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Soil properties and terrain characteristics influence spatiotemporal patterns of soil moisture across a watershed.
To improve the predictive power of landscape hydrologic models, it is essential to consider both soil and terrain
attributes when stratifying a catchment into similar hydrologic functional units. In this study, we developed and
validated a new catchment-scale stratification scheme for the ShaleHillswatershedby combining soil and terrain
attributes in an attempt to delineate soil-landscape units with similar soil moisture dynamics. Terrain was com-
bined with soils information by first using a Random Forest supervised classification algorithm to predict a de-
tailed soil map using 47 field soil samples and terrain variables derived from 1-m LiDAR. A slope class map
generated from the LiDAR-derived digital elevation model (DEM) was overlaid on the predicted soil map to de-
lineate areas of similar slope value across the catchment.We compared the performance of this new stratification
schemewith two classical stratification schemes, a soil map developed from detailed field survey and a landform
unit map based on the DEM, for estimating soil moisture time-series across the forested watershed. The com-
bined soil-terrain method outperformed classical stratification schemes in estimating soil moisture time-series
over a 4-year period. Our results demonstrate that combining soil and terrain attributes can help improve the
stratification of a catchment into similar soil hydrologic functional units, which is valuable to distributed hydrol-
ogy modeling and other applications.
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1. Introduction

Understanding the link between soil moisture patterns and land-
scape features is critical to improving landscape hydrologic modeling
(Band et al., 1993; Pauwels et al., 2001; Yu et al., 2014). A common as-
sumption in catchment hydrology is that terrain places a dominant con-
trol on hydrologic functions (Beven and Kirkby, 1979; Winter, 2001).
This assumption leads many researchers to parameterize hydrologic
models based on landforms or sub-catchment units using terrain
alone. Since topographic information in the form of digital elevation
models (DEM) has been increasingly available, stratifying catchments
into similar hydrologic functioning units with terrain has been wide-
spread (Moore et al., 1991; Blöschl and Sivapalan, 1995; Winter,
2001). However, field-based soil properties are often not directly in-
cluded in these stratification schemes, and terrain is assumed to be a
proxy for inferring soil properties. These assumptions remain largely
unchallenged, since many catchment hydrologic studies do not validate
terrain-based sub-catchment units using in situ collected soil moisture
data or compare model performance with actual soil distributions.
Topographically-based stratification approaches have been continu-
ously improved over time with advancements in GIS and remote sens-
ing technologies. Following the conceptual work by Beven and Kirkby
(1979) and Dooge (1986), hydrologic response units (HRUs) have
been developed by dividing a catchment into units of similar topogra-
phy (Leavesley and Stannard, 1990). Park and van de Giesen (2004)
used topographic variables (surface curvature and upslope contributing
area) derived from DEM to stratify the Terrawarra Catchment and vali-
dated their landform units with a general linear modeling approach
using in situ soil moisture measurements. Gharari et al. (2011) used a
terrain-based index, called height above nearest drainage, along with
slope value to stratify a catchment in Luxembourg into similar hydro-
logic functioning units.

Soil properties may have even higher correlations with catchment-
wide soil moisture measurements than terrain variables, as Gomez-
Plaza et al. (2001) have shown, where sand contentwas themost corre-
lated variable with soil moisture content for both wet and dry condi-
tions in semi-arid Spain. This suggests that combining soil and terrain
attributes within a single stratification would be better for predicting
catchment-scale soil moisture dynamics. Temporal patterns of soil
moisture have been assessed with terrain and soil characteristics across
a watershed (Canton et al., 2004) and some terrain variables are more
related to the temporal structure of soil moisture patterns than others.
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Given this finding, an analysis that addresses howwell different terrain
variables represent spatio-temporal patterns of soil moisture would be
beneficial to any combined soil and terrain stratification study.

There is evidence that combining soil and terrain attributes can fur-
ther improve catchment hydrologic stratifications (Lin et al., 2006).
Takagi and Lin (2012) found that field soil moisture content was highly
correlated with terrain variables, depth to bedrock, and clay content in
the forested Shale Hills catchment at multiple depths, indicating that
both soil and terrain properties are important attributes for defining
sub-catchment units with similar soil hydrologic function. Devito et al.
(2005) refined existing HRU boundaries by including information
about soil texture and peatland cover, which improved catchment
water flow predictions. Although a stratification that combines soil
and terrain attributes is likely to better characterize catchment-scale
soil moisture patterns, a combined soil-terrain stratification in
predicting soil moisture patterns has yet to be developed and validated
using in situ soil moisture data.

Given the importance of catchment stratification for scaling soil
moisture and parameterizingdistributed hydrologicmodels and the rel-
ative scarcity of the validation and comparison of different stratification
methods with catchment-wide in situ soil moisture measurements, our
objectives in this study are to: (1) uncover terrain variables that are sig-
nificantly correlated with temporal structure of soil moisture across a
catchment, and (2) compare the skill of a newly developed soil-terrain
stratification scheme with two classical stratification schemes in
predicting catchment-wide soil moisture with in situ data.

2. Materials and methods

2.1. Study site

The Shale Hills Catchment is a 7.9-ha forested watershed character-
ized by steep slopes (ranging from 25 to 48%) and narrow ridges, with
elevation ranging from 256 to 310 m. The catchment valley is oriented
in an east–west direction, which divides the catchment into two almost
true north- and south-facing hillslopes. Several species of maple (Acer
spp.), oak (Quercus spp.), and hickory (Carya spp.) are typical deciduous
trees found on the sloping areas and on the ridges, while the valley floor
is dominated by eastern hemlock (Tsuga canadensis Carriére) (Lin, 2006;
Naithani et al., 2013). Oaks species are spread throughout the hillslope
area, while maples and hickory are mostly situated on the south-
facing slope. The climate at the Shale Hills is typical of humid temperate
region,with long-term (N100 yr)meanmonthly temperatures reaching
aminimum of−3 °C in January and amaximumof 22 °C in July. Annual
precipitation is about 980mm(NationalWeather Service, State College,
PA), with the majority of precipitation falling as rain during the spring
through fall months (about 70–100 mm/month) and as snow in the
winter (about 70 mm/month).

The soils at the Shale Hills were formed from Silurian-age shale re-
siduum and colluvium. The soils are generally silt loams and silty clay
loams in texture, with some clay loams and sandy clay loams. All soil
types have an approximately 0.05 m thick litter layer (Oe horizon)
due to the presence of forested cover over the entire catchment. The
catchment is underlain by N200 m thick Rose Hill shale, a Silurian for-
mation frequently associatedwith the iron-rich Clinton Ore.Many grav-
elly shale fragments (2–150 mm) are found throughout soil profiles,
and the near surface shale is characterized as fractured bedrock.

2.2. Soil moisture monitoring

Volumetric soil water content (hereafter, “soil moisture”; unit:
cm3 cm−3) was collected manually at a weekly to bi-weekly interval
from 106 sites (varied from 46 to 106 sites depending on weather and
available field assistants) during 2007–2010. Soils were drilled down
to 1.1 m or the beginning of bedrock (whichever is shallower), so that
5.1 cm diameter Schedule 40 PVC tubes could be installed vertically
into the soil. During each data collection period, soil moisture was re-
corded at up to six depths (10, 20, 40, 60, 80, 100 cm) using a TRIME-
FM Time Domain Reflectometry (TDR) probe (IMKO, Germany), which
was inserted within the PVC access tube at each site. Site locations are
distributed across the entire catchment (Fig. 1) representing all soil
types and landforms and were chosen based on the field surveyed soil
map. A total of 17,464 moisture measurements (Weikert = 5221,
Berks = 3446, Rushtown = 4601, Blairton = 1345, and Ernest =
2851) recorded from 2007 to 2010 were used in this study.

2.3. Field surveyed soil map

The Hydropedology group at Penn State conducted a detailed soil
survey throughout the catchment in cooperationwith theUSDANatural
Resources Conversation Services personnel (see Lin et al., 2006 for de-
tails). Transects were placed 50 m apart and aligned perpendicularly
to the catchment's bedrock southwest to northeast orientation. During
the survey, a total of 289 samples were taken, and five soil types were
identified in the catchment. Soil thickness, landscape position, and
depth to redoximorphic features were the main criteria used to differ-
entiate these soil types.

TheWeikert (loamy-skeletal,mixed, active,mesic Lithic Dystrudept)
is the predominant soil type in the catchment, comprising 78% of the
catchment, and is characterized as a thin soil on hilltops, planar, and
convex hillslopes. The Rushtown (loamy-skeletal, over fragmental,
mixed, mesic Typic Dystrochrept) is mostly located in the center of
four dominant concave hillslopes and a large portion of the upper
100 m of the catchment valley. The Berks soil type (loamy-skeletal,
mixed, active, mesic Typic Dystrudept) is well drained and largely dis-
tributed along the slope transitional zones between the shallow
Weikert and the deep Rushtown soils. The Blairton soil type (fine-
loamy, mixed, active, mesic Aquic Hapludult) is located in the valley
bottom, with an argillic horizon at 0.2–0.8 m depth and few (2–5%)
redox features starting at 0.8–1.1 m depth. The Ernest soil type (fine-
loamy, mixed, superactive, mesic Aquic Fragiudults) is a very deep
(N3 m depth to bedrock), poorly to moderately well-drained soil on
the valley floor around the first-order streamwith many redox features
and a fragipan-like layer starting at 0.3–0.5 m depth.

2.4. Digital terrain, depth to bedrock, and landform units

A LiDAR flyover in February 2011 was used to generate a high-
resolution 1 × 1 m DEM raster dataset for the Shale Hills. During pre-
processing, TerraScan software (Terrasolid) classified raw LiDAR point
data and ground points were interpolated across space using ordinary
kriging (Guo and Si, 2008). A Gaussian filter was applied with a
4.5× 4.5m smoothingwindow to reduce noise in theDEM. Topographic
variables derived from the LiDAR DEM included local slope value
(Fig. 2a), vertical distance to stream (VDS, Fig. 2c; Olaya and Conrad,
2009), upslope contributing area (Fig. 2d; Tarboton, 1997), topographic
wetness index (TWI, Fig. 2e; Beven and Kirkby, 1979), and surface cur-
vature (Fig. 2f; Zevenbergen and Thorne, 1987) using SAGAGIS (Conrad
et al., 2015). Local slope value [mm−1], upslope contributing area [m2],
surface curvature [−], and TWI [−] were developed using the Basic Ter-
rain Analysis module, and VDS [m] was calculatedwith the Vertical Dis-
tance to Channel Network module.

A depth to bedrock map (Fig. 2b) was obtained from catchment-
wide auger sampling. A total of 318 auger data points were used in a re-
gression kriging (Isaaks and Srivastava, 1989; Odeh et al., 1995) to inter-
polate depth to bedrock across the catchment. During the regression
kriging, a backwards-stepwise algorithm (Venables and Ripley, 2002)
was used to select a multiple linear regression model with DEM-
derived terrain variables as covariates. The regression with the lowest
Akaike's Information Criterion (AIC) was selected for regression kriging.
The best multiple linear regression model contained surface curvature
(p = 0.008) and TWI (p b 0.001) as covariates.



Soil survey map

Fig. 1.Map of soil types (soil series) across the Shale Hills catchment based on detailed field soil survey. Locations with soil moisture data collection (TDR sites) are shown with symbols
corresponding to different soil types. The stream is shown in white, and 3-m elevation contours are shown in light grey.
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Park and van de Giesen (2004) developed a stratification method
that uses terrain information alone for defining landform units and
they validated it with field soil moisture data. We implemented this
landform unit stratification method to generate landform units for the
Shale Hills by using the relationship between surface curvature and
log-transformed upslope contributing area derived from LiDAR. Vari-
ables used in this stratification method are shown in Table 2. It should
be noted that Park and Van de Giesen gave planar hillslopes a threshold
curvature values of 1 and -1, which correspond to 0.01 and -0.01 values
for the surface curvature in the Shale Hills that were calculated using
second-degree polynomial curvature algorithm (Zevenbergen and
Thorne, 1987). (See Table 1.)
2.5. Catchment-wide temporal autocorrelation of soil moisture and soil-
terrain units

Terrain variables used in the combined soil and terrain stratification
were selected by assessing the correlation of each DEM-derived terrain
variable to the temporal autocorrelation of soilmoisture at 69 out of 106
sites across the catchment, which were regularly measured from 2007
to 2010.We used theMantel test (Mantel, 1967) to quantify the tempo-
ral autocorrelation at 69monitoring locations, at each depth, with long-
term data across the watershed using Euclidean distance between the
dates of measurements. The Mantel test generates a statistic called
Mantel-r that represents the correlation between two or more distance
matrices (Mantel, 1967; McCune and Grace, 2002), which in our case
are distance matrices of dates of measurements and soil moisture. We
used the Spearman rank correlation for correlating the matrices and
tested the significance of these correlations with permutation tests in
the ecodist library (Goslee and Urban, 2007) of the R statistical software
(R Development Core Team, 2013). Distance-based methods are com-
monly used in ecological literature (e.g., Legendre and Fortin, 1989;
Legendre and Legendre, 1998; Uuemaa et al., 2008; Goslee, 2010;
Naithani et al., 2014) because they allow incorporation of geographic
distances into analyses and do not make assumptions about underlying
distributions, as significance is tested based on permutation tests
(Goslee, 2010). We replaced geographic distance with temporal dis-
tance, particularly to address the uneven temporal gaps (1–2 weeks)
in observed data that make it difficult to use the other techniques
such as autoregressive models in time series data analysis.
High Mantel-r values indicate a relatively high dependency of soil
moisture fromprevious dates, where the time-series follows a generally
consistent pattern of wetting or drying. Mantel-r values that were sig-
nificant at p b 0.05 were then selected for further analysis with terrain
variables (58/69 possible Mantel-r values were significant at 10 cm,
59/66 at 20 cm, 53/59 at 40 cm, 40/43 at 80 cm, and 34/36 at 100 cm).
To identify predictor terrain variables for use in the combined stratifica-
tion, the relationship of site-level Mantel-r values at each depth with
terrain variables was examined by calculating correlation coefficient
for each pair of variables.

As the first step of delineating the combined soil-terrain units, we
created a new soil map based upon the high-resolution (1 × 1 m)
LiDAR-derived terrain and depth to bedrock variables (Fig. 2). Terrain
has not been used for directly estimating boundaries of soil type in the
Shale Hills catchment, and soil type is at least partially defined by land-
scape position and depth to bedrock in this catchment (Lin et al., 2006).
Soil samples taken during the installation of the 106 TDR monitoring
sites provided soil type information for each of these locations, but a
subset was used for predicted soil mapping in this study, which consists
of theminimumnumber of samples that can represent different soils in
the catchment with the same proportion (number of samples per soil
type) as the larger dataset. The locations of these 106 TDR sites in the
catchmentwere based on the representation of soil types and dominant
landforms (including hillslope, valley floor, and swale), and the chosen
subset of 47 sites also offers a balanced representation of each soil type
within each dominant landform, i.e., valley floor (Ernest, Blairton),
swale (Berks, Rushtown), and hillslope (Weikert).

Selected terrain variables that were highly correlated with the tem-
poral autocorrelation of soilmoisture across the catchmentwere used in
a Random Forest ensemble supervised classification tree algorithm
(Breiman, 2001) to predict soil types. The Random Forest is a
machine-learning algorithm that constructs a large number of regres-
sion trees, so that a classification estimate from an ensemble of models
can be generated. We generated the soil map by building a supervised
classification model with both selected terrain variables (independent
variables) and soil type (dependent variable).

A classification tree was built by first sampling 2/3rd of the dataset
(out of 47 samples) with an out-of-bag bootstrapping technique, and
then a randomly selected subset of predictors was used to fit a decision
tree, where a set of rules was assigned to each predictor variable with
the objective of minimizing the misclassification of soil type on the



(e) TWI
(b) DtB

(d) UCA(a) Local slope

(f) SC(c) VDS

Fig. 2.Maps of terrain attributes derived from the digital elevationmodel created from1-m resolution LiDAR: (a) local slope [mm−1], (b) depth to bedrock (DtB) [cm], (c) vertical distance
to stream (VDS) [m], (d) natural log-transformed upslope contributing area (UCA) [ln (m2)], (e) topographic wetness index (TWI) [−], and (f) surface curvature [−].
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sub-dataset chosen with bootstrapping. The bootstrapping and classifi-
cation tree generation was run for 7000 times, so that a large ensemble
of classification trees could be generated. Soil typewas then assigned to
each data point according to what the majority of classification trees in
Table 1
List of key data used in this study.

Section Variable Use

2.2, 2.5, 2.6 Volumetric soil moisture content [cm3 cm−3] (66 measurement dates;
up to 106 locations)

Calc
stra

2.3 Soil survey samples (289) Crea

2.4 Soil depth from auger measurements (318) [m] Crea
1-m resolution LiDAR digital elevation model Crea

2.5 Mantel-r for soil moisture content (69 sites; up to 5 different depths) Corr
Subset of soil samples from TDR sites (47) Crea
the ensemble chose. A classification error was calculated on the remain-
ing 1/3rd of data not picked with bootstrapping based upon the total
number of soil type misclassifications, which was calculated as the pro-
portion of data pointsmisclassified by the algorithm across all ensemble
in This Study

ulating temporal autocorrelation across the catchment. Validating catchment
tification schemes

ting detailed soil map from field survey

ting depth to bedrock map
ting terrain variables

elating soil hydrologic dynamics to terrain for variable selection used in stratification
ting detailed soil map with Random Forest and terrain data



Table 2
Summary of the three stratification schemes investigated in this study and related inputs of terrain and soil attributes used in each method.

Stratification method Terrain input Soil inputs Number
of units

UCAa Curvature TWIa VDSa Slope Slope class Field soil samples DtBa

I. Landform unit Terrain
characterization

Terrain
characterization

– – Refined
summit unit

– – – 5

II. Field soil survey – – – – – – USDA (Order I) field
survey

Refine soil
boundaries

5

III. Predicted soil map
+ Slope class

Random forest
covariate

Estimate DtB Estimate
DtB

Random forest
covariate

Random forest
covariate

Final unit
stratification

Training for random
forest classification

Random forest
covariate

7

a UCA = Upslope Contributing Area (m2), TWI = Topographic Wetness Index, VDS = Vertical distance to stream (m), DtB = Depth to Bedrock (cm).
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trees. This method makes relatively unbiased estimates of classification
error as trees are developed.

Terrain variables used in the Random Forest classification were
ranked by importance at the end of the algorithm run using a permuta-
tion method, where each predictor variable was randomly permuted,
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Fig. 3. Correlation matrix showing scatterplots of Mantel correlation coefficient (Mantel-r) of
Correlation coefficients that are significant at p b 0.05 are highlighted in red.
while the rest of the predictors were unchanged, and the classification
error was recalculated with the permuted variable. The difference in
classification error between the permuted and unchanged variable
was calculated for all trees, and the average difference in classification
error across all trees defined the ‘permutation error difference’measure,
re TWI
Depth to 
Bedrock

Slope Elevation

Vertical 
Distance to 

Stream
ln(UCA)

soil moisture at five depths (10–100 cm) and terrain variables from all monitoring sites.



Fig. 4. Bar plots of the difference in classification accuracy within a regression tree forest
when each variable is permuted. The higher the permutation error difference, the more
important the variable is for predicting soil types in the catchment.
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whichwe used to gauge howmuch each predictor contributed tomodel
accuracy. Higher permutation error difference values indicate that
model classification error is higher if a predictor variable is permuted,
Berks Blairton Ernest Rushtown

FLAT

(c) Soil-Terrain-U

(a) Predicted Soil Map

Fig. 5. Sequence of maps used in delineating combined soil-terrain units: (a) predicted soil ma
terrain and depth to bedrock as predictors, together with 47 soil samples (marked as ‘x’ on them
predicted soil map with the slope class map. A total of 7 soil-terrain units are delineated (see t
and the variable with the highest permutation error difference value is
the most important variable to include in the model relative to other
predictors.

After generating the predicted soil map with terrain variables, we
disaggregated the shallow Weikert soil type on the predicted soil map
according to slope classes to generate the final combined soil-terrain
unit map. TheWeikert soil type covers most of the hillside and contains
a relatively large variation of slope values compared to the other soil
types in the catchment (Weikert coverage = 78%, slope range =
0.01–0.51 [m m−1]; Berks coverage = 10%, slope range = 0.05–0.48
[m m−1]; Rushtown coverage = 6%, slope range = 0.05–0.40
[m m−1]; Blairton coverage ≤ 1%, slope range = 0.04–0.21 [m m−1];
Ernest coverage = 5%, slope range = 0.01–0.29 [m m−1]). A map of
slope classes was created by using the USDA slope class designations:
A=0–3%, B=3–8%, C=8–15%, D=15–25%, and E ≥ 25%. Slope classes
A, B, and C were combined into one 0–15% class, since very little area
was represented by these classes in this catchment.

2.6. Comparison with classical stratification schemes

The predictive power of soil moisture variability across the catch-
ment was compared between the combined soil-terrain units and
two classical stratification schemes, including: (1) landform unit
map and (2) field-surveyed soil map. Soil moisture at all 106 sites
was predicted by each of these stratification schemes in a linear re-
gression model, where the map unit designations were coded as
Slope Value [m m-1]

STEEP

Weikert

0 - 15

15 - 25
> 25

nit Map

(b) Slope Class Map

p based on a Random Forest supervised classification tree algorithm using LiDAR-derived
ap); (b) slope class map; and (c) combined soil-terrain units generated by overlaying the

he color legend).



(a)

(b)

Landform unit map

Fig. 6. Landform unit delineated using Park and van de Giesen (2004) method based on
surface curvature (Y axis) and log-transformed upslope contributing area (X axis): (a)
the resulting map showing 5 landform units across the catchment, and (b) scatterplot
with points marked in different colors according to the corresponding landform units in
(a).
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unordered factors. The model set-up is the same for each stratifica-
tion system, where we used a single factor linear regression:

θijt ¼ βo þ
Xn

j¼1
β jU j ð1Þ

where θtij is soil moisture content at site i and stratification unit j at
measurement date t, n is the total number of units, βo is the average
soil moisture from all sites in a reference unit (arbitrarily chosen in
the model), βj is a regression coefficient for the unit j where site i is
located, and U is a ‘dummy’ coding for a particular unit j. The U cod-
ing is ‘1’ if θij resides within the same unit as U and ‘0’ otherwise. This
regression setup will provide the same model fit as a single factor
analysis of variance (ANOVA), and the R2 is related to the variance
of soil moisture within each unit. The difference between a single
factor linear regression and an ANOVA is that each category's (i.e.,
unit's) mean is compared to the overall mean in an ANOVA, while
each category's mean is compared to a reference category's mean
in a single factor regression. A categorical system with lower overall
variance of soil moisture within its units will have a lower R2 relative
to other systems. Separate linear models were developed for each
stratification system at each measurement date and for each depth.
This allowed the tracking of model performance across time for
each depth, since the mean and variation of soil moisture change
within each stratification system's units for across different mea-
surement dates.

We used two approaches to analyze the predictive skill of each strat-
ification system's linear model: the Akaike's Information Criterion (AIC)
and R2. The AIC value decreases with low mean model error and in-
creases with the number of parameters or categories used. Since the
numbers of map-units across the stratification systems differ, the AIC
value is a more balanced performance measure for comparison pur-
poses. We subtracted the AIC value associated with landform units
and soil types with the AIC from soil-terrain units to obtain ΔAIC values
for all measurement dates and soil depths. IfΔAIC is less than zero, then
soil-terrain units do better when predicting soil moisture patterns. We
also plotted the R2 of each linearmodel over time to assess the raw pre-
dictive ability of each stratification system at each depth during the en-
tire measurement period.

3. Results and discussion

In addressing our first objective, we found that the local slope value,
UCA, TWI, elevation, VDS and DtB variables related significantly
(p b 0.05) to Mantel-r values of soil moisture in shallow (10–40 cm)
soil depths, while the Mantel-r of soil moisture at deeper depths (80
and 100 cm) showed significant negative relationships with elevation
and VDS (Fig. 3). This indicates that soil moisture patterns in deep
depths are least organized across time in higher elevations. All of the
correlations between the terrain variables and soil moisture autocorre-
lation at shallow depths consistently suggest that areas with steeper
slopes and low upslope contributing area have the lowest temporal
structure in shallow soil moisture patterns.

The temporal autocorrelation analysis showed varying degrees to
which different terrain variables are correlated to temporal soil mois-
ture autocorrelation over different depths. Just as in Canton et al.
(2004), we found a significant relationship between vertical distance
to stream channel and temporal soil moisture patterns across all but
the deepest soil depth, but our results differ from Canton et al. (2004)
in that we found no correlation with surface curvature at any depths
but did find significant and high correlations between soil moisture
and local slope value. The range of Mantel-r values at different depths
reveal that the lowest values exist at 10 cm and steadily increase on av-
erage through the lower depths. This reinforces the finding of Takagi
and Lin (2011) in their catchment-scale temporal soil moisture
variation analysis, where the highest variation of soil moisture over
time occurred in shallower depths.

Based on the results from analyzing temporal autocorrelation of soil
moisture across the catchment with terrain variables (Fig. 3), we chose
local slope (Fig. 2a), UCA (Fig. 2d), VDS (Fig. 2c), and depth to bedrock
(Fig. 2b) to predict the distribution of various soil types in the catch-
ment (see Section 2.5). The TWI and elevation variables are highly cor-
related with UCA and VDS, respectively, which means they do not offer
new information for classifying soil type. The area directly around the
stream channel (VDS = 0) is important to characterize the Ernest soil
type and TWI is a complex variable made up of slope and UCA. There-
fore, we chose not to use elevation or TWI in the predictive soil
mapping.

The Random Forest analysis uncovered that depth to bedrock is the
most important variable for classifying soil types in the Shale Hills
catchment, followed byUCA, VDS, and local slope (Fig. 4). Our predicted
soil map (Fig. 5a) did a reasonable job in identifying various soil types,
with an average classification error of 14.2%. The Weikert (3.9% error)
and Ernest (9.1% error) soil types were predicted the best during the
Random Forest validation. The most noticeable difference between the
predicted soil map (Fig. 5a) and the field surveyed soil map (Fig. 1)
was the reduced coverage of the Rushtown soil in favor of the Berks
soil in the northeastern part of the catchment. The predicted spatial pat-
tern of the Rushtown soil in this part of the catchment resembled that of
a concave hillslope as delineated using the method of Park and van de
Giesen (2004) (Fig. 6a). The Berks soil spread farther out from each con-
cave hillslope in the predicted soil map. The Blairton soil spanned a
greater distance fromwhere it connected with the Ernest soil eastward
along the valley in the predicted soil map, as compared to the field soil
map. The slope class map (Fig. 5b) was then overlaid on the predicted
soil map (Fig. 5a), which resulted in seven distinct soil-terrain units
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(Fig. 5c). In comparison, five landform units were generated for the
Shale Hills (Fig. 6a) by using the relationship between surface curvature
and log-transformed upslope contributing area (Fig. 6b).

When comparing the different catchment stratification schemes for
estimating soilmoisture content for our second objective,we found that
the combined soil-terrain units consistently outperform the landform
unit map and the field soil map at most depths, as shownwith multiple
time-series of R2 values (Fig. 7). The field soil map did a better job at
predicting soil moisture content than the landform unit map across all
depths and did equally well as the soil-terrain units at the 10 cm
depth over time. The R2 time-series reveal that predictive power of
both the combined soil-terrain units and soil type tends to increase
with soil depth but seemed to decrease with depth for the landform
unit approach. The total amount of measurements varied for each col-
lection date, but veryweak and generally negative correlations between
the number of measurements and R2 exist for all systems. At deeper
depths (80–100 cm) soil type and soil-terrain units have veryweakpos-
itive correlations with the number of measurements and R2. All of the
systems had significant and moderately high positive correlations
with catchment averagedmoisture and R2 in the 10 cmdepth, but land-
form units and soil-terrain units had weak but negative correlations
with catchment averaged moisture and R2 in the 40 cm depth (data
not shown).

The ΔAIC results shown in Fig. 8 also support the above results. On
average, combined soil-terrain units outperform soil type at 20–
100 cm depths and outperform landform units over all the monitored
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Fig. 7. Comparison of time-series (2006–2010) of R2 values of generalized linear regression mo
various depths: (a) 10 cm, (b) 20 cm, (c) 40 cm, (d) 80 cm, and (e) 100 cm, based on three str
units.
depths. From the AIC results, soil-terrain units do better than soil type
for most measurement dates at 20–100 cm depths. This could be due
to the fact that soil-terrain units are better at differentiating thehillslope
by slope class more effectively and as a result characterize soil moisture
patterns caused by processes that vary across a slope gradient, such as
horizontal, or ‘lateral’, hydraulic conductivity.

Our stratification analysis revealed that either soil-terrain units or
soil type are favorable choices for characterizing soil moisture patterns
over landform units in the Shale Hills catchment, and this is supported
by both R2 and AIC model fit diagnostics. In terms of comparing soil-
terrain unitswith soil type,we do acknowledge that R2 is at least slightly
biased in favor of soil-terrain units, since there are two more units (i.e.,
categories) in the soil-terrain stratification than soil type, but theAIC ac-
tually penalizes the soil-terrain units for having two additional regres-
sion coefficients.

A further within-stratification analysis of the variance or standard
error of soil moisturewithin each unit over timemay reveal the capabil-
ity of each unit in representing hydrologic dynamics across different
catchment wetness conditions. The stratification systems presented in
this paper could also be used to parameterize a spatially distributed hy-
drologic model, and the stratification system that enables such a model
to most accurately characterize spatial soil moisture patterns and pre-
dict catchment discharge would be best suited for hydrologic modeling
applications. An extension of this analysis presented in this paper could
also be conducted in other catchments that have an in situ soil moisture
monitoring network and detailed soil type information.
deling in estimating volumetric soil moisture content [cm3 cm−3] across the catchment at
atification schemes: blue, combined soil-terrain units; red, soil types; and black, landform



Fig. 8. Boxplots of difference (between soil-terrain unit and other two stratification schemes) in Akaike's Information Criterion (AIC), which are associated with the generalized linear
regression models predicting volumetric soil moisture content [cm3 cm−3] at 10 cm, 20 cm, 40 cm, 80 cm, and 100 cm depths. The ΔAIC is calculated by taking the difference between
(1) AIC from regression models that used soil type or landform unit stratification as predictors and (2) AIC from the model using combined soil-terrain units as predictor (i.e.,
ΔAICLandform Unit = AICSoil-terrain – AICLandform Unit; ΔAICSoil Type = AICSoil-terrain – AICSoil Type). Combined soil-terrain units perform better than either soil type from field survey or
landform unit, with negative ΔAIC (zero ΔAIC indicates no difference between the two models' predictive skill). The blue dashed line indicates the mean ΔAIC value for each boxplot.
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4. Conclusion

Integrating soil type and terrain information to stratify the catch-
ment captured soil moisture variation reasonably well in the Shale
Hills catchment. From the validation using in situ soil moisture data
across the catchment, our results showed that soil features provided
an added value when used with terrain attributes in stratifying the
catchment into areas with similar soil moisture dynamics. We found
that depth to bedrock, upslope contributing area, topographic wetness
index, and local slope were highly correlated with soil moisture varia-
tion at near-surface depths (10, 20, and 40 cm),while elevation and ver-
tical distance to streamwere significantly related to the relatively stable
patterns of soil moisture found in the deeper depths (80 and 100 cm).
The combined soil-terrain attributeswere able to predict a soilmap sim-
ilar to that generated from an extensive field survey.

The soil-terrain stratification theme used in this study consistently
characterized soil moisture patterns across the catchment at all mea-
sured depths more accurately than the existing stratification schemes
based on the landform units and even the field soil survey for deeper
soils. The field soil survey outperformed the stratification based on the
landform units across all soil depths monitored. Given the common ap-
proach of using just terrain for catchment stratification, our results sug-
gest that soil types should be considered when stratifying landscapes
into units of similar soil hydrologic dynamics.
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