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Abstract: Batteries are a critical component of modern society. The growing demand for new1

battery materials−coupled with a historically long materials development time− highlights the2

need for advances in battery materials development. Understanding battery systems has been3

frustratingly slow for the materials science community. In particular, the discovery of more4

abundant battery materials has been difficult. In this paper, we describe how machine learning tools5

can be exploited to predict the properties of battery materials. In particular, we report the challenges6

associated with a data-driven investigation of battery systems. Using a data set of cathode materials7

and various statistical models we predicted the specific discharge capacity at 25 cycles. We discuss8

the present limitations of this approach and propose a paradigm shift in the materials research9

process that would better allow data-driven approaches to excel in aiding the discovery of battery10

materials.11
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1. Introduction13

Battery materials research began with Volta’s voltaic pile in the 1800’s [1]. Since then, new14

materials have facilitated the development of new batteries; each with desired properties such as15

enhanced energy density, rechargeability, high power output, and low cost. Li-ion batteries were16

conceived in 1980 by Mizushima, Jones, Wiseman, and Goodenough [2]. Today they are one of the17

most popular batteries constituting approximately one third of all batteries [3] because of their high18

energy density and rechargeability.19

Nevertheless, Li-ion batteries have a lot of room for improvement. For one thing, they are20

relatively high cost owing to their use of transition metals such as Co, Ni, and Mn. Additionally,21

reliance on organic electrolytes has lead to flammability and safety concerns upon dendrite growth.22

Another challenge is that high capacity anodes are still being developed or are not yet available.23

Therefore, we clearly see that each part of the battery would benefit from new materials being24

discovered, for example: an earth abundant cathode, a solid electrolyte, or a high capacity anode.25

Currently, incremental local optimization is the primary tool for discovering new materials.26

However, it may be possible for data-driven methods to screen an enormous composition or27

micro-structural space. The principle being that machine learning (ML) could learn from data28

that exists in the literature, and then very rapidly predict properties of interest for an enormous29

number of battery material candidates. The use of machine learning as a tool for materials discovery30

is rapidly growing. Examples can be found in the fields of thermoelectrics [4–6], superhard31

materials [7], thermochemical data [8,9], electronic properties [10–14], structural materials [15],32

functional materials [16–18], and structure classification [19–23]. Given the history of success of33

ML methods, it’s natural to want to apply them to battery materials research. There are ∼ 104
34
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battery publications per year (> 7000/year for the last three years according to Scopus keyword35

search). Thus, there may be ample data available to exploit using statistical models. Indeed, battery36

researchers have recently shown an interest in employing machine learning for answering battery37

research questions. For example, Hu et al. used machine learning to predict the state-of-charge in38

batteries for electric vehicles [24]. Liu et al. showed that machine learning could successfully be39

used to predict the remaining useful life for batteries systems [25]. In this paper, we apply ML40

methods to a set of data describing Li-ion-battery architecture, properties, and performance. We41

explore not only chemical descriptors, but also those associated with the architecture and battery42

testing conditions. We observe several hurdles for the successful application of ML methods to battery43

research, where heterogeneous materials and properties are common. We describe the challenges of44

applying a machine learning approach for the discovery of battery materials [26–30].45

2. Materials and Methods46

The data used for this work were previously published by Ghadbeigi et al. as an analysis47

article [31]. This work did not attempt any machine learning, but instead provided unique48

visualization and sustainability metrics such as scarcity and Herfindahl-Hirschman index (HHI).49

As a first step for machine learning, we needed to retrieve and clean the data. For the case of this50

data set, there were extensive missing entries. This is largely due to poorly enforced standards for51

battery data reporting. For example, one author might provide the cathode type including the mass52

fraction of the binder and carbon additives, where another author might simply state that carbon53

additive was used. As a result, potentially useful descriptors—such as rate performance, calcination54

temperature, and synthesis route—need to be removed due to lack of useful information or excessive55

missing entries. This greatly reduces the data available for analysis. Furthermore, we chose the56

discharge capacity at 25 cycles as the target property for our analysis. Consequently, experimental57

descriptors correlated with the discharge capacity at 25 cycles, such as the discharge capacity at58

50 cycles, were also removed. After removing the problematic columns, if a row still had missing59

entries it was dropped. Besides learning from the metadata, additional descriptors were generated60

from the composition of the cathode material. These descriptors should be readily available (e.g.61

from databases) or easily computed without the need for computationally expensive simulations.62

Using the atomic properties of the constituent elements, we can construct a mathematical description,63

or descriptor, of the composition. That is, we consider the weighted average, and the maximum64

difference of a set of atomic properties for a given composition. An example of the atomic properties65

include the ionic radius, electronegativity, and the number of valence electrons [32–34]. See the66

Appendix for the entire list of descriptors.67

Information regarding the microscopic and macroscopic structure of the cathode materials is68

expected to play an important role in describing battery properties. However, since this information69

was poorly reported in the literature, our data set did not possess structural descriptors beyond70

identifying the cathode structure class. We believe that it is in the interest of the scientific community71

that, in the future, information be standardized and more systematically reported in order to better72

serve data-driven studies [35]. Reporting of failed results should also be given equal weight to that73

of successful results.74

The raw data were combined with additional data which were generated from creating75

additional descriptors from atomic properties. The first step of the data analytics process involved76

visualizing the data in such a way as to gain insights into their behavior. The data were then divided77

into a training set and a test set. The initial training data had 215 entries and 49 descriptors. The78

training data were used to perform k-fold cross validation. We exploited machine learning models to79

approximate the relationship between descriptors of the battery materials and the target property, the80

specific discharge capacity at 25 cycles (in mAh g−1). We considered lasso, kernel ridge regression81

(KRR), random forests (RF) and support vector regression (SVR) [36]. We used grid search to obtain82

the hyper-parameters of our models in order to minimize the error on our test set. The random83
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forests model allowed us to calculate a list of descriptor importances, which describes the relative84

importance of the descriptors used in the model. The top 25 descriptors were selected and used in a85

second round of model training in order to reduce over fitting and improve prediction performance86

on the test set. See the appendix for a list of these descriptors. We report the test error for the models87

evaluated in terms of the mean absolute error and the coefficient of determination (R2).88

3. Results and Discussion89
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Figure 1. Specific discharge capacity at 25 cycle (mAh g−1) versus the following descriptors: (a) mean
of the dipole polarizability, (b) atomic volume maximum difference, and (c) the mean of the gas phase
basicity.

Individuals interested in modeling and predicting battery performance care about a number of90

different metrics. In this work we use specific discharge capacity at 25 cycles as an example. We select91

the discharge capacity at 25 cycles because capacity fade is an important property which involves very92

time consuming testing, which we would rather predict via a high fidelity machine learning model.93

For example, if a battery is being tested at C/10 rate, then the discharge-charge cycle takes almost an94

entire day which means testing 25 cycles will take 20 days and testing 100 cycles would take nearly95

3 months. It is possible to visualize how this target property varies with the available descriptors in96

order to explore correlations [37] with other materials’ properties. If obvious correlations exist, then97

a human can detect and exploit them using intuition. However, as can be seen in Figure 1 there is98

no obvious correlation. Nevertheless, machine learning algorithms are capable of building predictive99

models using higher-dimensional data not perceived by humans.100

Lasso is a linear model, whereas KRR, SVR, and RF models allow for the learning of both linear101

and non-linear relationships. We attempt to map materials’ descriptors to our target property using102

these models. Lasso, the only linear model, had the worst performance and is not reported here. The103

prediction accuracy of KRR, SVR, and RF models are shown in Figure 2. The model performance is104

below what is typically reported in the literature. This significant model error hinders the predictive105

utility for battery material discovery.106

Descriptor importances can be extracted from the random forest model to determine which107

descriptors are most important for a successful prediction. Figure 2 shows the top three108

descriptors: average dipole polarizability, average gas phase basicity, and the difference in gas phase109

basicity. Electrochemical batteries rely on the insertion and removal of ions and the associated110

reduction-oxidation reaction. Therefore, the gas phase basicity (that is, the change of Gibbs111

free energy during deprotonation) is likely a pertinent materials descriptor which lends itself to112

mechanistic analysis. Other descriptors such as heat of fusion or dipole polarizability may play a113

more subtle or second-order role in determining Li-ion battery properties.114

Although there are a number of battery materials with high values for the specific discharge115

capacity at 25 cycles, the vast majority of materials−all of which were investigated as potential116
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Figure 2. Machine learning prediction results for specific discharge capacity at 25 cycles (mAh g−1)
using (a) kernel ridge regression, (b) support vector regression and (c) random forests regression.
Training (blue circles) and test (orange squares) performance show similar behavior. The mean
absolute error (MAE) and coefficient of determination (R2) are shown. Dotted lines are included to
help visualize ideal model performance.
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Figure 3. The top 12 descriptors are shown along with their importances from the random forest
regression.

battery materials−have much lower values. A successful machine learning model would cheaply and117

accurately predict the properties of a battery system, allowing researchers to identify materials with118

desirable properties without the need for costly experiments or simulations. The model performance119

shown in the Figure 2 is not ideal, allowing for large prediction uncertainty. Although our model120

could conceivably distinguish between very small and large specific discharge capacity, the present121

predictive model would likely benefit from improvements in its performance prior to being used as122

a tool for materials discovery.123

This lackluster model performance likely arises from several issues. An algorithm may not124

be capable of capturing underlying relationships, as is the case for lasso. Lasso is a linear model125

not capable of capturing nonlinear relationships in the data. In addition, the descriptors might be126

insufficient to adequately describe a battery system. The design of material descriptors plays a critical127

role in model performance and is an active area of research [32,38–41]. In particular, the complexity128

of battery space likely requires appropriate descriptors as well as additional data, for the successful129

training of ML models. The latter may be explored by studying how model error varies as a function130

of the size of the data set. In Figure 4, we see the error plateau at a relatively large value when the size131
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of the data set N=90. We find that the training error is significantly lower that the test error, indicating132

the impact of over-fitting. This suggests that the model error is dominated by the lack of appropriate133

descriptors. It is conceivable that some of the metadata columns which needed to be removed might134

be useful for improving model accuracy. This highlights a key challenge that distinguishes battery135

research from other fields. That is, the complexity of battery architecture and materials coupled136

with the lack of uniformity in data measurement and reporting hinders a data-driven study of these137

systems.138
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Figure 4. A decrease in mean absolute error (MAE) specific discharge capacity at 25 cycles (in mAh
g−1) is shown as a function of data set size using the SVR algorithm. Blue (orange) represents the
performance of the test (training) set. Error bars show the standard deviation (obtained by repeating
the calculation 50 times, each with a random sampling of the training data).

For example, consider the materials that constitute the battery components: anode, cathode,139

and electrolyte. We note that these are rarely single phase materials. Instead, a cathode is typically140

made up of the active material mixed together with conductive additives as well as a binder. The141

ratio of these phases is not dictated by an agreed upon standard but is determined on a case-by-case142

basis. The cathode can also retain significant porosity, or even gradients in porosity [42,43] which143

is not uniformly reported but will certainly influence battery properties. Likewise, the electrolyte144

in this data set is very often the organic LiPF6. This electrolyte can can vary widely with different145

concentrations of additives, such as ethylene-carbonate, dimethyl carbonate, diethyl carbonate, and146

propylene carbonate. When it comes to assembling cells, even while testing cathode materials,147

researchers do not use a standard test cell architecture. In some cases the counter electrode could148

be lithium, in others graphite, and so forth.149

In addition, we must consider the complexity which simply arises from non-standardized150

testing. For example, cells can be tested at different discharge rates, which can vary over several151

orders of magnitude. In other instances, researchers will report cyclic voltammograms which require152

a data scientist to interpret voltage ranges by hand when retrieving the data.153

We summarize the key challenges that the community might consider addressing in order to154

increase the impact of a machine learning approach:155

1. There are many cell architectures.156

2. Each part of the cell is typically a composite, where the volume fraction, distribution, etc. are157

not always reported.158

3. Standardized description of the crystal structure of the cathode material should be reported.159
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4. A uniform set of protocols for testing cells is not adhered to, and as a result reported data lack160

compatibility.161

5. The complexity associated with battery systems results in a large number of diverse descriptors.162

Even if the data were reported in a uniform way, this large number of descriptors might require163

large amounts of data for the accurate training of ML models.164

4. Conclusions165

The large amount of research being generated in battery materials provides an opportunity for166

potentially advancing this area of research using data-driven tools, which will aid battery modeling167

and the discovery of battery materials. This report highlights the challenges faced in generating168

high fidelity models, and suggests a framework which will guide the battery community when169

performing and reporting future experiments. Overcoming these challenges will benefit a data-driven170

approach to battery research and serve the entire community. This calls for efforts to thwart the lack171

of standardization which obfuscates experimental results and thus scientific advancement.172
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Abbreviations179

The following abbreviations are used in this manuscript:180

181

ML: Machine learning182

HHI: Herfindahl-Hirschman index183

KRR: Kernel ridge regression184

RF: Random forests185

SVR: Support vector regression186

Appendix A. Descriptor and Model Details187

There were originally 49 descriptors that were considered (Table A1). The first two columns188

of Table A1 show the element-based descriptors that were considered. The element values were189

obtained using the Mendeleev package [44]. The far right column shows descriptors that were190

obtained from the battery data. The number of descriptors was reduced to 25 using the descriptor191

ranking from the random forest algorithm. All remaining descriptors used for training, along with192

their importances, are shown in Table A2. The training/test data were obtained by using a split of193

80/20. Model validation and parameter selection were performed using 10-fold cross-validation.194
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