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Abstract
The elliptic Radon transform (eRT) integrates functions over ellipses in 2D and 
ellipsoids of revolution in 3D. It thus serves as a model for linearized seismic 
imaging under the common offset scanning geometry where sources and receivers 
are offset by a constant vector. As an inversion formula of eRT is unknown we 
propose certain imaging operators (generalized backprojection operators) which 
allow to reconstruct some singularities of the searched-for reflectivity function 
from seismic measurements. We calculate and analyze the principal symbols 
of these imaging operators as pseudo-differential operators to understand how 
they map, emphasize or de-emphasize singularities. We use this information to 
develop local reconstruction operators that reconstruct relatively independently 
of depth and offset. Numerical examples illustrate the theoretical findings.

Keywords: generalized Radon transforms, Fourier integral operators, 
microlocal analysis, seismic imaging

1.  Introduction

In seismic imaging one penetrates the earth’s subsurface with pressure waves, which are 
generated on the surface. The geological inner structure scatters the waves and those parts 
returning to the surface are picked up by receivers. The corresponding inverse problem entails 
imaging the subsurface from these scattered waves. For a first quick reconstruction in the 
acoustic regime linearized models are used, for instance, in classical Kirchhoff migration.
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Traditional Kirchhoff migration may mathematically be described by

frecon = F#Pg where g = Ff are the data (measurements).

The operator F above is a generalized Radon transform which integrates over isochrones, P 
is a one-dimensional convolution operator and F# is a kind of dual transform (generalized 
backprojection). Beylkin [1] showed for a specific F# that

frecon = F#PFf = Ipartialf +Ψf

where Ipartial  is a kind of band pass filter (operator of partial reconstruction) and Ψ is smooth-
ing, that is, Ψf ∈ C∞. Thus, in classical Kirchhoff migration, one reconstructs a filtered ver-
sion of f superimposed on a C∞-artifact.

As we cannot hope to recover f from the data completely we consider imaging operators 
which differ from the Kirchhoff operator F#PF . Our operators are, in general, of the form

Λ = KF†ψF� (1.1)

where ψ is a smooth cutoff function, F† is a weighted L2-dual of F and K is a local operator 
such that Λ acts like a differential operator so as to emphasize singularities. In fact, Λ is a 
local4 pseudodifferential operator (ΨDO) of positive order. Note that the classical Kirchhoff 
operator F#PF  is a ΨDO of non-positive order which smooths singularities in general. A 
further difference of our approach and Kirchhoff migration is our numerical scheme which is 
adapted to the structure of Λ, see [16]. First ideas to emphasize singularities have been pub-
lished in [2] where a kind of additional differentiation was introduced in Fourier space.

In this article we restrict ourselves to a constant background velocity and to the common 
offset scanning geometry where source and receiver positions differ by a constant vector. 
Then, F becomes the elliptic Radon transform which integrates functions over ellipses in 2D 
and prolate spheroids in 3D with source and receiver positions as foci. We will argue that Λ is 
a ΨDO and we will compute its principal symbol.

We analyze the symbol for the 2D setting5 microlocally and use this information to design 
local operators K leading to imaging operators Λ with favorable properties. For instance, let 
F† = F∗ (formal L2-adjoint without weight) and

K = ∆M + αId� (1.2)

where 2α � 0 is the distance between source and receiver, Δ is the Laplacian differential 
operator, and M denotes the multiplication operator by the depth-coordinate6. Then, Λ yields 
an imaging operator of order 1 with the following meaningful property: Jumps in f having the 
same height but being located at different depths will be visible in Λf  with the same intensities 
almost independent of α7.

The mapping properties of Λ for several choices of K will be illustrated by numerical 
reconstructions using our migration scheme developed in [16]. The present paper is a follow-
up of [16] where we used K = ∆. Indeed, this research was initiated by our wish to under-
stand certain features in the reconstructions we obtained, and we address these now.

Our main tool in this paper is microlocal analysis which has been used before very success-
fully to analyze operators not only in seismics but also in other imaging techniques. First to men-
tion here is the paper [10] where Felea et al compare F∗ψF  under the common midpoint and the 

4 To compute Λf (x) only data Ff are needed over isochrones that are near to x.
5 The 3D case is much more involved and will be published elsewhere.
6 The notion ‘depth’ refers to the distance from each given point in the earth’s interior to the surface.
7 For this short explanation of the mapping properties of Λ, we neglect the influence of the cutoff ψ and of the 
microlocal ellipticity of Λ. These points will be discussed later in the article.
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common offset acquisition geometries in 3D. While in the former geometry the imaging opera-
tor is a singular Fourier integral operator (FIO), in the latter geometry this operator becomes a 
ΨDO. To this end the authors verify the Bolker condition for the common offset geometry and 
this is the result we will rely on. Further, we heavily benefit from [28] where Quinto showed how 
to express the symbol of generalized Radon transforms in terms of defining measures.

Microlocal properties of F and F∗ψF  in various geometric settings have been studied by 
many authors, see, e.g. [9, 12, 13, 17, 22, 26, 29–31]. This list is surely not complete. We 
should point out that work on the Dirichlet to Neumann map, such as [33], provides insight 
into the seismic problem by giving local and microlocal information about density of the 
earth from local measurements with arbitrary sources and receivers. Because this requires 
independent sources and receivers, it does not exactly correspond to our problem. Recovery 
of microlocal information from seismic data is described in articles such as [25, 34, 35, 36, 
39, 40] and, for reverse time migration, in [4]. A Radon transform perspective using curvelets 
is provided in [8]. Finally, we like to refer to the lecture notes [37, section 8] where Symes 
derived a rather implicit expression for the principal symbol of F*F by formal arguments.

We have organized our material as follows. For a largely self-contained presentation we 
derive F in the next section from the acoustic wave equation in 3D by the Born ansatz. Here 
we basically follow [37] and [5]. Then, in section 3, we calculate the principal symbol of Λ in 
2D and 3D. All technical details of the corresponding proofs, however, are moved to the final 
section 5. In section 4 we discuss the consequences from the symbol calculation for a concrete 
imaging situation in 2D. Our choice (1.2) for the operator K will become evident and its influ-
ence on the reconstructed images will be highlighted by numerical examples.

2. The forward operators of linear seismic imaging

Let u(t; x, xs) be the acoustic pressure in x ∈ R3 at time t � 0 satisfying the acoustic wave 
equation with constant mass density and sound speed ν = ν(x):

1
ν2

∂2
t u−∆xu = δ(x− xs)δ(t)� (2.1)

where xs denotes the source points. Further, before firing the energy source, we can reliably 
assume the environment to be at rest:

u(0; ·, xs) = ∂tu(0; ·, xs) = 0.� (2.2)

We want to recover ν from measurements u(t; xr, xs) where xr  denotes the receiver posi-
tions and t ranges over an observation period.

We assume that

1
ν2(x)

=
1+ n(x)
c2(x)� (2.3)

with a smooth and a priori known background velocity c = c(x). The dimensionless quantity 
n is the object we seek. It captures the high frequency variations of ν, see, e.g. [3, chapter 
3.2.1]. We derive a linear integral equation for n. Based on [5, appendix A] and [37, section 6], 
most of the following material has already been presented in [16] for the two dimensional 
setting, however.

Let ũ  denote the solution of the above wave equation with sound speed c, i.e.

1
c2

∂2
t ũ−∆xũ = δ(x− xs)δ(t)� (2.4)

C Grathwohl et alInverse Problems 34 (2018) 114001
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where u and ũ  share the same initial data (2.2). We will use ũ  to derive a linear equation for n.
Subtracting (2.1) from (2.4) and given (2.3) we find the equation

1
c2

∂2
t (ũ− u)−∆x(ũ− u) =

n
c2

∂2
t u.

Replacing u by ũ  on the right of the above equation we perform the Born approximation 
which is valid if n(x)/c2(x) is small in an adequate sense, see, e.g. [6, section 8.4]. Thus, we 
define the linear map

L : n �→ ud|Y
where Y is the set of receivers and ud solves

1
c2

∂2
t ud −∆xud =

n
c2

∂2
t ũ� (2.5)

with zero initial data (2.2). Now the linearized inverse problem in seismic imaging reads: 
Determine n from

Ln = ũ|Y − u|Y
where u|Y has been recorded and ũ|Y  has to be computed from (2.4).

A straightforward calculation shows that

Ln(t; ·, xs) =
∫

n(x)
c2(x)

(∫ t

0
∂2
t ũ(s; x, xs)ũ(t − s; ·, x)ds

)
dx� (2.6)

solves (2.5) formally with homogeneous initial values. To proceed we rely on the single ray 
assumption (geometric optics approximation) that is, x ∈ supp n can be connected to each 
xr  and to each xs by exactly one ray of geometric optics. Under this assumption no multiple 
scatterings take place. Accordingly, ũ  is a progressing wave in 3D (from here our presentation 
differs from [16] as a progressing wave in 2D is differently represented):

ũ(t; x, xs) ≈ a(x, xs) δ
(
t − τ(x, xs)

)
� (2.7)

in which the travel time τ(·, xs) solves the eikonal equation

|∇xτ(·, xs)| =
1
c
, τ(xs, xs) = 0,

and the amplitude a satisfies

div(a2∇xτ) = 0

augmented by a scaling condition, see, e.g. [3, section 5.1.2] and Symes [37, pp 24–25]. See 
also Friedlander [11] and Courant and Hilbert [7].

Plugging (2.7) into (2.6),

Ln(t; xr, xs) ≈
∫

n(x)
c2(x)

a(x, xs)a(xr, x)
(∫ t

0
δ′′
(
s− τ(x, xs)

)
δ
(
t − s− τ(xr, x)

)
ds
)
dx

=

∫
n(x)
c2(x)

a(x, xs)a(xr, x)δ′′
(
t − τ(x, xs)− τ(xr, x)

)
dx

= ∂2
t

∫
n(x)
c2(x)

a(x, xs)a(xr, x)δ
(
t − τ(x, xs)− τ(x, xr)

)
dx =: L̃n(t; xr, xs)

where the first equality holds provided

C Grathwohl et alInverse Problems 34 (2018) 114001
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∇xτ(x, xr) +∇xτ(x, xs) �= 0

which means that no forward scattering occurs [38]. Set udata := ũ− u. Our intermediate lin-
ear problem now reads

L̃n(t; xr, xs) = udata(t; xr, xs)

and integrating both sides twice with respect to t over the observation period from 0 to T we 
finally obtain

Fn(T; xr, xs) = y(T; xr, xs)� (2.8)

where

y(T; xr, xs) :=
∫ T

0
(T − t)udata(t; xr, xs)dt

and

Fn(T; xr, xs) =
∫

n(x)
c2(x)

a(x, xs)a(xr, x)δ
(
T − τ(x, xs)− τ(x, xr)

)
dx� (2.9)

is a generalized Radon transform which integrates over reflection isochrones 
{x : T = τ(x, xs) + τ(x, xr)}. The forward operator in 2D looks exactly the same, however, 
the right hand sides y of (2.8) differ for 2D and 3D, see [16].

From now on we consider both spatial dimensions. Thus, let d ∈ {2, 3}. We further proceed 
under the following assumptions

	 •	�the background velocity c is constant, say, c  =  1,
	 •	�n ∈ L2(X) is compactly supported in X = Rd

+ which is the lower half space, that is, xd  >  0 
(the positive direction of the xd-axis points downwards to the interior of the earth),

	 •	�as raw seismic data can be synthesized to provide common offset data [32, p 59], we 
position sources and receivers according to the common offset data acquisition geometry 
on the hyperplane xd  =  0. Let α � 0 be the common offset. Then, sources and receivers 
are parameterized by s ∈ R (d  =  2) and s ∈ R2 (d  =  3) via

xs(s) = (s− α, 0)�, xr(s) = (s+ α, 0)�,

		 and

xs(s) = (s1, s2 − α, 0)�, xr(s) = (s1, s2 + α, 0)�,

respectively.
Under these assumptions the reflection isochrones are ellipses or prolate spheroids (ellip-

soids of revolution) with foci xs and xr . Further,

τ(x, y) = |x− y| and a(x, y) =




1√
|x−y|

: d = 2,

1
|x−y| : d = 3,

which can easily be checked via the defining equations  (the correct scaling of a can be 
neglected for our purpose as any multiple of Λ (1.1) has the same microlocal properties). 
Thus, the 2D generalized Radon transform (2.9) integrates over ellipses and may be written as

F2n(s, t) =
∫

A2(s, x)n(x)δ
(
t − ϕ(s, x)

)
dx, t > 2α,� (2.10)

C Grathwohl et alInverse Problems 34 (2018) 114001
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with

ϕ(s, x) := |xs(s)− x|+ |xr(s)− x| and A2(s, x) =
1√

|xs(s)− x| |xr(s)− x|
.

The 3D generalized Radon transform (2.9) integrates over spheroids and becomes

F3n(s, t) =
∫

A3(s, x)n(x)δ
(
t − ϕ(s, x)

)
dx, t > 2α,

� (2.11)
with

ϕ(s, x) := |xs(s)− x|+ |xr(s)− x| and A3(s, x) =
1

|xs(s)− x| |xr(s)− x|
.

The lower bound on t is needed because the major axis of the ellipse/spheroid must be longer 
than half the distance between the foci. We define the data space

Y = S0 × (2α,∞)

where S0 ⊂ Rd−1 is the bounded open set containing the parameters for the source-receiver 
pairs used in collecting the seismic data. Note that we are assuming the dimension d ∈ {2, 3}, 
and Fd is the forward operator in dimension d.

For later use, we give the FIO representation of F3:

F3n(s, t) =
∫

1
2π

A3(s, x)n(x)eıφ(s,t,x,ω)dxdω, t > 2α,

where φ(s, t, x,ω) = ω (t − ϕ(s, x)) .
�

(2.12)

3. The imaging operators

As in [16], because there is no inversion formula in general, we do not try to reconstruct n 
directly from its integrals g  =  Fdn. Instead we define an imaging operator

KF†
dψFd� (3.1)

where ψ : Y → [0,∞) is a smooth compactly supported cutoff function and K is a properly 
supported pseudodifferential operator on X of non-negative order m. Further, F†

d is the gener­
alized backprojection operator. For instance, for u ∈ D(Y),

F†
3u(x) =

∫

S0

∫ ∞

2α
W(s, x)u(s, t)δ(t − ϕ(s, x))dt ds

=

∫

S0
W(s, x)u(s,ϕ(s, x))ds

�

(3.2)

where W is a smooth positive weight. The 2D version F†
2 of the generalized backprojection 

is given analogously. Then, the composition F†
dψFd  is defined for distributions of compact 

support8.
Note that the formal L2-adjoint F∗

d has weight W  =  Ad and the generalized backprojection 
used by Beylkin [1] has weight W  =  1/Ad.

8 We emphasize that F∗
dFd is not defined in general because Fd : D′(X) → D′(Y) but F∗

d : E ′(Y) → D′(X). There-
fore, throughout this article, we let ψ be a smooth cutoff function of compact support in Y and we consider only 
operators that include ψ, such as F∗

dψFd and F†
dψFd .

C Grathwohl et alInverse Problems 34 (2018) 114001
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3.1.  Pseudodifferential operators

Our theoretical results are based on these operators, and we now introduce the building blocks.

Definition 3.1 (Pseudodifferential symbol).  Let X be an open subset of Rd. A symbol 
of order m is a function p = p(x, ξ) ∈ C∞(X × Rd) satisfying: For every compact set K ⊂ X  
and for each set of two multi-indices α,β  there exists a constant C = C(K,α,β) such that, for 
all x ∈ K and all ξ ∈ Rd,

|Dα
ξD

β
x p(x, ξ)| � C(1+ |ξ|)m−|α|.

The set of symbols of order m above X is denoted Sm(X).
The symbol p is elliptic if for each compact subset K  of X there are positive constants c 

and M such that

|p(x, ξ)| � c (1+ |ξ|)m� (3.3)

for all x ∈ K and all ξ with |ξ| � M .
Let (x0, ξ0) ∈ X × (Rd \ {0}). Then, the symbol p is microlocally elliptic near (x0, ξ0) if 

there are an open neighborhood U of x0, a conic open neighborhood V  of ξ0, and positive con-
stants C and M such that (3.3) holds for all x ∈ U and ξ ∈ V  with |ξ| � M .

The set Sm(X) defined above agrees with the standard Hörmander symbol class (see [22, 
definition 1.1.1]).

Definition 3.2 (Pseudodifferential operator).  Let X be an open subset of Rd and 
m ∈ R. Then, the linear operator P : D(X) → E(X) is a pseudodifferential operator of order 
m if there is a pseudodifferential symbol p of order m such that for all f ∈ D(X),

Pf (y) =
∫

Rd

∫

X
eı(y−x)·ξp(x, ξ) f (x) dx dξ.

The function p is called the full symbol of the operator P. The principal symbol σ(P) of P is 
the equivalence class of p in the quotient space Sm(X)/Sm−1(X).

The operator P is elliptic (respectively: microlocally elliptic) if its symbol is elliptic (re-
spectively: microlocally elliptic).

Please note that the integral defining P in the above definition exists as an oscillatory int­
egral which represents a distribution in general, see [22, chapter I]. Let P be a ΨDO of order 
m. When we write σ(P) as a function, we understand this as the equivalence class of the func-
tion modulo Sm−1(X). We will introduce some more technical terminology in section 5.

3.2.  Main theorems

Our first theorem explains our choice (3.1) of the imaging operator. It follows from arguments 
in [24] and [10].

Theorem 3.3.  Let Fd, F
†
d, K, and ψ be defined as above. Then,

KF†
dψFd and KF∗

dψFd

are ΨDOs of order m  +  1  −  d.

C Grathwohl et alInverse Problems 34 (2018) 114001
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Proof.  We consider KF†
dψFd and note that the other operator is just a special case.

First, let d  =  3. In [10], it was shown that F3 is an FIO. Let C be the canonical relation of 
F3. Then, F∗

3 is an FIO with canonical relation C t [22], and F†
3 is essentially the same operator, 

but with a different weight, so it has the same canonical relation. The operator F3 has symbol 
A3/(2π) which is homogeneous of order zero in the phase variable, ω, by (2.12). The dimen-
sion of the ambient spaces is three and the dimension of phase space is 1. Therefore, the order 
of F3 is −(3− 1)/2 = −1 [41, p 462 below (6.3)]. Since the symbol of F†

3 is homogeneous of 
order zero in the phase variable, the same calculation as for F3 shows F†

3 is an FIO of order  −1 
with canonical relation C t. Multiplication by ψ does not affect the order of an FIO, so F†

3ψF3 
has canonical relation C t ◦ C and order  −2. However, the microlocal Bolker condition (see 
(5.18) and e.g. [19, p 371]) is satisfied by F3 and C [10], so C t ◦ C  is a subset of the diagonal. 
Therefore, F†

dψF3 is a ΨDO. Because K is a ΨDO of order m, and the composition of ΨDOs is 
a ΨDO, KF†

3ψF3 is a ΨDO of order m  −  2.
Similar reasoning holds in case d  =  2. In this case, the needed Bolker condition follows 

from [23, theorem 4]. Since the symbol of F2 is homogenous of degree zero, F2 has order 
−(2− 1)/2 = −1/2. Since F2 satisfies the microlocal Bolker condition, F†

2ψF2 is a ΨDO of 
order  −1. Since K is a ΨDO of order m, KF†

2ψF2 has order m  −  1.� □ 

The above theorem states that the operators

KF†
dψg and KF∗

dψg

are ΨDOs, and therefore some singularities of n can be visible in the reconstructions, and the 
operator does not add non-smooth artifacts9 to the reconstruction because of the smooth cutoff 
ψ (see e.g. [12] for an analysis when cutoffs are not smooth). If m  >  d  −  1 the reconstruction 
operators have positive order and, thus, the singularities are even emphasized.

Beylkin [1] established F†
3 with weight W  =  1/A3 as imaging operator and showed that 

there is a convolution operator P such that

F†
3PF3 = Ipartial +Ψ

where the partial identity Ipartial is a kind of band pass filter and Ψ is of lower order.
Our imaging operators are more general and we compute their symbols below in order 

to understand how they map singularities, in particular, how they might emphasize or de-
emphasize singularities.

The next lemma gives important technical information for the three-dimensional case.

Lemma 3.4.  Let x ∈ X and ξ ∈ R3 \ {0} with ξ3 �= 0. Then, the equation

(ξ1, ξ2, ξ3) = ω∇xϕ(s, x)� (3.4)

uniquely determines ω �= 0 and s = (s1, s2) ∈ R2 as functions of (x, ξ). They are given by 
(5.4), (5.5), and (5.9), respectively.

We write s = s(x, ξ) and ω = ω(x, ξ) for x ∈ X and ξ ∈ R3 \ {0} with ξ3 �= 0.

This lemma is proved in section 5.1.
Our next theorems provide the symbols of our imaging operators and will allow us to ana-

lyze which singularities are visible in the reconstruction and to choose an effective operator K. 
The proofs, which use the theory of Fourier integral operators, are in section 5.

9 The artifacts present in the reconstructions in figures 3 and 4 are smooth!
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Theorem 3.5 (3D-symbol for common offset).  Let K be a properly supported ΨDO 
with symbol k(x, ξ) and let F†

3 have smooth weight W. The principal symbol of KF†
3ψF3 as a 

pseudodifferential operator is

σ(KF†
3ψF3)(x, ξ) =

(2π)2k(x, ξ)ψ(s,ϕ(s, x))W(s, x)A3(s, x)
|ω|2B3(s, x)

� (3.5)

where B3 is the Beylkin determinant [1] given by

B3(s, x) =

∣∣∣∣∣∣∣
det




∇xϕ(s, x)
∂
∂s1

∇xϕ(s, x)
∂
∂s2

∇xϕ(s, x)




∣∣∣∣∣∣∣
.� (3.6)

This symbol is evaluated at (x, ξ) and s = s(x, ξ) and ω = ω(x, ξ) satisfy (3.4) in lemma 3.4.
The principal symbol of KF∗

3ψF3 as a pseudodifferential operator is

σ(KF∗
3ψF3)(x, ξ) =

(2π)2k(x, ξ)ψ(s,ϕ(s, x))A2
3(s, x)

|ω|2B3(s, x)
� (3.7)

where s = s(x, ξ) and ω = ω(x, ξ).

This theorem is proved in section 5.2. The proof is valid for any Radon transform defined 
by a function ϕ (or any FIO associated to the canonical relation C of such an operator), as 
long as C satisfies the Bolker condition (see (5.18) and [19, p 371]), and a proof will be given 
elsewhere. Observe that B3 does not vanish whenever the Bolker condition holds.

Our next lemma is the two-dimensional version of lemma 3.4.

Lemma 3.6.  Let x ∈ X and ξ ∈ R2 \ {0} with ξ2 �= 0. Then, the equation

(ξ1, ξ2) = ω∇xϕ(s, x)� (3.8)

uniquely determines s ∈ R and ω �= 0 as functions of (x, ξ). They are given by (5.11) and 
(5.10), respectively.

We write s = s(x, ξ) and ω = ω(x, ξ) for x ∈ X and ξ ∈ R2 \ {0} with ξ2 �= 0.

The proof of this lemma is analogous to the proof of lemma 3.4. See figure 1 for a geomet-
ric picture of the solution of equation (3.8).

Theorem 3.7 (2D-symbol for common offset).  Under the assumptions of theorem 3.5, 
the 2D-symbols are

σ(KF†
2ψF2)(x, ξ) =

2π k(x, ξ)ψ(s,ϕ(s, x))W(s, x)A2(s, x)
|ω|B2(s, x)

� (3.9)

and

σ(KF∗
2ψF2)(x, ξ) =

2π k(x, ξ)ψ(s,ϕ(s, x))A2
2(s, x)

|ω|B2(s, x)
� (3.10)

where

B2(s, x) =
∣∣∣∣det

(
∇xϕ(s, x)
∂
∂s∇xϕ(s, x)

)∣∣∣∣
� (3.11)
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with s ∈ R and ω �= 0 uniquely defined by (ξ1, ξ2) = ω∇xϕ(s, x).

In section 4.1, we will derive a simpler expression for (3.10).

4.  Imaging in 2D

Here we demonstrate how we benefit from the symbol calculation for a concrete imaging situa-
tion. For the ease of presentation we restrict ourselves to the two-dimensional setting. The calcul
ations as well as consequences for the three-dimensional situation will be published elsewhere.

4.1. The symbol in 2D

We first consider the operator Λ = ∆xF∗
2ψF2, where ∆x is the Laplacian and express its prin-

cipal symbol σ(Λ) in terms of x ∈ X and ξ ∈ R2 \ {0}. We may assume ξ2 �= 0 because of the 
cutoff ψ the symbol σ(Λ) is zero near horizontal cotangent vectors ξ and thus Λ smooths those 
directions. The final expression for the symbol is given in proposition 4.1. Then, we use this 
to analyze ellipticity of this operator and come up with an improved operator in section 4.2.

We recall the symbol for a general operator KF∗
2ψF2. According to (3.10) (with k  =  1) we 

have that

σ(F∗
2ψF2)(x, ξ) = −2π |ξ|2 ψ(s,ϕ(s, x))A

2
2(s, x)

|ω|B2(s, x)
.

With the notation

� := x1 − s, D :=
√
(�− α)2 + x22 , and E :=

√
(�+ α)2 + x22� (4.1)

we get

∇xϕ(s, x) =




�−α
D + �+α

E

x2
(

1
D + 1

E

)


 and ∂s∇xϕ(s, x) =




− x22
D3 − x22

E3

x2
(

�−α
D3 + �+α

E3

)


 .

Recall that x2  >  0. Now,

|ω|B2(s, x) =
∣∣det(ω∇xϕ(s, x), ∂s∇xϕ(s, x)

)∣∣ (3.8)
=

∣∣det(ξ, ∂s∇xϕ(s, x)
)∣∣

= x2 |ξ2|
∣∣∣q
(�− α

D3 +
�+ α

E3

)
+ x2

( 1
D3 +

1
E3

)∣∣∣

Figure 1.  Illustration of (3.8). The geometric steps to solve this equation are as follows: 
first determine an ellipse which passes through x and is normal to ξ at x. This determines 
s as shown in the proof of lemma 3.6 in section 5.1. Then, ω is just the scale factor in 
ξ = ω∇xϕ(s, x).

C Grathwohl et alInverse Problems 34 (2018) 114001



11

where

q := ξ1/ξ2.� (4.2)

Further,

A2
2(s, x)

|ω|B2(s, x)
=

1
ED

1

x2 |ξ2|
∣∣∣q
(

�−α
D3 + �+α

E3

)
+ x2

(
1
D3 +

1
E3

)∣∣∣

=
1

x2 |ξ2|
∣∣∣q
(
(�− α) E

D2 + (�+ α) D
E2

)
+ x2

(
E
D2 +

D
E2

)∣∣∣
.

In view of (5.11) and using the abbreviation

Q(q,λ) :=
1
2q

(
q2 − 1+

√
(q2 + 1)2 + 4λ2q2

)

we may write �, D, and E as functions of x and ξ:

� = x2 Q(q, α
x2
), D = x2

√(
Q(q, α

x2
)− α

x2

)2
+ 1,

E = x2
√(

Q(q, α
x2
) + α

x2

)2
+ 1.

Proposition 4.1.  The principal symbol of Λ = ∆xF∗
2ψF2 is

σ(x, ξ) := σ(Λ)(x, ξ) = −
2π |ξ|2 ψ

(
x1 − x2Q(q, α

x2
),D+ E

)

x2 |ξ2|
∣∣∣q
(
(�− α) E

D2 + (�+ α) D
E2

)
+ x2

(
E
D2 +

D
E2

)∣∣∣
�

(4.3)

where �, D, and E are given by (4.1) and q is given by (4.2).

Note that the right hand side of (4.3) is expressed exclusively in terms of x and ξ (recall that 
q = ξ1/ξ2). We see that σ = σ(Λ) is positively homogeneous of order 1 in ξ which reflects the 
order of Λ. Further, the arguments in our proof also show that the symbol of KF∗

2ψF2 is (4.3) 
with |ξ|2 replaced by k, the symbol of K.

Based on (4.3) we describe in corollary 4.3 below precisely where and how Λ emphasizes 
singularities. To this end we need to introduce some additional terminology, see e.g. [27] for 
more details.

Definition 4.2 (Hr-wavefront set). 

	 (i)	�Let r ∈ R. We say that u ∈ D′(X) is (microlocally) Hr at (xo, ηo) ∈ X × (Rd\{0}) if the 
following holds: for some neighborhood U of xo and some conic neighborhood V  of ηo 
we have that

∫

V
|ϕ̂u(ξ)|2(1+ |ξ|2)rdξ < ∞

		 for one ϕ ∈ D(U) with ϕ(xo) �= 0. Here, ŵ denotes the Fourier transform of the tempered 
distribution w.

	(ii)	�The Hr- wave front set WFr(u) of u ∈ D′(X) is the complement in X × (Rd\{0}) of the 
set of all points (xo, ηo) ∈ X × (Rd\{0}) where u is Hr.
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Now we use (4.3) to determine where our operator is microlocally elliptic, see definitions 
3.1 and 3.2. This provides a quantitative relation, (4.4), between the strength of the singulari-
ties for u and those of Λu.

Corollary 4.3.  For x ∈ X let

C(x) =
{
ξ ∈ R2 : ξ2 �= 0, ψ

(
x1 − x2Q(q, α

x2
),D+ E

)
> 0

}
.

Consider (y, η) ∈ X × (R2\{0}) with η ∈ C(y). Then, Λ is microlocally elliptic of order 1 at 
(y, η). Further, for any u ∈ E ′(X),

(y, η) ∈ WFr(u) ⇐⇒ (y, η) ∈ WFr−1(Λu).� (4.4)

Proof.  First, let η1 > 0. Define m := η2/η1 and the cone

Vε =
{
(λ,mλ)� : λ � 0,m ∈ [m− ε,m+ ε]

}

where ε is chosen small enough so that 0 < ε < |m|. Obviously, Vε is a conic neighborhood of 
η. Further, for 0 �= ξ ∈ Vε we have that

1
m+ ε

� q =
ξ1
ξ2

�
1

m− ε
.

Let B�  be the closed ball about y in R2
+ with radius � > 0. By continuity we may decrease ε 

and �  so that

min

{
2π ψ

(
x1 − x2Q(q, α

x2
),D+ E

)

x2
∣∣∣q
(
(�− α) E

D2 + (�+ α) D
E2

)
+ x2

(
E
D2 +

D
E2

)∣∣∣
:

0 �= ξ ∈ Vε, x ∈ B�

}
=: cε,� > 0.

Hence,

|σ(x, ξ)| � cε,�
|ξ|
|ξ2|

|ξ| � cε,� |ξ| for all x ∈ B� and ξ ∈ Vε

where σ is the symbol of Λ. If η1 = 0, η2 > 0, we define Vε =
{
(mλ,λ)� : λ � 0,m ∈ [−ε, ε]

}
 

and proceed as above. For η1 = 0, η2 < 0 the conic neighborhood 
Vε =

{
(mλ,−λ)� : λ � 0,m ∈ [−ε, ε]

}
 will do the job. Similar arguments work in case 

η1 < 0.

The proof of the second statement of the corollary uses arguments in [27, p 259 ff.], and it 
is done in the same way as the proof of the last assertion of theorem 3.1 in [29].� □ 

4.2.  An improved reconstruction operator in 2D

The symbol of the operator Λ has a factor of 1/x2 which de-emphasizes features far from 
the surface–when x2 is large. We will now analyze the symbol of operator Λ = ∆xF∗ψF 
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asymptotically as α → 0 (or equivalently, as x2 → ∞), in order to form an operator that 
reconstructs features more uniformly, independent of the depth (value of x2) and distance 
between the source and receiver, 2α.

We want to find more explicit expressions for σ in certain ranges of α. For α = 0 we get

σ(x, ξ) = −π
|ξ|
x2

ψ
(
x1 −

ξ1
ξ2

x2, 2x2
|ξ|
|ξ2|

)
.

It is clear from the above representations of �, D, and E that

σ(x, ξ) ≈ −π
|ξ|
x2

ψ
(
x1 −

ξ1
ξ2

x2, 2x2
|ξ|
|ξ2|

)
for x2 � α� (4.5)

(ellipses with major diameter much larger than α look like circles). Since

σ(x, (0, ξ2)) = −π |ξ2|

√
α2 + x22
x22

ψ
(
x1, 2

√
α2 + x22

)
� (4.6)

we assume ξ1 �= 0 in the sequel, that is, q �= 0.
Now, we want to get an asymptotic expression for the symbol in case α � x2. This cor-

responds to features near the surface. Let q  >  0. As

lim
α→∞

(
Q(q, α

x2
)− α

x2

)
= (q2 − 1)/(2q) =: Cq

we get

lim
α→∞

D = x2
√
C2
q + 1.

Further, since

Q(q,λ) � λ as λ → ∞ (asymptotically equal)

we find

E � 2α for large α and lim
α→∞

(�− α) = Cqx2.

Hence,

(�− α)
E
D2 �

2Cq

C2
q + 1

α

x2

and

lim
α→∞

(�+ α)
D
E2 = 0.

Also,

E
D2 � 2

C2
q + 1

α

x22
and

D
E2 �

√
C2
q + 1

x2
4α2 .

Thus,

x2 |ξ2|
∣∣∣q
(
(�− α)

E
D2 + (�+ α)

D
E2

)
+ x2

( E
D2 +

D
E2

)∣∣∣

� x2 |ξ2|
∣∣∣q 2Cq

C2
q + 1

α

x2
+

2
C2
q + 1

α

x2

∣∣∣ = 4α
|ξ2| |ξ1|2

|ξ|2
.
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The above asymptotic result is true also in case q  <  0 (the roles of D and E as well as of �− α 
and �+ α just interchange).

Combining all ingredients we get

σ(x, ξ) ≈ −π

2
|ξ|4

|ξ2| |ξ1|2
1
α
ψ
(
x1 − α, 2α+ x2

|ξ|2

2|ξ1ξ2|

)
for α � x2.� (4.7)

In view of our explicit expressions for the symbol of Λ we propose the modified imaging 
operator

Λmod,β = ∆(M + βId)F∗
2ψF2

where M is the multiplication operator with x2 and β � 0. The principal symbol of Λmod,β is 
(x2 + β)σ(x, ξ). What would be a good choice for β? Please note that in case of α = 0 the 
symbol of Λmod,α does not contain the factor 1/x2 anymore. As a consequence, jumps in n with 
the same height but at different depths will be reconstructed with the same intensities. By the 
choice β = α the same property holds approximately for α > 0 because the factor x2 + α 
compensates for 1/x2 if x2 � α and for 1/α if x2 � α, see (4.5) and (4.7). In the intermediate 
range x2 ≈ α, Λmod,α acts simply as a 2α-multiple of Λ.

4.3.  Numerical illustrations

We present numerical experiments to compare different imaging operators under different 
scenarios. We use the reconstruction algorithm developed in [16] to compute approximations 
to Λn and Λmod,βn from the elliptic means F2n(si, tj), i = 1, . . . ,Ns, j = 1, . . . ,Nt , where 
{si} ⊂ [−smax, smax] and {tj} ⊂ [tmin, tmax], tmin > 2α, are equidistantly distributed.

The function n is given by a superposition of indicator functions of balls and a half-space:

n = χB((0,4),2) − χB((0,4),1) + χB((3,5),1.5) + χx2�6.5,� (4.8)

see figure 2. The numerical values ψ(si, tj)F2n(si, tj) have been calculated semi-analyti-
cally as explained in [16, section 3] using the cutoff function defined on the bottom of p 
12 of [16].

In figure 3 the offset is α = 1. Further, smax = 12 , Ns  =  300, Nt  =  200, tmin = 4, and 
tmax = 19. As the singular support of n is contained in the strip R× [2, 6.5] we are in the 
regime x2 � α, that is, the symbol of Λ is given by (4.5). Ellipses intersecting the support 
of n look like circles, see the solid red curves in figure 2. In the top image of figure 3, 
which shows Λn, we clearly see that the intensities of the reconstructed jumps decrease 
with increasing x2. The middle image presents Λmod,0n. Here, the dependence on x2 is 
not as strong as for Λn but now singularities closer to the surface are reconstructed with 
slightly weaker intensities. A depth-independent reconstruction yields Λmod,α, see bottom 
image.

In the next set of experiments we have chosen α = 10. Further, smax = 15, Ns = Nt = 600, 
tmin = 20.2, and tmax = 35.2. As α � x2 and x2 ∈ sing supp n we are in scenario (4.7), that 
is, Λn exhibits a moderate depth-dependence in the reconstruction of the singular support of 
n (top of figure 4). Now, Λmod,0n (middle of figure 4) shows depth-dependence: jumps farther 
down are emphasized more with increasing x2. By and large, only Λmod,α exhibits depth-
independence (bottom of figure 4).
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5.  Proofs

5.1. The basic geometry, proofs of lemmas 3.4 and 3.6

First we prove lemma 3.4. We explicitly solve (3.4) for s = (s1, s2) and ω. Let x ∈ X and 
ξ ∈ R3 \ {0}. Again we may assume ξ3 �= 0 (compare the explanation at the beginning of sec-
tion 4.1). Then, we have to solve the nonlinear system of equations

ω(x1 − s1)
( 1
D

+
1
E

)
= ξ1,� (5.1)

ω
(x2 − s2 − α

D
+

x2 − s2 + α

E

)
= ξ2,� (5.2)

ωx3
( 1
D

+
1
E

)
= ξ3� (5.3)

where

D =
√
(�− α)2 + β2 and E =

√
(�+ α)2 + β2

with � := x2 − s2 and β2 := (x1 − s1)2 + x23 > 0.
Equation (5.3) yields that

ω =
ξ3

x3
( 1
D + 1

E

) .� (5.4)

We plug this expression for ω into the first two equations. From (5.1) we then immediately 
obtain that

s1 = x1 −
ξ1x3
ξ3

.� (5.5)

With s1 given, so is β2. Equation (5.2)—using (5.4)—now reads

Figure 2.  Visualization of the function n (4.8). Light gray area: n  =  1, black: n  =  2, 
white: n  =  0. The light gray bar represents the half space x2 � 6.5. The three dashed 
curves show elliptic arcs belonging to the common offset α = 10 and s  =  0, t  =  21; 
s  =  12, t  =  24; s  =  12, t  =  26. The three solid red lines show elliptic arcs for α = 1 
where s  =  0, t  =  6; s  =  2, t  =  8; s  =  12, t  =  20.
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Figure 3.  Reconstructions for offset α = 1. Top: Λn, middle: Λmod,0n, bottom: Λmod,αn.
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g(�) =
ξ2 x3
ξ3

� (5.6)

where the function g : R → R,

g(�) :=

√
(�+ α)2 + β2 (�− α) +

√
(�− α)2 + β2 (�+ α)√

(�− α)2 + β2 +
√
(�+ α)2 + β2

,� (5.7)

is invertible. Indeed,

g−1(δ) =




δ2−β2+
√

(δ2+β2)2+4α2δ2

2δ : δ �= 0,

0 : δ = 0.
� (5.8)

The proof is below. Thus, s2 = x2 − � is explicitly given by

s2 =



x2 − 1

2
ξ3
ξ2

(
x3
(

ξ22−ξ21
ξ23

− 1
)
+

√
x23
(
1+ ξ21+ξ22

ξ23

)2
+ 4α2 ξ22

ξ23

)
: ξ2 �= 0,

x2 : ξ2 = 0.
�

(5.9)

The representation of ω in (5.4) still depends on (s1, s2) via D, E and �. With the above values 
for (s1, s2) we can express ω exclusively by x and ξ.

It remains to prove (5.8). First, we show that g is injective. We have that

g′(�) =
2(α2 + β2 + �2)

(
�2 − α2 +

√
(�− α)2 + β2

√
(�+ α)2 + β2 + β2

)
√
(�− α)2 + β2

√
(�+ α)2 + β2

(√
(�− α)2 + β2 +

√
(�+ α)2 + β2

)2 .

It holds that

g′(�) > 0 ⇐⇒ �2 − α2 +
√

(�− α)2 + β2
√
(�+ α)2 + β2 + β2 > 0.

Let us consider the expression

�2 − α2 +
√
(�− α)2

√
(�+ α)2 = �2 − α2 + |�2 − α2| � 0.

Thus,

�2 − α2 +
√
(�− α)2 + β2

√
(�+ α)2 + β2 + β2

> �2 − α2 +
√
(�− α)2

√
(�+ α)2 + β2 � β2 > 0

which settles the argument for g′(�) > 0.
Since g(0) = 0 and g is one-to-one, the case δ = 0 is settled. So, let δ �= 0.
First we reformulate g by expanding the fraction by 

√
++

√
− where we use the abbrevia-

tions 
√
± :=

√
(�± α)2 + β2 :
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Figure 4.  Reconstructions for offset α = 10. Top: Λn, middle: Λmod,0n, bottom: 
Λmod,αn.
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g(�) =
�
(√

++
√
−
)2 − α

(√
+

2 −
√
−2)

(√
++

√
−
)2 = �− α

√
+

2 −
√
−2

(√
++

√
−
)2

= �

(
1− 4α2

(√
++

√
−
)2
)

= �

(
1− 2α2

�2 + α2 + β2 +
√
+
√
−

)

= �
�2 − α2 + β2 +

√
+
√
−

�2 + α2 + β2 +
√
+
√
−
.

Thus, g(�) = δ if and only if

�(�2 − α2 + β2 +
√
+
√
−) = δ(�2 + α2 + β2 +

√
+
√
−).

The latter equation is equivalent to

�(�2 − α2 + β2)− δ(�2 + α2 + β2) = (δ − �)
√
+
√
−.

Squaring both sides (caution: now we introduce multiple solutions) and doing a little algebra 
yield

−4α2 �
(
δ �2 + (β2 − δ2) �− (α2 + β2) δ

)
= 0.

As α �= 0 and � �= 0 (since δ �= 0) above equation has the two solutions for �

δ2 − β2 ±
√
(δ2 − β2)2 + 4δ2(α2 + β2)

2δ
=

δ2 − β2 ±
√
(δ2 + β2)2 + 4δ2α2

2δ
.

From the asymptotics

lim
�→−∞

g(�)
�

= 1 as well as lim
�→∞

g(�)
�

= 1

we infer that the only solution of g(�) = δ �= 0 is

� =
δ2 − β2 +

√
(δ2 + β2)2 + 4δ2α2

2δ
which is (5.8). Hence lemma 3.4 is validated.

The proof of lemma 3.6 is essentially the same but simpler. With � := x1 − s let

D :=
√
(�− α)2 + x22 and E :=

√
(�+ α)2 + x22 .

Now, the two components of (3.8) read as

ξ1 = ω
(�− α

D
+

�+ α

E

)
and ξ2 = ωx2

( 1
D

+
1
E

)
.

The latter equation yields that

ω =
ξ2

x2
( 1
D + 1

E

)� (5.10)

and from the former we then immediately obtain that

g(�) = q x2, q := ξ1/ξ2,
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where g is as in (5.7) with β replaced by x2. Thus, s = x1 − g−1(qx2) is explicitly given by

s =




x1 − 1

2q

(
(q2 − 1)x2 +

√
(q2 + 1)2x22 + 4α2q2

)
: ξ1 �= 0,

x1 : ξ1 = 0.
� (5.11)

Now, we can express ω exclusively by x and ξ which yields lemma 3.6.

5.2. The symbol calculation and proof of theorem 3.5

Since the symbol of KF†
3ψF3 is the symbol of the ΨDO K multiplied by the symbol of F†

3ψF3 
(and similarly for KF∗

3ψF3), we will calculate the symbols of F†
3ψF3 and of F∗

3ψF3.
Our method to calculate symbols is versatile, and it can be used for nonconstant sound 

speed in some cases and for arbitrary weights and a large range of other Radon transforms. 
We will sketch the important steps in the proof, referring to the original references for details. 
We follow the general calculation in [28] and refer to [22, 41] for details about FIOs (see also 
[23] for an overview).

We use the definition of Radon transform in [18, 19], and to do this, we put our transform 
in the framework of the double fibration. This framework was used by Helgason [20, 21] to 
define Radon transforms in a group setting, and it was generalized to manifolds without a 
group structure [14, 15] (see also, [19, p 340–341, 370] [28, section 1]). The double fibration 
defines sets of integration for the Radon transform in broad generality. Let X and Y be mani-
folds and let Z be a submanifold of Y × X . We assume that the natural projections

Z
πY πX

Y X
� (5.12)

are both fiber maps. In this case, we call (5.12) a double fibration. For y ∈ Y , the Radon trans-
form integrates over the subset of X,

E(y) = πX
(
π−1
Y ({y}

)
=

{
x ∈ X

∣∣ (y, x) ∈ Z
}
.

Given smooth, positive measures μ on Z, mX on X, and mY  on Y, the measure for the integral 
transform on E(y) is the quotient measure µ/mY  (and µ/mX for the dual transform). Since the 
maps πX  and πY  are fiber maps, these quotient measure can be defined using local coordinates 
(see e.g. [28, p 333]).

It is often assumed that πX  is a proper map (see e.g. [28, p 333]). This would mean that the 
forward operator maps E ′ to E ′ and so the normal operator is defined without cutoff. However, 
F does not satisfy this, and we need to include the cutoff ψ in order to compose F∗

3 and ψF3 
without this assumption on πX .

Recall that the L2 adjoint of F3 is F∗
3 given in (3.2) with the same weight as F3:

F∗
3g(x) =

∫

Y
A3(s, x)g(s, t)δ(t − ϕ(s, x))dsdt =

∫

S0
A3(s, x)g(s,ϕ(s, x))ds.

�

(5.13)

For our ellipsoidal transform, we let

Z =
{
(s, t, x)

∣∣ t − ϕ(s, x) = 0
}
,� (5.14)

and note that the ellipsoid is given by

E(s0, t0) =
{
x ∈ R3

+

∣∣ (s0, t0, x) ∈ Z
}
.� (5.15)
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We define a smooth positive measure on Z

µ = A3(s, x)µ0 where µ0 = δ(t − ϕ(s, x)) ds dt dx.� (5.16)

For f ∈ D(Y × X),
∫

Z
fµ =

∫

Y×R3
+

f (s, t, x)A3(s, x)δ(t − ϕ(s, x))ds dt dx.

We choose smooth positive measures mX = dx  on X and mY = ds dt on Y. Then, F3 and F∗
3 

are the standard generalized Radon transforms defined on X and Y from these measures, e.g. 
the measure for F3 is µ/(ds dt) and the measure for F∗

3 is µ/dx (see (3.2)) and note that the 
weight for F∗

3 is the same as for F3.
The Schwartz kernel of our Radon transform F3 is integration over Z in smooth measure 

μ (see, e.g. [28, proposition 1.1]). Note that the Schwartz kernel of F∗
3 is integration over 

Z in measure µ and the Schwartz kernel of F†
3 is integration with respect to the measure 

W(s, t, x)µ0.
Let C be the canonical relation of F3, then

C =
{
(s,ϕ(s, x),ω∂sϕ− ωdt, x,ω∂xϕ)

∣∣ s ∈ S0, x ∈ R3
+,ω �= 0

}
� (5.17)

where ∂xϕ = ∇xϕ dx is the partial differential in x, etc. Let ΠY : C → T∗(Y) \ {0} and 
ΠX : C → T∗(X) \ {0} be the natural projections. In [10], Felea et al proved that the microlo-
cal Bolker condition holds:

ΠY : C → T∗(Y) \ {0} is an injective immersion.� (5.18)

To use the calculations in [28], we introduce the new variable w = t − ϕ(s, x), and note that 
δ(w) corresponds to the Dirac delta in the definition of µ0. We let η be the differential dw and 

let dη be the one form dual to η. So dη( ∂
∂η ) = 1.

Here we are viewing any measure on an n-dimensional manifold M as the absolute value 
of an associated alternating n-form in its cotangent space that evaluates on the n-fold wedge 
product ∧nT(M). So, if x ∈ M  and v∗1 , . . . , v

∗
n are covectors in T∗

x (M) and u1, . . . , un are vec-
tors in Tx(M) then the measure |v∗1 ∧ · · · ∧ v∗n | evaluated at (u1, . . . , un) is

|v∗1 ∧ · · · ∧ v∗n | (u1 ∧ · · · ∧ un) = |det (v∗i (uj)i=1,...,n,j=1,...,n)|� (5.19)

as defined in [42, p 59].
By applying the arguments below (14) in [28], the symbol of F3 as an FIO is

(2π)(3−1)/2A3 dx

Π∗
X

(
|σX|3/2

)

evaluated on C and the symbol of F∗
3ψ as an FIO is

(2π)(3−1)/2A3ψ ds dt

Π∗
Y

(
|σY |3/2

)

evaluated on Ct.
Since F3 and C satisfy the microlocal Bolker condition, we can use theorem 2.1 and equa-

tion (15) in [28] to see that

σ(F∗
3ψF3)(x, ξ) =

(2π)3−1ψ(s, t)µ2dwdη

mX mY Π∗
X

(
|σX|3/2

)
Π∗

Y

(
|σY |3/2

)� (5.20)
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where x ∈ R3, ξ ∈ R3 \ {0}, σX  is the symplectic two-form [22], |σX|3 is the standard measure 
on T*(X), σY  is the symplectic two-form and |σY |3 is the standard measure on T*(Y) [22, p 168]. 
One evaluates the symbol at all points

(x′, ξ′ dx, s, t, η, s, t, η, x, ξ dx) ∈ (Ct × C) ∩ (T∗(X)×∆Y × T∗(X))

where ∆Y  denotes the diagonal in T*(Y). By the Bolker condition, (x′, ξ′ dx) = (x, ξ dx), so this 
set can be identified with the inverse image of (x, ξ dx) under ΠX : C → T∗(X). Using lemma 
3.4 and the expression (5.17), one sees that ΠX  is injective. Therefore, this inverse image is the 
single point given by the projection ΠX(λ) = (x, ξ dx) where ξ = ω∇xϕ by (5.17).

Using the definition of the measures mX , mY  and μ, the symbol simplifies to

σ(F∗
3ψF3)(x, ξ) =

(2π)2A2
3(s, x)ψ(s, x) dx ds dη

Π∗
X

(
|σX|3/2

)
Π∗

Y

(
|σY |3/2

)� (5.21)

evaluated at this preimage λ = ΠX
−1(x, ξ dx) in C.

The following lemma finishes the proof for F∗
3ψF3.

Lemma 5.1.  We have that

dx ds dη

Π∗
X

(
|σX|3/2

)
Π∗

Y

(
|σY |3/2

) =
1

|ω|2B3(s, x)� (5.22)

evaluated at Π−1
X (x, ξ dx) and where B3 is given by (3.6) and s = s(x, ξ) is given by (5.5), and 

(5.9).

Proof.  The lemma is proved by first calculating a basis of T(C) using the coordinates 
(s, x,ω). This gives a basis B of the wedge product ∧6T(C). One evaluates the measure 

dx ds dη on B using (5.19). One then evaluates Π∗
X

(
|σX|3/2

)
 by evaluating |σX|3/2 on the push 

forward ΠX∗(B) and one evaluates Π∗
Y

(
|σY |3/2

)
 in a similar way. By comparing the results, 

one shows (5.22).� □ 

The proof for F†
3ψF3 is similar but one uses the measure Wµ0 on Z (where µ0 is given by 

(5.16)) to define F†
3 as a Radon transform.

The proof of the theorem for R2 is essentially the same except that s ∈ R2 is replaced by 
the single coordinate s ∈ R and the coordinates we use on C are (s, x,ω).
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