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Abstract

The elliptic Radon transform (eRT) integrates functions over ellipses in 2D and
ellipsoids of revolution in 3D. It thus serves as a model for linearized seismic
imaging under the common offset scanning geometry where sources and receivers
are offset by a constant vector. As an inversion formula of eRT is unknown we
propose certain imaging operators (generalized backprojection operators) which
allow to reconstruct some singularities of the searched-for reflectivity function
from seismic measurements. We calculate and analyze the principal symbols
of these imaging operators as pseudo-differential operators to understand how
they map, emphasize or de-emphasize singularities. We use this information to
develop local reconstruction operators that reconstruct relatively independently
of depth and offset. Numerical examples illustrate the theoretical findings.

Keywords: generalized Radon transforms, Fourier integral operators,
microlocal analysis, seismic imaging

1. Introduction

In seismic imaging one penetrates the earth’s subsurface with pressure waves, which are
generated on the surface. The geological inner structure scatters the waves and those parts
returning to the surface are picked up by receivers. The corresponding inverse problem entails
imaging the subsurface from these scattered waves. For a first quick reconstruction in the
acoustic regime linearized models are used, for instance, in classical Kirchhoff migration.

3 Author to whom any correspondence should be addressed.
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Traditional Kirchhoff migration may mathematically be described by

fiecon = F*Pg  where g = Ff are the data (measurements).

The operator F above is a generalized Radon transform which integrates over isochrones, P
is a one-dimensional convolution operator and F# is a kind of dual transform (generalized
backprojection). Beylkin [1] showed for a specific F# that

ﬁ'econ = F#PFf = partialf + \IJf

where Inia 1s a kind of band pass filter (operator of partial reconstruction) and W is smooth-
ing, that is, Uf € C. Thus, in classical Kirchhoff migration, one reconstructs a filtered ver-
sion of f superimposed on a C*-artifact.

As we cannot hope to recover f from the data completely we consider imaging operators
which differ from the Kirchhoff operator F# PF . Our operators are, in general, of the form

A = KF'yF (1.1

where 1) is a smooth cutoff function, F' is a weighted L?-dual of F and K is a local operator
such that A acts like a differential operator so as to emphasize singularities. In fact, A is a
local* pseudodifferential operator (¥DO) of positive order. Note that the classical Kirchhoff
operator F#PF is a WDO of non-positive order which smooths singularities in general. A
further difference of our approach and Kirchhoff migration is our numerical scheme which is
adapted to the structure of A, see [16]. First ideas to emphasize singularities have been pub-
lished in [2] where a kind of additional differentiation was introduced in Fourier space.

In this article we restrict ourselves to a constant background velocity and to the common
offset scanning geometry where source and receiver positions differ by a constant vector.
Then, F becomes the elliptic Radon transform which integrates functions over ellipses in 2D
and prolate spheroids in 3D with source and receiver positions as foci. We will argue that A is
a DO and we will compute its principal symbol.

We analyze the symbol for the 2D setting® microlocally and use this information to design
local operators K leading to imaging operators A with favorable properties. For instance, let
F' = F* (formal L?-adjoint without weight) and

K = AM + old (1.2)

where 2« > 0 is the distance between source and receiver, A is the Laplacian differential
operator, and M denotes the multiplication operator by the depth-coordinate®. Then, A yields
an imaging operator of order 1 with the following meaningful property: Jumps in f having the
same height but being located at different depths will be visible in Af with the same intensities
almost independent of .

The mapping properties of A for several choices of K will be illustrated by numerical
reconstructions using our migration scheme developed in [16]. The present paper is a follow-
up of [16] where we used K = A. Indeed, this research was initiated by our wish to under-
stand certain features in the reconstructions we obtained, and we address these now.

Our main tool in this paper is microlocal analysis which has been used before very success-
fully to analyze operators not only in seismics but also in other imaging techniques. First to men-
tion here is the paper [10] where Felea et al compare F*1F under the common midpoint and the

4To compute Af(x) only data Ff are needed over isochrones that are near to x.

3The 3D case is much more involved and will be published elsewhere.

©The notion ‘depth’ refers to the distance from each given point in the earth’s interior to the surface.

7 For this short explanation of the mapping properties of A, we neglect the influence of the cutoff 1/ and of the
microlocal ellipticity of A. These points will be discussed later in the article.



Inverse Problems 34 (2018) 114001 C Grathwohl et al

common offset acquisition geometries in 3D. While in the former geometry the imaging opera-
tor is a singular Fourier integral operator (FIO), in the latter geometry this operator becomes a
UDO. To this end the authors verify the Bolker condition for the common offset geometry and
this is the result we will rely on. Further, we heavily benefit from [28] where Quinto showed how
to express the symbol of generalized Radon transforms in terms of defining measures.

Microlocal properties of F and F*¥F in various geometric settings have been studied by
many authors, see, e.g. [9, 12, 13, 17, 22, 26, 29-31]. This list is surely not complete. We
should point out that work on the Dirichlet to Neumann map, such as [33], provides insight
into the seismic problem by giving local and microlocal information about density of the
earth from local measurements with arbitrary sources and receivers. Because this requires
independent sources and receivers, it does not exactly correspond to our problem. Recovery
of microlocal information from seismic data is described in articles such as [25, 34, 35, 36,
39, 40] and, for reverse time migration, in [4]. A Radon transform perspective using curvelets
is provided in [8]. Finally, we like to refer to the lecture notes [37, section 8] where Symes
derived a rather implicit expression for the principal symbol of F*F by formal arguments.

We have organized our material as follows. For a largely self-contained presentation we
derive F in the next section from the acoustic wave equation in 3D by the Born ansatz. Here
we basically follow [37] and [5]. Then, in section 3, we calculate the principal symbol of A in
2D and 3D. All technical details of the corresponding proofs, however, are moved to the final
section 5. In section 4 we discuss the consequences from the symbol calculation for a concrete
imaging situation in 2D. Our choice (1.2) for the operator K will become evident and its influ-
ence on the reconstructed images will be highlighted by numerical examples.

2. The forward operators of linear seismic imaging

Let u(t;x, Xs) be the acoustic pressure in x € R? at time ¢ > 0 satisfying the acoustic wave
equation with constant mass density and sound speed v = v(x):

%8,214 — Agut = (X — X,)6(1) 2.1)

where Xg denotes the source points. Further, before firing the energy source, we can reliably
assume the environment to be at rest:

u(0; -, xs) = Ou(0;-,%x) = 0. (2.2)

We want to recover v from measurements u(7; X, Xs) where x, denotes the receiver posi-
tions and 7 ranges over an observation period.
We assume that

1 1+n(x)
2(x)  A(x)

with a smooth and a priori known background velocity ¢ = ¢(x). The dimensionless quantity
n is the object we seek. It captures the high frequency variations of v, see, e.g. [3, chapter
3.2.1]. We derive a linear integral equation for n. Based on [5, appendix A] and [37, section 6],
most of the following material has already been presented in [16] for the two dimensional
setting, however.

Let u denote the solution of the above wave equation with sound speed c, i.e.

2.3)

Cl—z 0% — Ayt = §(x — x5)d (1) (2.4)
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where u and u share the same initial data (2.2). We will use u to derive a linear equation for n.
Subtracting (2.1) from (2.4) and given (2.3) we find the equation

1 - - n
= Ot — u) — Ax(ii — u) = e d*u.

Replacing u by u on the right of the above equation we perform the Born approximation
which is valid if n(x)/c?(x) is small in an adequate sense, see, e.g. [6, section 8.4]. Thus, we
define the linear map

L:n— ud|y
where Y is the set of receivers and uy solves
1 ., no oo
- Ojug — Agug = - Oiu (2.5)
c c
with zero initial data (2.2). Now the linearized inverse problem in seismic imaging reads:
Determine n from
Ln = ﬁ|y — M|Y

where uly has been recorded and u|y has to be computed from (2.4).
A straightforward calculation shows that

n(x) e ~
Ln(t;-, %) = 5 ( Oru(s; X, Xs)u(t — s3-, X)ds> dx (2.6)
(x)\Jo

solves (2.5) formally with homogeneous initial values. To proceed we rely on the single ray
assumption (geometric optics approximation) that is, X € suppn can be connected to each
X, and to each Xg by exactly one ray of geometric optics. Under this assumption no multiple
scatterings take place. Accordingly, u is a progressing wave in 3D (from here our presentation
differs from [16] as a progressing wave in 2D is differently represented):

u(t;x, %) ~ a(x,xs) 5(t —7(x, xs)) 2.7)

in which the travel time 7(-, Xs) solves the eikonal equation

1
|VXT('5XS)| = -’ 7'(Xs,Xs) =0,

and the amplitude a satisfies
div(a*Vsr) =0

augmented by a scaling condition, see, e.g. [3, section 5.1.2] and Symes [37, pp 24-25]. See
also Friedlander [11] and Courant and Hilbert [7].
Plugging (2.7) into (2.6),

Ln(t; Xy, Xs) / nz(();))a(x, xs)a(x,,x)(/ol 8" (s — T(x,%5))0 (1 — s — T(Xr,X))dS)dX

= / ;((?)a(x, xs)a(xr,x)5//(t —7(X,Xs) — T(Xr,x))dx
- 8,2/ ;(é))a(x, Xs)a(Xe, X)0 (1 — 7(%,Xs) — 7(X, %) )dx = Ln(£; Xy, Xs)

where the first equality holds provided
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VT (%, %) + Vi7 (X, %) # 0

which means that no forward scattering occurs [38]. Set gy, := 1 — u. Our intermediate lin-
ear problem now reads

Ln(t; Xp, Xs) = Ugata (£ Xr, Xs)

and integrating both sides twice with respect to 7 over the observation period from O to 7 we
finally obtain

Fn(T;%e, Xs) = (T’ X, Xs) (2.8)
where

T
(T X, Xs) ::/ (T — 1)Ugata (; Xy, Xs )dt
0

and

Fn(T; Xy, Xs) = / Z(()g)a(x, Xs)a(Xe, X)8 (T — 7(X,X5) — 7(X, %) )dx  (2.9)
is a generalized Radon transform which integrates over reflection isochrones
{x: T =7(x,%x5) + 7(X,X) }. The forward operator in 2D looks exactly the same, however,
the right hand sides y of (2.8) differ for 2D and 3D, see [16].

From now on we consider both spatial dimensions. Thus, letd € {2, 3}. We further proceed
under the following assumptions

e the background velocity c is constant, say, ¢ = 1,

e n € L*(X) is compactly supported in X = ]R‘j_ which is the lower half space, thatis, x; > 0
(the positive direction of the x;-axis points downwards to the interior of the earth),

e as raw seismic data can be synthesized to provide common offset data [32, p 59], we
position sources and receivers according to the common offset data acquisition geometry
on the hyperplane x; = 0. Let > 0 be the common offset. Then, sources and receivers
are parameterized by s € R (d = 2) and s € R? (d = 3) via

xs(s) = (s — a,0)7, x(s) = (s +,0) ",

and

x5(s) = (81,82 — o, O)T, xr(s) = (51,92 + O)T,

respectively.
Under these assumptions the reflection isochrones are ellipses or prolate spheroids (ellip-
soids of revolution) with foci x5 and x,.. Further,

1 td=2,

v [x—yl
1 s d=3,

[x—y]

T7(x,y) =[x —y| and a(xy)=

which can easily be checked via the defining equations (the correct scaling of a can be
neglected for our purpose as any multiple of A (1.1) has the same microlocal properties).
Thus, the 2D generalized Radon transform (2.9) integrates over ellipses and may be written as

Fon(s,t) = /Az(s, X)n(x)6(r — o(s,x))dx, 1> 2a, (2.10)

5
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with
1
VIxs(s) = X[ xe(s) = x|

The 3D generalized Radon transform (2.9) integrates over spheroids and becomes

o(s,X) 1= [xs(s) — x| + |xe(s) — x| and Az(s,x) =

F3n(s,t) = /A3(S,X)n(x)5(t —p(s,x))dx, 1> 2a,
(2.11)
with

(s, X) := [xs(s) — x| + |xe(s) — x| and As(s,x) = () x|1|xr(s) el

The lower bound on ¢ is needed because the major axis of the ellipse/spheroid must be longer
than half the distance between the foci. We define the data space

Y =Sy x (2a, 00)

where Sy C R~ is the bounded open set containing the parameters for the source-receiver
pairs used in collecting the seismic data. Note that we are assuming the dimension d € {2, 3},
and F is the forward operator in dimension d.

For later use, we give the FIO representation of Fi:

1
Fin(s,t) = / EA3(S, X)n(x)e ¢ dxdw, 1> 2a,

where ¢(s,t,X,w) = w (t — p(s,X)) . (2.12)

3. The imaging operators

As in [16], because there is no inversion formula in general, we do not try to reconstruct n
directly from its integrals g = Fn. Instead we define an imaging operator

KF yF, 3.1

where ¢: ¥ — [0,00) is a smooth compactly supported cutoff function and K is a properly
supported pseudodifferential operator on X of non-negative order m. Further, Fj, is the gener-
alized backprojection operator. For instance, for u € D(Y),

Flu(x) = /S : W (s, x)u(s, 1)8(r — (s, x))dr ds

= : W(s,x)u(s, (s, x))ds (3.2)
0
where W is a smooth positive weight. The 2D version F; of the generalized backprojection
is given analogously. Then, the composition FJ;@ZJFd is defined for distributions of compact
supports.
Note that the formal L*-adjoint F; has weight W = A, and the generalized backprojection
used by Beylkin [1] has weight W = 1/A,.

8 We emphasize that F;F, is not defined in general because Fy: D'(X) — D'(Y)but Fj;: £'(Y) — D' (X). There-
fore, throughout this article, we let 1) be a smooth cutoff function of compact support in Y and we consider only
operators that include 1), such as F;9)F; and FZq/)Fd.
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3.1. Pseudodifferential operators
Our theoretical results are based on these operators, and we now introduce the building blocks.

Definition 3.1 (Pseudodifferential symbol). Let X be an open subset of RY. A symbol
of order m is a function p = p(x,£) € C®(X x R?) satisfying: For every compact set K C X
and for each set of two multi-indices «, 3 there exists a constant C = C(K, «, 8) such that, for
allx € K and all £ € RY,

IDEDEp(x.€)| < C(1+ ¢y,

The set of symbols of order m above X is denoted S"'(X).
The symbol p is elliptic if for each compact subset K of X there are positive constants ¢
and M such that

lp(x,&)| = c(1+[¢)" (3.3)

for all x € K and all { with|£] > M.

Let (X9, &) € X x (R?\ {0}). Then, the symbol p is microlocally elliptic near (xo,&) if
there are an open neighborhood U of Xy, a conic open neighborhood V of &, and positive con-
stants C and M such that (3.3) holds for all x € U and £ € V with || > M.

The set S"(X) defined above agrees with the standard Hérmander symbol class (see [22,
definition 1.1.1]).

Definition 3.2 (Pseudodifferential operator). Let X be an open subset of R and
m € R. Then, the linear operator P: D(X) — E£(X) is a pseudodifferential operator of order
m if there is a pseudodifferential symbol p of order m such that for all f € D(X),

P = [ [ 05 e dxe

The function p is called the full symbol of the operator P. The principal symbol o(P) of P is
the equivalence class of p in the quotient space $™(X)/S™~!(X).

The operator P is elliptic (respectively: microlocally elliptic) if its symbol is elliptic (re-
spectively: microlocally elliptic).

Please note that the integral defining P in the above definition exists as an oscillatory int-
egral which represents a distribution in general, see [22, chapter I]. Let P be a WDO of order
m. When we write o(P) as a function, we understand this as the equivalence class of the func-
tion modulo §”~!(X). We will introduce some more technical terminology in section 5.

3.2. Main theorems

Our first theorem explains our choice (3.1) of the imaging operator. It follows from arguments
in [24] and [10].

Theorem 3.3. Ler F, F};, K, and 1 be defined as above. Then,
KF'¢F, and KFi)F,

are WDOs of order m + 1 — d.
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Proof. We consider KF}(/;Fd and note that the other operator is just a special case.

First, let d = 3. In [10], it was shown that F3 is an FIO. Let C be the canonical relation of
F5. Then, F} is an FIO with canonical relation C' [22], and F;L is essentially the same operator,
but with a different weight, so it has the same canonical relation. The operator F3 has symbol
A3 /(27) which is homogeneous of order zero in the phase variable, w, by (2.12). The dimen-
sion of the ambient spaces is three and the dimension of phase space is 1. Therefore, the order
of F3is —(3 — 1)/2 = —1[41, p 462 below (6.3)]. Since the symbol of F; is homogeneous of
order zero in the phase variable, the same calculation as for F'3 shows F' ;f is an FIO of order —1
with canonical relation C'. Multiplication by ) does not affect the order of an FIO, so F ;r YF;
has canonical relation C' o C and order —2. However, the microlocal Bolker condition (see
(5.18) and e.g. [19, p 371]) is satisfied by F3 and C [10], so C' o C is a subset of the diagonal.
Therefore, F;wF 31s a WDO. Because K is a WDO of order m, and the composition of YDOs is
a UDO, KFI¢F3 is a WDO of order m — 2.

Similar reasoning holds in case d = 2. In this case, the needed Bolker condition follows
from [23, theorem 4]. Since the symbol of F, is homogenous of degree zero, F, has order
—(2—1)/2 = —1/2. Since F; satisfies the microlocal Bolker condition, F;fz/)Fg is a DO of
order —1. Since K is a VDO of order m, KF&/)FZ has order m — 1. O

The above theorem states that the operators

KF'yg and KFiyg

are WDOs, and therefore some singularities of n can be visible in the reconstructions, and the
operator does not add non-smooth artifacts’ to the reconstruction because of the smooth cutoff
1 (see e.g. [12] for an analysis when cutoffs are not smooth). If m > d — 1 the reconstruction
operators have positive order and, thus, the singularities are even emphasized.

Beylkin [1] established F ;[ with weight W = 1/A3 as imaging operator and showed that
there is a convolution operator P such that

FIPF3 = Ly + ¥

where the partial identity /a1 is @ kind of band pass filter and ¥ is of lower order.

Our imaging operators are more general and we compute their symbols below in order
to understand how they map singularities, in particular, how they might emphasize or de-
emphasize singularities.

The next lemma gives important technical information for the three-dimensional case.

Lemma3.4. Letx € X and £ € R\ {0} with & # 0. Then, the equation

(€1,6,8) = wVxp(s,x) (3.4)

uniquely determines w # 0 and s = (s1,52) € R? as functions of (x,€). They are given by
(5.4), (5.5), and (5.9), respectively.
We write s = s(x, &) and w = w(x, &) forx € X and £ € R?\ {0} with & # 0.

This lemma is proved in section 5.1.

Our next theorems provide the symbols of our imaging operators and will allow us to ana-
lyze which singularities are visible in the reconstruction and to choose an effective operator K.
The proofs, which use the theory of Fourier integral operators, are in section 5.

% The artifacts present in the reconstructions in figures 3 and 4 are smooth!

8
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Theorem 3.5 (3D-symbol for common offset). Let K be a properly supported WDO
with symbol k(x,&) and let F;r have smooth weight W. The principal symbol of KF; YF3 as a
pseudodifferential operator is

(27)%k(x, )1 (s, (5, %)) W (s, X) A (5. X)

KFIyF =
o (KF39F3)(x,§) OPBy(5.%) (3.5)
where Bj is the Beylkin determinant [1] given by
Vxo(s, X)
B3(S, X) = |det %V;&P(S, X) . (36)

(%ngo(s, X)

This symbol is evaluated at (x,£) and s = s(x,§) and w = w(x, §) satisfy (3.4) in lemma 3.4.
The principal symbol of KF31)F3 as a pseudodifferential operator is
_ (2m)%k(x. £)¢(s, (s, X))A3(s, X)

O'(KF;,lpF?ﬁ)(X’ g) - |W|2B3(S X) (37)

where s = s(x,§) and w = w(x, §).

This theorem is proved in section 5.2. The proof is valid for any Radon transform defined
by a function ¢ (or any FIO associated to the canonical relation C of such an operator), as
long as C satisfies the Bolker condition (see (5.18) and [19, p 371]), and a proof will be given
elsewhere. Observe that Bs does not vanish whenever the Bolker condition holds.

Our next lemma is the two-dimensional version of lemma 3.4.

Lemma 3.6. Letx € X and £ € R*\ {0} with & # 0. Then, the equation
(&1,6) = wVxp(s,x) (3.8)

uniquely determines s € R and w # 0 as functions of (x,£). They are given by (5.11) and
(5.10), respectively.
We write s = s(x, &) and w = w(x, &) for x € X and & € R?\ {0} with & # 0.

The proof of this lemma is analogous to the proof of lemma 3.4. See figure 1 for a geomet-
ric picture of the solution of equation (3.8).

Theorem 3.7 (2D-symbol for common offset). Under the assumptions of theorem 3.5,
the 2D-symbols are

_ 2mk(x, )¢ (s, (s, %)) W (s, X)As (5, X)

O'(KFngz)(X, f) - |W|Bz(S X) (39)

and
. 2

o (KF30F) (x, ) = 2K f)rﬁ]ﬁzf(is;;))/*z(& x) (3.10)

where
Vxe(s, x) )'
By(s,x) = |d
2(5,%) = [det (g}vxw o .
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I Xs (s,0) Xr 1
I 1
\ I
\ /
N SN V(5. %))
N <7 wzsgn(ig)T
T2 Vxp(s,x)

Figure 1. Illustration of (3.8). The geometric steps to solve this equation are as follows:
first determine an ellipse which passes through x and is normal to ¢ at x. This determines
s as shown in the proof of lemma 3.6 in section 5.1. Then, w is just the scale factor in
& = wVyp(s,x).

with s € R and w # 0 uniquely defined by (£1,&) = wVxp(s, X).

In section 4.1, we will derive a simpler expression for (3.10).
4. Imaging in 2D

Here we demonstrate how we benefit from the symbol calculation for a concrete imaging situa-
tion. For the ease of presentation we restrict ourselves to the two-dimensional setting. The calcul-
ations as well as consequences for the three-dimensional situation will be published elsewhere.

4.1. The symbol in 2D

We first consider the operator A = AyF51)F,, where Ay is the Laplacian and express its prin-
cipal symbol o(A)in terms of x € X and £ € R? \ {0}. We may assume &, # 0 because of the
cutoff ¢ the symbol o (A) is zero near horizontal cotangent vectors ¢ and thus A smooths those
directions. The final expression for the symbol is given in proposition 4.1. Then, we use this
to analyze ellipticity of this operator and come up with an improved operator in section 4.2.

We recall the symbol for a general operator KF51F,. According to (3.10) (with k = 1) we
have that

o{FUF) () = —2r g 2L XA

|w|Ba(s,x)
With the notation
l:i=x1—s, D:=4/({—a)?+x3, and E:=\/({+a)?+x3 1)
we get
—Q o] 2 2
B+ i —H B
Vxp(s,x) = and O;Vxp(s,x) =
o (h+4) w52+ 5%2)

Recall that x, > 0. Now,

|w[Ba(s,x) = |det(wVxep(s,X), 8 Vy(s, X)) | & |det(&, 0, Vxip(s.x)) |

/! —a {4+« 1 1
=nlolle(Hr+ ) telm @)

10
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where

¢:=8/6 *2
Further,

Afsx) 1 1

WIB2s%)  ED g (5 + 52 ) 4+ 12 + )

—_

wlalfe(C- a0 +erag) u(E )|

In view of (5.11) and using the abbreviation

0(q, \) := ZLq <q2 —1+ \/(qz +1)2+ 4)\2512)

we may write £, D, and E as functions of x and &

(=20(.2). D=xw/(0q2)~2) +1,
szz\/(Q(q’%) + %)2 + 1.

Proposition 4.1.  The principal symbol of A = AyF3¢F, is
27 €7 ¢ (1 = %0(q, £),D + E)

JE S | ¥ (VR SATRRAY:S B ey

(4.3)

where £, D, and E are given by (4.1) and q is given by (4.2).

Note that the right hand side of (4.3) is expressed exclusively in terms of x and & (recall that
q = &1/&). We see that 0 = o(A) is positively homogeneous of order 1 in £ which reflects the
order of A. Further, the arguments in our proof also show that the symbol of KF} ¢ F; is (4.3)
with |¢|? replaced by k, the symbol of K.

Based on (4.3) we describe in corollary 4.3 below precisely where and how A emphasizes
singularities. To this end we need to introduce some additional terminology, see e.g. [27] for
more details.

Definition 4.2 (H'-wavefront set).

(i) Let r € R. We say that u € D'(X) is (microlocally) H" at (X,,7,) € X x (R\{0}) if the
following holds: for some neighborhood U of X, and some conic neighborhood V of 7,
we have that

l@@@ﬂu%mm<m

forone ¢ € D(U) with p(x,) # 0. Here, w denotes the Fourier transform of the tempered
distribution w.

(ii) The H"- wave front set WF"(u) of u € D'(X) is the complement in X x (R?\{0}) of the
set of all points (x,,7,) € X x (R?\{0}) where u is H".

1
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Now we use (4.3) to determine where our operator is microlocally elliptic, see definitions
3.1 and 3.2. This provides a quantitative relation, (4.4), between the strength of the singulari-
ties for u and those of Au.

Corollary 4.3. Forx € X let

C(x)={¢eR: 6 #0, ¥(x —x0(q, £),D +E) >0}.
Consider (y,n) € X x (R®2\{0}) with n € C(y). Then, A is microlocally elliptic of order I at
(y,n). Further, for any u € £'(X),

(y.m) € WF (1) <= (y,n) € WF'~'(Au). (4.4)

Proof. First, let n; > 0. Define 7 := 1,/ and the cone

Ve={(Am\) " :X>0,me[m—em+e}

where € is chosen small enough so that 0 < € < |7|. Obviously, V. is a conic neighborhood of
7. Further, for 0 # £ € V. we have that
1 < &t < 1

e 1T Smoc

Let B, be the closed ball about y in Ri with radius ¢ > 0. By continuity we may decrease €
and o so that

mm{ 2m(x1 — x0(q, &), D + E) '
wlo((t- g+ +a)) +x(&+8)|

OséfeVe,xEBQ} =icCep > 0.

Hence,

€l

lo(X,8)| = cep 6l €] = cep|&] forallx € Byand § € V,
2

where o is the symbol of A. If 7y = 0,7, > 0, wedefine Ve = {(mA,\)" : A > 0,m € [—¢,¢€]}
and proceed as above. For 1 =0, <0 the conic neighborhood
Ve={(mA\,—=X)T : X > 0,m € [—¢,€]} will do the job. Similar arguments work in case
m < 0.

The proof of the second statement of the corollary uses arguments in [27, p 259 ff.], and it
is done in the same way as the proof of the last assertion of theorem 3.1 in [29]. O

4.2. An improved reconstruction operator in 2D

The symbol of the operator A has a factor of 1/x, which de-emphasizes features far from
the surface-when x, is large. We will now analyze the symbol of operator A = AyF*yF

12
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asymptotically as a« — 0 (or equivalently, as x, — c0), in order to form an operator that
reconstructs features more uniformly, independent of the depth (value of x,) and distance
between the source and receiver, 2a.

We want to find more explicit expressions for ¢ in certain ranges of «. For o = 0 we get

o(x,€) = —77@ (xl—— X2, 2X) |§2||)

It is clear from the above representations of ¢, D, and E that

ORI S DA T ]
o(x,8) = —m - ’(/J()q x 2x> |§2| ) for x; > « (4.5)

(ellipses with major diameter much larger than « look like circles). Since

\/Oéz-l-x2
o(x.(0.8)) = —7 [ 5 (x1.2/0? + 53) (4.6)
2

we assume &; # 0 in the sequel, that is, g # 0.
Now, we want to get an asymptotic expression for the symbol in case o > x,. This cor-
responds to features near the surface. Let ¢ > 0. As

lim (Q(q. &)~ &) = (4>~ 1)/(29) =: C,

a—0o0

lim D =x,/C; + 1.
a—r 00

0(g,\) < A as A — oo (asymptotically equal)

we get

Further, since

we find
E=x2a forlargea and lim (¢ —a) = Cyxp.
a— 00
Hence,
E 2C, «
é _ ~
( )D2 Cé +1 x
and
Also,
E 2 « D X2
— = — d — =<,/C?+1-—=.
D2 C+1x; md ; at 402
Thus,
E D E D
)C2|fz|‘ (£ a)D (€+OZ) )+x2(D2+ﬁ)‘

2
a 2 o, 12| €]

— (0%
C2+1x C2+1x €17

=x&| )q

13
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The above asymptotic result is true also in case g < O (the roles of D and E as well as of / — «
and £ + a just interchange).
Combining all ingredients we get

g1 [
2 &]6* a 2116

In view of our explicit expressions for the symbol of A we propose the modified imaging
operator

a(x,€) ~

@[J(xl — o, 200+ xp ) fora>x. (4.7)

Amod,,B = A(M —+ ﬂId)F;l/}Fz

where M is the multiplication operator with x; and 5 > 0. The principal symbol of Apoq,g is
(2 + B)o(x,&). What would be a good choice for 5?7 Please note that in case of o = 0 the
symbol of Amoed.« does not contain the factor 1/x, anymore. As a consequence, jumps in n with
the same height but at different depths will be reconstructed with the same intensities. By the
choice 8 = « the same property holds approximately for av > 0 because the factor x; + «
compensates for 1/x; if x; > «and for 1 /aif x, < a, see (4.5) and (4.7). In the intermediate
range x; & a, Amod.q acts simply as a 2a-multiple of A.

4.3. Numerical illustrations

We present numerical experiments to compare different imaging operators under different
scenarios. We use the reconstruction algorithm developed in [16] to compute approximations
to An and Ameagn from the elliptic means Fon(s;, %), i=1,...,N,, j=1,...,N,, where
{8} C [~Smaxs Smax] and {£;} C [fmin, fmax ) fmin > 20, are equidistantly distributed.

The function #n is given by a superposition of indicator functions of balls and a half-space:

= XB((04)2) — XB((04),1) T XB((3.5).1.5) T Xx2>65> (4.8)

see figure 2. The numerical values ¥ (s;, #;)Fan(s;, t;) have been calculated semi-analyti-
cally as explained in [16, section 3] using the cutoff function defined on the bottom of p
12 of [16].

In figure 3 the offset is & = 1. Further, sy = 12, Ny = 300, N, = 200, tyin = 4, and
fmax = 19. As the singular support of n is contained in the strip R x [2,6.5] we are in the
regime x; > a, that is, the symbol of A is given by (4.5). Ellipses intersecting the support
of n look like circles, see the solid red curves in figure 2. In the top image of figure 3,
which shows An, we clearly see that the intensities of the reconstructed jumps decrease
with increasing x,. The middle image presents Amoqon. Here, the dependence on x; is
not as strong as for An but now singularities closer to the surface are reconstructed with
slightly weaker intensities. A depth-independent reconstruction yields Amod.a, S€€ bottom
image.

In the next set of experiments we have chosen o = 10. Further, sy, = 15, Ny = N, = 600,
tmin = 20.2, and tax = 35.2. As a > x; and x; € sing supp n we are in scenario (4.7), that
is, An exhibits a moderate depth-dependence in the reconstruction of the singular support of
n (top of figure 4). Now, Amoeqon (middle of figure 4) shows depth-dependence: jumps farther
down are emphasized more with increasing x,. By and large, only Apoeq.. exhibits depth-
independence (bottom of figure 4).

14
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I

T2

Figure 2. Visualization of the function n (4.8). Light gray area: n = 1, black: n = 2,
white: n = 0. The light gray bar represents the half space x, > 6.5. The three dashed
curves show elliptic arcs belonging to the common offset & = 10 and s =0, t = 21;
s =12, t=24; s =12, t = 26. The three solid red lines show elliptic arcs for o =1
where s =0,t=6;5s =2,t=8; s =12, r = 20.

5. Proofs

5.1. The basic geometry, proofs of lemmas 3.4 and 3.6

First we prove lemma 3.4. We explicitly solve (3.4) for s = (s1,52) and w. Let x € X and
¢ € R*\ {0}. Again we may assume & # 0 (compare the explanation at the beginning of sec-
tion 4.1). Then, we have to solve the nonlinear system of equations

1 1
W(m—sl)(BJrE) =&, (5.1)
w(xzfsz—a+x2—s2+a>_£ 5.2)
D E o '
1 1
wx3<5 + E) =& (5.3)
where
D=/l —a)’+ 3 and E=/({+ «)? + 32
with £ := xy — sy and 8% := (x; — 51)> +x3 > 0.
Equation (5.3) yields that
&
W=7 1\ 5.4
u(5+3) O

We plug this expression for w into the first two equations. From (5.1) we then immediately
obtain that

51 =X — % (5.5)

With s; given, so is 2. Equation (5.2)—using (5.4)—now reads

15
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3
2
1
0
-1
-2
-3
-4
-5
-6

16

a= 1.00, y= 0.25, sy = -12.00, #,,. = 19.00

12

5
‘ 4
5
20
15
10
5
Figure 3. Reconstructions for offset &« = 1. Top: An, middle: Apedon, bottom: Apod o7
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&Hx
gl) = % (5.6)
where the function g: R — R,
o(l) = l+a)P+p2l-—a)+\/(—a)P+p*{l+a) 57
Vl—aP+ P + I+ + 7 ’ :
is invertible. Indeed,
8 =24/ (82+)* +4a28?
0 #£0,
OE ? (58)
0 :60=0
The proof is below. Thus, s, = x, — £ is explicitly given by
2_ 42 2 2
o_le-38 <x3(525§51 1)+ \/x§(1 +88) 402§ ) L & #0,
(5.9)

X2 . 62:0.

The representation of w in (5.4) still depends on (s1, s2) via D, E and £. With the above values
for (s1,52) we can express w exclusively by x and &.
It remains to prove (5.8). First, we show that g is injective. We have that

A2+ B +E) (L -+ —aP+ 5 ({+aP+ 8 +5)
V=0 + 5 T+ ay +ﬁ2(¢< —a) T+ Vo v 7))
It holds that

g =

>0 = oottt \[(traPtp >0

Let us consider the expression

a+\/€ @) \/€+a)2*£2 o + |2 —a* >0.

Thus,

—a +\/ )2+ B2 \/(€+a)2+62+ﬂ2
a+\/€ a) \/€—|—a) +B82=p>0

which settles the argument for g’(£) > 0.
Since g(0) = 0 and g is one-to-one, the case 6 = 0 is settled. So, let § # 0.
First we reformulate g by expanding the fraction by v/+ + v/— where we use the abbrevia-

tions /& := /(¢ £ )2 + 3?2

17
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a= 10.00, y= 0.25, 5., = -15.00, t,,,, = 35.20

2 | — 2.4
1.8
3
p— 1.2
0.6
4
S 0.0
— -0.6
5
-1.2
6 e — w18
- ———— _.h-
—-2.4
7
-2 -1 0 1 2 3 4 5

N

a= 10.00, y= 0.25, 5., = -15.00, t,,,, = 35.20

15
2
12
3
4
«
Y
5
-3
6 —
-6
e — h
7 -9
-2 -1 0 1 2 3 4 5

N

©

o

w

o

a= 10.00, y= 0.25, sy, = -15.00, ¢, = 35.20

®

o

Figure 4. Reconstructions for offset oo = 10. Top: An, middle: Apoqon, bottom:
Amod,ozn~
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B e B A Vi W ot Vi

8(0) 2 - 2
(VF+v7) (VF+v)

— 1747042 g(l 207 )
B VT+vo)') 2+ + 2+ V+/-
L4 B VAV
C+a?+ B2+ V=

Thus, g(¢) = ¢ if and only if

WP —® + B2+ VHV=) =6 + a? + B2+ V+V—).
The latter equation is equivalent to

P —a* + B =0+ a* + B = (6 — OV+V—.

Squaring both sides (caution: now we introduce multiple solutions) and doing a little algebra
yield

40?0 (507 + (B> = 8%) £ — (a* + B) §) = 0.
As o # 0 and ¢ # 0 (since § # 0) above equation has the two solutions for ¢
52 _ ﬁ2 + \/(52 _ ﬁz)z +452(a2 +52) 52 _ 52 + \/(52 +ﬁ2)2 +4(52a2

20 26
From the asymptotics
lim s(0) =1 aswellas lim 8(0) =1
l——c ¥ {—o0

we infer that the only solution of g(¢) = § # 0 is

02— B2+ /(67 + B2)? + 4622
B 20

which is (5.8). Hence lemma 3.4 is validated.
The proof of lemma 3.6 is essentially the same but simpler. With £ := x; — s let

b Ji—aptd wd Ee\firara.

Now, the two components of (3.8) read as

14

l— ¢ 1 1
€1ZW<7DOZ+ +a) and Ezzwxz(BwLE).
The latter equation yields that
w= (5.10)
- 1,1 .
%(5+£)

and from the former we then immediately obtain that

gl) =qx2, q:=& /&,

19
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where g is as in (5.7) with 3 replaced by x,. Thus, s = x; — g~ !(gx2) is explicitly given by

X1 — 217,((q2 = Dx + \/(q2 +1)2x3 +4a2q2) D& #0,
X1 . 61 =0.

S =

(5.11)
Now, we can express w exclusively by x and £ which yields lemma 3.6.

5.2. The symbol calculation and proof of theorem 3.5

Since the symbol of KF ;L 1 F3 is the symbol of the WDO K multiplied by the symbol of F' ;r YF3
(and similarly for KF31F3), we will calculate the symbols of F;[ F3 and of F3¢YF3.

Our method to calculate symbols is versatile, and it can be used for nonconstant sound
speed in some cases and for arbitrary weights and a large range of other Radon transforms.
We will sketch the important steps in the proof, referring to the original references for details.
We follow the general calculation in [28] and refer to [22, 41] for details about FIOs (see also
[23] for an overview).

We use the definition of Radon transform in [18, 19], and to do this, we put our transform
in the framework of the double fibration. This framework was used by Helgason [20, 21] to
define Radon transforms in a group setting, and it was generalized to manifolds without a
group structure [14, 15] (see also, [19, p 340-341, 370] [28, section 1]). The double fibration
defines sets of integration for the Radon transform in broad generality. Let X and Y be mani-
folds and let Z be a submanifold of ¥ x X. We assume that the natural projections

Z
™/ X (5.12)
Y X

are both fiber maps. In this case, we call (5.12) a double fibration. For y € Y, the Radon trans-
form integrates over the subset of X,

E(y) = mx (my ' ({y}) = {xeX| (v,x) € Z}.

Given smooth, positive measures /. on Z, my on X, and my on Y, the measure for the integral
transform on E(y) is the quotient measure 1 /my (and p/my for the dual transform). Since the
maps 7y and 7y are fiber maps, these quotient measure can be defined using local coordinates
(see e.g. [28, p 333]).

It is often assumed that 7y is a proper map (see e.g. [28, p 333]). This would mean that the
forward operator maps £’ to £’ and so the normal operator is defined without cutoff. However,
F does not satisfy this, and we need to include the cutoff ¢ in order to compose F5 and 1F3
without this assumption on 7y.

Recall that the L? adjoint of F3 is F3 given in (3.2) with the same weight as Fj:

Fig(x) = /A3(s, x)g(s,1)d(t — (s, x))dsdr = / A;(s,x)g(s, (s, x))ds. (5.13)
Y So
For our ellipsoidal transform, we let
Z={(s,t,x) |1 — ¢(s,x) =0}, (5.14)

and note that the ellipsoid is given by

E(so.10) = {x € R} | (s0,10,X) € Z}. (5.15)

20
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We define a smooth positive measure on Z
1= As(s,x)up where po = 0(t — ¢(s,x)) dsdr dx. (5.16)
For f € D(Y x X),

/fu :/ F(s,1,%)A3(s,x)d(¢t — (s, x))ds dr dx.
z YR}

We choose smooth positive measures mx = dx on X and my = dsdf on Y. Then, I3 and F3
are the standard generalized Radon transforms defined on X and Y from these measures, e.g.
the measure for F3 is p/(dsdr) and the measure for F3 is ;1/dx (see (3.2)) and note that the
weight for F7 is the same as for F.

The Schwartz kernel of our Radon transform Fj is integration over Z in smooth measure
1 (see, e.g. [28, proposition 1.1]). Note that the Schwartz kernel of Fj is integration over
Z in measure p and the Schwartz kernel of F;r is integration with respect to the measure
W(S, t, X) Lo-

Let C be the canonical relation of F3, then

C = {(s, ¢(s.x),wdsp — wdt, X, w) ‘ sESHxeR W 0} (5.17)

where Oxp = Vxpdx is the partial differential in x, etc. Let IIy: C — T*(Y) \ {0} and
IIy: C — T*(X) \ {0} be the natural projections. In [10], Felea et al proved that the microlo-
cal Bolker condition holds:

IIy: C — T*(Y) \ {0} is an injective immersion. (5.18)
To use the calculations in [28], we introduce the new variable w = ¢t — (s, X), and note that
d(w) corresponds to the Dirac delta in the definition of . We let ) be the differential dw and

let dn be the one form dual to 7. So dn(a%) =1
Here we are viewing any measure on an n-dimensional manifold M as the absolute value
of an associated alternating n-form in its cotangent space that evaluates on the n-fold wedge

product A"T(M). So, if x € M and v7,. .., v} are covectors in Ty (M) and uy, . .., u, are vec-
tors in 7,(M) then the measure [0} A -- - A v}| evaluated at (uy, . .., uy,) is
07 A AT (i Ao At) = [det (0] ()i, ng=1...on)| (5.19)

as defined in [42, p 59].
By applying the arguments below (14) in [28], the symbol of F3 as an FIO is

(2m)3=1D/245 dx
115 (Jox?)
evaluated on C and the symbol of 5 as an FIO is

(2m)B3=D/2A39) ds dt
115 (Jov/*”?)

evaluated on C".
Since F3 and C satisfy the microlocal Bolker condition, we can use theorem 2.1 and equa-
tion (15) in [28] to see that

(27)*~ "4 (s. 1) p*dwdn
5.20
my my T (|0x|3/2> I <|Jy|3/2) (5.20)

21
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wherex € R? ¢ € R3 \ {0}, oy is the symplectic two-form [22], |0X|3 is the standard measure
on T*(X), oy is the symplectic two-form and |0Y|3 is the standard measure on 7*(Y) [22, p 168].
One evaluates the symbol at all points

(x', € dx,s, t,m,8,t,1,%x,£dx) € (C' x C) N (T*(X) x Ay x T*(X))

where Ay denotes the diagonal in 7%(Y). By the Bolker condition, (x’, £’ dx) = (x, £ dx), so this
set can be identified with the inverse image of (x, £ dx) under Iy : C — T*(X). Using lemma
3.4 and the expression (5.17), one sees that Iy is injective. Therefore, this inverse image is the
single point given by the projection Iy () = (x, £ dx) where £ = wVxp by (5.17).

Using the definition of the measures my, my and f, the symbol simplifies to

(27)?A3(s, x) (s, x) dx ds dn
0 <|Ux|3/2> 0 (|UY|3/2) (5.21)

evaluated at this preimage A = Iy~ ' (x, £ dx) in C.
The following lemma finishes the proof for F5 ) F.

o(F39F3)(x,§) =

Lemma 5.1. We have that
dxdsdn 1

1T (Iox"2) 135 (loy %) 1<FB(s.) (5.22)

evaluated at Ty ' (x, € dx) and where Bj is given by (3.6) and s = s(x, £) is given by (5.5), and
(5.9).

Proof. The lemma is proved by first calculating a basis of T(C) using the coordinates
(s,x,w). This gives a basis B of the wedge product A®T(C). One evaluates the measure
dxds dn on B using (5.19). One then evaluates IT} (|0X|3/2> by evaluating |ax|3/2 on the push
forward Ilx, (B) and one evaluates I} <|Uy|3/ 2) in a similar way. By comparing the results,

one shows (5.22). O

The proof for F. T¢F3 is similar but one uses the measure Wy on Z (where pg is given by
(5.16)) to define Ff as a Radon transform.

The proof of the theorem for R is essentially the same except that s € R? is replaced by
the single coordinate s € R and the coordinates we use on C are (s, X, w).
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