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Abstract
Many materials systems comprise complex structures where multiple materials are integrated to achieve a desired performance. Often in these
systems, it is a combination of both the materials and their structure that dictate performance. Here the authors layout an integrated compu-
tational–statistical–experimental methodology for hierarchical materials systems that takes a holistic design approach to both the material and
structure. The authors used computational modeling of the physical system combined with statistical design of experiments to explore an
activated carbon adsorption bed. The large parameter space makes experimental optimization impractical. Instead, a computational–statistical
approach is coupled with physical experiments to validate the optimization results.

Introduction
Material design has traditionally taken an experimental trial and
error approach where a researcher selects a fabrication tech-
nique and feedstocks, makes materials, and compares materi-
als’ performance in a selected application. Even in simple
materials systems, such as designing biomass-based activated
carbons (ACs) for adsorption, this is a daunting task.[1]

However, many materials systems of interest in the medical,
energy, electronics, and other fields involve integrating com-
plex structures, composites, and active sites to achieve a desired
performance. Material structure ranges from atomic to the
macro-scale, and features at each level are critically important
in heterogeneous hierarchical materials systems where reactive
mass transport through the structure is central to perfor-
mance.[2] Atomic and molecular structure is integral to material
properties and behavior, including catalytic activity,[3] and has
been a central area of research in materials science.[4] Meso-
and macro-scale structures consider the “physical” description
of the material, describing porosity, surface area, and the
atomic/molecular-scale materials’ locations on the porous scaf-
fold material. Hierarchical materials are deployed in electro-
chemical systems,[5,6] synthetic biology,[7] sensor design,[8,9]

fuel processing,[10,11] and many other fields. For instance, in
battery systems electrodes are typically porous materials. In
these materials systems, the transport of electrons through the
solid material is critical to battery performance, while the

transport of species in the liquid electrolyte to reactive sites
drives the electrochemistry of the battery.[12–14] Designing
porous structures for such applications requires optimizing
transport across phases in conjunction with materials selection.
There has been some recent work in batteries to make these
property–structure relations.[15–20] In this paper, we lay out an
integrated computational–statistical–experimental approach
for designing heterogeneous hierarchical materials systems
that considers both materials and their structure.

While experimental investigations can provide information
about the performance of a material under targeted conditions,
a more practical and efficient approach is to combine these with
computational and statistical methods. This enables a more
thorough exploration of the parameter space in a shorter time
and at a lower cost. Computational methods are able to resolve
the chemical–physical processes occurring within a complex
system and monitor how changes to the material and structural
properties affect performance.[21] Statistical methods can be
used to efficiently sample the parameter space based on a
Design of Experiments (DOE) approach.[22] In turn, experi-
ments can be used to validate and refine computational models
in an iterative loop.

In this study, we combine computational models of an AC
system with statistical DOE and optimization to design a
fixed bed system for the adsorption of toluene in the vapor
phase. Experimental testing and characterization are conducted
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to both calibrate and verify computational models and to inform
the computational–statistical optimization approach. The per-
formance of the system is based on input parameters including
the choice of AC materials, which affects the microporosity,
affinity of the adsorbate, and adsorption capacity of the bed,
and the operating conditions of the bed, such as flow rate,
inlet toluene concentration, temperature, etc.[23,24] Details on
the computational, statistical, and experimental methods are
provided in this paper along with discussion of their integration
to form a holistic design paradigm for designing and evaluating
materials systems.

Design approach
To design heterogeneous hierarchical porous materials, it is
critical to consider the material and structural properties of
the system. This produces a large parameter space for design,
which includes material properties (chemical, mechanical, elec-
trical, etc.) and structural properties such as porosity, surface
area, and particle size. Evaluation of such materials further wid-
ens the experimental scope; performance assessment must span
a range of conditions relevant to the application at hand. This
design space – including multiple rounds of trial and error var-
iations of fabrication parameters, and analysis of the material
properties and performance after each variation – is simply
too large to explore through traditional trial-and-error experi-
mental approaches. We utilize computational and statistical
methods to explore areas of the parameter space, and couple
that with experiments to validate the approach and parameterize
the models to demonstrate a more efficient approach to materi-
als design for complex systems.

In this work, computational modeling of the physical phe-
nomena is used to predict the performance of the material sys-
tem. Mesoscale computational methods are able to explicitly
resolve the porous microstructure and explore the reactive
transport in a system to understand how the structure affects
the advection and diffusion of species and how the material
properties affect reactions.[14] However, even the computa-
tional methods used to resolve the mesoscale physics of porous
materials are computationally expensive and require high-
performance computing to run simulations. Simulations can
take several hours to run. With the prevalence of high-
performance computing systems, this does not provide a
research challenge; however, it does limit the number of
cases that can be simulated and limits the ability of using purely
physical models to optimize a material system. Resolving mate-
rial performance in complex systems is therefore hampered by
both experimental and computational resource limitations.

Our holistic design approach mediates these experimental
and computational limitations by using statistical tools to cali-
brate the computational model with limited experimental data
and to efficiently sample the design space. The calibration
phase is treated as a statistical optimization problem, enabling
the conversion of attainable experimental values to the required
computational model inputs. This is a common challenge in
computational–experimental research and is an ongoing area

of research.[25] Often as in this work, the measured experimen-
tal parameters are not directly aligned with necessary computa-
tional parameters or outputs and some translation is needed to
integrate experimental data into computational models and
quantitatively compare the results of each. This can include cal-
ibration of model parameters to match experimental data, as
done here, or also the use of reduced order models to obtain
computational results at the correct resolution and scale for
comparison with measurable experimental parameters.

Performance optimization of the computational model is
guided by statistical methods such as response surface optimiza-
tion[26] or Bayesian optimization.[27,28] The goal is to come up
with an efficient sampling of the design space that takes the com-
putational cost of sampling into account. Figure 1 depicts the
way in which these areas were coupled in an experimentally
informed and verified computational–statistical feedback loop.

This approach is intended, ultimately, to be used for the
design of heterogeneous hierarchical porous materials for com-
plex systems. The study presented here was used as a bench-
mark to bring together three disparate research groups to
explore how each other’s skillset could be used to provide
insight into the broad design space. For this initial application,
we focused our efforts on understanding how one could opti-
mize an AC adsorption bed for removal of a volatile organic
compound (VOC) from a flowing gas stream. While future
efforts will explore the design and manufacture of materials,
the current work used commercially available ACs with vary-
ing properties to explore the application-based design space.
We turn to physical experiments for material characterization,
model calibration, and model verification. For the chosen AC
system, each experimental trial requires 15–35 h of experimen-
tal time in addition to the cost of materials. The experimental
cost of a full DOE optimization (to select a specific AC and
operating conditions that maximize capacity and uptake rate)
of this type would be overwhelming in terms of both time
and materials, including ACs, model flue gases (toluene in
N2), lab supplies, and instrumentation use and maintenance.
However, if intermediate optimization iterations can be run
computationally and then verified experimentally, the cost
(time and materials) of such an optimization can be reduced
drastically. Computational trials can be concluded in closer to
3 h and multiple trials can be run simultaneously. This seem-
ingly simple example underscores the necessity of collabora-
tion between computational, experimental, and statistical
methods to reduce the expense and time required to design
complex materials systems.

Applying the design approach:
adsorption of toluene onto
activated carbon
The design approach outlined in the section “Design approach”
was applied to the adsorption of toluene, a VOC, from a flowing
gas stream onto a fixed bed of AC. Such systems arewidely used
for flue gas capture of VOCs, mercury, sulfur, and CO2.

[29,30]

Three different commercial AC materials (having a range of
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surface areas, porosities, particle sizes, and preparationmethods,
as described in the Supplemental Information), and three
operating parameters (flow rate, bed packing, and inlet toluene
concentration) were considered in the optimization. While
these are far from the only variables that impact adsorption
system performance, they are thought to be the dominant
factors.[23,31]

Given the prohibitive cost of physical experimentation, a
computational approach was used to search the parameter
space for optimum performance. The computational model,
however, needed to be calibrated to experimental data to be a
reliable guide for optimization. A fractional factorial[32] design
was employed to obtain experimental values over a wide range
of the parameter space to: (1) limit the number of physical
experiments and (2) ensure that sampling of the parameter
space does not introduce unintended and unwanted bias against
any of the parameters. The alternative is a full factorial design,
where experimentation at all combinations of high- and low-
parameter values are considered, requiring significantly more
experiments. A fractional factorial design corresponds to a
carefully selected subset of all experiments that, as specified
above, does not introduce unintended and unwanted bias
against any of the parameters.

In our investigation of the adsorption of VOCs by ACs, the
type of AC used is a categorical parameter, while the other three
parameters (gas flow rate, bed packing, and inlet toluene con-
centration) can be varied continuously. As a result, the three
ACs were considered separately, and a three-dimensional
parameter space was defined for each. For each continuous
parameter, two levels (low and high) were selected based on
the range of feasible values for physical experiments. For
each material, a separate 23−1 fractional factorial design was
proposed, as shown in Table I. However, to ensure reproduc-
ibility some experiments were replicated, such that resource
constraints (both time and availability/cost of specialty calibra-
tion gases) resulted in no runs for the high-packing density,
low-flow rate, low-toluene concentration (HLL) sample set.

The physical experiments flowed a mixture of toluene in N2

gas (ultra-high purity nitrogen gas at 20 ppm or 200 ppm,
Airgas Inc.) through a packed bed of AC, as shown in Fig. 2.
The packing density of the AC-packed beds, the flow rate of
the mixed gas, and the concentration of toluene in N2 gas
were varied according to the DOE matrix of Table I.
Commercially available ACs PAC 200, Darco G60, and
DARCOKBG were provided by Cabot Corporation (additional
information is available in the Supplemental Information). The

Figure 1. Integrated experimental, computational, and statistical approach to resource-constrained complex materials system design.
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three ACs have varying properties, including surface areas,
porosities, compositions and, presumably, adsorption capaci-
ties. Each AC-packed bed contained between 0.018 and
0.023 g for low-bed packing and 0.032 and 0.052 g for
high-bed packing of the selected AC. Toluene in nitrogen gas
at 20 or 200 ppm (low- or high-inlet concentration) was passed
through the AC at 30 or 40 mL/min (low- or high-flow rate).
Outlet gas was monitored using a mass spectrometer (Extorr
XT Series RGA XT300M) at an m/z of 91 and breakthrough
curves were collected for each sample representing how the
concentration of toluene in the outflow gas changes with
respect to time. Uptake rates and uptake capacities of each
AC were calculated from these data and used to calibrate the
computational model.

A multi-scale computational model of the AC-packed bed
was simulated based on the DOE of Table I. The model simu-
lated the gas flow through the packed bed and the adsorption of
toluene onto the AC. The model explicitly simulated the macro-
porous region around the AC particles and included the reactive
transport within the porous AC particles through an ad hoc
model.[33] The smooth particle hydrodynamics (SPH) method
was used to model the system in LAMMPS – Large-scale

Atomic/Molecular Massively Parallel Simulator.[34] The com-
putational model was based on previous SPH models of reac-
tive transport in porous media;[35–37] details of the model and
its implementation are provided in the Supplemental
Information. The choice of the numerical method is strongly
dependent on the physical system being solved, and several fac-
tors would favor one candidate over others. For our problem,
numerical methods relying on discretizing the simulation
domains into meshes (i.e., finite element methods, finite vol-
ume methods, etc.) require extreme care to maintain the quality
of the mesh. Methods that “break” the domain into smaller par-
ticles handle these boundaries more naturally, and since SPH
belongs to this class, it has been chosen for this system.

Ideally, physical properties used in a computational model
are based directly on the physical experiments. However, the
data collected experimentally do not always align with the
input parameters required in computational models. While it
is straightforward to match the flow rate and the inlet concen-
tration to experimental conditions, determining the correct
computational inputs for experimental factors that cannot be
directly measured is less straightforward. For instance, the com-
putational model explicitly simulates the packed bed micro-
structure by considering the AC particles to be perfectly
spherical and homogeneous, as shown in Fig. 3.
Experimentally we know that the actual bed holds a distribution
of particle sizes and shapes (Fig. 4; additional characterization
is given in the Supplemental Information) but we could not
determine the exact microstructure for a given bed nor account
for microstructural heterogeneities in actual-packed samples.
The placement of AC particles in the computational model
can have a significant effect on the predicted breakthrough of
toluene depending on the tortuosity of flow paths through the
bed. This is due to the size of the simulation domain, which
is chosen to be much smaller than the representative volume
for the system. The use of a fine-scale simulation enables us
to consider complex geometry and other important factors,
which are normally overlooked or cannot be captured via
numerical models of a coarser scale.

In addition to the unknown packing configuration of the
fixed bed, several parameters required in the computational
model cannot be measured by direct experimentation. The com-
putational model simulated the adsorption of toluene via a
Langmuir adsorption model, which depends on the adsorption
rate of toluene onto the AC and the maximum concentration of
toluene on the surface of the AC. Experimentally it is possible
to determine an uptake rate and uptake capacity for the packed

Table I. Fractional factorial design for model calibration

AC Packing density Flow rate Inlet conc.

PAC 200 High Low Low

Low High Low

Low Low High

High High High

Darco G60 High Low Low

Low High Low

Low Low High

High High High

Darco KBG High Low Low

Low High Low

Low Low High

High High High

Experiments in bold were run at least once and in bold italics at least twice.

Figure 2. Schematic of packed bed containing AC.
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bed. However, the experimental data are based on the overall
bed adsorption and conflates the adsorption rate and surface
capacity of toluene with the local mass transfer in the bed. It
is not possible, with such bulk experimental data, to differenti-
ate the surface level adsorption rate and capacity of the AC for
direct use in the computational model.

To overcome this challenge, we utilized statistical
calibration, defined as an optimization problem. Based on the
experimental capacities, and the reported breakthrough curves,
we determine appropriate adsorption rates and surface capaci-
ties for each material. For calibration, we used a machine
learning-based optimization method called Bayesian optimiza-
tion using Gaussian processes.[27,28] Bayesian optimization is a
technique for efficiently sampling the parameter space in order
to find the optimum of a response function that is computation-
ally or experimentally expensive to evaluate. An alternative
optimization approach that could be used is the response sur-
face methodology (RSM)[26] with an appropriate DOE method.
Unlike Bayesian optimization that globally samples the
parameter space in search of the optimum, RSM moves locally
toward the optimum and often requires larger numbers of
samples. Considering the limited computational budget for

calibration, Bayesian optimization was employed to search
the parameter space.

Bayesian optimization consists of two main components
that are deployed in a sequential scheme. First, a probabilistic
surrogate model was built to approximate the disparity between
the computational and experimental results. The surrogate pro-
vides a stochastic assessment of the disparity between the com-
putational and experimental results as the values of the
adsorption rate and surface capacity parameters are varied.
Then, using the surrogate, an acquisition function was defined
in order to determine where to sample next. This is one iteration
of the Bayesian optimization algorithm. These steps are
repeated until the budget (i.e., feasible or budgeted number
of simulations) is finished or the optimum point does not
change after some iterations, i.e., the optimization problem con-
verges to a set value for adsorption rate and capacity.
Additional information is available in the Supplemental
Information.

Once calibration was complete, the computational model
was run with the new adsorption rate and capacity values to
ensure that it accurately captured the experimental break-
through curves. Breakthrough curves were calculated from

Figure 3. Computational domains to simulate PAC 200 with high-packing density.

Figure 4. Scanning electron microscopy imaging of each AC: (a) PAC 200, (b) Darco KBG, and (c) Darco G60. The scale bar represents 20 µm.
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the computational simulations by plotting the average toluene
leaving the simulation domain over time. This validation pro-
vided confidence that the model predicts the physical experi-
ments with a reasonable accuracy. As discussed previously,
the physical experiments are expensive (time and cost); while
the computational model is relatively inexpensive to run. The
calibrated computational model could then be used to optimize
the AC-fixed bed system to maximize the performance. To
determine the optimized system both the uptake rate and capac-
ity need to be considered in a multi-objective optimization
problem. These two factors determine how much toluene the
bed can adsorb and how often the bed will need to be refreshed.

Results and discussion
Nine physical experiments were run based on the conditions
shown in Table I. The experimental data from these cases
were used in the calibration of the reaction parameters used
in the computational model. The adsorption reaction depends
on the rate of adsorption (k, unit per time), and the maximum
surface concentration of toluene (smax, unit species mass per
surface area), which is the surface capacity of the AC. Details
on the mathematical formulation of the computational model
are given in the Supplemental Information. In the calibration
process, the computational model was run and its output was
compared against the experimental data for uptake capacity.
Based on the error between the model predictions and experi-
mental data, a new set of model parameters (adsorption rate
and maximum toluene surface concentration) were chosen
and the simulation was rerun. The calibration continued until
there was sufficient agreement between the model predictions
and the experimental data on uptake capacity. The calibration
process was then iterated over for each of the three materials
to minimize the error between the computational model predic-
tions and the experimental data for the uptake capacity. Error
across all three DOE cases was considered simultaneously.
The best and worst calibrated cases are shown in Table II
with examples in Fig. 5. As seen in Figs. 5(a) and 5(b), as
the calibration error, defined as the squared error between the
computed value and the experimental value, is minimized
(best case) the computational model accurately predicts the

experimental uptake capacity. When the calibration error is
high, the error between the computational model and experi-
mental data increases, as seen in Figs. 5(c) and 5(d).

Full details on all of the calibration cases are given in the
Supplemental Information, including the computational
models, simulation data, and the calibration iterations. The cal-
ibration procedure attempts to optimize the model parameters
based on all the operating conditions of the cases in Table I
for each material. This leads to a variation in how well the
calibrated model captures the physics of the AC system. In
this initial case, the calibrations shown in Fig. 5 were optimized
based on adsorption capacity alone for each material regardless
of flow conditions. This leads to two potential model issues.
First, the uptake rates may or may not be well captured by
the model. Second, we found that when materials initially
had an “extreme” data point in one direction [e.g., Darco
G60 was initially a good estimation in terms of capacity for
LHL (low-packing density, high-flow rate, and low-inlet con-
centration) conditions [Fig. 5(d)], but very low for
HHH (high-packing density, high-flow rate, and high-inlet
concentration), and LLH (low-packing density, low-flow rate
and high-inlet concentration - not shown)], such that upon cor-
rection the HHH was almost exactly matched, but the LHL
resulted in too high of a modeled capacity and the LLH was
improved but still low. As discussed in the Introduction,
adsorption behavior is a function of material properties and
processing conditions. It is possible that low packings and
inlet concentrations exposed to high-flow rates (LHL cases)
are more sensitive to microstructure of the packed bed than to
values of the reaction parameters as the high-flow rate and low-
toluene concentration provides a weak driving force for the
adsorption reactions. This is not captured by the calibration pro-
cess as it does not account for the physical system, and only
considers the mathematics of the optimization problem.
Future work will explore approaches for optimization of the
calibration conditions that have covariant dependencies.

After further iterations and calibrations, the calibrated model
can be used to optimize the material and operational parameters
of the AC-fixed bed for toluene adsorption. Optimization
includes both the material and structural properties of the AC

Table II. Calibration results for “best” and worse” case scenarios for three ACs

Material

Best case Worst case

smax: max. toluene
concentration (kg/m3)

k: adsorption
rate (/s)

Objective
function

smax: max. toluene
concentration (kg/m3)

k: adsorption
rate (/s)

Objective
function

PAC 200 3.45 × 10−4 1.20 × 102 1.86 × 10−3 5.00 × 10−4 1.00 × 102 5.45 × 10−3

Darco
G60

7.00 × 10−4 8.00 × 101 2.98 × 10−2 3.00 × 10−4 1.20 × 102 3.52 × 10−2

Darco
KBG

6.48 × 10−4 1.09 × 102 1.63 × 10−2 3.00 × 10−4 1.20 × 102 1.97 × 10−2

Note that the parameters lists here relate to the calibration process and the computational model.
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and the operating conditions for the bed including high- and
low-flow rates and bed packing. The computational model
can be run over a larger parameter space compared with the
physical experiments in a shorter amount of time and at a
lower cost. The results of the computational optimization can
then be used to design a smaller subset of physical experiments
for validation of the computational optimization. An example
of this optimization is given in Fig. 6. Under constant flow con-
ditions [LHL shown in Fig. 6(b)], PAC200 has a modestly
faster adsorption uptake rate than the other two ACs, but
Darco G60 has a significantly higher uptake capacity for the
toluene. Figure 6(b) shows the impact of adsorption conditions
on the performance of the Darco G60. Low-packing conditions
decrease capacity (on a gtoluene/gAC basis) of the packed bed.
This decrease in capacity is exacerbated by having low-inlet
concentration, likely, because the driving force (concentration

gradient) for toluene between the solid and flowing stream is
lower, especially as the surface fills with toluene particles.
While this is a first round of DOE-CFD, it shows the potential
for DOE to refine the exploration space to optimize both mate-
rials selection and processing conditions. This is an ongoing
area of research.

Conclusions
When designing complex materials systems, a holistic
approach that considers both the material and structural aspects
of heterogeneous, hierarchical materials must be taken. This
work demonstrates how integrating experimental, computa-
tional, and statistical approaches could lead to the optimization
of a material system – in terms of both materials selection and
process parameters – for a specific application. In this work, the
approach was applied to an AC system for toluene adsorption.

Figure 5. Computational and experimental breakthrough curves for example AC and flow conditions showing initial and final iterated calibrations; note that
“best” and “worst” cases from Table II are not necessarily run first and last. (a) PAC 200 for LLH conditions showing successful model calibration. (b) Darco KBG
for LHL conditions showing successful model calibration. (c) Darco KBG for HHH conditions showing poor model calibration. (d) Darco G60 for LHL conditions
showing poor model calibration.
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We show that experimental and statistical routines can be cou-
pled to calibrate a computational model, and then the model
was used to optimize the resulting system. Designing this
type of AC system via experimental studies alone would be
costly and time consuming. This would most likely lead to spe-
cific aspects of the design not being considered due to these
constraints. By integrating the experimental studies with com-
putational and statistical techniques, we are able to explore a
larger design space that would be inaccessible to experiments
alone.

The results of this work show the potential of statistical cal-
ibration, optimization, and DOE to accelerate materials devel-
opment. The results also show the importance of close
interactions and iterations between the various disciplines. As
discussed in the “Results and discussion” section the calibrated
model is unable to accurately predict the uptake capacity of the
three materials for cases specific to each material. The calibra-
tion procedure initially used here focused on the reaction term
of the computational model; in cases with low-packing density
and low-inlet concentration, system performance is likely
dominated by the mass transport, not by concentration gradient.
A more holistic calibration would be needed to capture these
aspects and would most likely over fit the computational
model to the experimental data.

The AC system investigated here was chosen due to its rel-
ative ease of modeling and experimentation, so that research
could focus on the integration of the statistical methods with
the computational and experimental approaches. The frame-
work laid out here has the potential to be applied to less well-
known systems where the physics is not as straightforward. In
fact this systematic method for exploring materials systems
could help in understanding the complex physics occurring
within a hierarchical porous media.

Supplementary material
The supplementary material for this article can be found at
https://doi.org/10.1557/mrc.2019.60
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