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Abstract

Assessing the effects of input uncertainty on simulation results for multiphase flows will allow for more robust
engineering designs and improved devices. For example, in atomizing jets, surface tension plays a critical role in
determining when and how coherent liquid structures break up. Uncertainty in the surface tension coefficient can
lead to uncertainty in spray angle, drop size, and velocity distribution. Uncertainty quantification (UQ) determines
how input uncertainties affect outputs, and the approach taken can be classified as non-intrusive or intrusive. A
classical, non-intrusive approach is the Monte-Carlo scheme, which requires multiple simulation runs using sam-
ples from a distribution of inputs. Statistics on output variability are computed from the many simulation outputs.
While non-intrusive schemes are straightforward to implement, they can quickly become cost prohibitive, suffer
from convergence issues, and have problems with confounding factors, making it difficult to look at uncertainty
in multiple variables at once. Alternatively, an intrusive scheme inserts stochastic (uncertain) variables into the
governing equations, modifying the mathematics and numerical methods used, but possibly reducing computa-
tional cost. In this work, we extend UQ methods developed for single-phase flows to handle gas-liquid multiphase
dynamics by developing a stochastic conservative level set approach and a stochastic continuous surface tension
method. An oscillating droplet and a 2-D atomizing jet are used to test the method. In these test cases, uncertainty
about the surface tension coefficient and initial starting position will be explored, including the impact on break-
ing/merging interfaces.

Introduction

multiUQ is a novel stochastic multiphase flow solver which utilizes an intrusive UQ scheme to solve the
stochastic incompressible Navier-Stokes equations. The objective of this project is to improve upon non-intrusive
methods, such as the well known Monte-Carlo [1], which are simple to deploy upon a pre-built deterministic solver,
but suffers from convergence issues and computational cost [2]. Where non-intrusive methods can be quickly
deployed on an existing solver, an intrusive scheme requires changing the fundamental governing equations by
substitution of stochastic (random) variables, which vary in uncertainty dimensions.

While there are several types of spectral expansions that allow a variable to vary in uncertainty space, this
project utilizes a polynomial chaos method, as first described by Wiener [3], and implemented in a single phase,
incompressible flow solver by Le Maitre et al. [4], among others ([5], [6], [7], [8]). For this approach, any stochastic
random variable y is taken to be a function of any number of P orthogonal polynomial basis functions, such that
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where @ is the spatial directions, ¢ is time, and ¢ is the stochastic dimensions. ¢({) are orthogonal polynomials
defined in uncertainty dimensions ¢. The result is that any variable then becomes a function of space, time, and
uncertainty, among any other dependencies. In this work, the Legendre polynomials were utilized for simplicity,
as well as their suitability in representing a uniform distribution. Some research has noted that the orthogonal basis
functions used may be important for describing the distributions present [9]. Legendre polynomials are orthogonal,
ie.,
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where multiplication by a test function ¢; and integration results in zero with any basis function other than the
special case where k = b. The orthogonality property simplifies the stochastic governing equations and reduces
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computational cost. Other orthogonal polynomial basis functions, i.e., Hermite polynomials, could be readily used
in this framework.

Having discussed the method of spectral expansion used to represent stochastic variables, we now consider
how random variables are incorporated into the governing equations. The deterministic Navier-Stokes equations
for incompressible flow (used for multiphase) can be written as
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where the velocity at any given point in time and space is a function of viscosity v, pressure gradient V P, density
p, and surface tension force f,ds.

Claiming uncertainty exists about one variable requires uncertainty to exist about at least one other. For a gas-
liquid multiphase flow, uncertainty about velocity effects the location of the phase interface leading to uncertainty
about density, viscosity, surface tension and pressure.

The stochastic Navier-Stokes equations result from substituting random variables w(¢), p(¢), P(¢), and v(¢)
into the deterministic equation shown above. Multiplying by a test function, integrating over (, and solving for the
basis weight of velocity u;, leading to
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where the inverse of density 1/p = pI and C'p is the multiplication tensor defined with
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This tensor needs to be calculated only once at the beginning of each simulation, and acts as a scalar value which
weights the interaction of the basis functions.

A stochastic continuity equation is obtained by substitution of w(() into the standard deterministic continuity
equation (V - u = 0), multiplication by a test function and integration over ¢. Due to the orthogonality of the basis
functions, this reduces to the divergence of each velocity basis weight u;, must be divergence free, i.e.,

V- up = 0. (6)

Finally, a surface tension force must be calculated for a gas-liquid flow. A deterministic surface tension can be
written as

f.0s = orxnds, @)

where o is the surface tension coefficient, « is the curvature of the interface, and n represents the outward normal
vectors at the interface boundary. The surface tension force exists only at the interface, as denoted by the addition
of the Dirac delta d,. In a stochastic formulation, this interface location is allowed to vary, which requires a
distribution of interfaces smoothed across space. The curvature, which is used to calculate the magnitude of the
surface tension force is also stochastic and can be written as K, = —V - np. Assuming there can be uncertainty
about the surface tension coefficient o, as well as the outward normal vector and curvature, the calculation of basis
weight b of the surface tension force is found with

Fop0s = okkimm0sCrime, (®)

where the multiplication tensor
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Numerical Methods

Implementation of the intrusive framework discussed required modifications of several published numerical
methods, particularly with respect to interface transport and surface tension calculation. A modified conservative
level set scheme is proposed, modeled after the work published by Desjardins et al. [10], which expanded upon
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work by Olsson & Kreiss [11], among others ([12], [13], [14]). In this scenario, a signed distance function g(x, t)
is transformed by way of a sigmoid to a smoothed Heaviside about the interface using

1
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where ¢ = max(2Ax, 2Ay). The level set transport for a stochastic level set is written as
ov
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Time marching is accomplished using an iterative semi-implicit Crank Nicolson method for stability, while spatial
derivatives are calculated using a flux method from one side of the cell to the other to maximize mass conservation.
Level set values Uy, are interpolated to the left and bottom cell walls utilizing a HOUC-5 scheme such as that
presented in [15], which has been shown to work effectively and efficiently for scalar transport.

Nothing ensures the shape of the conservative level set will be preserved throughout the transport process, so
an additional reinitialization step is introduced. This is where the bulk of the modifications have been made with
respect to the methodology published by Desjardins et al. [10]. In the original reinitializaiton equation, the level
set is updated with
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where a unit normal vector n, was used. In the present framework, the condition of unit magnitude was relaxed
and a continuous normal vector  was introduced which can be easily incorporated into the stochastic equations.
This vector is calculated using
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where the denominator scales the vectors based on the maximum gradient of the conservative level set profile. This
gradient can be found analytically to be |V |,.x = 1/2c. Using a continuous normal vector on the reinitialization
equation required the addition of a general diffusion term to smooth oscillations in the level set function away from
the interface.

The stochastic level set reinitialization equation is derived by substitution of stochastic random variables ¥ (()
and r(¢), multiplication by a test function, and integration over ¢ leading to the equation
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which is advanced over psuedo-time using the same semi-implicit Crank Nicolson as the scalar transport scheme
for stability. Additionally, gradients are calculated across the cell using a finite volume method to improve mass
conservation, while the continuous normal vectors are found using a planar least squares approach.

Calculation of a time step for pseudo-time marching is dependent on the maximum analytic gradient of the
level set scalar (|VU|p,x), the minimum cell width (Apin = min(Ax, Ay)), and the maximum current gradient of
the level set for any basis function. For a CFL number of less than 1
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The surface tension force is implemented based on the approach presented by Tryggvason et al. [16]. In this
approach the interface normal vector is computed using

V¥
— 16
and curvature the curvature is computed using
k=-V n. 17)
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Extending these equations for a stochastic level set requires computing stochastic normal vector n = nydy,
where the basis weights are computed with
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This integral does not have an analytic solution and cannot be pre-computed due to the dependence on the level set
weights. To evaluate the integral a Gaussian quadrature scheme is used. The other integrals, manifest in the Cly,
and Clmp tensors, can be pre-computed using analytic integrals of the basis functions. The lack of an analytic
solution to Eq. 18 is a strong motivation for further research into the calculation of a stochastic curvature and
surface tension.

Using the calculated unit normal vector, a stochastic curvature can then be calculated with

Rp = —V'nb. (19)

On a staggered grid, with velocity vectors held at cell faces, the divergence and curvature are located at the cell
center using a simple difference scheme over the cell.

With a simple interpolation to the cell wall for the curvature, and utilizing the level set scalar ¥ in a modifica-
tion to the method presented in [16], the density is calculated such that, for internal fluid density p; and external
fluid density p.,

o = Pip + Pep — Yipe,Cliv, (20)
and the final smoothed calculation of surface tension is made using
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where the gradient of density Vp is found with a 4™ order central difference scheme, and [p]y = p; — pe.

Additionally, time marching for the velocity updates to the Navier-Stokes equations was done using a pressure
correction method, where a semi-implicit Crank-Nicolson update advanced the predictor step and an elliptic solver
was used to evaluate the pressure field and then correct. Determination of the time step for this case is, for a
convective CFL less than 1,
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Results and Discussion
2-D Oscillating Droplet

The oscillating droplet is used to assess the interactions of the stochastic surface tension force with the dy-
namics of the droplet. Here, an elliptic droplet, is initialized in a large undisturbed pool. Surface tension forces
drive fluid flow causing the droplet oscillate. Analytic results were first suggested by Lord Rayleigh [17], where
the period of oscillation,

(pi + pe) R
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) (23)
is found to be a function of surface tension (o), density (p; and p), and unperturbed radius (R). Tracking the
oscillations was done using a calculation of the global kinetic energy,

KE, = %/p(u -u) dz dy, (24)
where the kinetic energy peaks and ebbs as the ellipse oscillates in alternating directions.

The deterministic oscillating droplet is frequently used, such as by Garrick et al. [18], to test the abilities of a
flow solver since the results can be compared to the analytic solution for the period of oscillation. Figure 1 depicts
two time steps for a deterministic case, showing the velocity field and phase interface.

All fluid properties, initial and boundary conditions are assumed known. The period of oscillation for the case
presented is shown in Fig. 2. The surface tension coefficient is 0 = 30 dyn/cm, and dimensions of the semimajor and
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Figure 1: Time slices of a deterministic oscillating droplet on a 2 X 2 cm grid with a mesh size of 128 x 128. Black
lines denote the interface boundary and the color map is a function of velocity magnitude (cm/s).

semiminor axis of the ellipse are 0.25 and 0.15 cm, respectively. Internal and external fluid density are p; = 1 &/cm®
and p. = 0.2, respectively. Internal and external kinematic viscosity are v; = 0.01 em®/s and v, = 0.00018,
respectively. With these inputs, the period of oscillation is w = 0.047. The axis of Fig. 2 is scaled by w and there
is good agreement on the period of oscillation, with some deviation. Because the droplet is oscillating faster than
expected, it is suspected that the smoothing of the surface tension, which should exist only at the interface, has

added extra energy to the system.
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Figure 2: Global kinetic energy (1 x 10~" Joules) for a deterministic oscillating droplet at 128 x 128 mesh. Time
has been non-dimensionalized with t/..

Expanding upon the idea of the oscillating droplet, consider the possibility that the surface tension coefficient
contains uncertainty. The uncertainty is represented by a uniform distribution such that the standard error about
the mean is ~ 33.3% leading to o(¢) = 30 + 10¢.

Fig. 3 displays two equally possible solutions. Notice that at the time slices shown, these droplets are offset,
and the variance, illustrated with the color map, peaks where the droplets do not overlap. These areas of high
variance indicate points where the uncertainty of being within the droplet are greatest.
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Figure 3: Time slices of a stochastic oscillating droplet with a mesh size of 128 x 128. Uncertainty exists only
about the surface tension coefficient. The color map illustrates the variance of ¥ (unitless). Lines depict interface
for solution bounds, where magenta corresponds to o(¢ = —1), and black corresponds to (¢ = +1).

2-D Atomizing Jet

For the case of an atomizing jet, it is again reasonable to begin by displaying a deterministic case, where all
fluid parameters and initial and boundary conditions are known (equivalent to the droplet case). Figure 4 displays
this case at 2 different time steps. In this case, the fluid is injected at a high velocity (100 cm/s), and mushrooming
begins rather quickly. Eventually, the column begins to break up, releasing two droplets.

(a) Jetatt = 0.00147 s. (b) Jetat t = 0.00444 s.

Figure 4: Zoomed image of a deterministic atomizing jet on a 128 x 128 mesh (1 x 1 cm spatial grid). Black
line denotes the interface boundary while the color map depicts regions of higher density (p; = pmax = 1 8/em?,
pe = 0.2). Incoming jet velocity u;, = 100 cm/s,

Consider again the possibility of uncertainty about the surface tension coefficient, where o () = 30 + 10¢. At
one bounding solution, where o(¢ = +1) = 40, the surface tension is twice that of the other bounding solution,
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where 0(¢ = —1) = 20. Figure 5 presents the jet column at a given time for both of these equally possible

solutions. The expectation here would be that a fluid that is injected with a much lower surface tension coefficient
would begin to breakup much quicker than that of the fluid with the larger surface tension coefficient.
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(a) Stochastic jet at time = 0.0021 s. (b) Stochastic jet at time = 0.0055 s.

Figure 5: Zoomed image of a stochastic atomizing jet on a 128 x 128 mesh (1 x 1 cm grid), where uncertainty is
assumed about the surface tension coefficient, c. Magenta lines indicate the solution of o({ = —1) = 20 d¥n/em
while black lines correspond to o({ = +1) = 40 d¥n/em. Color bars represent the variance about ¥ (unitless).
Incoming jet velocity uj, = 100 cm/s.

Again looking at Fig. 5, the color map highlights regions of variance about the level set scalar ¥. Areas of
high variance indicate regions where the possibility of being within the injected fluid are more uncertain. It is
easy to see that the difference between the two bounding solutions is slight, and likely is due to the velocity at
which fluid is injected into the system. This is a surprising result, especially when compared to the results from
the oscillating droplet. However, given the surface tension acts as a source term which is added to the velocity, as
injected velocities are increased, the addition of the source term becomes proportionally smaller.

While only considering the effects of uncertainty about a single variable, this simulation provides some valu-
able insights. First, given the ability to solve for a range of solutions simultaneously, a better average jet breakup
can be calculated. Second, rates of breakup will effect the droplet size and distribution and impact, e.g., combustion
efficiency for engine applications, ultimately leading to more efficient combustion.

Summary and Conclusions

A mathematical and numerical framework for building an intrusive UQ gas-liquid multiphase direct numer-
ical flow solver is presented in brief. With respect to the mathematical and numerical schemes outlined, some
adjustments were made to previously published methods to incorporate the intrusive UQ method. A stochastic
conservative level set transport is discussed, as well as a convergent reinitialization equation for maintaining a
stochastic hyperbolic profile and associated mass conservation properties. Additionally, a method for calculation
of a stochastic curvature and surface tension force are also presented.

Two multiphase test cases are discussed. In the first test case, that of the oscillating droplet, an analytic solution
to the frequency of oscillation is reasonably well matched with that of that of the deterministic simulations as well
as the simulations which assumed there to be uncertainty about the surface tension coefficient. The second case
of an atomizing jet showed the proposed framework is able to predict uncertainty for more relevant application.
Including a stochastic surface tension coefficient offered insights into the rate of column growth and the way in
which breakup begins to occur.

A number of questions remain to be addressed to expand the methods presented here. Assessment of the
number of basis function needed to adequately converge all variables present in the model is required. With this
convergence information, the next step would be to compare the computational cost to a non-intrusive scheme like
Monte-Carlo. Finally, the current curvature calculations require a Gaussian quadrature method, adding unnecessary
error and expense to the method. Finding a quadrature-free curvature method suitable for a stochastic framework
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will reduce numerical errors and decrease computational time.
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