensis [5], and Thermotoga sp. RQ7 [6], electroporation is often used for 

transformation due to the extreme temperatures required for heat-shock and the lack of 

available viral vectors for transduction. In addition, the methylation pattern of each microbe must 

be determined to ensure self-recognition of transformed DNA. Other issues to consider are the 

availability or development of suicide or shuttle plasmid vectors and inducible or constitutive 

promoters.  

Extreme thermophile genetics typically rely upon auxotrophic mutant parental strains 

because thermostable antibiotic markers are not available or the target organism is not 

susceptible to antibiotics. Uracil prototrophy selection in a uracil auxotrophic mutant strain, 

followed by counterselection using 5-fluororotic acid (5-FOA), is often the preferred strategy and 

has been used for Sulfolobus [7,8], Thermococcus [5,9], Caldicellulosiruptor [10,11] and 

Pyrococcus [12,13] species and most recently for Thermotoga sp. RQ7 [14] and Thermotoga 

maritima [15]. Alternatively, agmatine prototrophy selection in agmatine auxotrophic mutants 

has been utilized in S. islandicus [16], T. kodakarensis [17] and P. furiosus [18] and a new 

counterselection system was described for S. islandicus [19] and T. barophilus [20] using an 

adenine phosphoribosyltransferase mutant and a purine analog (6-methylpurine).  

Although not as prevalent, antibiotic markers have been used in extreme thermophiles. 

The hmgA (3-hydroxy-3-methylglutaryl coenzyme A reductase) gene has been successfully 

used as a marker in P. furiosus [21], S. islandicus [8,22], T. barophilus [9] and T. kodakarensis 

[23] for simvastatin selection. However, spontaneous mutations resulting in simvastatin resistant 

cells make this marker less appealing. The introduction of a heat-stable kanamycin marker in 

C. bescii increased the options for selectable markers [11] and additional heat-stable selectable 

markers are needed to alleviate the dependence on auxotrophic parent strains. 



 

 
 

4 

CRISPR/Cas targeted genome editing is a possible alternative for making markerless 

mutants. This RNA-guided system has been effectively employed in S. islandicus [24], 

leveraging its native CRISPR/Cas systems to generate genomic mutations. However, 

harnessing endogenous CRISPR systems for editing still requires a selectable marker for 

plasmid maintenance, so this technique can only be applied to organisms that have established 

transformation protocols. Beyond the generation of genomic mutants, the type III CRISPR/Cas 

system has also been used to target RNA transcripts and post-transcriptionally silence genes in 

Sulfolobus solfataricus [24], which may be a method to generate a desired phenotype without 

genomic modification.  

A crucial aspect of metabolic engineering is the ability to regulate the expression of 

recombinant genes with inducible promoters, as the products of highly-expressed genes can 

produce unwanted side-products or have toxic effects. However, only a few inducible promoters 

have been developed, including the araS arabinose inducible promoter for S. solfataricus [25] 

and the mal maltose inducible promoter for S. acidocaldarius [26]. Other promising inducible 

promoters have been discovered recently, such as a xylose inducible promoter in C. bescii [27] 

and a fluoride inducible riboswitch in T. kodakarensis [28]. Concerns for developing novel 

inducible promoters are ensuring that the associated regulatory system is present and active at 

high temperatures. Depending on the downstream product, it may be important to minimize 

basal expression of the promoter in the absence of the inducer. Finally, the compound used for 

induction must not have an adverse effect on the cell. Simply finding native inducible promoters 

to use for genetic manipulation can alleviate many of these concerns. Furthermore, the 

expression level of the inducible promoter under different conditions must be evaluated. 

Another tool that would be extremely useful but not widespread in extreme thermophile 

genetics are reporter systems. Reporters often aid in the study of microbial physiology but can 

also serve as measures of promoter strength, inducibility and basal expression activity. For 

example, β-galactosidase functioned as a reporter for promoter induction in S. acidocaldarius 
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when testing the maltose inducible promoter. A thermostable green fluorescent protein (GFP), 

another commonly used reporter in mesophilic model systems, has been utilized in S. 

acidocaldarius and the moderate thermophile Parageobacillus thermoglucosidasius (Topt = 65 

°C) with some success [29], but this reporter has not yet become a prevalent tool in extreme 

thermophiles. The heat-stability of the reporter protein, codon usage differences between the 

source and target organisms, and whether the systems signal is both sensitive and robust are 

issues to consider when developing new reporter systems.  

 

Physiological Challenges and Opportunities 

 There are some unique challenges with extreme thermophile platforms. Recruiting 

heterologous genes that encode thermoactive, thermostable biocatalysts can be difficult and 

cofactor thermal stability and energy carrier management can influence how resources are 

allocated to different cellular processes. For example, NADH undergoes thermal decomposition 

to nicotinamide and ADP-ribose [30,31] and the salvage process consumes ATP, releasing 

AMP and pyrophosphate as final products (Figure 1) [31,32]. Deletion or disruption of the 

nicotinamide deaminase in both T. kodakarensis and T. thermophilus led to growth defects 

above 80°C, which were alleviated by supplementing the medium with nicotinic acid [31].  

One potential mechanism for extreme thermophiles to cope with the ATP demand of 

NADH repair is to use kinases dependent on other phosphate carriers, such as ADP and 

pyrophosphate (PPi).  ADP-dependent glucose/glucosamine kinases or fructose-6-phosphate 

kinases have been identified in P. furiosus, P. horikoshii, T. litoralis, and T. kodakarensis [33-

35].  PPi-dependent kinases, while not exclusive to extreme thermophiles, can potentially offset 

energy expenditure of central metabolism by avoiding the use of ATP as a phosphate donor 

[36].  Recently, the structural determinants of using ATP or PPi as a phosphate donor have 

been determined based on comparative studies of myo-inositol kinases from T. kodakarensis 

and T. maritima, potentially allowing for engineering kinases to use PP instead of ATP [37].  
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Extremely thermophilic metabolic engineering platforms 

 Metabolic engineering successes with extreme thermophiles have been reported (Table 

2, Figure 2). Although such developments are in ealy stages, they indicate the significant 

potential of these microorganisms for industrial biotechnology. 

 

Caldicellulosiruptor bescii 

Caldicellulosiruptor bescii (Topt = 78°C) could potentially convert carbohydrates from 

plant biomass into fuels and chemicals, making it a promising candidate for use in Consolidated 

BioProcessing (CBP) [38]Multi-modular S-Layer Homology (SLH) domain hemicellulases 

associated with the cell envelope [39], and secreted, multi-modular cellulases encoded in a 

genomic region, referred to as the Glucan Degradation Locus (GDL), have been a focus for 

improving deconstruction of plant biomass [40]. The native enzyme-microbe synergism for 

lignocellulose degradation by C. bescii is highly optimized and could not be improved with 

exogenously added cellulase cocktails based on the C. bescii secretome [41].  Novel substrate-

binding proteins, called tāpirins, have been examined in Caldicellulosiruptor species and 

overexpression of specific tāpirins genes might improve attachment to cellulosic moieties in 

plant biomass, potentially improving lignocellulose conversion [42,43].  

Ethanol production directly from switchgrass has been in C. bescii by heterologous 

expression of the AdhE from Clostridium thermocellum at a titer of 0.6 g/L in a ∆ldh background 

[10]. Recently, expression of the C. thermocellum AdhE in a more genetically stable lineage of 

C. bescii along with co-expression of a ferredoxin NAD oxidoreductase improved ethanol titer to 

3.5 g/L at 60°C for growth on crystalline cellulose, facilitated by an increase in available NADH 

[44,45].  While this represents a significant improvement in titer, the fermentation was performed 

at 60°C, due to the thermal instability of the AdhE, and generated byproducts, such as pyruvate 

and acetoin. This suggests the need for further genetic engineering and more stable 

biocatalysts to direct carbon and electron flux to the intended target.    
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Thermococcus kodakarensis 

T. kodakarensis (Topt = 85°C) grows on polysaccharides, starch, and pyruvate to 

produce hydrogen gas [46,47]. Recently, its ability to use chitin as a carbon source for H2 

production was recovered through overexpression of the endogenous chitinase, N-,N’-

diacetylchitobiose catabolic pathway, and disruption of a glycolytic repressor with further 

improvements made by selecting for increased growth on chitin  [48].  Additionally, verification 

of the open reading frame encoding the glucosamine kinase through gene disruption and 

recombinant protein expression provided a more complete picture about how chitin enters 

central metabolism [34].  While these chitinolytic strains have been focused on hydrogen 

production near the Thauer limit (4 mol H2/mol glucose), they could serve as a chassis for 

production of industrial chemicals from an abundant, renewable carbon source. Production of 

the isoprenoid phytoene has also been demonstrated in T. kodakarensis via heterologous 

overexpression of the phytoene synthase from S. acidocaldarius [49]. Titers were improved by 

disrupting the acetyl-CoA synthase gene and adding an additional copy of the isoprenoid 

synthase.   

 

Pyrococcus furiosus 

Metabolically engineering of P. furiosus has been facilitated by the naturally competent, 

uracil auxotrophic, COM1 parent strain, which has been engineered to produce n-butanol, 3-

hydroxypropionate, ethanol, and acetoin [4,50-52]. One of the major challenges to using P. 

furiosus as a metabolic engineering host is recruiting heterologous enzymes that are functional 

near its optimal growth temperature of 100°C. This issue can be addressed by growing P. 

furiosus to high cell densities near the optimal growth temperature, then lowering the 

temperature to the optima for the recombinant enzymes involved in product formation, since P. 

furiosus can retain significant metabolic activity at temperatures as low as 70°C [53]. This allows 

for the heterologous expression of genes from an expanded range of sources, namely, 
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microbes growing between 60 – 75°C. Recently, ethanol production has been demonstrated in 

P. furiosus via heterologous expression of various bifunctional alcohol dehydrogenases (AdhE) 

obtained from extremely and moderately thermophilic bacteria, albeit at low titers [54]. Ethanol 

production has also been demonstrated via ferredoxin dependent acetate reduction with 

recombinant expression of the acetaldehyde dehydrogenase (AdhA) from Thermoanaerobacter 

X514 at 70°C in conjunction with the native aldehyde oxidoreductase (AOR) of P. furiosus [55]. 

Deletion of the native AOR and expression of the AdhE and AdhA from Thermoanaerobacter 

strains resulted in a lower titer of ethanol, indicating that the AOR-AdhA pathway is more 

efficient for alcohol production; this is likely because P. furiosus manages its reducing 

equivalents with the native low potential ferredoxin rather than NAD(P) [54]. Moreover, the 

AOR-Adh pathway reduces other acids to alcohols besides acetate, potentially diversifying the 

products synthesized by extreme thermophiles. P. furiosus was engineered to use carbon 

monoxide as a source of energy through the expression of the 16-subunit CO dehydrogenase 

(Codh) complex from T. onnurieneus [50]. Interestingly, growth on CO helped the organism to 

utilize acetate for biosynthesis, which could be useful in converting initial fermentation products 

into higher value compounds.  

 

Thermotoga maritima 

 Thermotoga species ferment sugars to make H2 near the Thauer limit [56]. Utilization of 

Thermotoga as a metabolic engineering host has been limited primarily by the lack of a genetic 

system. However, genetic tools have recently been reported for T. maritima, facilitating potential 

engineering of hydrogen production [15]. A disruption of the lactate dehydrogenase generated a 

spontaneous mutant, which showed decreased sugar uptake and growth but increased 

hydrogen production over the Thauer limit. This is likely due to increased carbon flux through 

the oxidative pentose phosphate pathway, which can provide extra reducing equivalents for 
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hydrogen production with the growth defects due to mutations in an ABC maltose transporter, 

as revealed by whole-genome sequencing [57]. 

 

Sulfolobus sp. 

 Sulfolobus species use a broad range of carbon sources at low pH without carbon 

catabolite repression, potentially allowing this host to catabolize acid hydrolysates of 

lignocellulose [58].  Some species are able to grow chemoautotrophically on sulfur, from which 

sulfuric acid is produced as a major product. The physiology of Sulfolobus is well understood 

due to the range of available genetic tools and multi-omic studies that have been conducted 

[59].  Recently, gene deletion studies showed that pentose metabolism in S. acidocaldarius 

occurs through an aldolase-independent pathway [60] and the mechanism for formation of 

cyclopentane rings in its lipids [61]. Comparative multi–omic studies have also been performed 

for wild type S. solfataricus to investigate the physiological response of growth on different 

hexose sugars and ultimately provide experimental data to support metabolic models [62]. 

Although efforts to produce industrial chemicals in Sulfolobus have been limited by long 

doubling times and low biomass yields [59], there is room for further development of Sulfolobus 

sp. as metabolic engineering platforms.  

 

Systems biology and metabolic modeling approaches for extreme thermophiles 

Systems biology-based models are essential for optimizing metabolic engineering 

platforms and vary in complexity and scale, ranging from pathway analysis to genomic 

reconstructions of metabolism. These models provide a foundation for understanding host 

physiology and accelerate the development of industrial strains [63,64].  

 Maintaining optimal concentrations of enzymes in a multi-step pathway can reduce the 

metabolic burden of heterologous expression needed to produce a product of interest.  Kinetic 
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models for such multi-step pathways are useful for optimizing pathway flux in vitro, as has been 

demonstrated for an extremely thermophilic n-butanol pathway [65], and for the 3-

hydroxypropionate/4-hydroxybutryate (3-HB/4-HB) carbon fixation cycle from Metallosphaera 

sedula [66], which served as the basis for 3-hydroxypropionate formation in P. furiosus. 

Ultimately the development of in vitro kinetics models can allow for using exact intracellular 

concentrations to help debottleneck metabolic pathways.  

Metabolomics and flux analysis can help validate metabolic models and ultimately 

elucidate global carbon flow and limitations in metabolic engineering efforts in extreme 

thermophiles [67]. In C. bescii, the global rex redox regulator was deleted and metabolomics 

experiments showed higher intracellular concentrations of organic acids and reducing 

equivalent availability, with a slightly higher ethanol yield, albeit at lower concentrations [68].  

Recently, the combination of enzyme kinetics data from cell free extracts, deterministic and 

stochastic modeling, and metabolomics showed the robustness of the branched Entner-

Doudoroff pathway in S. solfataricus to temperature and either branch deletion [69].  

Transcriptomic analyses can elucidate global changes in gene expression, especially in 

response to changes in environment or genomic modifications. Batch and continuous culture 

were compared in P. furiosus, revealing differential regulation of over 200 genes as a function of 

metabolic mode [70]. In C. saccharolyticus, treatment of the carbon substrate can affect the 

transcriptome based on the availability of sugar substrates for the host, as solubilization of acid-

treated switchgrass compared to low lignin lines of poplar created a significant change in the 

expression of genes related for xylan metabolism [71].  

Genome reconstructions of metabolism are powerful tools for understanding the steady 

state metabolite profile based on genomic annotations for biological pathways [64].  Genome 

reconstructions have been reported for T. maritima [72] and S. solfataricus [58]. For T. maritima, 

a transcription factor network [73], metabolic reconstruction and a metabolism and expression 

model (ME) have been reported [74]. The latter ME model accounts for transcription and 
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translation demands, allowing for in silico prediction phenotype based on genotype [74,75]. 

These models have been limited primarily by their complexity, but new algorithms have been 

developed to overcome this [81]. Ultimately, metabolic models can provide a systematic 

approach for improving titers of chemicals in thermophiles by accounting for several of its 

unique physiological features.   

 

Conclusions 

 Extreme thermophiles are emerging as promising hosts for industrial biotechnology 

catalyzed by the development and improvement of molecular genetic tools. This development 

has opened up strategies for using renewable resources to produce non-native fuels and 

chemicals. Extreme thermophile metabolic engineering faces the same challenges encountered 

with model mesophilic microorganisms, especially with achieving commercially-relevant 

productivities. If overcome, potential advantages with bioprocessing at elevated temperatures, 

especially minimal contamination issues, can be exploited. 
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Table 1: Current Status of Genetic Tools for Extreme Thermophiles 
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Organism            

Caldicellulosiruptor            

Caldicellulosiruptor bescii X      X    [11] 

Pyrococci            

Pyrococcus abyssi X          [13] 

Pyrococcus furiosus X       X  X [4,12,21] 

Sulfolobi            

Sulfolobus acidocaldarius X          [7] 

Sulfolobus islandicus X  X X    X   [8,16,19,22] 

Sulfolobus solfataricus     X    X  [76,77] 

Thermococci            

Thermococcus barophilus X  X     X   [9,20] 

Thermococcus kodakarensis X X  X  X  X  X [5,17,23,78] 

Thermotoga            

Thermotoga maritima X      X   X* [15] 

 Thermotoga sp. RQ7 X      X   X [6,14,79] 
*Conflicting reports 

Squares highlighted in blue denote systems reported after 2016 
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 Table 2: Industrial Chemical Products from Metabolically Engineered Extreme Thermophiles 
 

Product Host 
Carbon 
Source 

Temperature 
Titer Description Ref. 

Hydrogen 

Thermotoga 
maritima Maltose 

80 °C 
15 mM 

Ldh disruption with spontaneous mutant, 
H2 production above Thauer limit, titer 
reached after 5 hours [57] 

Thermococcus 
kodakarensis Chitin 

85 °C 
30 mM Restoration of chitinolytic phenotype with 

genetic and adaptive engineering [48] 

Ethanol 

Pyrococcus 
furiosus 

Maltose 70 °C 1.5 g/L 
(32 mM) 

Major side product from butanol pathway 
insertion [51] 

Pyrococcus 
furiosus Maltose 

70 °C  
0.92 g/L 
(20 mM) 

Acetate reincorporation by native acetate 
oxidoreductase and AdhA expression [55] 

Pyrococcus 
furiosus 

Maltose 70 °C 1.6 g/L 
(35 mM) Deletion of acetolactate synthase [52] 

Caldicellulosiruptor 
bescii 

Crystalline 
Cellulose 

60 °C 
3.5 g/L 

(76 mM) 

Expression of Clostridium thermocellum 
AdhE in stable background with 
coexpression of reduced ferredoxin:NADH 
oxidoreductase [44] 

Caldicellulosiruptor 
bescii Switchgrass 65 °C 0.6 g/L 

12.8 mM 
Expression of Clostridium thermocellum 
AdhE [10] 

Phytoene Thermococcus 
kodakarensis 

Yeast 
extract and 

tryptone 

72 °C 2.6 mg/L 
(5 μM) 

Expression of multiple copies of phytoene 
synthase from Sulfolobus solfataricus [49] 

Acetoin Pyrococcus 
furiosus 

Maltose 70 °C 0.53 g/L 
(6 mM) 

Native pathway, deletion of this pathway 
improved ethanol titer [52] 

3-HP Pyrococcus 
furiosus Maltose 

70 °C 0.34 g/L 
(3.7 mM) 

Expression of genes from 3-HP/4-HB 
carbon fixation cycle from Metallosphaera 
sedula [80] 

Butanol Pyrococcus 
furiosus Maltose 

70 °C 0.070 g/L 
(0.95 
mM) 

Hybrid pathway from 3 moderate 
thermophiles, pathway also reported in 
vitro butanol production [51] 
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Figure Captions 

 

Figure 1: NAD+ salvage pathway. Thermal decomposition of NAD+ generates ADP-

ribose and nicotinamide, which are regenerated through a multistep pathway.  Energy 

input steps are shown with silver arrows. Deamidation of nicotinamide (shown in red) 

was demonstrated to be essential for growth at higher temperature for T. kodakarensis 

and T. thermophilus. Adapted from [38,39].   

 

Figure 2: Pathways used in metabolic engineering of extreme thermophiles. Host, 

final titer, and production temperature are reported below the products (blue 

rectangles).     
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Figure 1: NAD Salvage Pathway 
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Figure 2: Pathways used to date in metabolic engineering of extreme thermophiles 

 

 


