
SIAM J. IMAGING SCIENCES c\bigcirc 2018 Society for Industrial and Applied Mathematics
Vol. 11, No. 4, pp. 2786--2814

Analyzing Reconstruction Artifacts from Arbitrary Incomplete X-ray CT Data\ast 

Leise Borg\dagger , J\"urgen Frikel\ddagger , Jakob Sauer J{\e}rgensen\S , and Eric Todd Quinto\P 

Abstract. This article provides a mathematical analysis of singular (nonsmooth) artifacts added to reconstruc-
tions by filtered backprojection (FBP) type algorithms for X-ray computed tomography (CT) with
arbitrary incomplete data. We prove that these singular artifacts arise from points at the boundary
of the data set. Our results show that, depending on the geometry of this boundary, two types of
artifacts can arise: object-dependent and object-independent artifacts. Object-dependent artifacts
are generated by singularities of the object being scanned, and these artifacts can extend along lines.
They generalize the streak artifacts observed in limited-angle tomography. Object-independent arti-
facts, on the other hand, are essentially independent of the object and take one of two forms: streaks
on lines if the boundary of the data set is not smooth at a point and curved artifacts if the boundary
is smooth locally. We prove that these streak and curve artifacts are the only singular artifacts that
can occur for FBP in the continuous case. In addition to the geometric description of artifacts, the
article provides characterizations of their strength in Sobolev scale in certain cases. The results of
this article apply to the well-known incomplete data problems, including limited-angle and region-
of-interest tomography, as well as to unconventional X-ray CT imaging setups that arise in new
practical applications. Reconstructions from simulated and real data are analyzed to illustrate our
theorems, including the reconstruction that motivated this work---a synchrotron data set in which
artifacts appear on lines that have no relation to the object.
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1. Introduction. Over the past decades, computed tomography (CT) has established it-
self as a standard imaging technique in many areas, including materials science and medical
imaging. One collects X-ray measurements from many different directions (lines) that are dis-
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Figure 1. Left: A small part of the sinogram of the chalk sample analyzed in section 7. Notice that the
boundary of the data set in this enlargement is jagged. Right: Small central section of a reconstruction of the
chalk. Notice the streak artifacts over lines in the reconstruction. Monochromatic parallel beam data were taken
of the entire cross section of the chalk over 1,800 views covering 180 degrees, and there were 2,048 \times 2,048
detector elements with a 0.5 mm field of view, providing micrometer resolution of the sample. Data [59] obtained,
with thanks to the Japan Synchrotron Radiation Research Institute from beam time on beamline BL20XU of
SPring-8 (Proposal 2015A1147). For more details, see section 7 and [6, c\bigcirc IOP Publishing. Reproduced by per-
mission of IOP Publishing. All rights reserved.]

tributed all around the object. Then, one reconstructs a picture of the interior of the object
using an appropriate mathematical algorithm. In classical tomographic imaging setups, this
procedure works very well because the data can be collected all around the object, i.e., the
data are complete, and standard reconstruction algorithms, such as filtered backprojection
(FBP), provide accurate reconstructions [34, 43]. However, in many CT problems, some data
are not available, and this leads to incomplete (or limited) data sets. The reasons for data
incompleteness might be patient related (e.g., to decrease dose) or practical (e.g., when the
scanner cannot image all of the object, as in digital breast tomosynthesis).

Classical incomplete data problems have been studied from the beginning of tomography,
including limited-angle tomography, where the data can be collected only from certain view-
angles [25, 31]; interior or region-of-interest (ROI) tomography, where the X-ray measurements
are available only over lines intersecting a subregion of the object [13, 26, 51]; and exterior
tomography, where measurements are available only over all lines outside a subregion [33, 48].

In addition, new scanning methods generate novel data sets, such as the synchrotron
experiment [6, 7] in section 7 that motivated this research. That reconstruction, in Figure
1, includes dramatic streaks that are independent of the object and were not described in
the mathematical theory at that time but are explained by our main theorems. A thorough
practical investigation of this particular problem was recently presented in [6].

Regardless of the type of data incompleteness, in most practical CT problems a variant
of FBP is used on the incomplete data to produce reconstructions [43]. It is well known
that incomplete data reconstruction problems that do not incorporate a priori information
(as is the case in all FBP type reconstructions) are severely ill-posed (see, e.g., [32] or [35,
section 6] for limited-angle CT). Consequently, certain image features cannot be reconstructed
reliably [47], and, in general, artifacts such as the limited-angle streaks in Figure 2 in section
4 can occur. Therefore, reconstruction quality suffers considerably, and this complicates the
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proper interpretation of images.
We consider the continuous case, so that we do not evaluate discretization errors. By

artifacts we mean nonsmooth image features (singularities), such as streaks, that are added
to the reconstruction by the algorithm and are not part of the original object (see Definition
3.3).

1.1. Related research in the mathematical literature. Our work is based on microlocal
analysis, a deep theory that describes how singularities are transformed by Fourier integral
operators (FIOs), such as the X-ray transform. Early articles using microlocal analysis in
tomography include [41], which considers nonlinear artifacts in X-ray CT; [47], which charac-
terizes visible and invisible singularities from X-ray CT data; [19], which provided a general
microlocal framework for admissible complexes; and [29], which considers general measures
on lines in R2. Subsequently, artifacts were extensively studied in the context of limited-angle
tomography in, e.g., [25] and then [16]. The strength of added artifacts in limited-angle to-
mography was analyzed in [36]. Similar characterizations of artifacts in limited-angle type
reconstructions have also been derived for the generalized Radon line and hyperplane trans-
forms as well as for other Radon transforms (such as circular and spherical Radon transforms);
see [1, 17, 18, 37, 38].

Metal in objects can corrupt CT data and create dramatic streak artifacts [4]. This
can be dealt with as an incomplete data problem by excluding data over lines through the
metal. Recently, this problem has been mathematically modeled in a sophisticated way using
microlocal analysis in [40, 44, 52]. A related problem is studied in [9, 39, 42], where the
authors develop a streak reduction method for quantitative susceptibility mapping. Moreover,
microlocal analysis has been used to analyze properties of related integral transforms in pure
and applied settings [5, 14, 19, 50, 55].

1.2. Basic mathematical setup and our results. We use microlocal analysis to present a
unified approach for analyzing reconstruction artifacts for arbitrary incomplete X-ray CT data
that are caused by the choice of data set. We not only consider all of the above mentioned
classical incomplete data problems but also emerging imaging situations with incomplete data.
We provide a geometric characterization of the artifacts, and we prove that it describes all
singular artifacts that can occur for FBP type algorithms in the continuous case.

If f is the density of the object to be reconstructed, then each CT measurement is modeled
by a line integral of f over a line in the data set. As we will describe in section 2.1, we
parameterize lines by (\theta , p) \in S1 \times R, and the CT measurement of f over the line L(\theta , p) is
denoted by Rf(\theta , p). With complete data, where Rf(\theta , p) is given over all (\theta , p) \in S1 \times R,
accurate reconstructions can be produced by the FBP algorithm. In incomplete data CT
problems, the data are taken over lines L(\theta , p) for (\theta , p) in a proper subset, A, of S1\times R, and,
even though FBP is designed for complete data, it is still one of the preferred reconstruction
methods in practice; see [43]. As a result, incomplete data CT reconstructions usually suffer
from artifacts.

We prove that incomplete data artifacts arise from points at the boundary or ``edge"" of
the data set, bd(A), and we show that there are two types of artifacts: object-dependent and
object-independent artifacts. The object-dependent artifacts are caused by singularities of the
object being scanned. In this case, artifacts can appear all along a line L(\theta 0, p0) (i.e., a streak)
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if (\theta 0, p0) \in bd(A) and if there is a singularity of the object on the line (such as a jump or
object boundary tangent to the line)---this singularity of the object ``generates"" the artifact
(see Theorem 3.7A.). The streak artifacts observed in limited-angle tomography are special
cases of this type of artifact.

The object-independent artifacts are essentially independent of the object being scanned
(they depend primarily on the geometry of bd(A)), and they can appear either on lines or
on curves. If the boundary of A is smooth near a point (\theta 0, p0) \in bd(A), then we prove
that artifacts can appear in the reconstruction along curves generated by bd(A) near (\theta 0, p0),
and they can occur whether the object being scanned has singularities or not (see Theorem
3.5B(3). We also prove that if bd(A) is not smooth (see Definition 3.2) at a point (\theta 0, p0), then,
essentially independently of the object, an artifact line can be generated all along L(\theta 0, p0)
(see Theorem 3.7C.).

We will illustrate our results with reconstructions for classical problems including limited-
angle tomography and ROI tomography, as well as problems with novel data sets, including
the synchrotron data set in Figure 1. In addition, we provide estimates of the strength of the
artifacts in Sobolev scale.

To the best of our knowledge, the mathematical literature up until now used microlocal
and functional analysis to explain streak artifacts on lines that are generated by singularities
of the object, and they exclusively focused on specific problems, primarily limited-angle to-
mography (see, e.g., [16, 25, 36]). Important work was done to analyze visible singularities
for ROI (or local) tomography (see, e.g., [13, 26, 29, 47, 51]). However, we are not aware of
any reference where a microlocal explanation for the ring artifact in ROI CT was provided,
although researchers are well aware of the ring itself (see, e.g., [8, 11]). We are also not aware
of microlocal analyses of more general imaging setups, such as the nonstandard one presented
in Figure 1.

1.3. Organization of the article. In section 2, we provide notation and some of the basic
ideas about wavefront sets. In section 3, we give our main theoretical results, and in section 4,
we apply them to explain added artifacts in reconstructions from classical and novel limited
data sets. In section 5, we describe the strength of added artifacts in Sobolev scale. Then, in
section 6, we describe a simple, known method to decrease the added artifacts and provide a
reconstruction and theorem to justify the method. We provide more details of the synchrotron
experiment in section 7 and observations and generalizations in section 8. Finally, in Appendix
A, we give some technical theorems and then prove the main theorems.

2. Mathematical basis. Much of our theory can be made rigorous for distributions of
compact support (see [15, 53] for an overview of distributions), but we will consider only
Lebesgue measurable functions. This setup is realistic in practice, and our theorems are
simpler in this case than for general distributions. Remark A.4 provides perspective on this.

The set L2(D) is the set of square-integrable functions on the closed unit disk D =\bigl\{ 
x \in R2 : \| x\| \leq 1

\bigr\} 
. The set L2

\mathrm{l}\mathrm{o}\mathrm{c}(R2) is the set of locally square-integrable functions---
functions that are square-integrable over every compact subset of R2. We define L2

\mathrm{l}\mathrm{o}\mathrm{c}(S
1 \times R)

in a similar way, where S1 is the circle of unit vectors in R2.
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2.1. Notation. Let (\theta , p) \in S1 \times R; then the line perpendicular to \theta and containing p\theta is
denoted by

(2.1) L(\theta , p) =
\bigl\{ 
x \in R2 : x \cdot \theta = p

\bigr\} 
.

Note that L(\theta , p) = L( - \theta , - p). For \theta \in S1, let \theta \bot be the unit vector \pi /2 radians counter-
clockwise from \theta . We define the X-ray transform or Radon line transform of f \in L2(D) to be
the integral of f over L(\theta , p):

(2.2) Rf(\theta , p) =

\int \infty 

 - \infty 
f(p\theta + t\theta \bot ) dt.

The symmetry of our parameterization of lines gives the symmetry condition

(2.3) Rf(\theta , p) = Rf( - \theta , - p).

For functions g on S1 \times R, the dual Radon transform or backprojection operator is defined as

(2.4) R\ast g(x) =

\int 
S1

g(\theta , x \cdot \theta ) d\theta .

When visualizing functions on S1 \times R, we will use the natural identification

(2.5) R2 \ni (\varphi , p) \mapsto \rightarrow (\theta (\varphi ), p) \in S1 \times R, where \theta (\varphi ) := (cos(\varphi ), sin(\varphi )) \in S1,

and for functions g on S1 \times R the identification

(2.6) \widetilde g(\varphi , p) = g(\theta (\varphi ), p) for (\varphi , p) \in R2.

The sinogram of a function g(\theta , p) is a grayscale picture on [0, \pi ] \times R or [0, 2\pi ] \times R of the
mapping (\varphi , p) \mapsto \rightarrow \widetilde g(\varphi , p).

2.2. Wavefront sets. In this section, we define some important concepts needed to de-
scribe singularities in general. Sources, such as [15], provide introductions to microlocal
analysis. Generally cotangent spaces are used to describe microlocal ideas, but they would
complicate this exposition, so we will identify a covector (x, \xi dx) with the associated ordered
pair of vectors (x, \xi ). The book chapter [27] provides some basic microlocal ideas and a more
elementary exposition adapted for tomography.

The concept of the wavefront set is a central notion of microlocal analysis. It defines sin-
gularities of functions in a way that simultaneously provides information about their location
and direction. We will employ this concept to define (singular) artifacts precisely, and we will
use the powerful theory of microlocal analysis to analyze artifacts generated in incomplete
data reconstructions in tomography.

In what follows, by a cutoff function at x0 \in R2 we will denote a C\infty -function of compact
support that is nonzero at x0. We now define singularities and the wavefront set.



ARTIFACTS FROM ARBITRARY INCOMPLETE CT DATA 2791

Definition 2.1 (wavefront set [15, 56]). Let x0 \in R2, \xi 0 \in R2 \setminus 0, and f \in L2
loc(R2). We

say f is smooth at x0 in direction \xi 0 if there are a cutoff function \psi at x0 and an open cone
V containing \xi 0 such that the Fourier transform \scrF (\psi f)(\xi ) is rapidly decaying at infinity for
\xi \in V .1

We say f has a singularity at x0 in direction \xi 0, or a singularity at (x0, \xi 0), if f is not
smooth at x0 in direction \xi 0. We say that f has a singularity at x0 if f is not smooth at x0
in some direction.

The wavefront set of f , WF(f), is defined as the set of all singularities (x0, \xi 0) of f .

For (x0, \xi 0) \in WF(f), the first entry x0 will be called the base point of (x0, \xi 0). Hence, the
base point of a singularity gives the location where the function f is singular (not smooth) in
some direction. If we say f has a singularity at x0, we mean x0 is the base point of an element
of WF(f).

As an example, let B be a subset of the plane with a smooth boundary and let f be equal
to 1 on B and 0 off of B. Then, WF(f) is the set of all points (x, \xi ) where the base points
x are on the boundary of B and \xi is normal to the boundary of B at x. In this case, f has
singularities at all points of bd(B).

Remark 2.2 (wavefront set for functions defined on S1\times R). The notion of a singularity and
the wavefront set can also be defined for functions g \in L2

\mathrm{l}\mathrm{o}\mathrm{c}(S
1 \times R) using the identification

(2.6).
In order to define WF(g), let \widetilde g denote the locally square-integrable function on R2 defined

by (2.6). Let (\theta , p) \in S1 \times R and \varphi \in R with \theta = \theta (\varphi ). Let \eta \in R2 \setminus 0. Then, we say that
g has a singularity at ((\theta , p), \eta ) if \widetilde g has a singularity at ((\varphi , p), \eta ), i.e., ((\theta , p), \eta ) \in WF(g) if
((\varphi , p), \eta ) \in WF(\widetilde g). In that case, the base point of a singularity of g is of the form (\theta , p).

Note that the wavefront set is well-defined for functions on S1\times R as both \widetilde g and \varphi \mapsto \rightarrow \theta (\varphi )
are 2\pi -periodic in \varphi .

Definition 2.3. Let (\theta , p) \in S1 \times R. The normal space of the line L(\theta , p) is

(2.7) N(L(\theta , p)) = \{ (x, \omega \theta ) : x \in L(\theta , p), \omega \in R\} .

For f \in L2
loc(R2), the set of singularities of f normal to L(\theta , p) is

(2.8) WFL(\theta ,p)(f) = WF(f) \cap N(L(\theta , p)).

If WFL(\theta ,p)(f) \not = \emptyset , then we say f has a singularity (or singularities) normal to L(\theta , p).
If WFL(\theta ,p)(f) = \emptyset , then we say f is smooth normal to the line L(\theta , p).
For x0 \in R2, we let

WFx0(f) = WF(f) \cap 
\bigl( 
\{ x0\} \times R2

\bigr) 
.

For g \in L2
loc(S

1 \times R), we define

(2.9) WF(\theta ,p)(g) = WF(g) \cap 
\bigl( 
\{ (\theta , p)\} \times R2

\bigr) 
.

1That is, for every k \in N, there is a constant Ck > 0 such that | \scrF (\psi f)(\xi )| \leq Ck/(1 + \| \xi \| )k for all \xi \in V .
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It is important to understand each set introduced in Definition 2.3: N(L(\theta , p)) is the set
of all (x, \xi ) such that x \in L(\theta , p), and the vector \xi is normal to L(\theta , p) at x. Therefore,
WFL(\theta ,p)(f) is the set of wavefront directions (x, \xi ) \in WF(f) with x \in L(\theta , p) and \xi normal
to this line.

The set WFx0(f) is the wavefront set of f above x0, and WFx0(f) = \emptyset if and only if f is
smooth in some neighborhood of x0 [15].

If g \in L2
\mathrm{l}\mathrm{o}\mathrm{c}(S

1 \times R), then WF(\theta ,p)(g) is the set of wavefront directions with base point
(\theta , p). We will exploit the sets introduced in these definitions starting in the next section.

3. Main results. In contrast to limited-angle characterizations in [16, 25], our main results
describe artifacts in arbitrary incomplete data reconstructions that include the classical limited
data problems as special cases. Our results are formulated in terms of the wavefront set
(Definition 2.1), which provides a precise concept of singularity.

In many applications, reconstructions from incomplete CT data are calculated by the
filtered backprojection (FBP) algorithm, which is designed for complete data (see [43] for
a practical discussion of FBP). In this case, the incomplete data are often extended by the
algorithm to a complete data set on S1\times R by setting it to zero off of the set A (cutoff region)
over which data are taken. Therefore, the incomplete CT data can be modeled as

(3.1) RAf(\theta , p) = 1A(\theta , p)Rf(\theta , p),

where 1A is the characteristic function of A.2 Thus, using the FBP algorithm to calculate a
reconstruction from such data gives rise to the reconstruction operator

(3.2) \scrL Af = R\ast (\Lambda RAf) = R\ast (\Lambda 1ARf) ,

where \Lambda is the standard FBP filter (see, e.g., [34, Theorem 2.5] and [35, section 5.1.1] for
numerical implementations) and R\ast is defined by (2.4).

Our next assumption collects the conditions we will impose on the cutoff region A. There,
we will use the notation int(A), bd(A), and ext(A) to denote the interior of A, the boundary
of A, and the exterior of A, respectively.

Assumption 3.1. Let A be a proper subset of S1 \times R (i.e., A \not = S1 \times R) with a nontrivial
interior, and assume A is symmetric in the following sense:

(3.3) if (\theta , p) \in A, then ( - \theta , - p) \in A.

In addition, assume that A is the smallest closed set containing int(A), i.e., A = cl(int(A)).

We now explain the importance of this assumption. Since A is proper, data over A are
incomplete. Being symmetric means that if (\theta , p) \in A, then the other parameterization of
L(\theta , p) is also in A. We exclude degenerate cases, such as when A includes an isolated curve
by assuming that A = cl(int(A)).

Our next definition gives us the language to describe the geometry of bd(A).

2The characteristic function of a set A is the function that is equal to one on A and zero outside of A.
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Definition 3.2 (smoothness of bd(A)). Let A \subset S1 \times R, and let (\theta 0, p0) \in bd(A).
\bullet We say that bd(A) is smooth near (\theta 0, p0) if, for some neighborhood U of (\theta 0, p0) in
S1 \times R, the part of bd(A) in U is a C\infty curve. In this case, there is a unique tangent
line in (\theta , p)-space to bd(A) at (\theta 0, p0).

-- If this tangent line is vertical (i.e., of the form \theta = \theta 0), then we say the
boundary is vertical or has infinite slope at (\theta 0, p0).

-- If this tangent line is not vertical, then bd(A) is defined near (\theta 0, p0) by a
smooth function p = p(\theta ). In this case, the slope of the boundary at (\theta 0, p0)
will be the slope of this tangent line:

(3.4) p\prime (\theta 0) :=
dp

d\varphi 

\bigl( 
\theta (\varphi 0)

\bigr) 
, where \varphi 0 is defined by \theta (\varphi 0) = \theta 0.

3

\bullet We say that bd(A) is not smooth at (\theta 0, p0) if it is not a smooth curve in any neigh-
borhood of (\theta 0, p0).

-- We say that bd(A) has a corner at (\theta 0, p0) if the curve bd(A) is continuous at
(\theta 0, p0), is smooth at all other points sufficiently close to (\theta 0, p0), and has two
different one-sided tangent lines at (\theta 0, p0).

4

3.1. Singularities and artifacts. In this section, we define artifacts and visible and invisi-
ble singularities, and we explain why artifacts appear on lines L(\theta , p) only when (\theta , p) \in bd(A).

Definition 3.3 (artifacts and visible singularities). Every singularity (x, \xi ) \in WF(\scrL Af) that
is not a singularity of f is called an artifact (i.e., any singularity in WF(\scrL Af) \setminus WF(f)).

An artifact curve is a collection of base points of artifacts that form a curve.
A streak artifact is an artifact curve in which the curve is a subset of a line.
Every singularity of f that is also in WF(\scrL Af) is said to be visible (from data on A),

i.e., any singularity in WF(\scrL Af)\cap WF(f). Other singularities of f are called invisible (from
data on A).5

Our next theorem gives an analysis of singularities in \scrL Af corresponding to lines L(\theta , p)
for (\theta , p) /\in bd(A). It shows that the only singularities of \scrL Af that are normal to lines L(\theta , p)
for (\theta , p) \in int(A) are visible singularities of f , and there are no singularities of \scrL Af normal
to lines L(\theta , p) for (\theta , p) \in ext(A).

Theorem 3.4 (visible and invisible singularities in the reconstruction). Let f \in L2(D), and
let A \subset S1 \times R satisfy Assumption 3.1.

A. If (\theta , p) \in int(A), then WFL(\theta ,p)(f) = WFL(\theta ,p)(\scrL Af). Therefore, all singularities of f
normal to L(\theta , p) are visible singularities, and \scrL Af has no artifacts normal to L(\theta , p).

3Note that the map \varphi \mapsto \rightarrow \theta (\varphi ) gives the local coordinates on S1 near \varphi 0 and \theta 0 that are used in our proofs,
and p\prime is just the derivative of p in these coordinates.

4Precisely, there is an open neighborhood U of (\theta 0, p0), an open interval I = (a, b), two smooth functions
ci : I \rightarrow U , i = 1, 2, and some t0 \in I such that ci(t0) = (\theta 0, p0), i = 1, 2; the curves c1(I) and c2(I) intersect
transversally at (\theta 0, p0); and bd(A) \cap U = c1((a, t0]) \cup c2((a, t0]).

5Invisible singularities of f are smoothed by \scrL A, and the reconstruction of those singularities is in general
extremely ill-posed in Sobolev scale since any inverse operator must take each smoothed singularity back to
the original nonsmooth singularity, so inversion would be discontinuous in any range of Sobolev norms.
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B. If (\theta , p) /\in (A \cap supp(Rf)), then WFL(\theta ,p)(\scrL Af) = \emptyset . Therefore, all singularities of f
normal to L(\theta , p) are invisible from data on A, and \scrL Af has no artifacts normal to
L(\theta , p).

C. If x \in D and all lines through x are parameterized by points in int(A) (i.e., for all
\theta \in S1, (\theta , x \cdot \theta ) \in int(A)), then

(3.5) WFx(f) = WFx(\scrL Af).

In this case, all singularities of f at x are visible in \scrL Af .
Therefore, artifacts occur only normal to lines L(\theta , p) for (\theta , p) \in bd(A).

This theorem follows directly from [47, Theorem 3.1] and the continuity of R\ast (see also
[29]). Note that Theorem 3.4C. follows from parts 3.4A. and 3.4B. and is included because
we will need it later.

3.2. Analyzing singular artifacts. We now analyze artifacts in limited data FBP recon-
structions using \scrL A (3.2). In particular, we show that the nature of artifacts depends on the
smoothness and geometry of bd(A) and, in some cases, singularities of the object f .

Theorem 3.4 establishes that artifacts occur only above points on lines L(\theta , p) for (\theta , p) \in 
bd(A). Our next two theorems show that the only artifacts that occur are either artifacts on
specific types of curves (see (3.6)) or streak artifacts, and they are of two types.

Let f \in L2(D), and let (\theta , p) \in bd(A):
\bullet Object-independent artifacts: These are caused essentially by the geometry of
bd(A). They can occur whether f has singularities normal to L(\theta , p) or not, and they
can be curves or streak artifacts.

\bullet Object-dependent artifacts: These are caused essentially by singularities of the
object f that are normal to L(\theta , p). They will not occur if f is smooth normal to
L(\theta , p), and they are always streak artifacts.

Our next theorem gives conditions under which artifact curves that are not streaks (i.e.,
not subsets of lines) appear in reconstructions from \scrL A.

Theorem 3.5 (artifact curves). Let f \in L2(D), and let A \subset S1 \times R satisfy Assumption 3.1.
Let (\theta 0, p0) \in bd(A), and assume that bd(A) is smooth near (\theta 0, p0). Assume bd(A) has finite
slope at (\theta 0, p0), and let I be a neighborhood of \theta 0 in S1 such that bd(A) is given by a smooth
curve p = p(\theta ) near (\theta 0, p0). Let

(3.6) xb = xb(\theta ) = p(\theta )\theta + p\prime (\theta )\theta \bot \in R2 for \theta \in I.

Then, an object-independent artifact curve can appear in \scrL Af on the curve given by I \ni \theta \mapsto \rightarrow 
xb(\theta ), which we will call the xb-curve:

A. The xb-curve is curved (i.e., not a subset of a line) unless it is a point.
B. Assume f is smooth normal to L(\theta 0, p0).

(1) Then,

(3.7) WFL(\theta 0,p0)(\scrL Af) \subset \{ (xb(\theta 0), \omega \theta 0) : \omega \not = 0\} .

(2) If Rf = 0 in a neighborhood of (\theta 0, p0), then WFL(\theta 0,p0)(\scrL Af) = \emptyset and this
xb-curve will not appear in the reconstruction \scrL Af near xb(\theta 0).
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(3) If Rf(\theta 0, p0) \not = 0, then equality holds in (3.7) and the xb-curve will appear in
the reconstruction \scrL Af near xb(\theta 0).

Theorem 3.5 is proved in Appendix A.2. Figures 3, 4, and 5 in section 4 all show xb-artifact
curves. The following remark discusses these curves in more detail.

Remark 3.6. Assume bd(A) is smooth with finite slope at (\theta 0, p0). Let I be a neighborhood
of \theta 0, and let p : I \rightarrow R be a parameterization of bd(A) near (\theta 0, p0). Note that

xb(\theta ) \in L(\theta , p) for \theta \in I.

If the slope of bd(A) at (\theta 0, p0) is small enough, i.e.,

(3.8)
\bigm| \bigm| p\prime (\theta 0)\bigm| \bigm| <\sqrt{} 

1 - p20

holds, then the xb-curve of artifacts \theta \mapsto \rightarrow xb(\theta ) will be inside the closed unit disk, D, at least
for \theta near \theta 0. If not, then xb(\theta 0) /\in int(D). This is illustrated in section 4 in Figure 3a for large
slope, where (3.8) is not satisfied, and in Figure 3b for small slope, where (3.8) is satisfied.

If bd(A) is smooth and vertical at (\theta 0, p0) (infinite slope), then there will be no object-
independent artifact on the line L(\theta 0, p0). This follows from the proof of this theorem because
the singularity in the data that causes the xb curve is smoothed by R\ast in this case. Intuitively,
if bd(A) is vertical, then p\prime (\theta 0) is infinite, and from (3.6) the point xb(\theta 0) would be ``at infinity.""
In this case, only object-dependent streak artifacts can be generated by (\theta 0, p0); see Theorem
3.7 and Figures 2 and 3 in section 4.

Our next theorem gives the conditions under which there can be streak artifacts in recon-
structions using \scrL A.

Theorem 3.7 (streak artifacts). Let f \in L2(D), and let A \subset S1 \times R satisfy Assumption
3.1:

A. If f has a singularity normal to L(\theta 0, p0), then a streak artifact can occur on L(\theta 0, p0).
B. If f is smooth normal to L(\theta 0, p0) and bd(A) is smooth and vertical at (\theta 0, p0), then

\scrL Af is smooth normal to L(\theta 0, p0).
6

C. Let (\theta 0, p0) \in bd(A), and assume that bd(A) is not smooth at (\theta 0, p0). Then, \scrL Af can
have a streak artifact on L(\theta 0, p0) independent of f .

If f is smooth normal to L(\theta 0, p0), then Rf(\theta 0, p0) \not = 0, and if bd(A) has a corner at
(\theta 0, p0) (see Definition 3.2), then \scrL Af does have a streak artifact on L(\theta 0, p0), i.e.,

WFL(\theta 0,p0)(\scrL Af) = N(L(\theta 0, p0)).

The proof of Theorem 3.7 is provided in Appendix A.2.
Theorem 3.7A. provides a generalization of classical limited-angle streak artifacts observed

in Figure 2 in section 4. Such limited-angle type artifacts can also be seen in Figures 3 and 5
in that section.

Theorem 3.7B. shows that the streak artifacts in part 3.7A. are object-dependent.

6Note that Theorem 3.5B. states that if f is smooth normal to L(\theta 0, p0) and bd(A) is smooth and not
vertical at (\theta 0, p0), then \scrL Af is smooth normal to L(\theta 0, p0) except possibly at xb(\theta 0) (see (3.7)).
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Theorem 3.7C. explains the object-independent streak artifacts in Figure 5 that are high-
lighted in yellow as well as the object-independent streak artifacts that are observed in the real
data reconstructions in Figure 9a in section 8. In Theorem 5.2, we will describe the strength
of the artifacts in Sobolev scale in specific cases of Theorems 3.5 and 3.7.

Example 3.8. Theorems 3.5 and 3.7 give necessary conditions under which \scrL Af can have
artifacts. We now provide an example when the conditions of those theorems hold for f and A
but \scrL Af has no artifacts. This is why we state in parts of Theorems 3.5 and 3.7 that artifacts
can occur rather than that they will occur.

Let A =
\bigl\{ 
(\theta , p) \in S1 \times R : | p| \leq 1

\bigr\} 
; then A represents the set of lines meeting the closed

unit disk, D. Let f be the characteristic function of D. Then, for all x \in bd(D) = S1,
\xi = (x, x) \in WF(f), \xi is normal to the line L(x, 1), and (x, 1), which is in S1 \times R, is also in
bd(A). Under these conditions, there could be a streak artifact on L(x, 1) by Theorem 3.7A.
Because bd(A) is smooth and not vertical, there could be an xb-curve artifact by Theorem
3.5. However, 1ARf = Rf , so \scrL Af = f and there are no artifacts in this reconstruction.

Object-dependent streak artifacts were analyzed for limited-angle tomography in articles
such as [16, 25, 36], but we are unaware of a reference to Theorem 3.7A. for general incomplete
data problems. We are not aware of a previous reference in the literature to a microlocal
analysis of the xb-curve artifact as in Theorem 3.5 or to the corner artifacts as in Theorem
3.7C. We now assert that all singular artifacts are classified by Theorems 3.5 and 3.7.

Theorem 3.9. Let f \in L2(D), and let A \subset S1 \times R satisfy Assumption 3.1. The only
singular artifacts in \scrL Af occur on xb-curves as described by Theorem 3.5 or are streak artifacts
as described by Theorem 3.7.

Theorem 3.9 is proved in section A.2.

4. Numerical illustrations of our theoretical results. We now consider a range of well-
known incomplete data problems as well as unconventional ones to show how the theoretical
results in section 3 are reflected in practice. All sinograms represent the data g(\theta , p) = Rf(\theta , p)
using (2.6) and displaying them in the (\varphi , p)-plane rather than showing them on S1 \times R. To
this end, we define

(4.1)

\widetilde L(\varphi , p) := L(\theta (\varphi ), p),

(\varphi , p) \mapsto \rightarrow \widetilde g(\varphi , p) = g(\theta (\varphi ), p) for \varphi \in [0, 2\pi ], p \in [ - 
\surd 
2,
\surd 
2],

if A \subset S1 \times R, then \widetilde A :=
\bigl\{ 
(\varphi , p) \in [0, 2\pi ]\times R : (\theta (\varphi ), p) \in A

\bigr\} 
.

In this section, we will specify limited data using the sets \widetilde A \subset [0, 2\pi ] \times R rather than A \subset 
S1\times R, and we will let R denote the Radon transform with this parameterization. Furthermore,
because of the symmetry condition (2.3), we will display only the part of the sinogram in
[0, \pi ] \times 

\bigl[ 
 - 
\surd 
2,
\surd 
2
\bigr] 
. Except for the center picture in Figure 3a, reconstructions are displayed

on [ - 1, 1]2.

4.1. Limited-angle tomography. First, we analyze limited-angle tomography, a classical
problem in which Theorem 3.7A. applies. In this case, bd( \widetilde A) consists of four vertical lines
\varphi = \varphi 1, \varphi = \varphi 2, \varphi = \varphi 1 + \pi , \varphi = \varphi 2 + \pi for two angles 0 \leq \varphi 1 < \varphi 2 < \pi representing the
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ends of the angular range. Taking a closer look at the statement of Theorem 3.7A. and the
results of [16, 18], one can observe that, locally, they describe the same phenomena; namely,
whenever there is a line \widetilde L(\varphi 0, p0) in the data set with (\varphi 0, p0) \in bd( \widetilde A) and which is normal to
a singularity of f , then a streak artifact can be generated on \widetilde L(\varphi 0, p0) in the reconstruction
\scrL Af . Therefore, Theorem 3.7A. generalizes the results of [16, 25] as it also applies to cutoff
regions with a nonvertical tangent.

It is important to note that, with limited-angle data, there are no object-independent
artifacts since bd( \widetilde A) is smooth and vertical (the xb-curve is not defined).

Figure 2. Left: Limited-angle data (bd( \widetilde A) is vertical). Center: FBP reconstruction. Right: Reconstruction
highlighting object-dependent artifact lines tangent to the skull corresponding to the four circled points in the
sinogram.

Figure 2 illustrates limited-angle tomography. The boundary, bd( \widetilde A), consists of the ver-
tical lines \varphi = 4\pi /9 and \varphi = 5\pi /9. The artifact lines are exactly the lines with \varphi = 4\pi /9
or 5\pi /9 that are tangent to boundaries in the object (i.e., wavefront directions are normal to
the line). The four circled points on the sinogram correspond to the object-dependent artifact
lines at the boundary of the skull. The corresponding lines are tangent to the skull and have
angles \varphi = 4\pi /9 and \varphi = 5\pi /9. One can also observe artifact lines tangent to the inside of
the skull with these same angles.

One can notice invisible singularities of f---the top and bottom boundaries of the skull---at
the top and bottom of the reconstruction. If the excluded region in the sinogram were larger,
the invisible singularities at the top and bottom of the object would be more noticeable.

4.2. Smooth boundary with finite slope. We now consider the general case in Theorem
3.5 by analyzing the artifacts for a specific set \widetilde A which is defined as follows. It will be cut in
the middle so that the leftmost boundary of A occurs at \varphi = a := 4

9\pi ; the rightmost boundary
is constructed as \varphi = b := 5

9\pi for p \leq 0 and

(4.2) p(\varphi ) = c
\sqrt{} 
\varphi  - b, \varphi > b,

for p > 0 such that the two parts join differentiably at (\varphi , p) = (0, 0). The steepness of
the curved part of the rightmost boundary is governed by the constant c (as seen in the two
sinograms in Figure 3).

According to the condition (3.8), the curved part of bd( \widetilde A) is the only part that can
potentially cause object-independent artifacts in D since the other parts are vertical. In
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(a) Left: Sinogram with the boundary of \widetilde A having large slope (c = 1.3). Center: FBP reconstruction
over the larger region [ - 2, 2]2 to show that the xb-curve of artifacts is outside of the region displayed
in the right frame. Right: Reconstruction highlighting object-dependent artifact lines tangent to the
skull corresponding to the four circled points in the sinogram.

(b) Left: Sinogram with the boundary of \widetilde A having small slope (c = 0.65). The part of the boundary
causing the prominent xb-curve of artifacts in the reconstruction region is highlighted in magenta.
The solid part of the curve indicates the artifacts that are realized in the reconstruction. The dotted
curve at the right end of the sinogram indicates potential artifacts that are not realized because the
corresponding part of bd( \widetilde A) is outside supp(Rf) (see Theorem 3.4B.). Center: FBP reconstruction.
Right: Same FBP reconstruction as in the center image highlighting some of the added artifacts.
The magenta curve in the reconstruction is the xb-curve of artifacts, and the yellow artifact lines are
object-dependent artifacts similar to those in Figure 3a.

Figure 3. Illustration of artifacts for data sets with a smooth boundary given by (4.2). The xb-curve
\varphi \mapsto \rightarrow xb

\bigl( 
\theta (\varphi )

\bigr) 
of artifacts is outside the reconstruction region in the top figure, and it meets the object in the

bottom picture.

Figure 3, we consider two data sets \widetilde A with a smooth boundary: in Figure 3a, the xb-curve
\varphi \mapsto \rightarrow xb

\bigl( 
\theta (\varphi )

\bigr) 
is outside the unit disk, and in Figure 3b, it meets the object.

Figure 3a provides a reconstruction with the data set defined by c = 1.3 in (4.2). Many
artifacts in the reconstruction region are the same as in Figure 2 because the boundaries of
the cutoff regions are substantially the same: the artifacts corresponding to the circles with
\varphi = 4\pi /9 and the lower circle with \varphi = 5\pi /9 are the same limited-angle artifacts as in Figure
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2 because those parts of the boundaries are the same. However, the upper right circled point
in the sinogram has \varphi > 5\pi /9, so the corresponding artifact line has this larger angle, as seen
in the reconstruction. The center reconstruction in Figure 3a shows the xb-curve of artifacts,
but it is far enough from D that it is not visible in the reconstruction on the right.

Figure 3b provides a reconstruction with the data set defined by c = 0.65 in (4.2). In this
case, the object-dependent artifacts are similar to those in Figure 3a, but the lines for (\varphi , p)
defined by (4.2) are different because bd( \widetilde A) is different. The highlighted part of the boundary
of \widetilde A defined by (4.2) indicates the boundary points that create the part of the xb-curve of
artifacts that now meets the reconstruction region. The highlighted curve in the right-hand
reconstruction of Figure 3b is this part of the xb-curve. Note that this curve is calculated
using the formula (3.6) for xb

\bigl( 
\theta (\varphi )

\bigr) 
rather than by visually tracing the physical curve on the

reconstruction. The fact that the calculated curve and the artifact curve are substantially
the same shows the efficacy of our theory. A simple exercise shows that, for any c > 0, the
xb-curve changes direction at xb(\theta (1/2 + 5\pi /9)).

Let (\varphi 0, p0) be the coordinates of the circled point in the upper right of the sinogram in
Figure 3b. This circled point is on the boundary of supp(Rf), so \widetilde L(\varphi 0, p0) is tangent to the
skull and an object-dependent artifact is visible on \widetilde L(\varphi 0, p0) in the reconstruction. The xb-
curve ends at xb

\bigl( 
\theta (\varphi 0)

\bigr) 
(as justified by Theorem 3.4B.), and so the xb-curve seems to blend

into this line \widetilde L(\varphi 0, p0). If supp(f) were larger and the dotted part of the magenta curve on
the sinogram were in supp(Rf), the xb-curve would be longer.

4.3. Region-of-interest (ROI) tomography. The ROI problem, also known as interior
tomography, is a classical incomplete data tomography problem in which a part of the object
(the ROI) is imaged using only data over lines that meet the ROI. Such ROI data are generated,
e.g., when the detector width is not large enough to contain the complete object or when
researchers would like a higher resolution scan of a small part of the object. In this section,
we apply our theorems to understand ROI CT microlocally, including the ring artifact at
the boundary of the ROI. We should point out that practitioners are well aware of the ring
artifacts (see, e.g., [8, 11]). Important related work has been done to analyze the ROI problem
(see, e.g., [12, 13, 26, 29, 47, 51]).

First, note that Theorem 3.4C. implies that all singularities of f in the interior of the ROI
are recovered. This is observed in Figure 4. If the ROI were not convex, then all singularities
in the interior of its convex hull would be visible.

The boundary of the sinogram in Figure 4 is given by horizontal lines p = \pm 0.8. Since
p\prime = 0, the xb-curve (3.6) is given by xb

\bigl( 
\theta (\varphi )

\bigr) 
= 0.8 \cdot \theta (\varphi ), which is a circle of radius 0.8.

The xb-artifact-circle is highlighted in the right reconstruction of Figure 4, but it can also be
seen clearly in the top and bottom of the center reconstruction, even without the highlighting.
However, the artifact circle does not extend outside the object (as represented by the dotted
magenta curve in the reconstruction and which comes from the dotted segments of bd( \widetilde A) in
the sinogram) because Rf is zero near the corresponding lines. Theorem 3.5B(2) can be used
to explain the invisible curve.

One also sees object-dependent artifacts described by Theorem 3.7A. in Figure 4. For
example, streak artifacts occur on the lines \widetilde L(\varphi 0, p0) corresponding to the four circled points
(\varphi 0, p0) in bd( \widetilde A) in the sinogram. These lines \widetilde L(\varphi 0, p0) are tangent to the outer boundary of
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Figure 4. Left: ROI data taken within a disk of radius 0.8 centered at the origin, p \in [ - 0.8, 0.8]. The

boundary of \widetilde A is highlighted in magenta. Center: FBP reconstruction. Right: Same FBP reconstruction as in
the center image, highlighting the xb-curve of artifacts in magenta and the object-dependent streak artifacts in
yellow.

the skull, and therefore f has wavefront set directions normal to these lines, and this causes
the artifacts by Theorem 3.7A.

In general, one can show that if the ROI is strictly convex with a smooth boundary, then
the xb-curve of artifacts traces the boundary of the ROI. The proof is an exercise using the
parameterization in (\varphi , p) of tangent lines to this boundary.

4.4. The general case. The reconstruction in Figure 5 illustrates all of our cases in one. In
that figure, we consider a general incomplete data set with a rectangular region cut out of the
sinogram leading to all considered types of artifacts. Now, we describe the resulting artifacts.
In Figure 5, the horizontal sinogram boundaries at p = p0 = \pm 0.35 for \phi \in 

\bigl[ 
7
18\pi ,

11
18\pi 

\bigr] 
are

displayed with a solid magenta line. As in the ROI case, on these boundaries, we have p\prime = 0,
and thus circular arcs of radius p0 for the given interval for \varphi are added in the reconstruction
(as indicated by solid magenta). As predicted by Theorem 3.7C., each of the four corners

Figure 5. Left: The sinogram for a general incomplete data problem in which the cutoff region, \widetilde A, has a
locally smooth boundary with zero and infinite slope as well as corners. The cutout from the sinogram is at 7\pi 

18

and 11\pi 
18

, p = \pm 0.35. Center: FBP reconstruction. Right: Same reconstruction with the circular xb-curve of
artifacts highlighted in magenta and object-independent ``corner"" streak artifacts highlighted in yellow.
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produces a line artifact as marked by the yellow solid lines in the right-hand reconstruction,
and they align tangentially with the ends of the curved artifacts.

The circular arc between those lines corresponds to the top and bottom parts of bd( \widetilde A) as
the data are, locally, constrained as in ROI CT (see section 4.3).

In Figure 5, there are other object-dependent streaks corresponding to the vertical lines
in the sinogram at \varphi = 7\pi 

18 and at \varphi = 11\pi 
18 as predicted by Theorem 3.7A., but they are less

pronounced and more difficult to see.

4.5. Summary. We have presented reconstructions that illustrate all types of incomplete
data and each of our theorems from section 3. All artifacts arise because of points (\varphi 0, p0) \in 
bd( \widetilde A), and they fall into two categories:

\bullet Streak artifacts on the line \widetilde L(\varphi 0, p0).
-- Object-dependent streaks occur when bd( \widetilde A) is smooth at (\varphi 0, p0) and a sin-

gularity of f is normal to \widetilde L(\varphi 0, p0).
-- Object-independent streaks occur when bd( \widetilde A) is nonsmooth at (\varphi 0, p0).

\bullet Artifacts on curves are always object-independent, and they are generated by the map
\varphi \mapsto \rightarrow xb

\bigl( 
\theta (\varphi )

\bigr) 
from parts of bd( \widetilde A) that are smooth and of small slope.

5. Strength of added artifacts. In this section, we go back to parameterizing lines by
(\theta , p) \in S1 \times R.

Using the Sobolev continuity of Rf , one can measure the strength in Sobolev scale of
added artifacts in several useful cases. First, we define the Sobolev norm [45, 53]. We state it
for distributions; therefore, it will apply to functions f \in L2

\mathrm{l}\mathrm{o}\mathrm{c}(D).

Definition 5.1 (Sobolev wavefront set [45]). For s \in R, the Sobolev space Hs(Rn) is the set
of all distributions with a locally square-integrable Fourier transform and with a finite Sobolev
norm:

(5.1) \| f\| s :=
\biggl( \int 

y\in Rn

| \scrF f(y)| 2 (1 + \| y\| 2)s dy
\biggr) 1/2

<\infty .

Let f be a distribution, and let x0 \in Rn and \xi 0 \in Rn \setminus 0. We say f is in Hs at x0 in direction
\xi 0 if there are a cutoff function \psi at x0 and an open cone V containing \xi 0 such that the
localized and microlocalized Sobolev seminorm is finite:

(5.2) \| f\| s,\psi ,V :=

\biggl( \int 
y\in V

| \scrF (\psi f) (y)| 2 (1 + \| y\| 2)s dy
\biggr) 1/2

<\infty .

If (5.2) does not hold for any cutoff function at x0, \psi , or any conic neighborhood V of \xi 0,
then we say that (x0, \xi 0) is in the Sobolev wavefront set of f of order s, (x0, \xi 0) \in WFs(f).

An exercise using the definitions shows that WF(f) = \cup s\in RWFs(f) (see [15]).
The Sobolev wavefront set can be defined for measurable functions g on S1 \times R using the

identification (2.6) that reduces to this definition for \widetilde g(\varphi , p) = g
\bigl( 
\theta (\varphi ), p

\bigr) 
.

Note that this norm on distributions on S1 \times R is not the typical H0,s norm used in
elementary continuity proofs for the Radon transform (see, e.g., [22, equation (2.11)]), but this
is the appropriate norm for the continuity theorems for general FIOs [23, Theorem 4.3.1], [10,
Corollary 4.4.5].
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Our next theorem gives the strength in Sobolev scale of added singularities of \scrL Af under
certain assumptions on f . It uses the relation between the microlocal Sobolev strength of f
and Rf [47, Theorem 3.1], and of g and R\ast g, which is given in Proposition A.6 (see also [29]
for related results).

Theorem 5.2. Let f \in L2(D), and let A \subset S1 \times R satisfy Assumption 3.1. Let (\theta 0, p0) \in 
bd(A), and assume Rf(\theta 0, p0) \not = 0 and f is smooth normal to L(\theta 0, p0), i.e., WFL(\theta 0,p0)(f) =
\emptyset .

A. Assume bd(A) is smooth and not vertical at (\theta 0, p0). Let xb = xb(\theta 0) be given by (3.6),
and let \omega \not = 0. Then, \scrL Af is in Hs for s < 0 at \xi 0 = (xb, \omega \theta (\theta 0)) and \xi 0 \in WF0(\scrL Af).
Thus, there are singularities above xb in the 0-order wavefront set of \scrL Af .

B. Now, assume bd(A) has a corner at (\theta 0, p0) (see Definition 3.2). Then, for each
(x, \xi ) \in N(L(\theta 0, p0)), (x, \xi ) \in WF1(\scrL Af) and, except for two points on L(\theta 0, p0), \scrL Af
is in Hs for s < 1 at (x, \xi ). If one of the two one-sided tangent lines to the corner is
vertical, then there is only one such point.

This theorem provides estimates on smoothness for more general data sets than the
limited-angle case, which was thoroughly considered in [25, 36]. In contrast to part A., if
bd(A) has a vertical tangent at (\theta 0, p0), then, under the smoothness assumption on f , there
are no added artifacts in \scrL Af normal to L(\theta 0, p0) (see Theorem 3.7A.). Part A. is a more
precise version of Theorem 3.5B(3). Under the assumptions in parts A. and B., bd(A) will
cause specific singularities in specific locations on L(\theta 0, p0). The two more singular points in
part B. are specified in (A.15). If one part of bd(A) is vertical at (\theta 0, p0), then there is only
one such more singular point.

This theorem will be proven in Appendix A.3.

6. Artifact reduction. In this section, we briefly describe a method to suppress the added
streak artifacts described in Theorems 3.5 and 3.7. This is a standard technique for many
practitioners, but it is worth highlighting because it is simple and useful.

As outlined in section 3, the application of FBP to incomplete data extends the data from
A \subset S1 \times R to all of S1 \times R by padding it with zeros on the complement of A. This hard
truncation can create discontinuities on bd(A), and that explains the artifacts. These jumps
are stronger singularities than those of Rf for Rf \in H1/2(S

1 \times R) since f \in L2(D) = H0(D).
One natural way to get rid of the jump discontinuities of 1A is to replace 1A by a smooth

function on S1 \times R, \psi , that is equal to zero off of A and equal to one on most of int(A) and
smoothly transitions to zero near bd(A). We also assume \psi is symmetric in the sense that
\psi (\theta , p) = \psi ( - \theta , - p) for all (\theta , p). This gives the forward operator

(6.1) R\psi f(\theta , p) = \psi (\theta , p)Rf(\theta , p)

and the reconstruction operator

(6.2) \scrL \psi f = R\ast (\Lambda R\psi f) = R\ast (\Lambda \psi Rf) .

Because \psi is a smooth function, R\psi is a standard FIO, and so \scrL \psi is a standard pseudodiffer-
ential operator. This allows us to show that \scrL \psi does not add artifacts.
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Figure 6. Left: Smoothed sinogram. Center: Smoothed reconstruction with suppressed artifacts. Right:
Reconstruction using \scrL A with sharp cutoff.

Theorem 6.1 (artifact reduction theorem). Let f \in L2(D), and let A \subset S1 \times R satisfy
Assumption 3.1. Then,

(6.3) WF(\scrL \psi f) \subset WF(f).

Therefore, \scrL \psi does not add artifacts to the reconstruction.
Let x \in D, \theta \in S1, and \omega \not = 0. If \psi (\theta , x \cdot \theta ) \not = 0, then

(6.4) (x, \omega \theta ) \in WF(\scrL \psi f) if and only if (x, \omega \theta ) \in WF(f).

Theorem 6.1 is a special case of a known result in, e.g., [29] or the symbol calculation
in [46] and is stated for completeness. This theorem shows the advantages of including a
smooth cutoff, and it has been suggested in several settings, including limited-angle X-ray
CT [16, 25] and more general tomography problems [17, 18, 29, 54]. More sophisticated
methods are discussed in [6, 7] for the synchrotron problem that is described in section 7.

Although this artifact reduction technique does not create any singular artifacts in \scrL \psi f ,
it can turn singular artifacts into smooth artifacts, for example, by smoothing xb-curves.

Figure 6 illustrates the efficacy of this smoothing algorithm on simulated data, and Figure
9 in section 8 demonstrates its benefits on real synchrotron data.

7. Application: A synchrotron experiment. In this section, we use the identifications
given in (4.1) and show sinograms as subsets of the (\varphi , p)-plane.

Figure 7 shows tomographic data of a chalk sample (sinogram on the left and a zoomed
version in the center) that was acquired by a synchrotron experiment [6, 7] (see [30] for
related work). In the right picture of Figure 7, a zoom of the corresponding reconstruction is
shown (see also Figure 9a). As can be clearly observed, the reconstruction includes dramatic
streaks that are independent of the object. These streaks motivated the research in this
article since they were not explained by the mathematical theory at that time (such as in
[16, 17, 18, 25, 36]).

Taking a closer look at the attenuation sinogram and its zoom in Figure 7, a staircasing is
revealed with vertical and horizontal boundaries. This is a result of X-rays being blocked by
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Figure 7. Left: The truncated attenuation sinogram (after processing to get Radon transform data). Center:

The enlargement of the section of bd( \widetilde A) between the two dark vertical lines in the left-hand sinogram. Right:
Zoom of the corresponding reconstruction. [6, c\bigcirc IOP Publishing. Reproduced by permission of IOP Publishing.
All rights reserved.]

position of sample

metal bar

position of sample
metal bar no signal

sample

truncated
projection

full
projections

Figure 8. Data acquisition setup for the synchrotron experiment [6, c\bigcirc IOP Publishing. Reproduced by
permission of IOP Publishing. All rights reserved.]

four metal bars that help stabilize the percolation chamber (sample holder) as the sample is
subjected to high pressure during data acquisition; see Figure 8. More details are given in [6].

Because the original reconstructions of this synchrotron data used a sharp cutoff, 1A, the
reconstructions suffer from severe streak artifacts, as can be seen in Figure 9a. These artifacts
are exactly described by Theorem 3.7C., in that each corner of the sinogram gives rise to a
line artifact in the reconstruction (cf. the left and center images in Figure 7). The authors
of [6] then use a smooth cutoff function at bd( \widetilde A) that essentially eliminates the streaks. The
resulting reconstruction is shown in Figure 9b.

8. Discussion. We first make observations about our results for \scrL A and then discuss
generalizations.

8.1. Observations. The proofs of Theorems 3.5 and 3.7 show that if (\theta 0, p0) \in bd(A) and
WF(1ARf) = T \ast (S1 \times R) \setminus 0, then \scrL Af will have a streak all along L(\theta 0, p0). The analogous
theorem for Sobolev singularities, Theorem 5.2B., assumes that A has a corner at (\theta 0, p0). If
A has a weaker singularity at (\theta 0, p0), then an analogous theorem would hold, but one would
need to factor in the Sobolev strength of the wavefront of 1A above (\theta 0, p0).



ARTIFACTS FROM ARBITRARY INCOMPLETE CT DATA 2805

(a) Standard FBP reconstruction.

(b) FBP reconstruction with artifact reduction (cf. Theorem 6.1).

Figure 9. Reconstructions from synchrotron data without smoothing (top) and with smoothing (bottom) [6,
c\bigcirc IOP Publishing. Reproduced by permission of IOP Publishing. All rights reserved.]

The artifact reduction method, which is motivated by Theorem 6.1, works well for the
synchrotron data, as shown in Figure 9. The article [6] provides more elaborate artifact
reduction methods that are even more successful for this particular problem. We point out
that this simple technique might not work as efficiently in other incomplete data tomography
problems as in the problems we present. Nevertheless, our theorems and experiments show
that abrupt cutoffs that add new singularities in the sinogram should be avoided.

There are other methods to deal with incomplete data. For example, data completion using
the range conditions for the Radon transform has been developed, e.g., in [2, 3, 31, 57]. In [39]
and [9, 42], the authors develop artifact reduction methods for quantitative susceptibility
mapping. For metal artifacts, there is vast literature (see, e.g., [4]) for artifact reduction
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methods, and we believe that those methods might also be useful for certain other incomplete
data tomography problems. In [40, 44, 52], the authors have effectively used microlocal
analysis to understand these related problems.

Our theory is developed based on the continuous case---we view the data as a function on
S1 \times R, not just defined at discrete points. As shown in this article, our theory predicts and
explains the artifacts and visible and invisible singularities. In practice, real data are discrete,
and discretization may also introduce artifacts, such as undersampling streaks. Discretization
in our synchrotron experiment could be a factor in the streaks in Figure 7 in section 7.
Furthermore, numerical experiments have finite resolution, and this can cause (and sometimes
de-emphasize) artifacts. For all these reasons, further analysis is needed to shed light on
the interplay between the discrete and the continuous theories for CT reconstructions from
incomplete data.

8.2. Generalizations. Theorems 3.5 and 3.7 were proven for \scrL A = R\ast (\Lambda (1AR)), but the
results hold for any filtering operator that is elliptic in the sense of Remark A.5. This is
true because that ellipticity condition is all we used about \Lambda in the proofs. For example, the
operator, L =  - \partial 2

\partial p2
, in Lambda CT [13] satisfies this condition, and the only difference comes

in our Sobolev continuity theorem (Theorem 5.2). Since L is order two, the operator R\ast LR
is of order 1 and the smoothness in Sobolev scale of the reconstructions would be one degree
lower than for \scrL A.

Our theorems hold for fan-beam data when the source curve \gamma is smooth and convex and
the object is compactly supported inside \gamma . This is true because, in this case, the fan-beam
parameterization of lines is diffeomorphic to the parallel-beam parameterization we use and
the microlocal theorems we use are invariant under diffeomorphisms. However, one needs
to check that the parallel-beam data set equivalent to the given fan-beam data set satisfies
Assumption 3.1.

Theorems 3.5 and 3.7 hold verbatim for generalized Radon transforms with smooth mea-
sures on lines in R2 because they all have the same canonical relation, given by (A.4), and
the proofs would be done as for \scrL A but using the basic microlocal analysis in [46].

Analogous theorems hold for other Radon transforms including the generalized hyperplane
transform, the spherical transform of photoacoustic CT, and other transforms satisfying the
Bolker assumption (A.7). The proofs would use our arguments here plus the proofs in [17, 18].
These generalizations are the subject of ongoing work. In incomplete data problems for R,
either the artifacts are on xb-curves or they are streaks on the lines corresponding to points on
bd(A). However, in higher-dimensional cases, the results will be more subtle because artifacts
can spread on proper subsets of the surface over which data are taken, not necessarily the
entire set (see [17, Remark 4.7]).

Analogous theorems should hold for cone-beam CT, but this type of CT is more subtle
because the reconstruction operator itself can add artifacts, even with complete data [14, 19].

Appendix A. Proofs. We now provide some basic microlocal analysis and then use this to
prove our theorems. We adapt the standard terminology of microlocal analysis and consider
wavefront sets as subsets of cotangent spaces [58]. Elementary presentations of microlocal
analysis for tomography are in [27, 28]. Standard references include [15, 56].
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A.1. Building blocks. Our first lemma gives some basic facts about wavefront sets.

Lemma A.1. Let x0 \in R2. Let u and v be locally integrable functions or distributions:
A. Let U be an open neighborhood of x0. Assume that u and v are equal on U ; then

WFx0(u) = WFx0(v).
B. If u and \psi are both in L2

loc and \psi is smooth near x0, then WFx0(\psi u) \subset WFx0(u). If,
in addition, \psi is nonzero at x0, then WFx0(u) = WFx0(\psi u).

C. WFx0(u) = \emptyset if and only if there is an open neighborhood U of x0 on which u is a
smooth function.

The analogous statements hold for functions on S1 \times R.
These basic properties are proven using the arguments in section 8.1 of [24], in particular

Lemma 8.1.1, Definition 8.1.2, and Proposition 8.1.3. This lemma is valid for functions on
S1 \times R using the identifications of S1 \times R with R2 given by (2.5) and for functions (2.6), as
well as the fact that singularities are defined locally.

Our next definition will be useful for describing how wavefront sets transform under R
and R\ast .

Definition A.2. Let C \subset T \ast (S1 \times R) \times T \ast (R2), and let B \subset T \ast (R2). The composition is
defined as

C \circ B =
\bigl\{ 
(\theta , p, \eta ) \in T \ast (S1 \times R) : (\theta , p, \eta , x, \xi ) \in C for some (x, \xi ) \in B

\bigr\} 
.

We define Ct = \{ (x, \xi , \theta , p, \eta ) : (\theta , p, \eta , x, \xi ) \in C\} .
The function g on S1 \times R will be called symmetric if

(A.1) \forall (\theta , p) \in S1 \times R, g(\theta , p) = g( - \theta , - p).

If f \in L2(D), then Rf and \Lambda 1ARf are both locally integrable functions and are symmetric
in this sense. For such functions,

(A.2) (\theta 0, p0, \omega 0( - \alpha d\theta + dp)) \in WF(g) \leftrightarrow ( - \theta 0, - p0, - \omega 0(\alpha d\theta + dp)) \in WF(g).

For these reasons, we will identify cotangent vectors

(A.3) (\theta 0, p0, \omega 0( - \alpha d\theta + dp)) \leftrightarrow ( - \theta 0, - p0, - \omega 0(\alpha d\theta + dp)) .

Our next proposition is the main technical theorem of the article. It provides the wavefront
correspondences for R and R\ast which we will use in our proofs.

Proposition A.3 (microlocal correspondence of singularities). The X-ray transform R is an
elliptic FIO with canonical relation

(A.4)
C =

\Bigl\{ \Bigl( 
\theta , x \cdot \theta , \omega ( - x \cdot \theta \bot d\theta + dp), x, \omega \theta dx

\Bigr) 
: \theta \in S1, x \in R2, \omega \not = 0

\Bigr\} 
.

Let f \in L2(D), and let g be a locally integrable function on S1 \times R that is symmetric by
(A.1). Let x0 \in R2, let \theta 0 \in S1, and let p, \alpha , and \omega be real numbers with \omega \not = 0.



2808 L. BORG, J. FRIKEL, J. S. J{\O}RGENSEN, AND E. T. QUINTO

The X-ray transform R is an elliptic FIO with canonical relation C. Therefore,

(A.5)
WF(Rf) = C \circ WF(f), where

C \circ \{ (x0, \omega \theta dx)\} =
\Bigl\{ \Bigl( 
\theta 0, x0 \cdot \theta 0, \omega ( - x0 \cdot \theta \bot 0 d\theta + dp)

\Bigr) \Bigr\} 
under the identification (A.3).

The dual transform R\ast is an elliptic FIO with canonical relation Ct. Then,

(A.6)

WF(R\ast g) = Ct \circ WF(g), where

Ct \circ \{ (\theta , p, \omega ( - \alpha d\theta + dp))\} = \{ (x0(\theta , p, \alpha ), \omega \theta dx)\} 
and x0(\theta , p, \alpha ) = \alpha \theta \bot + p\theta .

Here are pointers to the elements of this proof. The facts about R are directly from [47,
Theorem 3.1] or [49, Theorem A.2], and they use the calculus of the FIO R [20, 21] (see
also [46]). Note that the crucial point is that R is an elliptic FIO that satisfies the global
Bolker assumption: the natural projection

(A.7) \Pi L : C \rightarrow T \ast (Y ) is an injective immersion,

so (A.5) holds for R. A straightforward calculation using (A.4) shows that the global Bolker
assumption holds. Note that we are using the identification (A.3) in asserting that (A.5) is
an equality. The proofs for R\ast are parallel to those for R, except they involve the canonical
relation for R\ast , Ct rather than C.

Remark A.4. In [17, 18], the authors prove artifact characterizations for limited data
problems for photoacoustic CT and generalized hyperplane transforms. One key is a funda-
mental result on multiplying distributions [24, Theorem 8.2.10]. If u and v are distributions
on S1 \times R, this theorem implies they can be multiplied as distributions if they satisfy the
following noncancellation condition: for all (\theta , p, \eta ) \in WF(u), (\theta , p, - \eta ) /\in WF(v). Then, uv
is a distribution and an upper bound for WF(uv) is given in terms of WF(u) and WF(v).

However, this noncancellation condition does not hold for 1A and Rf when 1A is either
smooth with small slope or is not smooth at (\theta 0, p0). That is why we consider functions
f \in L2(D) in this article since 1ARf will be a function in L2(S1 \times R) even if [24, Theorem
8.2.10] does not apply.

Our next remark will be used in the ellipticity proofs that follow.

Remark A.5. The operator \Lambda is elliptic in all cotangent directions except d\theta because the
symbol of \Lambda is | \tau | , where \tau is the Fourier variable dual to p. However, the d\theta direction will not
affect our proofs. This is true because, for any function f \in L2(D), the covector (\theta , p, \omega d\theta ) is
not in WF(Rf) because WF(Rf) = C \circ WF(f) (use the definition of composition and (A.4)).
So, for each f \in L2(D), WF(\Lambda Rf) = WF(Rf). Because Ct \circ \{ (\theta , p, \alpha d\theta )\} = \emptyset by (A.4), even
if (\theta , \omega d\theta ) \in WF(1ARf), that covector will not affect the calculation of Ct \circ WF(\Lambda 1ARf).
Therefore, \Lambda is elliptic on all cotangent directions that are preserved when composed with Ct,
and these are all the directions we need in our proofs.

Our theorems will be valid for any pseudodifferential operator on S1 \times R that is invari-
ant under the symmetry condition (A.1) and satisfies this ellipticity condition (although the
Sobolev results will depend on the order of the operator).
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A.2. Proofs of Theorems 3.5, 3.7, and 3.9. In the proofs of these theorems, we use
Proposition A.3 to analyze how multiplication by 1A adds singularities to the data Rf and
then to the reconstruction \scrL Af . We first make observations that will be useful in the proofs.

Let A satisfy Assumption 3.1, and let f \in L2(D). Let

G = 1ARf ; then R\ast \Lambda G = \scrL Af.

By Remark A.5 and the statements in Proposition A.3,

(A.8) WF(\scrL Af) = Ct \circ WF(G).

Using the expression (A.4) for C, one can show for (\theta 0, p0) \in S1 \times R that

(A.9)

C \circ (N\ast (L(\theta 0, p0)) \setminus 0) = T \ast 
(\theta 0,p0)

(S1 \times R) \setminus P,

where N\ast (L(\theta 0, p0)) = \{ (x, \omega \theta 0dx) : x \in L(\theta 0, p0), \omega \in R\} 
and P =

\bigl\{ 
(\theta , p, \omega d\theta ) : (\theta , p) \in S1 \times R, \omega \in R

\bigr\} 
.

Because WF(Rf) = C \circ WF(f), (A.9) implies that if f is smooth conormal to L(\theta 0, p0), then
Rf is smooth near (\theta 0, p0).

Using analogous arguments for Ct, one shows for (\theta , p) \in S1 \times R that

(A.10) Ct \circ 
\Bigl( 
T \ast 
(\theta 0,p0)

(S1 \times R) \setminus 0
\Bigr) 
= N\ast (L(\theta 0, p0)) \setminus 0.

By (A.8), if G is smooth near (\theta 0, p0), then \scrL Af is smooth conormal to L(\theta 0, p0).
To start the proofs, let f \in L2(D) and let A be a data set satisfying Assumption 3.1.

Theorem 3.4 establishes that if (\theta 0, p0) /\in bd(A), then there are no artifacts in \scrL Af conormal
to L(\theta 0, p0) (since WFL(\theta 0,p0)(\scrL Af) \subset WFL(\theta 0,p0)(f)). Therefore, the only singular artifacts
are on lines L(\theta 0, p0) for (\theta 0, p0) \in bd(A).

Proof of Theorem 3.5. Assume bd(A) is smooth with finite slope at (\theta 0, p0). Therefore,
there are an open neighborhood I of \theta 0 and a smooth function p = p(\theta ) for \theta \in I such that
(\theta , p(\theta )) \in bd(A). A straightforward calculation shows for each \theta \in I and each \omega \not = 0 that

\eta (\theta ) =
\bigl( 
\theta , p(\theta ), \omega 

\bigl( 
 - p\prime (\theta )d\theta + dp

\bigr) \bigr) 
is conormal to bd(A) at (\theta , p(\theta )). A calculation using (A.6) and (A.8) shows that

(A.11) \eta (\theta ) \in WF(G) if and only if (xb(\theta ), \omega \theta dx) \in WF (\scrL Af),

where xb(\theta ) is given by (3.6). Then, (xb(\theta 0), \omega \theta 0dx) is the possible object-independent artifact
that could occur on L(\theta 0, p0). Note that xb(\theta ) is simply the x-projection of Ct \circ N\ast (bd(A)).

By taking the derivative x\prime b(\theta ), one can show that the only case in which the xb-curve is a
subset of a line occurs when bd(A) is locally defined by lines through a point (e.g., for some
x0 \in R2, bd(A) is locally given by p(\theta ) = x0 \cdot \theta ). However, in this case, (3.6) shows that the
xb-curve is the single point x0. This proves part 3.5A.

If f has no singularities conormal to L(\theta 0, p0), then Rf is smooth near (\theta 0, p0), and so
WF(\theta 0,p0)(G) \subset WF(\theta 0,p0)(1A) by Lemma A.1B. This proves part 3.5B(1).
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If Rf is zero in a neighborhood of (\theta 0, p0), then G is smooth near (\theta 0, p0), so, by the note
below (A.10), \scrL Af is smooth conormal to L(\theta 0, p0). This proves part 3.5B(2).

If Rf(\theta 0, p0) \not = 0, then WF(\theta 0,p0)(G) = \{ \eta (\theta 0)\} by Lemma A.1B. Now, by (A.11),

(xb(\theta 0), \omega \theta 0dx) \in WF(\scrL Af).

This proves part 3.5B(3) and finishes the proof of part 3.5B.

Proof of Theorem 3.7. To prove part 3.7A., we make a simple observation. Singularities
of f conormal to L(\theta 0, p0) can cause singularities in G only above (\theta 0, p0), and those can cause
singularities of \scrL Af only conormal to L(\theta 0, p0).

Part 3.7B. follows from the fact that the conormal to bd(A) at \theta 0 is \omega d\theta for \omega \not = 0, the
fact that Ct \circ \{ (\theta , p, \omega d\theta \} = \emptyset , and the arguments in the proof of Theorem 3.5B(1).

Now, we assume bd(A) is not smooth at (\theta 0, p0).
The first observation is straightforward: if bd(A) is not smooth at (\theta 0, p0), then that

singularity can cause singularities in G at (\theta 0, p0) which cause singularities of \scrL Af conormal
to L(\theta 0, p0) (and nowhere else).

Assume f is smooth conormal to L(\theta 0, p0), Rf(\theta 0, p0) \not = 0, and A has a corner at (\theta 0, p0)
(see Definition 3.2). Then, by Lemma A.1, WF(\theta 0,p0)(G) = WF(\theta 0,p0)(1A), which is equal to
T \ast 
(\theta 0,p0)

(S1 \times R) \setminus 0. Therefore, by (A.10), WFL(\theta 0,p0)(\scrL Af) = N\ast (L(\theta 0, p0)) \setminus 0. This finishes
the proof of Theorem 3.7.

Proof of Theorem 3.9. Let f \in L2(D), and assume A satisfies Assumption 3.1. Theorem
3.4 establishes that artifacts are added in \scrL Af conormal to L(\theta 0, p0) only when (\theta 0, p0) \in 
bd(A). Let (\theta 0, p0) \in bd(A). Singularities of G = 1ARf at (\theta 0, p0) come only from singu-
larities of 1A or singularities of Rf at (\theta 0, p0). Therefore, singularities of \scrL Af conormal to
L(\theta 0, p0) come only from singularities of 1A at (\theta 0, p0) or singularities of Rf at (\theta 0, p0).

The artifacts of \scrL Af caused by 1A are analyzed in the proofs of Theorem 3.5 and Theorem
3.7B. and 3.7C. The artifacts of \scrL Af caused by Rf are covered in Theorem 3.7A. This takes
care of all singular artifacts for the continuous problem.

A.3. Proof of Theorem 5.2. We first prove a proposition giving the correspondence
between the Sobolev wavefront set and R\ast .

Proposition A.6 (Sobolev wavefront correspondence for R and R\ast ). Let (\theta 0, p0) \in S1 \times R,
\omega 0 \not = 0, and let s and \alpha be real numbers. Let

\eta 0 = \omega 0( - \alpha d\theta + dp), x0 = p0\theta 0 + \alpha \theta \bot 0 , and \xi 0 = \omega 0\theta 0dx.

Let f be a distribution on R2, and let g be a distribution on S1 \times R. Then,

(x0, \xi 0) \in WFs(f) \Leftarrow \Rightarrow (\theta 0, p0, \eta 0) \in WFs+1/2(Rf),(A.12)

(\theta 0, p0, \eta 0) \in WFs(g) \Leftarrow \Rightarrow (x0, \xi 0) \in WFs+1/2(R
\ast g).(A.13)

Proof. Equivalence (A.12) is given in [47, Theorem 3.1]; however, the proof of the \Leftarrow 
implication for R was left to the reader.

The proof of the \Rightarrow implication of (A.13) is completely analogous to the proof given in [47]
for R. For completeness, we will prove the \Leftarrow implication of (A.13). Assume g is in Hs at
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(\theta 0, p0, \eta 0). By [45, Theorem 6.1, p. 259], we can write g = g1 + g2, where g1 \in Hs and
(\theta 0, p0, \eta 0) /\in WF(g2). The operator R\ast is continuous in Sobolev spaces from Hs to H \mathrm{l}\mathrm{o}\mathrm{c}

s+1/2

by [56, Theorem VIII 6.1] since Ct is a local canonical graph. Therefore, R\ast g1 \in H \mathrm{l}\mathrm{o}\mathrm{c}
s+1/2.

Since (\theta 0, p0, \eta 0) /\in WF(g2), (x0, \xi 0) /\in WF(R\ast g2) by the wavefront correspondence (A.6). An
exercise using Definition 5.1 and the Fourier transform shows that R\ast g = R\ast g1 + R\ast g2 is in
Hs+1/2 at (x0, \xi 0).

Proof of Theorem 5.2. Let f \in L2(D), and let A satisfy Assumption 3.1. Let (\theta 0, p0) \in 
bd(A), and assume Rf(\theta 0, p0) \not = 0 and f is smooth conormal to L(\theta 0, p0). Because f is smooth
conormal to L(\theta 0, p0), WF(\theta 0,p0)(Rf) = \emptyset , so Rf is smooth in a neighborhood of (\theta 0, p0) by
Lemma A.1C. Since Rf(\theta 0, p0) \not = 0, for each s,

(A.14) (WFs - 1)(\theta 0,p0) (\Lambda 1ARf) = (WFs)(\theta 0,p0) (1ARf) = (WFs)(\theta 0,p0) (1A) ;

the left-hand equality is true because \Lambda is an elliptic pseudodifferential operator of order one
(except in the irrelevant direction d\theta ; see Remark A.4), and the right-hand equality is true
by Lemma A.1B.

To prove part 5.2A., assume bd(A) is smooth and has finite slope at (\theta 0, p0). Because the
Sobolev wavefront set is contravariant under diffeomorphism [56], we may assume bd(A) is
a horizontal line, at least locally near (\theta 0, p0). Let \eta 0 = dp. We claim that (\theta 0, p0,\pm \eta 0) \in 
WF1/2(1A) and, for s < 1/2, 1A is in Hs at (\theta 0, p0,\pm \eta 0). Furthermore, 1A is smooth in
every other direction above (\theta 0, p0). The proofs of these two statements are now outlined.
Using a product cutoff function \psi = \psi 1(\theta )\psi 2(p) to calculate \scrF (\psi 1A) and several applications
of integration by parts, one can show that this localized Fourier transform is of the form
S(\nu )T (\tau ), where S is a smooth, rapidly decreasing function and T is \scrO (1/ | \tau | ) (and not
\scrO (1/ | \tau | p for any p > 1). Therefore, S(\nu )T (\tau ) is rapidly decaying in all directions but the
vertical one. This implies that 1A is in Hs for s < 1/2 at (\theta 0, p0,\pm \eta 0) and (\theta 0, p0,\pm \eta 0) \in 
WF1/2(1A). This also shows that this localized Fourier transform is rapidly decaying in all
directions except \pm \eta 0. Now, using (A.14) one sees that (\theta 0, p0,\pm \eta 0) \in WF - 1/2(\Lambda 1ARf);
\Lambda 1ARf is in Hs for s <  - 1/2 at (\theta 0, p0,\pm \eta 0); and (\theta 0, p0, \eta ) /\in WF(\Lambda 1ARf) for any \eta not
parallel to \eta 0.

Now, by Proposition A.6, \scrL Af = R\ast \Lambda 1ARf is in Hs at (xb(\theta 0),\pm \theta 0dx) for s < 0 and

(xb(\theta 0),\pm \theta 0dx) \in WF0(\scrL Af),

where xb(\theta 0) is given by (3.6). Using this theorem again, one sees that for any x \in L(\theta 0, p0),
if x \not = xb(\theta 0), then

(x,\pm \theta 0dx) /\in WF(\scrL Af).

Therefore, the only covectors in N\ast (L(\theta 0, p0)) \cap WF(\scrL Af) are (xb(\theta 0), \alpha \theta 0dx) for \alpha \not = 0.
To prove part 5.2B., assume bd(A) has a corner at (\theta 0, p0). Let \alpha 1 and \alpha 2 be the slopes

at (\theta 0, p0) of the two parts of bd(A). Let

(A.15) \eta j =  - \alpha jd\theta + dp, xbj = p0\theta 0 + \alpha j\theta 
\bot 
0 , j = 1, 2.

An argument similar to the diffeomorphism/integration by parts argument in the last part of
the proof is used. First, a diffeomorphism is used to transform the corner, so locally A becomes
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A = \{ (\theta , p) : \theta \geq 0, p \geq 0\} . To do this, one uses Definition 3.2, footnote 4, and the inverse
and implicit function theorems. Then, one uses a product cutoff \psi = \psi 1(\theta )\psi 2(p) to calculate
WFs(1A) at (0, 0). Then, the Fourier transform can be written as \scrF 

\bigl( 
\psi 1A

\bigr) 
= S(\nu )T (\tau ), where

S(\nu ) = \scrO (1/ | \nu | ) and T (\tau ) = \scrO (1/ | \tau | ). So, the localized Fourier transform is decreasing of
order  - 1 in the dp (vertical) and d\theta (horizontal) directions and  - 2 in all other directions.

Note that \eta 1 and \eta 2 are the images of dp and d\theta under the diffeomorphism back to the origi-
nal coordinates. By the contravariance of the Sobolev wavefront set under diffeomorphism and
the assumption that Rf is smooth and nonzero near (\theta 0, p0), (\theta 0, p0,\pm \eta j) \in WF - 1/2(\Lambda 1ARf)
and, for s <  - 1/2, \Lambda 1ARf is in Hs at (\theta 0, p0, \eta j). Other covectors are in WF1/2(\Lambda 1ARf).
One finishes the proof using (A.13).

This proof shows for j = 1, 2 that Ct \circ \{ (\theta 0, p0, \eta j)\} \in WF0(\scrL Af), and these are the ``more
singular points"" referred to after the statement of Theorem 5.2. If one part of bd(A) is vertical
at (\theta 0, p0), then for one value of j, \eta j is parallel to d\theta and Ct \circ \{ (\theta 0, p0, \eta j)\} = \emptyset , so there is
only one point, not two, on L(\theta 0, p0) on which f is more singular.
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