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Abstract. Electron micrography (EM) is a detection method for determin-

ing the structure of macromolecular complexes and biological specimens. How-

ever, some restrictions in the EM system, including poor signal-to-noise, limited
range of tilt angles, only a sub-region subject to electron exposure and uninten-

tional movements of the specimen, make the reconstruction procedure severely
ill-posed. Because of these limitations, there may be severe artifacts in recon-
structed images. In this paper, we first design an algorithm that can quickly

calculate the radiological paths. Then we combine an iterative reconstruction

algorithm using the Mumford-Shah model with an artifact reduction strategy.
The combined method can not only regularize the ill-posedness and provide the

reconstruction and segmentation simultaneously but also smooth additional ar-
tifacts due to the limited data. Also we improved the algorithm used for the
calculation of radiological paths to accelerate the reconstruction. The pro-

posed algorithm was translated into OpenCL programs and kernel functions to
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asynchronously and in parallel update the reconstructed image along rays by
GPUs. We tested the method on both simulated and real EM data. The results

show that our artifact reduced Mumford-Shah algorithm can reduce the noise

and artifacts while preserving and enhancing the edges in the reconstructed
image.

1. Introduction. Cryo-electron microscopy is a promising technique for imaging
the high-resolution structure of macromolecular complexes. In the Transmission
Electron Microscope (TEM) system, a small part of the specimen is illuminated by
focused electrons. After the electron-specimen interaction, the electrons reach the
detector and the intensity of electrons is recorded as grey-scale images (micrographs)
[28]. Then the specimen is tilted in the beam and the projections are recorded from
different directions. These projections are used to reconstruct the three-dimensional
structure of the specimen [8]. The reconstruction problem in electron tomography
(ET) is an example of a tomographic inverse problem.

There are some limitations in ET that do not appear in X-ray tomography that
cause difficulties for the inverse problem in ET. The dose problem: The electron-
specimen interaction may damage the structure of specimen, so the total dose of
electrons during the detection must be limited. When a low-dose TEM is used,
micrographs will have poor signal-to-noise ratio (SNR) with significant influence of
shot noise [4]. The limited data problem: Only a small sub-region of the specimen
can be illuminated by the electron beam and the tilt angles of specimen is restricted
in a limited range. These limitations on the sub-region and range of the tilt angle
lead to severe ill-posedness. Inversion algorithms using limited data can create
artifacts, blurring, or other distortions in their reconstructions [12]. Reconstruction
methods like the filtered back projection (FBP) algorithm in X-ray tomography
require complete tomographic data. The FBP algorithm applied to limited data
tomography will create additional artifacts in the reconstruction [5]. The alignment
problem: there are accidental movements of specimen during the detection. Hence,
correct alignment of micrographs before the reconstruction is necessary. Fiducial
markers like gold beads are commonly used as accurate identifications to track the
tile angles and movements of the specimen [23].

Many simulation and reconstruction techniques have been introduced to ET.
In [29], a simulation of transmission electron cryo-microscope images is applied to
biological specimens with the mathematical model of electron-specimen and optical
system in [24] [4]. Among the reconstruction methods, weighted back-projection
(WBP) is the most widely used for its speed and simplicity of implementation [26].
In [15], conical tomography is used to study the structure of integral proteins and
small volumes of the specimen are reconstructed by the WBP method. In [7],
mice retinas were projected into conical tile series, reconstructed by WBP method,
aligned by projection matching, and analyzed by semiautomatic density segmen-
tation. However, the WBP method is easily affected by the limited data problem
and poor (SNR) of projection data can create artifacts in reconstructed images.
Electron lambda-tomography in [25] can preserve the simplicity and speed of WBP
method but is less sensitive to the artifacts. Iterative methods such as the algebraic
reconstruction techniques (ART) have a significant capability to provide greater
detail with incomplete and noisy data [19]. In [8], WBP and ART reconstruction
techniques from a serious of tilted electron-tomographic projection images provide
quantification of surface proteins on an influenza virus. It demonstrates that ART
can provide 3D reconstructions of virus from tomographic tilt series that allow more
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reliable qualification of surface protein than the WBP method. Many regulariza-
tion methods are applied to deal with the ill-posed problem, especially in cases of
limited data. But a different choice of regularization methods can lead to differ-
ent reconstruction results. Penalized least square approaches, such as Tikhonov
and other regularization methods, were previously utilized in X-ray tomography.
Recently, Mumford-Shah functionals have been studied for the simultaneous recon-
struction and evaluation of images. In [27], the convergence of minimizers of a
Mumford-Shah functional for the simultaneous reconstruction and segmentation of
a distributed parameter in an ill-posed operator equation is demonstrated. In [12],
the Mumford-Shah-like level-set approach is exploited to find a segmentation from
limited data, and by that, the singularity set was found from simulated data of a
two-dimensional torso phantom.

For most of the iterative reconstruction methods, the image is discretized into
pixels and the line-integrals into weighted sums. These weighting factors are called
radiological paths and are equal to the intersection length of the ray with each pixel.
Because of the huge amount of measurements and the large number of pixels, it is
impossible to store all radiological paths in a file prior to the reconstruction [33].
Hence, fast calculation of the radiological path for each specified ray is necessary
to obtain acceptable reconstruction times [31]. In [6], the 3DDDA algorithm is one
of the first algorithms that was used for the ray-tracing of a uniformly subdivided
scene. In [31], one of the first algorithms is proposed that can provide exact and
reliable radiological paths for three-dimensional CT. In [36], a code-based voxel-
traversing algorithm is designed for voxel traversing based on the classic Bresen-
ham line-drawing algorithm. The multi-step algorithm [17] improved the algorithm
in [36] and reduced the time spent in the inner loop by using only integer operations.
SNARK09 is a programming system designed to help researchers interested in de-
veloping and evaluating reconstruction algorithms [13]. It provides a fast iterative
algorithm for the calculation of radiological path in 2D. We modified this algorithm
from SNARK09 and extended it to the 3D case. This improved algorithm calculates
the intersection length iteratively along the ray, and it needs only a few addition
operations for most of the coefficients.

The Mumford-Shah functional has provided an important approach for image
de-noising and segmentation. It has also been applied to image reconstruction
in fields, such as X-ray tomography and electrical impedance tomography. The
regularization terms in the Mumford-Shah functional not only force the smoothness
of the images within individual regions but also simultaneously prevent smoothing
across image edges. Let Ω be a bound domain and g ∈ L∞(Ω) a noisy image. The
variational approach in [21] is to find a pair (f,K), where K ∈ Ω represents the
edges in g and f is a smoothed approximation of g in Ω \K. In solving the inverse
problems, the minimizing pair (f,K) can be understood as the a reconstruction and
a segmentation from the projection data g. (f,K) is defined as a minimum of the
functional

MS(f,K) :=

∫
Θ

|Rf − g|2dx+ α

∫
Ω\K
|∇f |2dx+ β length(K),(1)

where Θ is the set of all lines passing through Ω, R is the Radon transform, α, β ∈
R+. The three terms are: a least square squares term, forcing f to be the “real”
reconstructed image from g; a L2−penalty term for the gradient of f , forcing f to
be smooth everywhere in Ω except at the edges K; and a penalty of K’s length in
2D or area in 3D, forcing the edges K to be “short” or “small”.
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Our main goal in this article is to generalize the iterative algorithm with the
Mumford-Shah model in [10] to the inverse problem in ET. To reduce the artifacts
in ET, we combine the artifact reduction strategy in [5] with the reconstruction
method. The Mumford-Shah model is both mathematically and computationally
difficult, so we improve the algorithm used for the calculation of radiological paths
to accelerate the reconstruction. Also the proposed algorithm is translated into
OpenCL programs and kernel functions to asynchronously and in parallel update
the reconstructed image by GPU devices.

The paper is organized as follows. Sec. 2 provides the mathematical model of ET
and the strategy to reduce the artifacts caused by limited data. Sec. 3 introduces
the proposed algorithm incorporating simultaneous image reconstruction and seg-
mentation and describes our design methodology. Sec. 4 presents our main results.
We present the reconstructions from simulated and real ET data to show the effects
of the artifact reduction strategy and the iterative algorithm with a Mumford-Shah
model.

2. Tomography. In this section, we provide a brief introduction to ill-posed prob-
lems and the mathematical models of the ET problem. Let X and Y be Hilbert
spaces and A : X → Y a bounded linear operator. The forward problem is to
compute (2) for a given function f ∈ X.

(2) Af = g

The inversion of (2) is needed in the reconstruction procedure of X-ray tomography
and electron tomography, i.e., to obtain the source f for a measurement g ∈ Y
under the operator A. If the operator A is linear and bounded, the reconstruction
procedure is called a linear inverse problem. In this work, the operator A is the
Radon transform in 3D,

(3) Rf(θ, y) =

∫
R
f (tθ + y) dt

where θ ∈ S2 with S2 being the unit sphere in R3 and

y ∈ θ⊥ := {x ∈ R3 : x · θ = 0},
the plane through the origin orthogonal to θ.

2.1. Mathematical model of the image formation in transmission electron
microscopy. We briefly introduce the mathematical models of ET. In scattering
theory [24] [4], the scattering potential that fully characterizes the scattering prop-
erties of the specimen is given as

(4) F (x) := −2m

~2
(V (x) + iΛ(x))

where V : R3 → R is the electrostatic potential and Λ : R3 → R the inelastic
potential. The real part of F , denoted as F re, can be physically interpreted as
the molecular structure of the specimen. The imaginary part F im accounts for the
decrease in the flux of the non-scattered and elastically scattered electrons. The
purpose of ET is to reconstruct the three-dimension distribution of the F im in the
specimen.

Assume the imaging system is perfect, then the incident electron wave is a
monochromatic plane wave (coherent illumination) uin of the form

(5) uin(ω, x) = eikx·ω,
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where ω denotes the direction of propagation, k is the wave number of the plane
wave. With the first-order Born approximation and elastic scatting assumption,
the electron wave uobj after the electron-specimen interaction can be derived from
scalar Schrödinger as follows:

(6) uobj(ω, y) = uin(ω, y)

(
i

2k

∫ r

−∞
F (sω + y)ds

)
where y ∈ ω⊥ is the immediate exit plane after the specimen.

After interacting with the specimen, the electron waves pass through the optical
system of the electron microscope. The model for the optical system is based on the
wave nature of imaging electrons and the scalar theory is used to characterise the
diffraction of electron waves in light optic. The optical system can be roughly inter-
preted as the objective lens, aperture and the projector lenses. As the electron wave
reaches the image plane, the intensity illuminated by a single electron is measured
at the detector.

The amplitude contrast model in [4] adopts the projection assumption and give
the expression for the intensity Ik(F ) generated by a single electron

Ik(F )(ω, z) =
1

M2
(1− (2π)−2[{PSFimk (ω, ·) ~

ω⊥
R(F re)(ω,−·)}

( z
M

)
+ {PSFrek (ω, ·) ~

ω⊥
R(F im)(ω,−·)}

( z
M

)
]k−1) +O(k−2)

(7)

where z ∈ ω⊥ is the image plane. ~
ω⊥

denote the convolution operator on the

two-dimensional plane ω⊥. M is the magnification of the optical system and PSF
is the point spread function that characterize the optical system. Assume that the
ideal optics and ignore the aperture, i.e. PSFimk ≡ 0 and PSFrek (ω, ·) = δω⊥ in (7),
then the expression reads as

(8) Ik(F )(ω, z) ≈ 1

M2

(
1− (2π)−2R

(
F im

) (
ω,− z

ω

)
k−1

)
Note that one can calculate the Radon transform of the imaginary part of the
scattering potential F im from the right-hand side of (8). Thus, it is reasonable to
modify the image reconstruction methods from X-ray tomography and apply them
to the ET.

2.2. Limited data tomography. As we mentioned in the introduction, some
restrictions in the EM system limit the application of ET in life sciences and result
in the limited data problem explained below.

Irradiated by an electron beam, the specimen gets progressively damaged due to
ionization. So the number of electrons used to irradiate the specimen needs to be
low enough to preserve the structural integrity of the specimen. When the specimen
tilts, electrons pass through longer distance in the specimen, and less electrons can
reach the detector. Hence, the projections detected at high tilt angles have poor
intensity contrast and tilt angles need to be in a limited range. Also in the TEM
system, only a small part of the specimen is subject to electron exposure for one
detection. The region of interest (ROI) is a subset of the intersected part of all
exposed parts of the specimen from different positions. In the ET, ROI is a subset
of the support of the scattering potential. We therefore deal with a local tomography
problem. As a consequence, the scattering potential cannot be uniquely determined
in spite of the quality or quantity of the detected data.

Inverse Problems and Imaging Volume 12, No. 6 (2018), 1343–1364
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2.3. Reduction of artifacts in limited angle tomography. The reconstruction
problem for limited angle tomography is that a portion of the projections Rf at
certain tilt angles is missing. The tilt angles we consider are those in

(9) S2
Φ := {θ ∈ S2 : θ = ±(sinφ cosψ, sinφ sinψ, cosφ), |φ| ≤ Φ, |ψ| ≤ π/2},

and the angular range parameter Φ is assumed to satisfy 0 < Φ < π/2. For each
θ ∈ S2

Φ, the detector plane is the plane θ⊥ through the origin orthogonal to θ, and
we denote the set over which data are taken by T (S2

Φ) where, for S ⊂ S2,

T (S) = {(θ, y) : θ ∈ S, y ∈ θ⊥}.
The single-axis tilt geometry can be described by Euler angles. It has azimuthal

angle being 0◦, in-plane rotation ψ fixed and rotation φ changing between a certain
angle ±Φ. The angular range parameter is described by a subset of S2

Φ with fixed
angle ψ0:

S2
Φ,ψ0

:= {θ ∈ S2 : θ = ±(sinφ cosψ, sinφ sinψ, cosφ), |φ| ≤ Φ, ψ = ψ0}.
To reconstruct images from the limited angle data, we denote the limited angle
Radon transform

(10) RΦ : f � Rf |T (S2
Φ)

and this transform takes data for θ ∈ S2
Φ instead of the data for all θ ∈ S2.

The back-projection (or dual operator) for the limited angle Radon transform is
given by

(11) R∗Φg(x) =

∫
θ∈S2

Φ

g(θ, x− (x · θ)θ)dθ.

Note that x− (x · θ)θ is the orthogonal projection of x onto θ⊥. For single axis tilt,
the integral is over S2

Φ,ψ0
for the appropriate value of ψ0.

In X-ray CT there are usually streak artifacts at the end of the limited angular
range in the reconstructed images. We briefly introduce the strategy we use to re-
duce these artifacts caused by limited angle, and readers can see [5] for details. We
applied this artifact reduction strategy to the iterative reconstruction algorithm in
Sec. 3 although it was originally designed for the filtered back-projection (FBP) al-
gorithm and Lambda tomography. This artifact reduction strategy is to apply more
general weights on the target functional of reconstruction. Define the multiplication
operator K

K :S ′(T (S2))→ S ′(T (S2)), Kg(θ, y) = κ(θ)g(θ, y)

where κ : S2 → R, supp(κ) ⊂ S2
Φ

(12)

where κ is a smooth (i.e. C∞) cutoff function κσ : S2 → R. Then the multiplication
operator

(13) Kσg(θ, y) = κσ(θ)g(θ, y)

Let 0 < σ < Φ/2 and define ϕσ : [−π, π] → [0, 1] to be a π-periodic function

which is given be ϕσ(x) = exp( x2

x2−σ2 ) for |x| ≤ σ and ϕσ(x) = 0 for σ < |x| < π/2.

Then define the cutoff function κσ : S2 → R via

(14) κσ(θ(φ)) =


ϕσ(φ+ (Φ− σ)), φ ∈ [−Φ,−(Φ− σ)],
1, φ ∈ [−(Φ− σ),Φ− σ],
ϕσ(φ− (Φ− σ)), φ ∈ [Φ− σ,−Φ],
0, else,
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where φ ∈ [−π, π). Note that κσ ≡ 1 on S2
Φ−σ and has smooth transition from 1 to

0 in S2
Φ\S2

Φ−σ. There is a trade-off in choosing the parameter σ between the fidelity
of reconstruction and the visibility of streaks. In our applications, we chose σ by
experience.

In the next section, we will combine this artifact reduction strategy with a simul-
taneous reconstruction and segmentation method with the Mumford-Shah model
and get an artifact reduced Mumford-Shah algorithm. The resulting reconstruc-
tions for σ = Φ/4 are show in Fig.3. Here, we can clearly observe the effect of
artifact reduction: While streak artifacts near ±60◦ in (c)+(d) and annular ar-
tifacts in (e)+(f) can be observed, the implementation of the artifact reduction
strategy, using a cutoff κσ in the operator Kσ, smooths some artifacts in (g)+(h)
and (i)+(j).

3. Algorithm description and design methodology. In this section we first
introduce a fast iterative algorithm for calculation of radiological paths. Then we
introduce the Mumford-Shah approach and an alternative minimization algorithm
for the inverse problem in ET. Combine this algorithm with the artifact reduction
strategy we introduced before, we can get an artifact reduced Mumford-Shah al-
gorithm. Finally we translate the proposed algorithm into OpenCL programs and
kernel functions to asynchronously and in parallel update the reconstructed image
along rays by GPUs.

3.1. Fast calculation of radiological paths. Most of the computational demand
is from Radon transform R and its adjoint operator R∗. In limited angle tomogra-
phy, it is RΦ and R∗Φ defined in (10)(11). The discretized form of R and R∗ can
be expressed as

(15) gi =
∑
j

lijfj , and fj =
∑
i

lijgi

where fj is the j-th pixel (or voxel in 3-dimensional) of the linearized image f1...J ,
gi is the i-th component of the measured attenuation rates gi...I , and lij is the
contribution coefficient of the j-th pixel to the attenuation of the i-th measured line.
The coefficient lij equals to the intersection length of the ray with pixel (i, j) [6].
Therefore, the computation of projection and back-projection can be reduced to the
generation of radiological paths lij .

Because of the huge amount of measurements in electron tomography and the
large number of pixels or voxels, it is impossible to store all weighting factors lij
prior to the reconstruction. Hence, the lij need to be calculated on the fly, which
cost most of the computation demand. A fast algorithm to calculate radiological
paths is a necessity to obtain acceptable reconstruction times. Currently, one of
the fastest algorithms designed for this purpose in 2D is the ray-trace algorithm is
SNARK09 programming system [13]. We improved this algorithm in a way that the
time spent in the inner loop is reduced considerably (also see [18]) and extended it
to rays lying in 3D.

The basic idea of the algorithm is to compute li,2, li,3, ..., li,J along a ray itera-
tively when given li,1. In such a way, only addition operations are needed for most
of the coefficients, instead of the time-consuming trigonometric functions. The pro-
cedure calculates the index (ia, ib) of the first intersection pixel and the intersection
length array length. Because the slope of the ray is a constant, the index of the
next pixel intersected by the same ray can be determined according to the current
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intercepts, and the lengths of the ray segments can also be derived from intercepts
by dividing one of the intercepts with the slope. For every iteration, it calculates
the lengths of the ray segments within the current pixel, determine the index of the
next pixel intersected, then calculate the ray intercepts on the next pixel by adding
or subtracting a constant on the current intercepts.

Assume a ray through the reconstruction area is perpendicular to a vector ω,
let ϕ be the angle between the ray and x − axis, then ϕ = arg(ω⊥). Then our
algorithm used for the calculation of radiological paths in 2D is briefly shown in
Algorithm. 1.

input ray in 2D;

Initialize w, ia, ib;

while ((ia,ib) in image) do
if w < 1 then

w = w + cot(ϕ)− 1;

length[ia, ib] = w ∗ L;

length[ia, ib+ 1] = L− length[ia, ib];

ib = ib+ 1;

end

else
w = w − 1;

length[ia, ib] = L;

end

ia = ia+ 1;

end

Algorithm 1: Fast calculation of 2D radiological paths

In Algorithm. 1, the variable ϕ is the angle of inclination and (ia, ib) is the
index of the pixel. As shown in Fig. 1. The variable L is the intersection length
of a ray with two vertical gridlines and w is the proportion between intersection
length of current pixel and L. The calculation of latitude of length[ia+ 1, ib] and
length[ia, ib+ 1] depend on the calculation of length[ia, ib].

Except for one time of multiplication w∗L in each loop, the calculation of the ray
intercepts on the next pixel only include a few addition or subtraction operations
on the current proportion w of current intercepts. At each loop of the algorithm,
the index ia always increases by 1, so the so the maximum time of the iteration is
the number of elements along the larger dimension of the 2D reconstruction grid.

We extend Algorithm. 1 for the calculation of radiological paths in 3D case.
Assume a ray in 3D space has the z − axis as a principal axis (the angle between
the ray and z − axis is smaller than that between other axes). Assume the current
calculation voxel is (ia, ib, ic), then we calculate along the z-axis; i.e., decide which
voxel the ray will pass through and the intersection length with each voxel when
the index ic in z − axis direction increase by 1.

First, we project the ray into zx−plane and zy−plane respectively and turn the
3D radiological path calculation problem into two calculations of 2D radiological
paths for which we already have a solution. Second, we use the Algorithm. 1 to
calculate the proportion wx of the projected ray in zx−plane and wy in zy−plane.
Finally, the process in Algorithm. 2 is used to decide the voxel and calculate the
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(a) (b)

Figure 1. Illustration of the calculation of 2d radiological paths.
The variable ϕ is the angle of inclination and (ia, ib) is the index
of the pixel. The variable L is the intersection length of a ray with
two vertical gridlines and w is the proportion between intersection
length of current pixel and L. The current pixel intercepted by
the ray is (ia, ib). w > 1 in Algorithm. 1 corresponds to the left
figure where the next pixel intercepted by the ray is (ia, ib + 1)
and w < 1 corresponds to the right figure where the next pixel is
(ia, ib + 1). The proportion w is calculated alternatively in Algo-
rithm. 1 including only a few addition or subtraction operations
and w is used to decide whether the next pixel intercepted by the
ray corresponds to the case in the left figure or the right figure.

intersection length. In algorithm. 2, wx and wy are the proportion of the projected
ray in zx − plane and zy − plane respectively shown in Fig. 2. wx and wy are
calculated by algorithm. 1. L′ is the constant length of the ray between the plane
iz = ic and iz = ic + 1. As shown in Fig. 2, the current voxel intercepted by the
ray is (ia, ib, ic). wx < wy in Algorithm. 2 corresponds to case that the next two
voxels intercepted by the ray are (ia + 1, ib, ic) and (ia + 1, ib + 1, ic). wx ≥ wy
corresponds to case that the next two voxels are (ia, ib+1, ic) and (ia+1, ib+1, ic).
wx and wy are used to decide which voxels are intercepted by the ray after the
current voxel (ia, ib, ic). Note that when wy = 1, length[ia+ 1, ib+ 1, ic] = 0 and
voxel (ia+ 1, ib+ 1, ic) is not intersected by the ray. The calculation of radiological
paths of a ray in 3D space is just a combination of Algorithm. 1 and Algorithm. 2.
Also in the 3D case, the ic increase by 1 at each loop, so the maximum time of
the iteration is also the number of elements along the largest dimension of the 3D
reconstruction grid.

3.2. The Mumford-Shah approach. The forward process maps an image into
the set of its line integrals. The mathematical model for X-raying an object is the
Radon transform R defined in (3). Suppose g = Rf† as the measured projection
data of the true density f† of the object. To find an image f such that Rf = g is

Inverse Problems and Imaging Volume 12, No. 6 (2018), 1343–1364
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input wx, wy;

while ((ia,ib,ic) in image) do
wx = min(wx, 1);

wy = min(wy, 1);

if wx < wy then
length[ia, ib, ic] = wx ∗ L′;
length[ia+ 1, ib, ic] = (wy − wx) ∗ L′;
length[ia+ 1, ib+ 1, ic] = L′ − wy ∗ L′;

end

else
length[ia, ib, ic] = wy ∗ L′;
length[ia, ib+ 1, ic] = (wx − wy) ∗ L′;
length[ia+ 1, ib+ 1, ic] = L′ − wx ∗ L′;

end

ic = ic+ 1;

end

Algorithm 2: Fast calculation of 3D radiological paths

the purpose of solving the inverse problem. In ET, f† is referred to as the imaginary
part F im of scattering potential in (8).

A simultaneous reconstruction and segmentation can be formulated as finding
an image f and a meaningful decomposition

Ω = R1 ∪R2 ∪ ... ∪Rl ∪K(16)

of the image domain Ω, where Ri ⊂ Ω are disjoint connected open subsets, K is the
union of the boundaries of Ri in Ω. The image f is an approximation to the true
image f† such that

• f varies smoothly and/or slowly within each Ri, and
• f varies discontinuously and/or rapidly across K

In this work, we focus on the pair (f,K) in 3D. We minimize the following
Mumford-Shah type functional to obtain (f,K) [21]

MS(f,K) :=

∫
Θ

|Rf − g|2dθds

+ α

∫
Ω\K
|∇f |2dx+ β area(K),

(17)

where Ω ⊂ R3 is the image domain, Θ ⊂ T (S2) parameterizes the set of all lines
passing through Ω, f ∈ Ω is a piecewise smooth image, K ∈ Ω are the edges, and
α, β ∈ R+. The integration variables in the first term are θ ∈ S2 and s ∈ R2. Here
∇f = (∂f∂x ,

∂f
∂y ,

∂f
∂z ) is the gradient of f . The objective functional MS(f,K) contains

three terms: a least squares term that force f to match the measured projection g;
a L2-penalty term for the ∇f that force f to be smooth everywhere in Ω except at
the edges K; and a penalty of K’s area that force the edges K to be “small”.

Several issues arise when applying the Mumford-Shah regularization to practical
applications. The primary difficulty is how to represent the edge set K in computer
code and to trace its updates. We follow the approach in [1], where the edges are
approximated by smooth edge indicator functions and the Mumford-Shah penalty
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Figure 2. Illustration of the calculation of 3d radiological paths.
wx and wy are the proportion of the projected ray in zx−plane and
zy− plane respectively. wx and wy are calculated by algorithm. 1.
L′ is the constant length of the ray between the plane iz = ic and
iz = ic+ 1. The current voxel intercepted by the ray is (ia, ib, ic).
wx < wy in Algorithm. 2 corresponds to case that the next two
voxels intercepted by the ray are (ia + 1, ib, ic) and (ia + 1, ib +
1, ic). wx ≥ wy corresponds to case that the next two voxels are
(ia, ib+ 1, ic) and (ia+ 1, ib+ 1, ic). wx and wy are used to decide
which voxels are intercepted by the ray after the current voxel
(ia, ib, ic).

is modified with Γ-approximation. We minimize the functional

ATε(f, v) =

∫
Θ

|R(f)− g|2dθds+ α

∫
Ω

v2|∇f |2dx

+ β

∫
Ω

(ε|∇v|2 +
(1− v)2

4ε
)dx,

(18)

for a small constant ε > 0.
Here, f is still the image. v is an image, defined on the interval [0,1], and

indicates the edge set K. The heuristic idea is that if v ≈ 0 the gradient of f is only
penalized a little but the last term is big. If v ≈ 1 the last term nearly vanishes but
the gradient of f is fully taken into account. Therefore v ≈ 0 represent the presence
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and v ≈ 1 the absence of an edge. The pair (f, v) is a solution to the simultaneous
reconstruction and segmentation problem.

The convergence of the approximation in (18) to the original Mumford-Shah
formulation in (17) in terms of Γ-convergence as ε → 0 has been established when
R is the identity operator in [1] and when R is more general forward operators,
including the Radon transform, in [10]. Hence, a minimizer ATε is an approximated
minimizer of MS(f,K) when ε→ 0.

In order to combine ATε in (18) with artifact reduction strategy in section 2.3,
we modify the ATε into ATε,σ defined in (19) .

ATε,σ(f, v) =

∫
Θ

|Kσ(RΦ(f)− g)|2dθdy + α

∫
Ω

v2|∇f |2dx

+ β

∫
Ω

(ε|∇v|2 +
(1− v)2

4ε
)dx,

(19)

where the RΦ is limited angle Radon transform defined in (9), and the cutoff op-
erator Kσ defined in (13) is applied to both the Radon transform of f and the
projection data g. A minimizer of the modified Mumford-Shah functional can be
a solution with resistance to the streak artifacts caused by the limited angle prob-
lem. For the minimization of the Mumford-Shah functional we briefly describe the
following algorithm from [10].

Our model in (18) derived from Ambrosio-Tortorelli approach in [1] seems quite
similar to Modica-Mortola phase transition model [20] because both can be formu-
lated with the Mumford-Shah functional and computed by its Γ-approximations.
Both Γ-approximations of Modica-Mortola and Ambrosio-Tortorelli provide two
practical approaches for image segmentation. However, there are two major differ-
ences:

• From the general perspective of pattern recognition, image segmentation is a
clustering problem. One fundamental and difficult issue in this regard is if the
number of clusters or classes is known before hand [34] [3]. The methods in
the [11] and [16] assume that the number of segmentations, i.e., the number N
of phase levels, is a priori known. The Multiphase-field formulation in [16] also
requires the number N of phase levels to be known in advance. On the other
hand, the Γ-approximation of the edge term in our paper does not require the
number of segmentations known a priori.

• Although the double-well term v2(1−v)2/ε in Modica-Mortola model and one
part (1− v)2/ε in (18) look similar, they are proposed for different purposes.
The double-well term is used for modeling two mixtures components and has
to be modified for multiphase-field [16]. The term (1−v)2/ε in (18) is selected
from a family of Γ-approximations by Ambrosio-Tortorellis results, simply
because it is easy for computation.

When the number of segmentations is known beforehand, the Modica-Mortola
version should be applied. Otherwise, the Ambrosio-Tortorelli version is recom-
mended.

3.3. Iterative algorithm. We introduce an alternating minimization scheme de-
scribed in Algorithm 3 to compute a minimizer of ATε,σ(f, v). Algorithm 3 is
a block coordinate gradient descent (CGD) instance alternatively for f and v. In
the first subroutine we keep the edge variable v fixed and minimize ATε,σ(f, v) in
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f , then f is fixed and v is minimized in the second subroutine. This procedure is
repeated for a number of iterations and a minimizer of ATε,σ(f, v) can be found.

Initial values can be chosen as the zero image and no edges inside the image, i.e.
the edge-set is set to 1. in our applications, the initial image is the reconstructed
image from WBP method to reduce the iteration time.

The functional ATε,σ(f, v) is convex in f and v separately although it is not
jointly convex. Therefore, in each of the subroutines, we use an iterative gradient
descent methods of the form

φi+1 = φi + cid
i,(20)

where φ is either f or v, depending on which variable we are minimising in the
subroutine, d is an appropriate descent direction and c is the step size. Either the
variation ∇fATε,σ or ∇vATε,σ is the descent direction d in a subroutine.

The variations of ATε with respect to (f, v) are

∇fATε,σ(f, v) = 2R∗Φ(Kσ(RΦ(f)− g))− 2α div
(
v2∇f

)
,(21)

∇vATε,σ(f, v) = 2α|∇f |2v +
β

2ε
(v − 1)− 2βε∆v,(22)

where R∗Φ is the adjoint operator of the limited angle Radon transform defined in

(11), ∆v = ∂2v
∂x2 + ∂2v

∂y2 + ∂2v
∂z2 and div(F ) = ∂Fx

∂x +
∂Fy

∂y + ∂Fz

∂z , for F = (Fx, Fy, Fz).

The Algorithm 3 used to minimize ATε,σ(f, v) is composed of two subroutines.
The first subroutine shown in Algorithm 4 minimizes ATε,σ(f, v) in the image vari-
able. The second subroutine shown in Algorithm 5 minimizes ATε,σ(f, v) in the
edge variable. We use the projected steepest descent method in both subroutines.

f0 = 0 or a-priori image;

v0 = 1;

for i = 0 to IterationsAlt − 1 do
f i+1 = arg minf (ATε,σ(f ,vi)) with f i as initial value;

vi+1 = arg minv(ATε,σ(f i+1,v)) with vi as initial value;

end

Algorithm 3: Alternate Minimization of ATR,ε(f ,v)

f0 = current image;

v = current edge;

d0 = R∗(Kσ(g)−RΦ(f0)) + αdiv(v2∇f0) ;

p1 = d0;

for i = 1 to Iterationsimage − 1 do
ci1 = 〈pi,di−1〉L2/(‖RΦ(pi)|2L2 + ‖v2∇pi‖2L2);

f i = f i−1 + ci1d
i;

di = R∗
Φ(Kσ(g −RΦ(f i))) + αdiv(v2∇f i) ;

pi+1 = di;

end

Algorithm 4: Image Minimization with Steepest Descent Method

There are a number of convergence results for the general coordinate descent
(CD) method for convex objective functions, but one cannot expect a general con-
vergence result for a non-convex case [3] [35]. For non-convex objective functions,
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f = current image;

v0 = current edge;

for i = 0 to Iterationsedge − 1 do

di = −α|∇f |2vi − β
4ε

(vi − 1) + βε∆vi ;

ci = ‖di‖2L2/(α‖|∇f |2di
2‖L2 + βε‖∇di‖2L2 + β

4ε
‖di‖2L2);

vi+1 = vi + cidi;

vi+1 = max(0,min(1,vi+1));

end

Algorithm 5: Edge Minimization with Steepest Descent Method

the work of [3] [2] shows that inexact search (i.e., finding inexact minimum in each
coordinate descent step) does not only guarantee the convergence for non-convex
functions, but also can help resolve the failure of CD method with exact search
for Powell’s counterexample. Because our final objective functional in (18) is not
jointly convex in f and v, we choose an inexact gradient descent approach rather
than solving each step using closed form solution.

Although the coordinate descent algorithm with inexact search in [3] [2] con-
verges, it still uses a line search along the descent direction in each step, i.e., the
Armijo line search, to ensure sufficient decrease at each step. However, such a line
search is impractical for large scale problems such as our case [3].

Another reason for us to choose the current the CGD algorithm is because our
next implementation is with FPGA, despite there is no convergence results when
the objective functional is non-convex. The current steepest descent is not only
used to demonstrate the feasibility of a Mumford-Shah functional for limited angle
tomography, but also is an economical choice for our later FPGA implementation
in terms of algorithmic complexity, onboard memory and communication costs. A
closed form solution for the v-step seems attractive, but it needs more memory and
will increase communication cost from FPGA to CPU/RAM. We have encountered
the same issue for our other imaging applications, where problems of the same image
size can be solved with closed form in the Fourier domain.

3.4. OpenCL implementation. In order to accelerate the artifact reduced
Mumford-Shah algorithm proposed in Sec. 2.3, we translated the algorithm into
OpenCL programs and kernel functions that the GPUs will execute.

In OpenCL, a program is executed on a computational device, which can be a
CPU, GPU, or another accelerator [32]. OpenCL’s key programming includes the
steps below. First, create a context bundled with one or more devices. Second,
transmit the source code into OpenCL compilation functions and obtain handles
for the kernel functions. Finally, the kernels can then be launched on devices within
the Open CL context. OpenCL host-device memory I/O operations and kernels are
executed by enqueuing them into one of the command queues associated with the
target device.

For the artifact reduced Mumford-Shah algorithm, the image minimization and
edge minimization can be implied along each ray. Loop the rays in Radon trans-
formation and calculate the steepest descent and update the data in reconstructed
image or edge set along a ray.

We accelerate the algorithm by replacing this loop of rays with the OpenCL
dispatcher. Then the OpenCL kernel becomes the calculation of steepest descent
and the update of data in reconstructed image along a ray. We set the OpenCL
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global work-group size to the total number of rays i.e., number of detectors × number
of angles. Each work-item that OpenCL dispatches is responsible for the calculation
and update along several rays using the kernel. Each OpenCL work-item determines
its ray indexes from its global work-item index. Thus, the reconstructed image and
edge are updated asynchronously and in parallel.

The strategy to select rays in each OpenCL work-item determine the order of
rays picked for the reconstruction. In our applications, we chose one ray of each
four rays along the detector axis in one projection as a work-item. Thus the rays in
one work-item is far enough from each other and can not intersect the same voxel.
The dispatcher in work-item is data-parallel and can be computed independently.
Although there are output conflicts among different work-groups, it does not affect
the reconstruction procedure in our applications. With our strategy for the OpenCL
dispatcher, the global work-group size is the total number of rays, the local work-
group size can be some multiple of the hardware single-instruction multiple-data
(SIMD) [22] width as the maximum.

4. Applications. In this section, we test the artifact reduced Mumford-Shah al-
gorithm in three examples. For the first example we test the results of the artifact
reduction strategy in Sec 2.3. For the second example, we reconstruct the images
and segmentations from noisy simulated data. In the last example, the algorithm
is applied to cryo-electron tomography.

4.1. Reconstructions with the alternating minimization algorithm and
artifact reduction strategy. We reconstructed the 3D Shepp-Logan phantom
using the artifact reduced Mumford-Shah algorithm described in Algorithm 3 and
compared the effects of the artifact reduction strategy in Sec. 2.3. Slices of the
original phantom, reconstructed image and segmentations are shown in Fig.3. The
tilt angular range is −60◦ ∼ 60◦ and the size of Shepp-Logan phantom is 300×300×
300. Fig.3(a)(b) are slices of original phantom. (a) corresponds to the red line in (b)
and (b) to the red line in (a). Euler angles is used to generate projections: rotation
φ changes between −60◦ and 60◦ at 1◦ intervals for each measurement, azimuthal
angle θ is fixed at 0◦ and in-plane rotation ψ at 165◦. (c)+(d) and (e)+(f) show
the reconstruction image and segmentations without the artifact reduction strategy
and (g)+(h) and (i)+(j), with a cutoff κσ in the operator Kσ defined in (14). We
chose the parameter σ = Φ/4. While streak artifacts near ±60◦ in (c)+(d) and
also streak artifacts in (e)+(f) can be observed, the implementation of the artifact
reduction strategy smooth some artifacts in (g)+(h) and (i)+(j).

4.2. Reconstructions from the simulated data. The artifact reduced
Mumford-Shah algorithm is applied to simulated ET data. The projection data
is from noisy data Rf† + δN(0, 1), where f† represents the 300× 300× 300 Shepp-
Logan phantom and N(0, 1) represents standard normal distribution. The recon-
structions are displayed for δ = 1, 2, 3, 4, 5. The rotating axis and tilt angles is same
as that in Sec.4.1: rotation φ changes between −60◦ and 60◦ at 1◦ intervals for each
measurement, azimuthal angle θ is fixed at 0◦ and in-plane rotation ψ at 165◦.

In order to simulate the alignment in ET, we inserted several golden particles in
the phantom and add position disturbances on the projection data. The alignment
of projection data was done by TOM software toolbox [23]. After alignment, we
reconstructed separately with our artifact reduced Mumford-Shah algorithm and
WBP method in TOM software toolbox. Reconstruction results are shown in Fig.4.

Inverse Problems and Imaging Volume 12, No. 6 (2018), 1343–1364



1358 Li Shen, Eric Todd Quinto, Shiqiang Wang and Ming Jiang

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 3. Reconstructions of 3D Shepp-Logan phantom using the
alternating minimization scheme described in Algorithm 3 and ar-
tifact reduction strategy in Sec. 2.3. The size of Shepp-Logan phan-
tom is 300× 300× 300 and two slices are shown in (a) (e). (a)(b)
are slices of original phantom. (a) corresponds to the red line in
(b) and (b) to the red line in (a). Euler angles are used to generate
projections: rotation φ changes between −60◦ and 60◦ at 1◦ in-
tervals for each measurement, azimuthal angle θ is fixed at 0◦ and
in-plane rotation ψ at 165◦. (c)+(d) and (e)+(f) show the recon-
struction image and segmentations without the artifact reduction
strategy and (g)+(h) and (i)+(j), with a cutoff κσ in the operator
Kσ defined in (14). We chose the parameter σ = Φ/4. While streak
artifacts near ±60◦ in (c)+(d) and streak artifacts in (e)+(f) can
be observed, the implementation of the artifact reduction strategy
smooths some artifacts in (g)+(h) and (i)+(j).

For stronger noise, it is more difficult to reconstruct the low contrast regions for
both methods. From the comparison between the left and right column, we can
see that our reconstruction method with Mumford -Shah functional can depress
the noise compared to WBP method while the edges are preserved. If an edge is
detected in v, the reconstruction fMS has a sharp edge.
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(a) MS δ = 1 (b) MS δ = 1 (c) WBP δ = 1

(d) MS δ = 1 (e) MS δ = 1 (f) WBP δ = 1

(g) MS δ = 3 (h) MS δ = 3 (i) WBP δ = 3

(j) MS δ = 3 (k) MS δ = 3 (l) WBP δ = 3

4.3. Applications on cryo-electron tomography. We applied both our method
and WBP method to the cryo-electron tomography. Animals were approved by the
Institutional Animal Care and Use Committee of Peking University (accredited by
Association for Assessment and Accreditation of Laboratory Animal Care Interna-
tional). Single ventricular myocytes were enzymatically isolated from the hearts
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(m) MS δ = 5 (n) MS δ = 5 (o) WBP δ = 5

(p) MS δ = 5 (q) MS δ = 5 (e) WBP δ = 5

Figure 4. Reconstructions and segmentations of the Shepp-Logan
phantom f† from noisy Radon data. Left column: reconstruction
fMS from noisy data Rf† + δN(0, 1) using the artifact reduced
Mumford-Shah algorithm (α = 2, β = 0.0002, ε = 0.0001 ); middle
column: The reconstructed edge indicator function v; right col-
umn: reconstructions from same noisy data using WBP method in
TOM software toolbox. For stronger noise it is more difficult to
reconstruct the low contrast regions for both methods. From the
comparison between the left and right column, we can see that our
reconstruction method with Mumford -Shah functional can depress
the noise compared to WBP method while the edges are preserved.
If an edge is detected in v, the reconstruction fMS has a sharp
edge.

of adult male Sprague-Dawley rats (200-250 g) [30] [9]. We use a FEI tecani 20
TEM and single-axis tilt geometry to detect the cryo-specimen. Measurements are
equally spaced between −60◦ ∼ 60◦ at 1◦ intervals for 121 angles. We adopt the
TOM toolbox in [23] to align the projection data and use the WBP method in it
to reconstruct the structure. Two slices of the reconstructed results are shown in
Fig.5. The images in the red block are zoomed in and put in the top right corner.
Compared to the reconstructions with WBP method, the noise and artifacts in our
reconstructions are reduced with our method while the edges are preserved and
enhanced.

We adopted the method in [14] to analyze the resolution of cryo-specimen recon-
struction. The resolution maps are shown in Fig.6. The input map has the voxel
size of 4.60Å. The density maps and resolution maps are shown in Fig.6. The mean
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(a) MS slice=175 (b) MS slice=175 (c) WBP slice=175

(h) MS slice=195 (i) MS slice=195 (j) WBP slice=195

Figure 5. Reconstructions of cryo-specimen using the alternating
minimization scheme described in Algorithm 3 and artifact reduc-
tion strategy in Sec. 2.3. Left column is the reconstructed images,
the middle column is the edge sets with our algorithm, and the
right column is the reconstructed images with WBP algorithm in
TOM toolbox. The images in the red block are zoomed in and
put in the top right corner. The edges in the middle column are
enhanced in the left column compared to the WBP reconstructions
in the right column. Compared to the results of WBP in right col-
umn, the results in the left show the effect of noise reduction while
the edges are preserved.

resolution of the reconstructed images with WBP method is 17.17Å while the mean
resolution of the artifact reduced Mumford-Shah algorithm is 15.07Å.

5. Conclusion. We have combined the artifact reduction strategy in [5] and the
reconstruction algorithm with the Mumford-Shah functional in [10]. The application
of this method on both simulated data and cryo-specimen data shows that, for
ET data, this reconstruction method can reduce the noise and artifacts caused by
limited data problem while the edges in the reconstructed image is preserved and
enhanced.
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