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ABSTRACT: A macroscopic thermodynamics-based theory that can quantitatively
describe the behavior of water confined between hydrophobic solutes has so far remained
elusive. In this work, we progress toward this goal by comparing the predictions of
macroscopic theory with the results from computer simulations. We have determined free
energy profiles of water confined between two nanometer-sized surfaces of varying
hydrophobicity using molecular simulations and have estimated thermodynamic
properties such as contact angle, line tension, and size of the critical vapor tube from
independent simulations. We show that the scaling of free energy barrier to evaporation is
fairly well captured by the factor (D/2 + λ/ϒLV)

2, where D is the confinement gap and λ/
ϒLV is the ratio of line-tension and liquid−vapor surface tension. The radius of the critical
vapor tube necessary for nucleating evaporation scales by the factor (D/2 + λ/ϒLV).
Exclusion of the line-tension term from thermodynamic theory leads to a qualitative
disagreement between theoretical predictions and results from molecular simulations. We
also demonstrate that macroscopic theory that includes the line-tension term is able to quantitatively match the entire free
energy profile associated with the formation of a vapor-tube inside the confined region for conditions when the vapor state is the
most stable state. The match is however only qualitatively correct for the conditions when the liquid state is more stable.
Overall, the conclusion is that the inclusion of line-tension in macroscopic theory is necessary to describe the behavior of water
under nanoscale confinement between two hydrophobic solutes.

1. INTRODUCTION

Behavior of water in confined geometries has elicited much
interest because of its important role in biological processes,
such as protein−ligand1,2 and protein−protein3 association,
folding of globular proteins,4−6 formation of lipid vesicles,7

operation of ion channels,8 etc. Under ambient conditions,
water forms a percolating, fluctuating network for hydrogen
(H−) bonds. In the proximity of apolar solutes (solutes which
are incapable of forming any H-bonds), the H-bond network of
water gets disrupted. As a result, the behavior of water in such
environments deviates significantly from the bulk. Near large
apolar solutes (>1 nm), water exhibits enhanced density
fluctuations akin to those at vapor−liquid interfaces.9 If water
is confined between two large apolar solutes, then below a
critical confinement gap, dc, the net unfavorable interactions of
water with apolar solutes render the liquid state metastable
with respect to the vapor.10,11 As a consequence, water is
expected to evaporate for confinement gaps below dc. From
thermodynamic considerations, the dc of water confined
between two macroscopic apolar solutes is of the order of
micrometers (μm).11 However, even for the confinement gaps
less than dc, water in the liquid state can persist in the confined
region because evaporation requires overcoming an activation
free energy barrier.12,13 This free energy barrier is responsible
for hysteresis that is observed between Cassie and Wenzel
states in nanoscale grooved surfaces.14,15 Evaporation of

confined water proceeds via nucleation and growth of a critical
vapor tube inside the confined region.16,17 The activation
barrier associated with formation of a critical vapor tube
governs the kinetics of the evaporation process. Macroscopic
thermodynamics-based expressions for free energy of for-
mation of a vapor tube have been proposed11,18 and modified
to incorporate the role of line tension13 and flexibility of
confining solutes.19 So far, most studies have shown a
qualitative match between the thermodynamics-based free
energy expressions and the free energy profiles of confined
water obtained from molecular simulations insomuch that the
thermodynamic quantities are treated as fitted parameters to
the free energy profiles.20 Interestingly, previous researchers
have shown that the macroscopic capillary theory at liquid−
vapor interface is quantitatively valid at length-scales as small
as 2−10 nm.21,22 The inclusion of line-tension in the
expressions has remained contentious and its importance has
not yet been carefully examined. In this work, we have
performed molecular simulations to calculate the free energy
profiles of water confined between two surfaces of varying
hydrophobicity. Alongside, we have performed independent
calculations of contact angle, line tension, and size of the
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critical vapor tubes in confined water. We demonstrate that the
inclusion of line-tension in macroscopic theory is essential for
describing the scaling of the free energy barrier to evaporation;
for matching the free energy profiles associated with the
formation of a vapor tube in the confined region; and for the
scaling of radius of the critical vapor tube. Since the ratio of
line-tension and surface-tension is of molecular length-scales,
the dependence on line-tension will be important when the
confinement gap is of the order of nanometers. We show that
the exclusion of line-tension from macroscopic theory leads to
a qualitative mismatch between simulation results and
theoretical predictions. We have also compared free energy
profiles associated with the formation of vapor bubbles in the
confined region with predictions from macroscopic theory.
The macroscopic theory of vapor-bubble formation shows
qualitatively correct trends for some range of surface
hydrophobicity, but fails beyond this range. Therefore, the
macroscopic theory of vapor-bubble formation needs to be
reformulated.

2. SIMULATION SYSTEM AND METHODS
Figure 1 shows a snapshot of the simulation system. There are
two hydrophobic surfaces submerged in water and placed

parallel to each other. Each surface comprises of three layers of
atoms arranged in a hexagonal lattice with a lattice constant of
1.4 Å mimicking a graphite layer.16 The distance between the
two adjacent layers of atoms in a surface is 2.5 Å. Confinement
gap, D, is defined as the distance between the innermost layers
of atoms of the two surfaces. D is kept fixed at 14 Å. Each layer
is comprised of 550 atoms, so that each surface has a total of
1650 atoms. The lateral size of the surfaces is 30.099 × 29.503
Å2 (∼30 × 30 Å2 surfaces). Water molecules are modeled as
simple point charge enhanced (SPC/E) (a rigid, three atom
model of water).23 The total number of water molecules in the
simulation system is 11089. The approximate dimensions of
the simulation box are 71.50 × 71.50 × 71.50 Å3. The surface
atoms interact with the oxygen atoms of water via Lennard-
Jones (LJ) interactions with σ = 3.283 Å. The surfaces are
treated as rigid bodies. For the outermost layer of atoms of the
two surfaces, the oxygen-surface LJ well-depth parameter, ε is
fixed at 0.0578 kcal/mol. To investigate the effect of surface
hydrophobicity on the behavior of confined water, the ε of the
inner two layers of atoms of the two surfaces is varied from
0.022 kcal/mol to 0.044 kcal/mol. Coulombic interactions are
evaluated using Particle-Particle-Particle Mesh Ewald. In the
isothermal−isobaric simulations (NPT ensemble), the temper-
ature and pressure are fixed using the Nose−́Hoover

thermostat and barostat, respectively.24 The time-constant
for the thermostat is fixed at 200 fs. The time-constant for the
barostat is fixed at 2000 fs. A larger time-constant for barostat
is employed because volume-change steps are computationally
more expensive. The cutoff distance of Lennard-Jones
interactions as well as the real-space part of the Ewald
summation is taken as 9 Å.

2.1. Indirect Umbrella Sampling (INDUS) Simulations.
In order to determine free energy profiles of water confined
between the two surfaces, we employ indirect umbrella
sampling (INDUS) methodology in molecular dynamics
(MD) simulations in the isothermal−isobaric ensemble
(constant temperature T, pressure P and number of particles
N) with T = 300 K and P = 1 bar. INDUS9,25 is a powerful
technique to perform umbrella sampling in the reaction
coordinate N within a MD simulation. Our implementation of
INDUS methodology is similar to that of Remsing et. al,20

wherein the confined region is defined as the probe volume.
Within the probe volume a harmonic bias-potential based on N
is applied, given by Ubias = k(N − No)

2, where k is the prefactor
of the harmonic potential, No is set-point of the number of
confined water molecules and N is the number of confined
water molecules in any configuration. The above-specified bias-
potential, which is commonly used in umbrella sampling
simulations, will change discontinuously as molecules enter or
exit the probe volume, which will lead to impulsive forces. To
overcome this problem, in the INDUS approach, position of
the particles is smeared in space by modeling their density by a
continuous function centered at the particle.25 This eliminates
impulsive forces in the MD simulation. In the INDUS
implementation, a Gaussian function is used for smearing the
density. As a result, the bias-potential gets modified as Ubias =
k(Ñ − Ño)

2, where Ñ is the smeared-out number density of
confined water.25 By systematically varying Ño from 0 to 280 in
increments of 5, a set of overlapping umbrella sampling
windows that span the entire range of densities inside the
confined region are generated. In our simulations, we have
chosen the truncation (or cutoff) length and standard
deviation of the Gaussian function, rc and s, to be 0.3 and
0.1 Å, respectively, to ensure a strong coupling between Ñ and
N. The value of k is set to be 0.1 kcal/mol. Each INDUS
simulation is done for 2 ns of equilibration followed by 8 ns of
production run. Overall, 57 umbrella sampling windows are
generated for each value of surface water interaction strength,
ε. Free energy profiles as a function of N are generated using
weighted histogram analysis method (WHAM).26 The
convergence of the free energy profiles is verified by doing
additional 56 umbrella sampling simulations for surfaces with ε
= 0.022, 0.0289, and 0.035 kcal/mol with Ño set to 3, 8,
13,..283 and ensuring that the resulting free energy profiles
with these additional simulations are indistinguishable from the
previously obtained ones. Figure 2 shows a typical free energy
profile that is obtained. Along with the free energy profile,
Figure 2 shows snapshots of configurations at different stages
in the free energy profile. At the local maximum, a vapor tube
is formed in the confined region. This vapor tube grows in size
and eventually, in the vapor basin, the entire confined region is
devoid of liquid water.

2.2. Determination of Critical Radius of Vapor Tube.
Committer Analysis. We perform committer analysis for
identifying configurations that comprise the transition state
ensemble (TSE) for the transition from the liquid to the vapor
state of confined water. The TSE is expected to be close to the

Figure 1. Snapshot of the simulation system. Two hydrophobic
surfaces of lateral dimensions L × L are placed parallel to each other
in water with the confinement gap D between them. Each
hydrophobic surface comprising of three layers of atoms.
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peak in the free energy profiles. Hence, we harvest 300−350
randomly selected configurations from the umbrella sampling
windows close to the peak in the free energy profiles for each
value of ε. For each selected configuration, we shoot 60 MD
trajectories with randomized translational and rotational
velocities of water molecules sampled from Maxwell−
Boltzmann distribution. Committer value of a configuration
is equal to the fraction of the MD trajectories that end up in
the vapor basin. The configurations with committer values
between 0.485 and 0.525 are considered to be part of the TSE.
The graphs showing committer analysis for each value of ε are
shown in Figure S1 and Figure S2 (Supporting Information).
Determining Radius of the Vapor Tube. The radius of the

vapor tube in each configuration is estimated by employing a
two-dimensional cluster analysis method. To understand this
methodology, let us assume that the x−y−z coordinate system
is defined such that the two surfaces are parallel to the y−z
plane. We divide the y−z plane in cells of dimension 0.2 × 0.2
Å2. The centers of oxygen atoms of water molecules in the
confined region are projected onto the y−z plane. The cells
whose centroids are within the distance of σOxygen/2 = 1.583 Å
from the center of any oxygen atom are labeled as “occupied”,
and the remaining cells are labeled as “vacant”. Vacant cells
which are adjacent to each other are considered as part of a
single cluster. In this manner, all vacant cells are classified into
different clusters. The largest cluster represents the vapor tube.
Through this cluster analysis, only the vapor regions that span
the entire distance from one surface to the other get included.
A snapshot of a typical vapor tube is shown in Figure S3
(Supporting Information). Radius of the vapor tube is
calculated from the area in the y−z plane by assuming that
the vapor tube is a cylinder. The error in the estimate of critical
radius is determined from the standard deviation of critical
radius values obtained from different configurations compris-
ing the TSE.

2.3. Determination of Contact Angle and Line
Tension for Different Surfaces. We calculate the contact
angle of water, θ and the solid−liquid−vapor line tension, λ for
the surfaces of different ε. According to the modified Young
equation, contact angle of a nanometer-sized droplet of liquid
of radius r, θr is related to the macroscopic contact angle, θ by
the following relation:27,28

R
cos cosr

LV

θ θ λ
γ

= −
(1)

Here λ is the line tension, R is the radius of the contact line (R
= r sin θr), and ϒLV is the liquid−vapor surface tension. We
perform MD simulations of water droplets with the number of
molecules ranging from 4000 to 30270 (corresponding to
droplets of diameter ∼30 to 60 Å) on surfaces with different
values of ε of the top two layers of atoms and a fixed ε of
0.0578 kcal/mol for the bottom layer. The surfaces span the
entire x−y plane of the simulation box, and comprise of three
layers of atoms, similar in structure to those shown in Figure 1.
The system is periodic in the x−y directions. The dimensions
of the simulation box is taken large enough that the droplets do
not interact with their images. The simulations are initialized
by placing a sphere-shaped water box containing the requisite
number of water molecules on the surface. Canonical ensemble
MD simulations at T = 300 K are performed. From the MD
simulations, average contact angle from the last 2 ns is
compared against the average contact angle from the previous
2 ns. If the contact angle is found to be invariant within the
error bars then the system is assumed to have reached
equilibrium. For the smallest droplets, 2 ns of equilibration
time is found to be sufficient. While for the largest droplets, we
perform 6 ns of equilibration simulations. Contact angle is
calculated from 4 ns of production run after equilibration. To
determine the shape of the droplet, we calculate the location of
Gibbs dividing surface, rGDS as a function of distance from the
surface, z. If center of the droplet is at r = 0, the rGDS is the
radius where the following equation is satisfied,

r r r r( ( )) d ( ) d
r

liq bulk r0 ,

GDS

GDS

∫ ∫ρ ρ ρ− =
∞

(2)

An equation of circle is fitted to rGDS as a function of z from
which the contact angle, θ is calculated.28 From the slope of
the best-fit line to cos θr and 1/R, the value of λ/ϒLV is
estimated for each surface. To estimate the value of
macroscopic contact angle, θ, we conduct MD simulations of
a cylindrical droplet placed on the surfaces with different values
of ε. To generate a cylindrical droplet, the dimension of one
side of the simulation box (y-axis) is kept smaller than the x-
and z-axis, so that the droplet interacts with its image to form
an infinitely long cylindrical droplet.28 For a droplet of radius r,
the length of the y-axis should be less than 2πr to ensure that
Plateau−Rayleigh instability is suppressed and a stable
cylindrical droplet is formed.28 The error in the measurement
of contact angle is determined by using the method of block-
averages in the simulations.24 Figure S4 (Supporting
Information) shows a snapshot of the equilibrated spherical
and cylindrical droplets placed on a surface with ε = 0.035
kcal/mol. Figure S5 (Supporting Information) shows the graph
of cos θr versus 1/R for ε = 0.025 kcal/mol and ε = 0.035 kcal/
mol. The error in line tension calculations are estimated by
determining the maximum variation that is possible in the
slope of the best-fit line of the graph of cos θr versus 1/R when

Figure 2. Typical free energy profile of water confined between two
hydrophobic surfaces as a function of the number of confined water
molecules, N. The free energy basin close to N = 10 is the vapor basin,
and the one close to N = 270 is the liquid basin. Snapshots of
configurations of confined water are shown at different stages. In the
liquid basin, vapor bubbles form close to the hydrophobic surfaces. At
the peak of the free energy profile, a vapor tube is clearly seen in the
snapshot. For smaller values of N, the vapor tube grows in size. In the
vapor basin, the entire confined region is devoid of water.
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the error-bars in cos θr are included. It should be noted that
another way of estimating the macroscopic contact angle is to
extrapolate the spherical droplet results to R → ∞. However,
such a large extrapolation may lead to erroneous estimates.
Hence, we prefer to calculate the macroscopic contact angle
from simulating cylindrical droplets. For ε = 0.035 kcal/mol,
for example, the contact angle from R → ∞ extrapolation is
found to be 120° while the simulation of a cylindrical droplet
gives us a value of 116 ± 1.3°.

3. RESULTS AND DISCUSSION
3.1. Free Energy Profiles. Figure 3 shows free energy

profiles of water confined between two hydrophobic surfaces as

a function of the number of confined water molecules, N for
different values of ε. N ∼ 270 indicates the free energy basin of
the liquid phase and N ∼ 10 represents that of the vapor phase.
The region around to the local maximum in the free energy
profiles harbors the transition state between the liquid and the
vapor phases. As expected, the relative stability of the vapor
phase with respect to the liquid phase increases as the surfaces
become more hydrophobic, that is, as ε decreases. For ε > 0.04
kcal/mol, the vapor phase is unstable. In the liquid basin, due
to large density fluctuations, spontaneous formation and
disappearance of vapor bubbles occurs.9 The vapor bubbles
may coalesce to form a region devoid of water molecules which
spans from one hydrophobic surface to the other. Such a
region is called a vapor tube. Vapor phase is nucleated and
grows in the confined region when the vapor tube becomes
larger than some critical size. Therefore, the liquid basin of the
free energy profiles is characterized by formation of vapor
bubbles and the vapor basin is characterized by the growth of a
vapor tube. It is observed in Figure 3 that for small values of ε
(ε ≤ 0.032 kcal/mol), an abrupt change in the slope of the free
energy profiles occurs close to N ∼ 205, which represents a
nondifferentiable point or a “kink”. This kink in the profiles has
been studied by Remsing et. al20 and is a result of an abrupt
transition from the free energy profiles associated with the
formation of vapor bubbles to those associated with the
formation of vapor tubes. As a result, the observed free energy
barrier to evaporation in the presence of a kink is lower than
predicted by classical nucleation theory.20 For ε = 0.035 and

0.038 kcal/mol, the kink in the free energy profiles is less
noticeable because the formation of the vapor tube at the kink
is no longer the free energy barrier to evaporation. Instead, for
these ε values, the vapor tube needs to grow further to achieve
the critical size.

3.2. Thermodynamic Relations. The goal of this work is
to examine how good is the agreement between macroscopic
thermodynamic theories in explaining the observed behavior of
confined water. For this purpose, we present derivations of
thermodynamic relations in this section.

Free Energy of Formation of Vapor Tubes. Thermody-
namics of formation of vapor tubes has been discussed
before.11,16,18 In this section, we revisit the derivation to
highlight some new points. The free energy of a confined liquid
phase, ΩL is given by

L P L D2L SL L
2 2γΩ = − (3)

where L is the lateral size of the surfaces, γSL is the solid−liquid
surface tension, D is the confinement gap, and PL is the
pressure. Now, consider the state where the confined region
harbors a cylindrical vapor tube of radius r. The free energy of
this state is given by

L r r P L D r D

rD P r D r

(2 2 ) 2 ( )

2 4

tube SL SV L

LV V

2 2 2 2 2

2

π γ π γ π

π γ π π λ

Ω = − + − −

+ − + (4)

where γSV is the liquid−vapor surface tension, PV is the vapor
pressure, and λ is the solid−liquid−vapor line tension. The free
energy change, Ωtube − ΩL = ΔΩ is given by

r r D P rD r2 cos 2 4LV LV
2 2π γ θ π π γ π λΔΩ = + Δ + + (5)

In the above equation, we have used Young’s relation: γSV −
γSL = γLV cos θ. ΔP is defined as PL − PV. The radius of the

critical vapor tube, r* can be found by setting 0
r

d
d

=ΔΩ , which

gives,

r
D

D P

2

2 cos
LV

LV

γ λ
γ θ

* = −
+

+ Δ (6)

By substituting (6) into (5), we get the free energy barrier
associated with the formation of the critical vapor tube,

D

D P

( 2 )

2 cos
LV

LV

2π γ λ
γ θ

ΔΩ* =
− +

+ Δ (7)

In terms of r*, the expression becomes

r D P(2 cos )LV
2π γ θΔΩ* = − * + Δ (8)

For our system of interest, γLV ∼ O(10−2 N/m), D ∼ 1 nm and
ΔP ∼ 1 bar. Hence, γLV ≫ DΔP. Neglecting the DΔP term
from eqs 6, 7, and 8, we get the following expressions:

r
D1

cos 2 LVθ
λ

γ
* = − +

i

k
jjjjj

y

{
zzzzz

(9)

D2

cos 2
LV

Lv

2
πγ

θ
λ

γ
ΔΩ* =

−
+

i

k
jjjjj

y

{
zzzzz

(10)

r2 cosLV
2π γ θΔΩ* = − * (11)

Figure 3. Free energy profiles of water confined between two
hydrophobic surfaces of lateral size 30 × 30 Å2 and separated by a
distance of D = 14 Å, as a function of N. The LJ well-depth parameter
for the interaction between surface atoms and water-oxygen, ε, for the
inner two layers of atoms of the surfaces is varied from 0.022 to 0.044
kcal/mol.
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From eq 10, it is clear that ΔΩ* varies as D2. An important
new point that we want to highlight is that the role of line
tension is more subtle than what has been previously
discussed.16 The line tension term enters eq 10 as an
adjustment to the actual confinement gap, D. According to
macroscopic theory, the free energy barrier to evaporation

scales as ( )D
2

2

Lv
+ λ

γ
. The ratio λ/γLV is of the order of

molecular length-scales29,30 and therefore when the confine-
ment gap, D is of the order of nanometers, the inclusion of
line-tension term in macroscopic theory is expected to be
important. Radius of the critical vapor tube scales by

( )D
2 Lv

+ λ
γ

and again the line-tension term is expected to be

important at nanoscale confinement. Equation 11 shows that
the ΔΩ*varies as r*2. It is easily verified that the expression in
eq 11 is invariant of whether line-tension is included in the free
energy expression or not.
Free Energy of Condensation of Water in the Confined

Region. Following a similar procedure as above, the free
energy barrier associated with the condensation of water in the
confined region can be derived as well. The free energy of the
vapor phase is given by

L LD P L D L2 4 8V LV LV V
2 2γ γ λΩ = + − + (12)

Subtracting eq 4 and using Young’s relation we get,

r L r L P

r L D r L

2( ) cos ( )D

2( 2 ) 4( 2 )

V LV

LV

2 2 2 2π γ θ π

π γ π λ

ΔΩ = − + − Δ

+ − + − (13)

By setting 0
r

d
d

V =ΔΩ
, we obtain the same expression for r* as

in eq 6, which is substituted back to eq 13 to get the free
energy barrier to condensation of water in the confined region,
ΔΩV*.
Free Energy of Formation of Vapor Bubbles on Hydro-

phobic Surfaces. In the liquid phase, vapor bubbles form on
the hydrophobic surfaces which eventually coalesce to form a
vapor tube. Hence, the free energy profile of confined water in
the liquid basin can be modeled as the free energy of formation
of vapor bubbles.31 It is assumed that vapor bubbles form on
both surfaces, and that the vapor−liquid interface of these
bubbles attains equilibrium contact angle. Under these
assumptions, the free energy of forming a vapor bubble on
both surfaces is given by31

P V r A r

L D V P L r

2 2 2 4

( 2 ) 2( )

bubble V b b SV b LV b

b L b SL

2

2 2 2

π γ γ π λ

π γ

Ω = − + + +

− − + − (14)

Here, rb is the radius and Vb is the volume of the bubble. Ab is
the area of the liquid−vapor interface of the bubble. The
following relations can be derived by assuming the bubble to
be part of a sphere,

( )rb
V3 1/3
b= ϕ

π where sin (1 cos )
(2 cos )(1 cos )

ϕ = θ θ
θ θ

−
− +

, and Ab = π(rb
2 +

h2) where h is the height of the bubble, given by

h rb
1 cos
sin

= θ
θ

+ .The expression for change in free energy is

obtained by subtracting eq 3 from eq 14,

r h r2 (1 cos ) 2bubble LV b b
LV

2 2πγ θ λ
γ

ΔΩ = + + +
i

k
jjjjj

y

{
zzzzz

(15)

In the above equation, we have ignored the ΔP term as before.
3.3. Comparison between Theory and Simulation

Results. For comparing the predictions from the above-
derived equations with the results from molecular simulations,
we have estimated the following quantities: r* (critical radius
of vapor tube), λ (line tension), and θ (contact angle) using
the methodologies described in the Simulations System and
Methods. Table 1 lists the values of these quantities for

different ε. The ratio of line-tension to surface tension, λ/ϒLV is
of molecular size and negative in agreement with previous
works.30,32 In Figure 4, the free energy barrier to evaporation,

ΔΩ* is plotted as a function of (-r*2cos θ). From eq 11 one
can see that the slope of this graph is equal to 2π ϒLV. From the
best fit line, the ϒLV is estimated to be 0.043 N/m. This value
deviates from the bulk surface tension of SPC/E water (0.063
N/m).33 However, the deviation is not particularly surprising
because liquid water confined in nanometer-sized region is
arranged in layers. Such an arrangement is quite distinct from
the bulk structure and hence water may not retain bulk
properties.34 This mismatch may also be due to the inadequacy
of macroscopic theory. Nevertheless, we will show in this work
that with this value of ϒLV, the macroscopic theory is quite
consistent with the simulation results.
Using eq 10, ΔΩ* can be estimated from macroscopic

theory. Figure 5a shows a comparison of ΔΩ* obtained from
molecular simulations and the one estimated from eq 10 as a
function of ε. It is observed that for the conditions where the
vapor phase is more stable than the liquid phase (ε ≤ 0.032

Table 1. Different Thermodynamic Properties of the System
Estimated from Simulationsa

ε (kcal/mol) λ/ϒLV (Å) θ (deg) r* (Å)

0.022 −3.6 (0.27) 131 (1.5) 5.2 (0.08)
0.025 −3.4 (0.17) 128 (2.2) 5.5 (0.46)
0.0289 −3.3 (0.33) 123 (2.0) 6.7 (0.50)
0.03 −3.1 (0.32) 122 (2.0) 7.3 (0.64)
0.032 −2.8 (0.19) 120 (1.3) 7.9 (0.57)
0.035 −2.4 (0.32) 116 (1.3) 9.1 (0.48)
0.038 −2.2 (0.04) 113 (1.2) 10.6 (0.50)
0.04 −2.1 (0.61) 111 (0.6) 12.5 (0.25)

aThe values in parentheses represent errors in the estimation.

Figure 4. Free energy barrier to evaporation of water in the confined
region, ΔΩ* as a function of (−r*2 cos(θ)) where r* is the radius of
the critical vapor tube. From eq 11, the slope of the best fit line is
equal to 2πγLV where γLV is the liquid−vapor surface tension.
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kcal/mol), the estimates from macroscopic theory are in very
good agreement with the results of molecular simulations. For
ε ≤ 0.032 kcal/mol, the theoretical predictions of ΔΩ* are
slightly higher than those from simulations. This is expected as
the presence of a kink in the free energy profiles lowers the
observed free energy barrier.20 For ε > 0.032 kcal/mol, the
theory overpredicts the ΔΩ* by ∼5 kBT. Overall, macroscopic
theory is found to be sufficiently good in matching the
simulation results for ΔΩ*. Figure 5b compares the ΔΩ*V
obtained from molecular simulations and the one estimated
from eq 13 as a function of ε. It is observed that for ε ≤ 0.032
kcal/mol, the estimates from macroscopic theory are in very
good agreement with the results of molecular simulations. For
ε > 0.032 kcal/moI, the theory under-predicts the ΔΩ*V. In
Figure 6, the r* predicted from macroscopic theory eq 9 is

compared against the results from molecular simulations. The
theoretical estimates match well with the results of molecular
simulations apart from some deviation observed at larger
values of ε. From Figure 5 and Figure 6, it is concluded that
macroscopic theory is sufficiently good in quantitatively
predicting the free energy barrier and the size of the critical
vapor tube. Some deviations between macroscopic theory and
molecular simulation results are observed for larger values of ε.
At this point, one can conjecture as to why the theoretical
predictions deviate at larger values of ε. For ε ≥ 0.035 kcal/
mol, the r* becomes as large as 9−12.5 Å. The diameters of

these vapor tubes are comparable to the lateral dimensions of
the surfaces, L ∼ 30 Å. Hence, there may be some
unaccounted edge effects that are responsible for the observed
divergence. To verify this conjecture, one would need to
perform the same analysis for larger surfaces. However, the
computational cost of simulating a bigger system is quite large.
As previous works have shown,13,20 the vapor tubes that form
in the confined region are not cylindrical but fluctuate in many
different shapes. Hence, macroscopic theory developed for a
vapor tube with a fixed geometry and size is only an
approximation. Nevertheless, predictions from macroscopic
theory are found to be sufficiently good in matching simulation
results.
In the above analysis, the confinement gap D has been kept

fixed at 14 Å while the interaction of the surface atoms with
water-oxygen is varied. This allows us to systematically
investigate the role of thermodynamic properties, such as
line tension and contact angle on the behavior of water under
confinement. In Figure 7, the ΔΩ* from molecular
simulations, obtained for fixed surface properties but changing
D, is compared against predictions from macroscopic theory eq

Figure 5. Comparison of (a) free energy barrier to evaporation of water, ΔΩ* and (b) free energy barrier to condensation of water, ΔΩ*V in the
confined region as a function of ε with predictions from macroscopic theory (eq 10 and eq 13 respectively). It is observed that both ΔΩ* and
ΔΩ*V are predicted well by macroscopic theory for small values of ε (≤0.032 kcal/mol).

Figure 6. Comparison of radius of the critical vapor tube, r* from
simulations with prediction from macroscopic theory eq 9 as a
function of ε. The theoretical predictions match the simulation results
reasonably well.

Figure 7. Comparison between free energy barriers to evaporation,
ΔΩ* obtained from molecular simulations (data from Remsing et. al)
and theoretical prediction from eq 10 as a function of confinement
gap, D. For the theoretical fit, our estimated values of ϒLV = 0.043 N/
m and a contact angle, θ of 123 ± 2° is used. The best fit of eq 10 is
obtained for a value of λ/ϒLV = −3.7 Å, which is close to our
estimated value of −3.3 ± 0.33 Å. A very good match between
simulation results and theoretical predictions is observed.
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10. The simulations data in Figure 7 is from Remsing et al.20

(Figure S8) in the Supporting Information. In the study by
Remsing et al., the free energy profiles of water confined
between two square surfaces of lateral dimensions, L ∼ 40 Å
were determined.20 Similar to our system, their surfaces
comprised of LJ atoms arranged in a hexagonal lattice with a
lattice constant of 1.4 Å. The value of the ε parameter of the LJ
interactions between a surface atom and water-oxygen was
chosen as 0.0289 kcal/mol.20 For comparing the simulation
results in Figure 7 with theoretical predictions, eq 10 is
employed with the values of ϒLV and θ corresponding to ε =
0.0289 kcal/mol taken from Table 1. The ratio λ/ ϒLV is used
as the best-fit parameter for the simulations data. The best fit
value of λ/ γLV is found to be −3.7 Å, which is not far from our
calculated value of −3.3 ± 0.33 Å. A very good fit between

simulations and theory is found in Figure 7, indicating that
macroscopic theory is quantitatively correct in predicting
simulation results.

Importance of Line-Tension in Macroscopic Theory. The
derivations of thermodynamic relations discussed in the
section above include the effect of line-tension. In previous
works, the role of line-tension has been ignored.12,18 In our
derivation of eq 10, we show that line-tension acts to decrease
the effective confinement gap in the expression of free energy
barrier to evaporation. Hence, the role of line-tension is
expected to be important when the confinement gap is of the
order of a few nanometers. Previous investigators have shown
that the free energy barrier is proportional to Deff

2 = (D − 2l)2

where l is the mean vapor film thickness.18 From our
simulations, the average vapor film thickness is ∼2.5 Å, so

Figure 8. Comparison between theoretical predictions and simulation results when the role of line tension is omitted. (a) shows the free energy
barrier to evaporation, ΔΩ*, and (b) shows the critical radius, r* plotted as a function of ε from simulations and predicted from eq 10 and eq 9,
respectively, by ignoring the line tension term and for two different values of effective confinement gap, Deff = 8 and 9 Å. A mismatch in the trends
of ΔΩ* and r* from macroscopic theory without the line tension term and the simulation results is observed. Lines in the graphs are a guide to the
eye.

Figure 9. Free energy profiles obtained from simulations are compared to predictions from macroscopic theory for the branch of the profile
harboring a vapor tube eq 5 for different values of ε. A very good match between simulations and theoretical predictions is observed for these values
of ε. The error bars in the theoretical predictions are of the order of 2−5 kBT (same as shown in Figure 5). The error-bars are not shown explicitly
to unclutter the graph.
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that Deff ∼ 9 Å. However, by taking λ = 0 in the macroscopic
theory eq 10, the best-fit to ΔΩ* is found for Deff = 8 Å. Figure
8a compares theoretical predictions of ΔΩ* by taking Deff = 8
and 9 Å with the results from simulations. It is observed that
macroscopic theory with λ = 0 is unable to capture the correct

trend of ΔΩ*. That is, the slope of ΔΩ* versus ε predicted
from theory when λ = 0 is different from that obtained from
the simulations. Figure 8b compares the prediction of r* from
eq 9 with λ = 0 and the results from the simulations. A
deviation between the trends is again observed. Therefore, it is

Figure 10. Free energy profiles obtained from simulations are compared to predictions from macroscopic theory for the branch of the profile
harboring a vapor tube eq 5 for different values of ε. The free energy profiles from theoretical predictions are found to systematically deviate in
comparison to the simulations. This deviation is equal to the overprediction of ΔΩ* observed in Figure 5. Apart from this shift, the predicted free
energy profiles capture the overall shape of the profiles from simulations very well. The error bars in the theoretical predictions are of the order of
2−5 kBT (same as shown in Figure 5). The error-bars are not shown explicitly to unclutter the graph.

Figure 11. Free energy profiles obtained from simulations are compared to predictions from macroscopic theory for the branch of the profile
harboring vapor bubbles eq 15 for different values of ε. The free energy profiles from theoretical predictions deviate in comparison to the
simulations. The predicted free energy profiles capture the overall shape of the profiles from simulations well. The error bars in the theoretical
predictions are of the order of 2−5 kBT (same as shown in Figure 5). The error-bars are not shown explicitly to unclutter the graph.
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concluded that inclusion of line tension in macroscopic theory
is important for correctly capturing the behavior of water
under hydrophobic confinement. Lefevre et al.32 found that the
inclusion of line-tension is necessary to account for their
experimentally observed values of nucleation barriers asso-
ciated with the extrusion of water from hydrophobic
mesopores. Hence, our conclusions on the importance of
line-tension are supported by experimental results.
Quantitative Accuracy of Macroscopic Theory in Predict-

ing Free Energy Profiles. Next, we analyze how good is
macroscopic theory in predicting the free energy profiles of
water under hydrophobic confinement. Equation 5 is the
equation for the change in free energy, ΔΩ, as a function of the
size of the vapor tube, r. In Figure 9a−d, a comparison of free
energy profiles in the vapor basin predicted from eq 5 and
obtained from molecular simulations is shown for different ε ≤
0.03 kcal/mol. In eq 5, the radius of the vapor tube is

calculated as r L
N N

N

0.5
liq

liq
=

π

−i
k
jjj

y
{
zzz . It is observed that macroscopic

theory is quantitatively correct in predicting the free energy
profiles in the vapor basin for ε ≤ 0.03 kcal/mol. Figure 10a−d
show a similar comparison for ε ≥ 0.032 kcal/mol. It is
observed that the free energy profiles predicted from eq 5
systematically deviate by a constant value from those obtained
from simulations. It is noted, however, that the slope of the
free energy profiles from eq 5 and from molecular simulations
match well for all values of ε. Therefore, a qualitative match is
achieved for ε ≥ 0.032 kcal/mol.
Finally, we analyze how good is macroscopic theory of free

energy profiles of formation for vapor bubbles eq 15 by
comparing the predictions to molecular simulation results. In
eq 15, the volume of the vapor bubble is calculated as

V L Db
N N

N eff2
2liq

liq
=

−i
k
jjj

y
{
zzz where Nliq is the number of confined water

molecules corresponding to the minimum in the liquid basin,
N is the number of confined water molecules in the
configuration and Deff is the effective confinement gap. For
this calculation, Deff = 9 Å.
Figure 11a−d shows a comparison of predictions from eq 15

with the free energy profiles from simulations for ε ≥ 0.032
kcal/mol. It is observed that the predictions from macroscopic
theory qualitatively match the simulation results. The
theoretical free energy profiles deviate from the experimental
ones, but the slopes of the profiles match with the simulations.
For ε ≤ 0.03, however, the macroscopic theory of vapor bubble
formation fails to match the simulation results (Figure S6
(Supporting Information)). We do not understand why
theoretical predictions do not match the simulation results
for small values of ε. One conjecture is that for more
hydrophobic surfaces, on average, more than one vapor bubble
nucleates on the surfaces.

4. CONCLUSIONS

We have determined the free energy profiles of water confined
between surfaces of varying hydrophobicity using indirect
umbrella sampling (INDUS) technique in molecular dynamics
simulations. We have also performed independent simulations
to estimate contact angle, line tension and size of the critical
vapor tube for these surfaces. From the simulation results and
macroscopic theory, we have estimated the value of liquid−
vapor surface tension of confined water. By comparing the
predictions of macroscopic theory and simulation results, we

assert that the inclusion of line-tension is important in order to
capture correct simulation trends. The free energy barrier to
evaporation is found to scale by a factor of (D/2 + λ/ϒLV)

2,
where D is the confinement gap and λ/ϒLV is the ratio of line-
tension and liquid−vapor surface tension. The radius of the
critical vapor tube necessary for nucleating evaporation scales
by a factor of (D/2 + λ/ϒLV). We show that if the contribution
of line tension is ignored then the macroscopic theory fails to
match the simulation trends even in a qualitative manner.
Macroscopic theory also quantitatively predicts the free energy
profiles of the branch which harbors a vapor tube for systems
wherein the vapor phase is the most stable phase. A qualitative
match is observed between the free energy profiles predicted
from macroscopic theory and those found from simulations for
conditions wherein liquid water is more stable.
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