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In order for a photovoltaic cell to function, charge carriers produced by photoexcitation
must fully dissociate and overcome their mutual Coulomb attraction to form free
polarons. This becomes problematic in organic systems in which the low dielectric
constant of the material portends a long separation distance between independent
polaron pairs. In this paper, we discuss our recent efforts to correlate the role of density
of states, entropy, and configurational and energetic disorder to the open-circuit
voltage, Voc, of model type-Il organic polymer photovoltaics. By comparing the results
of a fully interacting lattice model to those predicted by a Wigner—Weisskopf type
model we find that energetic disorder does play a significant role in determining the
Voc; however, mobility perpendicular to the interface plays the deciding role in the
eventual fate of a charge-separated pair.

1 Introduction

The performance of an organic photovoltaic devices depends on successful
charge-separation following photoexcitation, which in turn hinges upon whether
or not the initial excitonic state has sufficient electronic or vibronic energy to
overcome the Coulomb attraction between an electron and a hole."* Whether this
happens rapidly through “hot” excitonic states or through thermalized “cold”
states has been a matter of considerable recent debate, and the answer to this
question contains information crucial for the design of highly efficient organic
solar cells. “Hot excitons” are attributed to the prompt formation of mobile
polarons observed in fullerene/polymer blends. While many groups argue that
“hot excitons” are the main source of photocurrent, experiments conducted by
Vandewal et al. indicate that it is “cold excitons”, i.e. thermalized excited states
are the ones that give the predominant contribution to the photocurrent.
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The dissociation of electron-hole pairs into free charge carriers is especially
puzzling since it requires an electron and a hole to overcome the strong elec-
trostatic attractions under seemingly unfavorable conditions. Heuristically,
charge carriers are free when thermal energy is comparable to the coulombic
attraction,
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where e is the electron charge, ¢, is the vacuum permittivity, ¢ is a dielectric
constant of the material and r is the distance of separation between the charges.
Due to the low dielectric constant (¢ = 2-4) of organic materials typically used in
OPVs, an electron finds itself with a 0.5 eV barrier to surmount, corresponding to
the Coulomb capture radius of 15 to 28 nm. It is highly improbable that charges
would be able move this distance before recombining; however, it has been
observed that free charge carriers can be formed at separations of 4 nm on the
femtosecond timescale.>® Thus, a goal of our recent work has been to rectify both
“hot” and “cold” exciton dissociation mechanisms within the context of
a common theoretical model.

From thermodynamics, we can consider the dissociation in terms of the
reversible work (i.e. Helmholtz energy) required to separate an electron from
a hole to a given radius.

F(r) = U(r) — TS(r) = U(r) — kgT In Q(r) (2)

where Q(r) is the number of equivalent electron/hole states with separation r, T is
the absolute temperature, kg is the Boltzmann constant, U(r) is the electron-hole
interaction potential, and S is the entropy of the electronic degrees of freedom.”
For a single polymer chain, a w-electron that is confined to move along a single
quasi-one-dimensional polymer chain has only one defined path and conse-
quently the electronic entropy contribution. For thin-films (2-D) and fullerene-
based acceptors (3-D) the number of electron/hole configurations available to
the system with a given electron/hole separation radius scales with the surface
area

Q o (rlro)™ " (3)

where 7, is the unit length and d = 1, 2, 3 is the dimensionality of the system.
Consequently the entropy

S = (d — Din(rlr,) (4)

can become energetically comparable to the coulombic energy of the electron-
hole pair in two and three dimensions.”® This has the desired result of providing
a zero-work pathway for the dissociation of an exciton to a free electron/hole pair.
This estimate, however, is only valid for the scenarios with an immobile hole.
Allowing the hole to move adds additional degrees of freedom and increases
the number of available electronic states further emphasizing the importance of
the entropic contribution. The reversible work theorem also implies an equality
between chemical potential and the open-circuit voltage, qgVoc, of the photo-
voltaic device® and establishes a crucial connection between theoretical and
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laboratory investigations of the current generation in OPVs. From such consid-
erations, Burke et al. arrive at the following expression for the Vo from the
canonical ensemble:

ocr? L
quc = ECT — ZkCI;FT — kBT In (;IZT]Y;)SC> (5)

where fis the volume fraction of the device that is mixed or interfacial, L is the
thickness of the solar cell, Jsc is the short-circuit current of the cell, g is the
electronic charge, and N, is the density of the electronic states in the device. Eqn
(5) includes the necessary dependence of qVoc, and therefore of F, on the average
energy of the CT state, the disorder in the CT energies, Ecr, expressed through
standard deviation o¢r, and the life-time of the CT-state, t¢r.° Nonetheless, this
expression is composed of variables that refer to the entire device making eqn (5)
difficult to connect to a microscopic model.

More recently, Hood and Kassal have shown that the free energy better reflects
the energy landscape that an electron and a hole traverse, since the entropic term
effectively lowers the energy barrier needed for the transferred charge to become
a free charge carrier. Additional dissociation paths and energetic disorder make
the coulombic interaction comparable to the thermal fluctuations. Consequently,
the Coulomb attraction no longer defines how far an electron and a hole can
separate as suggested by eqn (1). Within the Hood and Kassal model, a bulk-
heterojunction is an ensemble of energetically disordered hexagonal lattice
sites. Under an assumption of electronic equilibrium, they then compute the free
energy as®

F=—(ksTln Z) (6)

where Z is the partition function that describes specific energy states and the
bracket (---) denotes a statistical average over realizations of the disordered
lattice. Both eqn (5) and (6) are derived in the canonical ensemble and carry the
same information. However, the latter approach is far more suitable for con-
necting to microscopic details such as energetic and structural disorder. There
are, however, a few drawbacks of the Hood-Kassal model. The electrons and holes
are not permitted to cross from one domain to the other, and a hole is restricted to
move only perpendicular to the interface under the assumption of translational
symmetry. The model includes the electrostatic potential, but does not take into
account important quantum effects such as delocalization, mixing between
excitonic and charge-transfer configurations, and electronic exchange effects.
We recently examined this approach using a fully interacting 2D electron/hole
lattice model that our group developed for studying exciton and charge transfer
dynamics at organic heterojunction interfaces'®'® and compared it to experi-
mental values for the open-circuit voltage by including site-energy disorder and
thermal fluctuations within the lattice itself. We show that this generally facili-
tates charge separation; however, due to the excess energy supplied by the initial
photoexcitation, highly energetic electron-hole pairs can dissociate in unfavor-
able directions, potentially never contributing to the photocurrent while “cold”
thermalized states follow the free energy curve defined at the operating temper-
ature of the device." In this discussion, we pursue an heuristic/thermodynamical
model that can be solved analytically for computing the reversible work to
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separate charges at a given temperature. We find that the analytical model
reproduces many of the features of a more detailed model in the limit of very low
mobility of the transferred charge. We also explore the use of singular value
decomposition of the electron/hole wave functions as a means to quantify when
the separated carriers are truly independent.

2 Theoretical models
2.1 Simple lattice model

We begin by considering a model donor/acceptor heterojunction system as
sketched in Fig. 1 whereby the physical system is represented as a series of lattice
points in three physical dimensions. The system is partitioned such that all points
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Fig.1 (a) Sketch of the model. Our analytical model assumes that the hole remains pinned
to the interface and that the donated charge tunnels some distance r into the acceptor
phase. While the sketch is in a two-dimensional plane, the full physical system and our
calculations is in three-dimensions. (b) Atomistic representation of the interface and its
mapping onto a site model that is represented as a set of two-level systems with energy
gaps modulated about their average HOMO-LUMO gap.
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with x < 0 are considered to be in the donor-phase while all points x > 0 are in the
acceptor phase. Charge generation occurs when a neutral exciton, denoted as * in
our sketch and created by photoexcitation, finds itself close to the phase boundary
where there is sufficient driving force to separate the exciton into an electron/hole
state. Within the context of our sketch, we will assume for purposes of this model
that the vacated hole is either located at the origin or at some point 7, within the
donor phase and the transferred electron is located at some lattice point 7 away
from this site. This allows us to describe the resulting electron/hole configuration
energy as &(r) which we will take to be

8(}’) = AE — Eoff + J(V) (7)

where ¢ is the dielectric constant and AE is the energy gap between local LUMO
and HOMO orbitals and E.g is the offset between the HOMO orbitals in the
acceptor phase and the HOMO orbitals in the donor phase. For purposes of
constructing a model we can analyze analytically, we assume that the local site
energy for an electron/hole configuration is coulombic (J = €*/er) at long range
and equal to U when the electron and hole are localized on the same site as in an
excitonic configuration. Hence, ¢(0) corresponds to the energy of a non-
dissociated exciton at the interface in our model. The interpolation between the
local interaction U and the long-range Coulomb interaction is given by the Mat-
aga-Nishimoto potential

U

O = T Teafry

(8)
where ¢, is the relative permittivity between the donor and acceptor materials (and
can be set to 1 since we assume the two materials to be conjugated organics) and
ro = 14.397 when distances are in A and energies are in eV. Finally, we take the
coupling between the exciton and the charge-separated states to be due to
tunneling and of the form

v(r) = Ve # )

where 87" defines a tunnelling length. Within this model, the idempotent oper-
ator is given by

L= [X)(X]+ DI (10)
where |X) denotes a local exciton state and |r) denotes a charge-separated state

with electron/hole radius r. The energy eigenstates can be determined by
expanding in this basis

) = (kX)) + D 1) (rlw) (11)

and then writing out the Hamiltonian matrix elements as
e(r){riu) + vr)(Xlw) = Ey(rlw) (12)
> () (rlk) = Eu(X|u). (13)

r
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This leads to a transcendental equation for the energy eigenvalues,

E, = Z%?(') (14)

Similarly, one finds the projection of the exciton onto the |u) eigenstate as

2\

(Xl = {1+ "] - (15)

(E“ - g(;)z)

In the Wigner-Weisskopf model, one sets ¢(r) = r corresponding to a uniform
density of states and assumes the coupling is constant. This allows both
summations to be performed analytically. For the case at hand, we assume the
sums can be transformed into radial integrations and then use the Laplace
method to evaluate.}

For comparison, we consider the case of a 2D and a 3D lattice with similar
parameters: {Ex — 2.5eV,E, > 5¢eV,V, > —1¢eV,U — 3eV,and § — 0.75 '}
where Ex = Ep jumo — Ep,homo — U is the local exciton energy taken as the energy
difference between the donor’s LUMO and HOMO orbitals plus the local electron/
hole attraction U, and E, = Ea jumo — Ep,homo i the energy for a non-interacting
electron/hole pair. Finally, we set the local electron/hole site energy to be

E(F) = E, + &(r) + dE (16)

with (3E) = 0 and /(3E?) = 0.1 eV to account for the fact that the local electron/
hole site energies are distributed about E, to reflect inhomogeneous local envi-
ronments. While the model is very simple and ignores interactions between
charge-separated configurations, the resulting energies and density of states are
similar to what we obtain with our more elaborate, fully interacting model, sup-
porting that this heuristic model captures the salient physics of a more sophis-
ticated model. Parametrically, the model presented here is identical to the more
realistic, fully interacting heterojunction model we have published extensively
upon over the past 15 years. We shall comment further on this model later in this
report.

It is interesting to note that in the 2D case, there are far more states below the
exciton energy (at E = 0) than above, which suggests that dimensionality plays
a central role in the dissociation of an initially prepared exciton state. This notion
is further enforced when we do a head-to-head comparison of the normalized
density of states for the 2D and 3D lattices as shown in Fig. 2. First, we note that
the DOS in the 3D lattice is skewed towards higher energies as compared to the 2D
lattice. Furthermore, in 3D the number of local charge-transfer states with energy
lower than the exciton’s energy is lower than in the 2D case. From this simple
model, we are drawn to the conclusion that dimensionality and density of states
are every bit as important as energetics when building models for exciton
dissociation.

1 While the model can be solved fully analytically, it is computationally far faster to simply diagonalize
the Hamiltonian matrix given by eqn (12) and (13).
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Fig. 2 Normalized DOS for 2D and 3D model lattices.

Having determined the eigenstates of the model, we next construct a function
describing the free energy required to separate charges to a given radius, rep.
From statistical mechanics, we know that

F=—ksTh Z (17)

where Z is the canonical partition function given in the usual way via summing
over states

Z =" exp(—E,/ksT). (18)

We write this as an integral over r and define E,(r) as the energy of a charge-
separated state whose mean radius is equal to r = |(u|F|u)|. Thus

Z = J: g(r)exp( —Eu(r)/kBT)dr (19)

where g(r) is the density of eigenstates with mean radius r. In Fig. 3 we show that
E,(r) can be described as a nearly single-valued function of r except in cases where
the exciton is resonant with the separation energy. Moreover, to a good approx-
imation, E,(r) = &(r) when we shift the spectral range to place the lowest energy
eigenvalue at the origin with r = 1 and shift the interaction energy ¢(1) = 0. This
shift in the energy origin is typically done when constructing the partition func-
tion so that all energies are considered to be excitations from the lowest energy
state. Thus, we define the “radial” partition function and free energy as simply
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Fig. 3 Energetics and approximate free energy from the Statistical Hopping model for
exciton dissociation. The contours give the density of eigenstates with a given average
electron/hole separation radius and eigenvalue energy. The white, red, and red-dashed
curves are theoretical models for the energy and free energy as described in the text.

Zo(r) = exp(—(e(r) — kT In (g(r))/kpT) (20)

and

For) = (e(r) — kT In (g(r))). (1)

Taking g(r) = 4w as the 3D radial volume element we have an analytical
expression for the free energy of a charge-separated state with radius r. Finally, the
initial exciton state has an entropy of zero since it is a local state within our initial
basis, and we write the reversible work as

AF(r) = Fu(r) — Eex. 22)

Finally, we introduce a correction for the relative kinetic energy of the charge-
transfer state as function of the electron/hole separation radius. This can be
justified from simple argument based on the uncertainty principle AxAp = h/2
and (K) = (Ap®)/2m which immediately yields that (K) = #*/(2mr*) upon taking
7 = (Ax?).

In Fig. 3 we compare the distribution of free energies compared to the electron/
hole site energy, ¢(r) and the F.; as computed by eqn (21), superimposed in white
and red respectively. The dashed red-line includes the short-ranged kinetic energy
correction which does appear to limit the closest point of contact between the
electron and hole, but dies off rapidly at long distances. Further, to a good
approximation, the free energy is well approximated by simply the charge-transfer
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site energy ¢(r) and shows no indication of rolling over at ranges relevant for
exciton dissociation. We conclude from this that models that do not allow the
electron and hole to move independently and quantum mechanically or only
include intermediate hopping or tunneling effects are poor representations of
semiconductor interfaces.

2.2 A fully interacting model

Missing from this simple model is the fact that both the electron and the hole are
mobile and consequently are delocalized over multiple sites. Also, different
electron/hole configurations interact. With these in mind, we next describe a fully
interacting electron/hole model. Adding the additional degrees of freedom
dramatically increases the complexity of the model, and hence the model is
currently restricted to a 2D lattice. We recently used this model to assess the free
energy of a 2D model heterojunction system'” and we shall recapitulate some of
the results here as they pertain to the heuristic model we presented above.

The model is described by the following electron/hole- + -phonon
Hamiltonian,'**

ﬁ = I:Iel +ﬁel~ph +ﬁph
= Z(an + Vinn)[m) (n|
mn
=

mn,a,u

aF‘mn
a—) Goulm) (0

ap

1
+ z Zwaz (qa.p.z + ;Vla,#.wl) + qa.p.27 (23)
wa

where electron-hole configurations |n) = |h,e;), whereby a hole in a valence
orbital on site 7 and an electron in a conduction orbital on site j form the basis for
the Hamiltonian. We have published the details and parameterization of the
model previously and we briefly review its salient features. The term F,, describes
the single-particle motion for a non-interacting electron/hole pair. In its simplest
form for configurations |n) = |h,e;) and |m) = |hge,) it is given by

an :jjcjl 61’k + fik 6]1 (24)

where f° and /" have the meaning of localized energy levels and transfer integrals
for conduction band electrons and valence band holes. In the absence of disorder,
these quantities obey charge-conjugation symmetry with f5,, = —f5,,, and we
assume that only nearest neighbors on the 2D lattice are coupled by these terms
(¢ = fi,is1). The donor and acceptor domains are differentiated by imposing an
energetic off-set, AE, in the site-energies at the domain boundary as sketched in
Fig. 1b. Vin describes spin-dependent two-particle coulombic and exchange
interactions for each configuration, as well as interactions between different
singlet geminate electron-hole pairs. For the case of singlet excitations,

an = —<h,‘€jl V‘hi€j> + 2<}lj(:’,| V|h,ej) (25)

We assume that the inter-unit overlap of the primitive site-basis functions is
small and that three types of integrals contribute to this interaction, each with
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well known meaning and long-range behavior.' First, an electron and a hole on
sites separated by a distance r will experience a long-range Coulomb attraction of
the Mataga-type as used above

Jo

—_— 26
vt (26)

(hiej v|hie;) =
a short range exchange term which decays exponentially with electron/hole
separation

(hedvihie;) = Ko exp(—rilr,). (27)

Secondly, because differential overlap between an electron and a hole sitting
on the same site is substantial, we include the transition dipole-dipole coupling
between singlet geminate electron-hole pairs,

DO
(ri/r 0)3 A
where J, and K, indicate coulombic and exchange interactions between an elec-
tron and a hole on the same site. D, is a dipole moment of an electron-hole pair
located on site i. It is important to note that these terms carry information per-
taining to the spatial disorder in our model. While the model can treat singlet or
triplet states, we are analyzing post-photoexcitation charge-transfer states and will
only focus on singlets in this study.

The phonon term, H,,, assigns to each lattice site a high and a low frequency
vibrational mode described by a local harmonic oscillator with weak nearest-
neighbor coupling. These terms are determined from spectroscopic Huang-
Rhys parameters typifying organic conjugated polymer systems. Such contribu-
tions modulate both the on-site band-gap as well as the site-to-site hopping
integrals.

For a given lattice configuration, the eigenstates of the Hamiltonian in eqn (23)
are linear combinations of all configurations allowed on a particular lattice

(h,-e,-\v|hjej> = (28)

(Ha + Ha n({1a)IV) = Ex({a)W") (29)

with the k-th eigenstate defined as |¢*) = Y c¢;*|hie;). We construct a 10 site x 10
U

site lattice with a donor-acceptor energy offset of AE = 0.5 €V, the transfer energy
between nearest sites set to t = 0.536 eV and lattice constant ¢ = 1 nm in all
directions. We deliberately choose a higher value for the hopping parameter
(previously calculated to represent polymer intra-chain transfer energy*®) to allow
an electron and a hole easy passage throughout the lattice and to ensure that
nothing but the presence of disorder inhibits or facilitates electron/hole
dissociation.

Since the fully interacting model allows valance holes in the acceptor region
and conduction electrons in the donor domain, we need to be careful when
defining the free energy as a function of electron/hole separation distance since
we only want to include states in which the conduction electron is in the
acceptor domain and the hole is in the donor domain. With this in mind, we
define this as
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where p,-jk is the eigenstate amplitude at the electron/hole configuration and 7 is
a unit vector normal to the donor/acceptor interface. The dotted curves in Fig. 4
show the distribution of charge-transfer energies vs. mean electron/hole separa-
tion radius Rp, as averaged over 1000 realizations of the site energies with a 0E =
0.01 eV — 0.20 eV fluctuation in the local site energy. The solid curves are the free
energies which include the density of states contribution at 300 K. Lastly, the
shaded region indicates a range of literature values for gVoc for a variety of
polymer/fullerene based heterojunction systems. This figure provides a connec-
tion between the “hot” and “cold” dissociation mechanisms for exciton
dissociation.

One can think of a “hot” exciton process as occurring on a potential energy
surface described by the average CT energy (i.e. the dotted curve in Fig. 4). In this
case, an exciton is injected into the system at an energy above =2.0 eV. While
some energetic relaxation may occur, the system encounters a small barrier and
can efficiently dissociate into separate charge-carriers. In this case, energy fluc-
tuations appear to increase the effective energy barrier between the initial exciton
at Rp = 0 and the fully separated charge carriers. Conversely, the “cold” exciton
pathway can be understood as following a potential of mean force path along the
free-energy minimum plotted as the solid curves. While the energy landscape is
somewhat bumpy compared to the “hot” dissociation path, free energy

3 0 L (U) —— JE = 10mev
L —— JE = 50mev
o® ;”::‘ % OE = 100mev
e 3 -
2'5 : 5 —— 6E = 200mev
2.0

E/eV

A 7
1.0 \ \& Zéﬁ-\fzet:'_‘_@c_r_@ﬁé T
0s ST
00 B
(Rp)/a

Fig. 4 Average (points) and free energy (solid) curves for the fully-interacting model at
different values of site-energy disorder d3E. The shaded region represents the range of
experimental values for open-circuit voltage with the average indicated by the dashed
black line.
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fluctuations tend to be smoothed out by increasing the fluctuations in the site
energies. In both cases the energetics converge to the experimental gVoc range.
This leads to the conclusion that both “hot” and “cold” exciton mechanisms
contribute to the final production of charge-carriers.

In Fig. 5(a-d) we present what happens when we modify the lattice model such
that the transferred electron is far less mobile in the direction perpendicular to
the interface than in the direction parallel to the interface. In this, we model more
closely the case of m-stacked oligomers in the acceptor phase. The total energy
and free energy curves are superimposed over the density of eigenstates in which
the local site HOMO/LUMO gap included a random (static) fluctuation about
a mean gap. The computed results reproduce many of the features of the exact
model presented in Sec. 2.1 including the short-range kinetic energy contribution
and the long-range tail of the average energy and free energy. This would imply
that lower mobility in one of the phases has a profound impact on the ability of
charges to escape from the interfacial region. Only in the instances of higher
energetic disorder do we begin to see the free energy contribution begin to roll-
over and plateau suggesting that local trapped states may facilitate the separa-
tion process.

2.3 Transition rates between states

In computing the eigenstates of eqn (23) we took g, = 0 and considered only the
vertical excitations, assuming that fluctuations in the energy are due to the local
electrostatics and not due to fluctuations in the phonons from their equilibrium
positions. The remaining two terms in eqn (23) allow for transitions between
eigenstates. For this, we allow for both high and low-frequency phonon branches
and assume that the coupling term (0F,,,/dq,,) can be determined from spec-
troscopic Huang-Rhys factors. It is then a simple matter to derive the golden-rule
rate constant between eigenstates of He|k) = ¢|k). For this, we first perform
a unitary (polaron/shift) transform on the entire H.*®

2 v B . wora 3
wora o woa

(@) (b) © ()

Fig. 5 Radial energy distributions for lattice model with decreased mobility perpendicular
to interface. The blue curve represents thermodynamic energy in the high temperature
regime as a function of electron—hole separation; the dashed red curve is the thermo-
dynamic energy at 298 K; the purple curve is the free energy at 298 K. Contours and
background color indicate the normalized probability to find an eigenstate with a given
energy and with a given electron/hole separation as sampled over fluctuations in the local
site energies. In these cases we model the donor phases as a series of w-stacked oligomers
with high electron/hole mobility parallel to the interface and much lower perpendicular to
the interface. Both the total energy and free energies at T = 300 K are similar to the model
of section 2.1 where the transferred charge is effectively immobile.
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H = e He® (31)
where S is an anti-hermitian operator

S = =3 (gua/wy) K} (K| (a] — a, ) (32)
ka

which gives

S — Z]k) (k| exp |: —Zg(z—/:’ (a:; — aq>:| (33)

where the sum over g is over all normal modes, g, is the force term in eqn (23)
transformed into the normal mode and eigenstate basis, and the sum over £ is
over eigenstates of H,. The polaron transform renormalizes the electronic
energies

2
8lkq

& =& — (34)
7 @4
and shifts the electronic coupling
I}kk’ = (EiSHe;_phes)kkr
= Z|k><k,‘Mkk’ (35)
kK
where
8kkgt —8&kikrg ( T
28y Z( o (ay — ‘1/))
My = ngk’q (a; ta,— ==t )e? ' (36)
q q

is the dressed off-diagonal coupling. Transforming to the Heisenberg represen-
tation and integrating over the phonon degrees of freedom leads to an expression
for the golden-rule rate in terms of the autocorrelation of these dressed operators

Wy = ZReJ E Tr [Mk/aq My (1) pgg]eﬂ'(zkfwdz (37)
0 7
a9

In general, the time-correlation function has recurrences (since it is a sum of
periodic functions) and in practice we perform the time iteration only over
a sufficiently long enough interval for the correlation function to decay and
truncate the integration before the first recurrence.

While this approach is accurate and we have used it extensively for computing
rates, the drawback is that it is time-consuming to compute this between each
and every possible eigenstate of H, and then average over energetic fluctuations.
Since we are primarily interested in transitions from a local exciton to charge-
separated states, we developed a machine-learning approach to rapidly parse
through the H eigenstates and select only excitonic and charge-separated
eigenstates using a training set of pre-determined exciton and charge-separated
states.

Secondly, we wanted to understand whether or not the charge-separated/
polaron states are entangled electron/hole polarons or if the state is separable
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into a product of polaron states. In other words, can we write a given charge-
separated state as a linear combination of site-local wavefunctions

reyrh chj re d)/ ’h) (38)

as a sum over a single index

() = S (g ) (39)

where f,X(r.) and g,"(r,) are orthogonal polynomials given by Schmidt decompo-
sition of yX(re,). These are the so-called “Schmidt modes” from quantum
information theory. Using the normalized Schmidt eigenvalues %,* for a given
eigenstate, we can define the Shannon entropy as

Sp = =5 In((4,5). (40)

When S; = 0, only one term contributes to the sum (with only one of the 4, =
1). Furthermore S = In N where N is the dimensionality of the information space
needed to describe a given eigenstate. In essence, N = exp(S) gives the minimum
number of single-particle reducible states needed to describe a given many-body
wavefunction. For an entangled two particle wavefunction as given in eqn (38),
that decomposition is expressed in eqn (39). If S = 0, only one term will contribute
to this sum, and the CI eigenstate would be a simple product of a single valance-
band electron orbital times a single conduction-band hole orbital. Consequently,
one anticipates that localized polaron states would be states with minimal
entanglement and hence describable as separable electron/hole states and exci-
tonic states to be highly entangled and generally non-separable.

In Fig. 6 we compare the state energy and its associated entropy for a given
lattice realization. Here we determined whether a given eigenstate is charge-

Shannon
Entropy

3.5 _*\J\

Exciton |
2.5 /

™
Js’/g‘f
200 |
15 |

/ Lowest Energy
1.0 / Ccs

0.5 /
| Lowest Energy

CT

25 26 2.7 238 29 3.0Eneray [eV]

Fig.6 Correlation between state energy, Shannon entropy, and net flux from a given state
for a model heterojunction system.
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separated (green dots), charge-transfer (yellow triangles), or excitonic (blue dia-
monds) using a machine learning method that compared computed electron/hole
eigenstates to “idealized” CS, CT, or excitonic states. For clarity we show the
results from only a single lattice realization. First, we note that excitonic states
tend to cluster with high entanglement entropies which one anticipates since the
electron and hole are occupying the same set of sites on the lattice. Similarly, the
lowest energy CT state, which is best described as an electron/hole pair separated
across the interface, but pinned to each other via coulombic interactions. Inter-
estingly, even though their center of mass motions are coupled, the state itself is
separable into a product of polaron states. Energetically above the excitons lie
another band of charge-transfer states. While these states are CT in character, the
electron and hole remain highly entangled and in general these states contain
some excitonic configurations. Finally, energetically above these are true charge-
separated states; however, Schmidt decomposition reveals that these are not
strictly separable into electron and hole single-particle polaron states.
Fig. 6 also shows the net rate that population leaves a given energy state

n= > (Wi = W) (41)

i

as indicated by a flag whose magnitude indicates the magnitude of 7, and whose
direction indicates the flow on the (E,S) plane. Not surprisingly, the net “flow” is
towards the lowest energy CT state. However, it is interesting to note that the
lowest energy CS state is a kinetic trap.

3 Conclusions

In this work, we have discussed various approaches we have followed to connect
the interfacial energetics to the observed open-circuit voltage for organic polymer-
based photovoltaic cells. Such coarse-grained models provide considerable
insight into to the energetics and kinetics of charge-transfer processes in meso-
scale systems that are currently too large to be considered using more atomistic/
ab initio based models. In particular, this discussion has focused upon the role of
the density of states and entropic contributions to the charge-separation process
following photoexcitation. One of the principle results of this analysis is
a comparison between an analytical model based upon the Wigner-Weisskopf
model for the decay of a quantum state into a broad continuum to a more detailed
lattice model our group has developed. Surprisingly, the two models give
remarkably similar results in the limit that the mobility of the transferred charge
is sharply reduced in the direction perpendicular to the interface.

Secondly, we test the hypothesis that the charge-separated state is a simple
product of an electron and a hole state of the form

1//cs(resrh) = ¢e(re)¢h(rh)~

In other words, that the singular value decomposition of the full electron/hole
wave function of eqn (38) should contain exactly one and only one non-trivial term
in eqn (39) resulting in a Shannon entropy (eqn (40)) of exactly 0. Rather, we find
that only the lowest energy CT state is the least entangled electron/hole state. We
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shall continue to explore the connection between dissociated CS states and their
Shannon entropy since it pertains as to the range at which electrons and holes are
truly separable species.
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