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Environmental changes can lead to evolutionary shifts in phenotypic traits,
which in turn facilitate the exploitation of novel adaptive landscapes and
lineage diversification. The global cooling, increased aridity and expansion
of open grasslands during the past 50 Myr are prime examples of new
adaptive landscapes that spurred lineage and ecomorphological diversity
of several mammalian lineages such as rodents and large herbivorous
megafauna. However, whether these environmental changes facilitated
evolutionary shifts in small- to mid-sized predator morphology is unknown.
Here, I used a complete cranial and body morphological dataset to examine
the timing of evolutionary shifts in cranial shape, body size and body shape
within extant mustelids (martens, otters, polecats and weasels) during the
climatic and environmental changes of the Cenozoic. I found that evolution-
ary shifts in all three traits occurred within extant mustelid subclades just
after the onset of the Mid-Miocene Climate Transition. These mustelid
subclades first shifted towards more elongate body plans followed by
concurrent shifts towards smaller body sizes and more robust crania.
I hypothesize that these cranial and body morphological shifts enabled
mustelids to exploit novel adaptive zones associated with the climatic and
environmental changes of the Mid to Late Miocene, which facilitated
significant increases in clade carrying capacity.

The exceptional lineage and phenotypic diversity found across the tree of life is
often associated with increases in ecological opportunities through the evolution
of innovations, extinction of competitors or environmental changes [1-3]. Simpson
[1] was one of the first to recognize that the adaptive landscapes of phenotypic traits
can shift (jump) in response to environmental changes. The global cooling,
increased aridity and habitat shift from forest to grasslands during the past
50 Myr [4-7] is a prime example of environmental changes that spurred evolution-
ary shifts in phenotypes. Several mammalian clades have adapted to these
environmental transitions towards more open, grass-dominated habitats. Rodents
and lagomorphs diversified and shifted towards increased tooth crown height
(i.e. hypsodonty) to eat tougher grass material and evolved adaptations for more
efficient burrowing, jumping and cursorial locomotion across the open habitats
(reviewed in [8]). Herbivorous ungulates also shifted towards hypsodont dentition
during the Oligocene to Miocene, along with the lengthening of limbs for more effi-
cient cursoriality during the late Miocene [9-12]. Similarly, ecomorphological
diversity of carnivores increased [13-15], with large carnivores shifting from
ambush specialists to active pursuit specialists during the late Miocene to
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Pleistocene [16,17]. Although numerous studies have examined
evolutionary shifts in small and large terrestrial mammals,
how the phenotypes of mid-sized predators responded to
environmental transitions has rarely been tested (but see [17]).

In this study, I use a comprehensive morphological dataset
derived from the cranial and axial skeletons to examine if
extant mustelid subclades within Musteloidea (Mephitidae,
Ailuridae, Procyonidae and Mustelidae) exhibited evolution-
ary shifts in morphology coinciding with the Mid-Miocene
Climate Transition (MMCT), 15.97-11.61 Myr ago. Research-
ers have long hypothesized that the expansion of grasslands
[718] and diversification of rodents and lagomorphs
[8,19,20] during the Middle to Late Miocene led to increased
clade carrying capacity within extant mustelids, particularly
mustelines, lutrines and ictonychines (e.g. weasels, polecats,
otters) [21-23]. Recent work corroborated these hypotheses,
revealing evolutionary shifts towards small, elongate body
plans during the Middle to Late Miocene that may have facili-
tated diversification by allowing mustelids to chase prey in
burrows and small crevices [24]. Although these studies
revealed associated transitions between body size and shape
and the behaviour of entering subterranean habitats, it remains
to be explored whether traits tied directly to prey capture and
consumption also exhibited evolutionary shifts near the
MMCT. The cranium is the primary apparatus used by most
mustelids to capture, kill and consume prey. Despite recent
comparative studies elucidating the ecomorphological and
functional diversity of mustelid cranial morphology [25-28],
the timing of evolutionary shifts in the adaptive landscape of
mustelid crania is still unexplored.

The objectives of this study are two-fold. First, I determined
whether extant mustelid subclades exhibited evolutionary shifts
in cranial shape near the MMCT. I predicted that extant muste-
lids would exhibit shifts in cranial shapes that favour the ability
to generate relatively larger bite forces to capture and consume
prey that can be up to 10 times larger than their own body
mass [29]. Second, I examined the timing of evolutionary shifts
inbody size and body shape. Previous work used a model selec-
tion approach with a priori hypotheses to determine where
evolutionary shifts in body size and shape occurred between
designated clades [24]. However, these a priori hypotheses
represented only a fraction of all possible shifts and may unin-
tentionally hide additional shifts that are important in driving
trait evolution [30]. Therefore, I reexamined extant mustelid
body sizes and shapes using data-driven approaches.

2. Material and methods

I tested for evolutionary shifts in mustelid cranial shape, body size
and body shape using phylogenetic comparative methods with
the most recent molecular phylogeny of extant mustelids [23].
I also included the other three musteloid families to provide a phy-
logenetic background and increase statistical robustness for model
fitting [31]. Cranial shape, body size and body shape measurements
of 60 extant musteloids were obtained from [27,23], and [24],
respectively (see full methods in electronic supplementary material).

I used an a priori hypothesis-driven approach to examine evol-
utionary shifts in cranial shape. I used a principal component (PC)
analysis and Bookstein’s [32] method implemented in Morpho v.
2.6 [33] to reduce the dimensionality of the cranial shape dataset
and to retain the first two PC axes of cranial morphospace. I then
fitted four evolutionary models using maximum likelihood with
mvMORPH v. 1.0.8 [34]: single-rate Brownian motion (BM1),

single peak Ornstein—Uhlenbeck (OU1), a two-peak OU model in n

which a clade of Helictidinae, Guloninae, Ictonychinae, Mustelinae
and Lutrinae (hereafter HGIML-clade) exhibited a separate cranial
shape optimum from the remaining phylogeny (OUM_HGIML),
and a two-peak OU model in which a clade of Ictonychinae, Muste-
linae and Lutrinae (hereafter IML-clade) exhibited a separate
optimum from the remaining phylogeny (OUM_IML). Previous
analyses found decoupled diversification dynamics towards the
HGIML-clade and differential rates of body length and mass evol-
ution towards the IML-clade [23]. I assessed model support with
small sample corrected Akaike weights (AICcW).

I then identified evolutionary shifts in the three traits without
a priori hypotheses of adaptive optima using bayou v. 2.1.1 [35]
and PhylogeneticEM v. 1.2.1 [36]. These data-driven approaches
detect evolutionary shifts towards different optima without
influences of a priori groupings on the tree. Bayou uses a revers-
iblejump Bayesian approach to estimate the placement and
magnitude of evolutionary shifts [35], appropriate for the body
mass and head—-body elongation ratio (ER) datasets, which are
univariate. Shifts with a posterior probability (pp) > 0.5 were
determined as significant. Because cranial shape is multivariate,
Iidentified shifts in cranial shape (PC1 and PC2) with Phylogen-
eticEM, which uses a scalar OU model that infers the full
evolutionary rate matrix and accounts for correlations within
multivariate datasets (i.e. PC1 and PC2) [36].

3. Results

Extant musteloids exhibited great variation in cranial shape,
body size and body shape (figure 1). Within cranial morpho-
space, musteloids with low PC1 and PC2 scores exhibited
relatively elongate rostrum and relatively smaller faces and
braincases driven by the narrowing of the nuchal crests and
zygomatic arch breadth. By contrast, musteloids with high
PC1 and PC2 scores exhibit relatively stout rostrums and rela-
tively broader braincases, mastoid breadth and zygomatic
arch breadth (figure 1a).

The OUM_IML model was best supported (AICcW =
0.47; table 1), suggesting an evolutionary shift in cranial
shape towards the IML-clade. PhylogeneticEM also detected
an evolutionary shift towards the IML-clade (figure 24), thus
corroborating the model selection approach. However, the
OU (AICcW =0.30) and OUM_HGIML (AICcW = 0.22)
models were also relatively well supported (table 1),
suggesting that additional shifts may be hidden from the a
priori hypothesis-driven approach. PhylogeneticEM detected
five additional shifts towards other musteloid clades.

For body size, I found an initial increase in body mass
optimum at the root of Mustelidae (pp = 0.56; O = 7.74 kg;
Oancestral = 2.56 kg) before the MMCT. I found a decrease in
body mass optimum towards the IML-clade (pp = 0.58;
0 =059 kg) during the MMCT. Mustelines exhibited a
further shift towards smaller body masses (pp = 0.57; @ =
0.35 kg), whereas lutrines exhibited a shift towards larger
body masses (pp = 0.61; ® = 11.71 kg; figure 2b).

For body shape, I found evolutionary shifts towards more
elongate bodies within the HGIML-clade (pp=0.61, =
6.17; Ouncestral = 5.08; figure 2c), followed by further shifts
towards more elongate bodies in musteline weasels (Musteli-
nae; pp=0.63; @=7.19) and the African striped weasel
(Poecilogale albinucha, Ictonychinae; pp = 0.88; ® = 8.01). By
contrast, there was an evolutionary shift towards a reduction
in body elongation in otters excluding the giant otter (Pteronura
brasilensis) (Lutrinae; pp = 0.53; @ = 5.58), followed by a further
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Figure 1. Morphospace of (a) cranial shape defined by principal component
(PC) axes 1 and 2, and box plots of (b) body mass and (c) body shape.
Cranial photos in (a) are of a (i) sea otter (Enhydra lutris), (ii) ring-tailed
coati (Nasua nasua), (iii) red panda (Ailurus fulgens) and (iv) western moun-
tain coati (Nasuella olivacea). Grey dashed lines in (b,c) represent the mean
body mass and head—body ER of all musteloids, respectively.

Table 1. Comparisons of evolutionary model fit for evolutionary shifts in  JJEJij

cranial shape (PC1 and PQ2).

model AlCc AAICc AlCcW
BM —387.26 33.66 0.00
ou —420.05 0.87 0.30
OUM_HGIML —419.43 1.49 0.22
OUM_IML —420.92 0.00 0.47

reduction in the sea otter (Enhydra lutris; pp = 0.95; @ = 3.64).
The wolverine (Gulo gulo, Guloninae) also exhibited a reduction
in body elongation (pp = 0.87; ® = 4.70). I also found indepen-
dent evolutionary shifts towards more elongate body plans in
other musteloid genera well after the MMCT.

4. Discussion

Evolutionary shifts in phenotypes can serve as innovations to
exploit new adaptive zones and facilitate lineage diversification
[1]. Here, I take advantage of a comprehensive morphological
dataset that incorporates cranial shape, body size and body
shape to understand phenotypic evolution in a clade of extant
small- to mid-sized predators. I found that within extant muste-
lid subclades (particularly Ictonychinae, Mustelinae and
Lutrinae), evolutionary shifts towards more robust crania,
small body sizes and elongate bodies all occurred during the
MMCT, a period of time characterized by arid climates [5],
open habitat expansions [7,18] and rodent and lagomorph
diversification [8,19,20]. Shortening the rostrum and broaden-
ing mastoid and zygomatic arch breadth are often associated
with increases in relative bite forces [37—-39]. Therefore, an evol-
utionary shift towards these broader cranial shapes favouring
larger jaw muscle attachment areas may counteract the
weaker bite forces associated with smaller body sizes [27,40].
Concurrent shifts towards smaller, more elongate body plans
would enable these mustelids to actively chase prey down
into burrows or crevices, and their relatively large bite forces
for their smaller sizes would facilitate the successful dispatch
of prey that can be up to 10 times larger than many mustelids
[29]. These results corroborate the hypothesis that evolutionary
shifts in cranial and axial adaptations parallel the exploitation of
novel grassland habitats and rodent prey associated with the
MMCT [24], which led to significantly greater clade carrying
capacity within Mustelidae [23].

The incorporation of unaccounted shifts with data-driven
approaches provided a more comprehensive understanding of
the evolution and timing of cranial and body morphology
across extant mustelids. These data-driven approaches revealed
that shifts towards more elongate bodies appeared to have
evolved first within the HGIML-clade followed by subsequent
shifts towards more robust crania and smaller bodies within
the IML-clade. Extant mustelines further shifted towards even
smaller, more elongate bodies, whereas extant lutrines further
shifted towards bigger, more robust bodies. In all three traits,
the data-driven approaches not only corroborated the best
selected model (table 1; [24]) but also detected additional shifts
that were previously unidentified when using model selection
approaches with designated a priori hypotheses. For example,
the a priori model selection approach identified a single shift
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Figure 2. Regime shifts of (a) cranial shape, (b) body size and (c) body shape across mustelids with background musteloid clades. PhylogeneticEM shifts on cranial
shape are shown as grey circles. Bayou shifts (pp > 0.5) on body mass and body shape are shown as blue and red circles, which represent increases and decreases
in optimal values, respectively. Branches on the phylogenies are coloured according to musteloid clade. Grey boxes underlying phylogenies represent the

Mid-Miocene Climate Transition (MMCT) from 15.97 to 11.61 Myr ago.

towards smaller, more elongate body plan along the branch
leading to the HGIML-clade [24]. Bayou, however, identified
additional shifts not detected by a priori groupings and therefore
provided a more nuanced conclusion regarding the evolution of
mustelid body size and shape. Specifically, bayou detected that
mustelids exhibited multiple—rather than just one—evolution-
ary shifts within the HGIML-clade. The first shift occurred
along the branch leading to the HGIML-clade and led to body
optima that were 76.9% smaller and 21.5% more elongate com-
pared to ancestral musteloids. The second shift occurred in
mustelines, indicating that mustelines shifted towards even
smaller (86.3%) and more elongate (41.5%) bodies compared to
ancestral musteloids. Lastly, the third shift occurred within
lutrines, which led to body optima that were 357.4% larger but

10% less elongate compared with other mustelids within the
HGIML-clade. Therefore, these data-driven approaches revealed
that body size and shape evolved through successive evolu-
tionary shifts rather than as a single shift, providing further
evidence that incorporating phylogenetic natural history [30]
can elucidate further insights of trait evolution.

5. Condlusion and future directions

This study provided evidence that extant mustelid subclades
evolved robust cranial shapes and small, elongate bodies to
exploit new adaptive landscapes, which in turn facilitated sig-
nificant increases in clade carrying capacity during the Late
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Miocene to present [23]. However, a caveat to this study is the
absence of paleontological data. Extinct mustelids were ecomor-
phologically diverse, with over 400 described species [41-44].
Unfortunately, the phylogenetic framework and morphological
data needed to incorporate these extinct taxa are unavailable.
Previous work has demonstrated that incorporating the fossil
record in macroevolutionary analyses dramatically improves
the model selection of trait evolution [45-47]. This present
study only used extant taxa to infer cranial and body trait evol-
ution and its association with the MMCT; consequently, I was
unable to fully elucidate the evolutionary transitions of cranial
and body traits across historical time that led to the traits
observed in extant species. Only the incorporation of the fossil
record will elucidate whether selection for smaller, more
elongate bodies and stronger jaws occurred within extant
species of the HGIML-clade, suggesting an evolutionary
response to the MMCT, or if basal ancestors of the HGIML-
clade already exhibited those characteristics, suggesting that
these traits were not associated by the MMCT. The inclusion
of the fossil record can also elucidate the timing of trait shifts.
My neontological-based analyses suggested that shifts in cranial
and body traits occurred within 2.5 Myr from 14 to 11.5 Myr
ago, approximately 1—-4 Myr after the onset of the MMCT. Com-
pared to large mammals, it is tempting to suggest that smaller
mammals may be more likely to respond faster to environ-
mental changes owing to a variety of life-history factors such
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as shorter generation times, smaller ranges and greater “

number of locally adapted populations [48—51]. Under this
hypothesis, shifts in diversity and ecomorphology of small
mammals correspond closely with the timing of environmental
transitions, whereas diversification and ecomorphological
shifts of large mammals may lag millions of years [8,9,11,52].
As mid-sized mammals, the timing of evolutionary responses
of mustelids seemingly occurs intermediate to small and large
mammals; nevertheless, the incorporation of the fossil record
is needed to quantify differences in rates of phenotypic tran-
sitions between mammalian clades and their timing with
respect to environmental changes. Future work combining
neontological and paleontological datasets under a total evi-
dence phylogeny will provide a more complete
understanding of the patterns, timing and mechanisms of trait
evolution.
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