
Processing-in-Memory for Energy-efficient Neural

Network Training: A Heterogeneous Approach

Jiawen Liu*‡, Hengyu Zhao*†, Matheus Almeida Ogleari], Dong Li‡, Jishen Zhao†

†University of California, San Diego ‡University of California, Merced ]University of California, Santa Cruz
†{h6zhao, jzhao}@ucsd.edu ‡{jliu265, dli35}@ucmerced.edu ]mogleari@ucsc.edu

Abstract—Neural networks (NNs) have been adopted in a wide
range of application domains, such as image classification, speech
recognition, object detection, and computer vision. However,
training NNs – especially deep neural networks (DNNs) – can be
energy and time consuming, because of frequent data movement
between processor and memory. Furthermore, training involves
massive fine-grained operations with various computation and
memory access characteristics. Exploiting high parallelism with
such diverse operations is challenging. To address these chal-
lenges, we propose a software/hardware co-design of heteroge-
neous processing-in-memory (PIM) system. Our hardware design
incorporates hundreds of fix-function arithmetic units and ARM-
based programmable cores on the logic layer of a 3D die-stacked
memory to form a heterogeneous PIM architecture attached to
CPU. Our software design offers a programming model and a
runtime system that program, offload, and schedule various NN
training operations across compute resources provided by CPU
and heterogeneous PIM. By extending the OpenCL programming
model and employing a hardware heterogeneity-aware runtime
system, we enable high program portability and easy program
maintenance across various heterogeneous hardware, optimize
system energy efficiency, and improve hardware utilization.

I. INTRODUCTION

Neural networks (NNs) have been adopted by a wide range

of application domains, such as computer vision, speech

recognition, and natural language processing. Today, NN

models employ increasingly larger number of parameters and

data sets. For example, VGG [1] and AlexNet [2] employ

138M and 61M parameters for image classification, respectively.

Training such complex models demands immense computation

and memory resources, energy and time. One critical energy and

performance bottleneck when training NN is data movement

in systems. As NN models are becoming deeper and larger,

the data volume and the pressure on the runtime system

to support data intensive operations substantially increase.

Existing research efforts use low-precision data [3] or prune

NN models [4]. Yet, these efforts impose the difficulty

of quantifying the impact of model simplification on NN

model accuracy; They do not fundamentally address the data

movement problem in NN model training.

Recent development of processing-in-memory (PIM) tech-

niques have been explored as a promising solution to tackle

the data movement challenge in various applications [5, 6].

We profile various NN training workloads and reveal that such

workloads have diverse memory access patterns, computation

intensity, and parallelism (Section II). As a result, NN training

*These two authors contributed equally to this paper as the first authors.

can significantly benefit from heterogeneous PIM – which

incorporates both fixed-function logic and programmable cores

in the memory – to achieve optimal energy efficiency and

balance between parallelism and programmability. However,

such heterogeneous PIM architecture introduces multiple

challenges in the programming method and runtime system.

First, programming PIMs to accelerate NN training is non-

trivial. Today, the common machine learning frameworks, such

as TensorFlow [7], Caffe2 [8], heavily rely on a variety of

implementations for NN operations on various hardware, and

use a middleware to integrate those operations to provide

hardware transparency to the user. Such a software design can

place high burden on system programmers, because of the

increasing hardware heterogeneity and difficulty for program

maintenance. Most previous PIM software interfaces [5, 6,

9] require programmers to have the detailed knowledge of

underlying hardware. In order to improve productivity and

ease-of-adoption of PIM-based NN training accelerators, we

need to develop a programming method that maximizes code

reuse without asking the programmer to repeatedly program

on different PIMs.

Second, combining fixed-function logics and programmable

cores in PIM further complicates the software design. Fixed-

function and programmable PIMs employ vastly different

programming models: Fixed-function PIMs employ ISA-level

instructions accessed via assembly-level intrinsics or via library

calls; Programmable PIMs employ standard programming

paradigms, such as threading packages or GPGPU program-

ming interfaces [10]. As discussed in recent studies [10], most

previous PIM designs adopt homogeneous PIM architectures

– with either fixed-function or programmable PIMs – which

allows a simplified software interface design. But with hetero-

geneous PIM, it is critical to design a unified programming

model that can accommodate both PIM components.

Finally, the scale of operations in NN training can lead to

unbalanced hardware utilization. Ideally, we want to achieve

high utilization of PIMs without violating the dependency

requirement among NN training operations, by exploiting

abundant operation-level parallelism across the host processor

and PIMs. However, it can be difficult to achieve so in

such a heterogeneous system by pure hardware scheduling,

because of the complexity of tracking operation dependency

and synchronization. Furthermore, NN training typically adopts

a large amount (e.g., tens of thousands) of iterative steps

and hundreds of operations per step. Operation dependency





TABLE I: Operation profiling results for three neural network models. “CI”= computation intensive; “MI”=memory intensive.
VGG-19

Top 5 CI Ops Execution Time(%) #Invocation Top 5 MI Ops #Main Memory Access(%) #Invocation

1. Conv2DBackpropFilter 40.15 16 1. Conv2DBackpropFilter 42.52 16

2. Conv2DBackpropInput 32.68 15 2. BiasAddGrad 35.68 16

3. BiasAddGrad 11.92 16 3. Conv2DBackpropInput 21.06 15

4. Conv2D 10.34 16 4. MaxPoolGrad 0.22 16

5. MaxPoolGrad 1.49 16 5. Relu 0.14 19

Other 13 ops 3.37 232 Other 13 ops 0.38 229

AlexNet

Top 5 CI Ops Execution Time(%) #Invocation Top 5 MI Ops #Main Memory Access(%) #Invocation

1. Conv2DBackpropFilter 33.64 5 1. BiasAddGrad 44.64 3

2. Conv2DBackpropInput 33.46 4 2. Conv2DBackpropInput 36.61 4

3. MatMul 13.54 6 3. Conv2DBackpropFilter 14.79 5

4. Conv2D 10.48 5 4. Relu 1.20 8

5. BiasAddGrad 4.62 3 5. Conv2D 0.46 5

Other 13 ops 4.26 121 Other 13 ops 2.30 119

DCGAN

Top 5 CI Ops Execution Time(%) #Invocation Top 5 MI Ops #Main Memory Access(%) #Invocation

1. Conv2DBackpropFilter 19.98 4 1. Conv2DBackpropFilter 37.21 4

2. Conv2DBackpropInput 17.18 4 2. Conv2DBackpropInput 28.09 4

3. MatMul 14.28 12 3. Slice 17.18 14

4. Conv2D 10.53 4 4. Conv2D 5.45 4

5. Mul 9.89 84 5. Mul 2.22 84

Other 47 ops 28.14 821 Other 47 ops 9.85 819

or programmable [6] computation components in the logic

layer of 3D die-stacked memory. In the following, we discuss

feasibility, challenges, opportunities of accelerating NN training

with software/hardware co-design of heterogeneous PIM.

B. Feasibility of Heterogeneous PIM Architecture

The logic layer of 3D memory stacks has area, power, and

thermal limitations. But previous studies demonstrated the

feasibility of adopting both fixed-function and programmable

PIMs, while meeting these constraints [17]. We adopt similar

methodologies to ensure the feasibility of our architecture

implementation (Section IV).

C. Software Design Challenges and Opportunities

There are three challenges for the software design (introduced

in Section I): (1) How do we enable high productivity of system

programmers and ease-of-adoption of PIM-based NN training

accelerators? (2) How do we develop a unified programming

model that can efficiently accommodate the host processor,

fixed-function PIMs, and programmable PIMs? (3) How do

we balance hardware utilization at runtime?

One candidate baseline programming model is OpenCL [11],

which is widely used in accelerator-based heterogeneous

computing platforms (e.g., GPU and FPGA). We adopt OpenCL,

due to its portability, expressiveness, and ability to enable

high programming productivity to support programming on

heterogeneous systems (details are discussed in Section III-B).

However, it is not straightforward to adopt OpenCL for NN

model training on the heterogeneous PIM architecture. (1)

How do we map the platform model of OpenCL to the

heterogeneous PIM architecture? (2) Given the execution model

of OpenCL with limited considerations on hardware utilization,

how do we make the best use of CPU (the host processor)

and different types of PIMs? (3) Given the memory model

of OpenCL with limited considerations on synchronization

between hardware units, how do we meet the requirement of

frequent synchronizations from NN operations?

Trade-offs between parallelism and programmability.

Fixed-function PIMs typically offer high computation paral-

lelism by executing fine-grained, simple operations distributed

across massive amount of logic units. However, they are less

flexible than programmable PIMs that can be programmed to

accommodate a large variety of operations. Furthermore, fixed-

function PIMs can impose high performance overhead by (i)

frequent operation-spawning and (ii) host-PIM synchronization.

Programmable PIMs typically execute coarse-grained code

blocks with less frequent host-PIM synchronization. However,

the limited number of computational units in programmable

PIMs can lead to much lower parallelism than in fixed-function

PIMs.

Opportunities in runtime system scheduling. Substantial

opportunities exist in leveraging system-level software to opti-

mize resource sharing among various system components. The

heterogeneity of our architecture introduces requirements on

scheduling model-training operations across the host processor

(CPU), fixed-function PIMs and programmable PIMs, based on

the dynamic utilization of compute resources on these system

components. Yet, we observe that NN training workloads tend

to have repeatable (hence predictable) computation behavior

over the execution time. As such, system software can ac-

curately predict and dynamically schedule the operations by

profiling the resource utilization of various compute elements

in the first few steps of modeling training. Such dynamic

profiling-based scheduling can achieve the best utilization of

computation resources, while improving energy efficiency.

D. CPU vs. GPU – Where to Attach Heterogeneous PIMs?

Today, NN-training workloads can be executed on both CPU-

and GPU-based systems. Recent silicon interposer technology

allows both types of systems to adopt 3D die-stacked memories

3



closely integrated with logic components. For example, modern

GPU device memories [18] are implemented by high-bandwidth

memory technology. High-end CPU servers integrate high-

bandwidth memories using the DRAM technology adopted

from hybrid memory cubes.

Our heterogeneous PIMs are logic components closely

integrated with die-stacked memories. Therefore, they are

generally applicable to both CPU or GPU systems. However,

this paper focuses on the software design for heterogeneous

PIMs attached on CPU systems, due to the constraint of current

GPU systems. Today, GPU systems often fuse and organize

computation kernels into NN layers rather than fine-grained

operations, because of the inefficiency of compute preemption

and thread scheduling. This significantly limits the flexibility

of operation scheduling on GPU.

The NVIDIA Volta GPU provides certain support for fine-

grained acceleration of NN training operations, yet only

available with limited number of threads. Modern CPU systems

are easy to access and program; this enables easy-to-adopt and

flexible programming abstraction and system library functions.

III. DESIGN

To address the aforementioned challenges, we propose a

software/hardware co-design of heterogeneous PIM framework

to accelerate NN training. Our design consists of a heteroge-

neous PIM architecture, an extended OpenCL programming

model, and a runtime system. Figure 3 depicts our architecture

configuration. Figure 4 shows the process of building and

executing NN training with our software framework. Given

an OpenCL kernel to implement an operation, our system

extracts code sections from the kernel and compiles them into

a set of binaries to run on CPU, programmable PIM, and fixed-

function PIMs, respectively. After the training workload starts to

execute, our runtime scheduler profiles the first step of training

to obtain operation characterization. It then performs dynamic

scheduling of operations across CPU, programmable PIM, and

fixed-function PIMs in the rest of training steps. Our runtime

system incorporates two key components: (i) an operation-

pipeline scheme, which allows multiple NN operations to co-

run on PIMs to improve hardware utilization and (ii) a recursive

operation-execution scheme, which allows the programmable

PIM to call fixed-function PIMs to improve hardware utilization

and avoid frequent synchronization between CPU and PIMs.

Software/hardware co-design principles. Our software de-

sign supports our hardware configuration in the following

manner. First, our software design offers a portable program-

ming model across the host processor, fixed-function PIMs,

and the programmable PIM. Our programming model provides

a unified abstract to program various PIMs, which need to be

programmed in separate manners in conventional systems. Our

runtime scheduling scheme effectively optimizes PIM hardware

utilization. Our runtime system also enables recursive calls

between the programmable PIM and fixed-function PIMs. Our

architecture design supports our software design in two ways:

our heterogeneous PIM architecture enables efficient NN train-

ing acceleration by exploiting the heterogeneous characteristics

of software operations; We employ a set of hardware registers

to track PIM hardware utilization information, which is required

by our runtime scheduling.

A. Heterogeneous PIM Architecture

To accommodate various types of operations that are likely to

execute on PIMs, we adopt a heterogeneous PIM architecture

consisting of (i) a programmable PIM, which is an ARM

core and (ii) massive fixed-function PIMs, which are adders

and multipliers distributed across all memory banks. While

our design can be used with various 3D die-stacked memory

devices, we employ a 32-bank memory stack (where a bank

is a vertical slice in the stack) as an example in this paper.

Figure 3 depicts our architecture configuration. Section IV

describes hardware implementation details.

B. Programming Model for Heterogeneous PIM

We extend the OpenCL programming model to program the

heterogeneous PIM. OpenCL has been widely employed to

enable program portability across accelerator-based, heteroge-

neous computing platforms (e.g., GPU and FPGA). We use

OpenCL because of the following reasons. First, by treating the

fixed-function PIMs and programmable PIM as accelerators, the

semantics of OpenCL naturally fit into the heterogeneous PIM

environment. Second, writing a program for the heterogeneous

PIM based on an abstract and unified hardware model in

OpenCL, the programmer can write the program just once

but run it on a variety of PIMs. Therefore, by using OpenCL,

we can hide hardware variety of the heterogeneous PIM from

system programmers, improve their productivity, and enable

code portability.

Other programming models, such as OpenACC [19, 20]

and OpenMP [21], can also hide hardware heterogeneity and

reduce programmers’ burden. However, these are higher-level

programming models, which rely on compilers to transform

programs into a lower-level programming model, such as

OpenCL, to enable code portability. We focus on OpenCL

in our study, because it provides a foundation for those higher-

level programming models.

Overview of our programming model. Table II summarizes

our extension to OpenCL. Our platform model includes multiple

types of heterogeneous devices. Such platform model is driven

by the characteristics of NN training operations. Our execution

model adds (i) recursive kernel invocation to enable kernel

invocation between PIMs to support complex NN operations

(e.g., Conv2DBackpropFilter) and (ii) operation pipeline to

improve hardware utilization for small NN operations with

limited parallelism (e.g., Slice). Finally, we extend the memory

model to support a single global memory shared between

the host processor and accelerators. We also add explicit

synchronization across different PIMs and CPU (host processor)

to enforce execution orders across NN operations.

OpenCL background. The existing OpenCL adopts a host-

accelerator platform model as shown in Figure 5(a). A host

processor connects to one or more compute devices (i.e.,

accelerators). A compute device is divided into one or more

4





TABLE II: Extending OpenCL for the heterogeneous PIM.
Native OpenCL Extensions for Heterogeneous PIM

Platform model Host + accelerators (e.g., host + GPU). Host + two types of accelerators (fixed-function PIMs and
programmable PIM) driven by the characteristics of NN
training.

Execution model Host submits work to accelerators.
• Host submits work to accelerators;
• Accelerators submit work to accelerators (i.e., recursive

kernel invocation);
• Work execution pipeline (i.e., operation pipeline);
• Work scheduling based on dynamic profiling.

Memory model
• Multiple types of memory with a relaxed consistency model;
• The global memory is not shared;
• No defined synchronization across accelerators.

• A single global memory with a relaxed consistency model;
• The global memory is shared;
• Explicit synchronization across PIMs and CPU.

Conv2DBackpropFilter(…)	

{	

			

				

				

}	

Recurssive	

Kernel	call	

P
ro
g
ra
m
m
a
b
le
	P
IM

	

Fixed-function	

PIMs	

…
	

…
	

…

Comp	phase	1	

Comp	Phase	2	

Conv	(…)	
…

Fig. 6: An example of the recursive PIM kernel.

phases 1, 2 and convolution are combined as a single recursive

PIM kernel, which reduces the synchronization between CPU

and PIMs.

In general, the four binary files provide convenience for

scheduling on CPU, the fixed-function PIMs and programmable

PIM, and hence allows the runtime to maximize utilization of

CPU and PIMs.

Memory model. The existing OpenCL defines four distinct

memory regions in a compute device: global, constant, local,

and private. On a heterogeneous PIM system, only a single

global memory (i.e., the main memory) exists. In addition,

the global memory is shared between CPU and PIMs, and

addressed within a unified physical address space. This mem-

ory model requires synchronization at multiple points: (1)

between CPU and PIMs; and (2) between different PIMs. The

synchronization is necessary to avoid data race and schedule

operations.

To implement effective synchronization, we employ the pro-

grammable PIM to drive the synchronization and avoid frequent

interrupts to CPU. In particular, for synchronization between

CPU and PIMs, the programmable PIM checks the completion

of operations offloaded to PIMs (either programmable or fix

function PIMs) and sends the completion information to CPU.

For synchronization between different PIMs, the programmable

and fix function PIMs synchronize through global variables in

main memory.

Between CPU and PIMs, we introduce explicit synchroniza-

tion points to synchronize the accesses to shared variables.

To the host processor, the whole set of fixed-function PIMs

or the programmable PIM appear as another processor. We

employ standard synchronization schemes (e.g., barriers and

locks), similar to the ones in a shared-memory multiprocessor.

For fixed-function PIMs, their operations are atomic and the

synchronization points are not expected in the middle of

operations. For programmable PIMs, the synchronization points

can be in the middle of a kernel. This is feasible based on

global lock variables shared between CPU and PIMs. To

support memory consistency, we adopt a relaxed memory

consistency model, which aims to improve performance and

reduce hardware complexity. In particular, an update to a

memory location by a fixed-function PIM is not visible to

all the other fixed-function PIMs at the same time. Instead,

the local view of memory from each fixed-function PIM is

only guaranteed to be consistent right after the kernel call

to fixed-function PIMs. Between the fixed-function PIMs and

programmable PIM, we employ the same consistency scheme:

updates to memory locations by the entire set of fixed-function

PIMs are not visible until the end of the kernel call to the

fixed-function PIMs.

Because of our shared memory model, there is no data copy

overhead before and after PIM kernel calls. Based on the above

synchronization schemes, PIM kernel calls can be launched

asynchronously to overlap computation on CPU and PIMs.

Support for easy program maintenance. To use the extended

OpenCL programming model, operations need to be re-

written using OpenCL. To write OpenCL code for operations,

one can use OpenACC directives and compilers [19, 20]

to automatically transform the original code into OpenCL

code. This can significantly simplify the programming work.

Furthermore, the number of operations for machine learning

models is limited (tens of operations). Hence, using OpenCL

to implement those machine learning operations is feasible.

Other than that, however, the higher level software components

(e.g., most of the middleware components, operation APIs,

and Python syntax for using machine learning models) remain

the same. This enables easy maintenance of machine learning

frameworks.

C. Runtime System Design

Our runtime system is in charge of scheduling operations

to fixed-function PIMs, programmable PIM, and CPU. To

minimize NN training time, the runtime strives to maximize

utilization of PIMs and CPU to optimize system throughput.

The runtime schedules operations based on the following two

steps.

Step 1: profiling. The runtime profiles performance of all

operations on CPU. The profiling happens in only one step

of NN model training. NN model training typically has a

6



large amount of iterative steps (thousands and even millions

of steps). Using one step for profiling has ignorable impact on

performance. In addition, all steps almost have the same classes

of operations; performance of operations (particularly execution

time and the number of main memory access) remains stable

across steps. Therefore, one step is sufficient for profiling

purpose. During profiling, the runtime executes operations one

by one in CPU, collecting execution time and the number of

main memory access level cache misses of each operation with

hardware counters. Based on the profiling results in the step,

the runtime employs the following algorithm to determine the

candidate operations to be offloaded to PIMs.

To determine the candidate operations, the runtime sorts

operations into two lists (in descending order) based on

execution time and the number of main memory accesses,

respectively. Each operation in each of the two lists is correlated

to an index, i.e., each operation has two indexes. With each

operation, the runtime calculates a global index by adding

these two indexes. Based on the global indexes, the runtime

sorts operations into a global list. The runtime chooses top

operations in the global list to offload to PIMs. Those top

operations account for x% of total execution time of one step

(x = 90 in our evaluation). The above algorithm is inspired by

feature selection process in machine learning [22]. The goal

of this algorithm is to select those operations that are both

time-consuming and have a large number of main memory

accesses.

Step 2: scheduling. Given the candidate operations to offload,

the runtime makes the scheduling decision based on the

following three principles.

• Scheduling operations to execute on fixed-function PIMs as

much as possible.

• Scheduling operations to execute on PIMs (not CPU) as much

as possible. In case all fixed-function or programmable PIMs

are busy, the runtime will schedule the candidate operations

to execute on CPU;

• Scheduling needs to respect data dependency across opera-

tions.
The first principle favors fixed-function PIMs over other

compute units, because fixed-function PIMs are more energy

efficient and typically performs faster with higher parallelism

than other compute units. The second principle avoids CPU

idling and introduces parallelism between CPU and PIMs. The

third principle ensures execution correctness. Each operation de-

fined in the machine learning frameworks typically has explicit

input and output data objects (e.g., Tensors in TensorFlow),

which provides convenience in tracking data dependencies

across operations.

Operation pipeline. The above scheduling algorithm and

principles enable operation pipeline to maximize hardware

utilization. In particular, when an operation in a step cannot

fully utilize fixed-function PIMs, our runtime schedules an

operation in the next step to execute a portion of its computation

by utilizing idling fixed-function PIMs as long as the two

operations do not depend on each other.

In essence, these two operations can enable a pipelined

execution manner. For instance, in AlexNet, a single convo-

lution operation with a filter size of 11×11 consumes 121

multiplication and 120 addition (241 fixed-function PIMs

in total). In case we have 444 fixed-function PIMs in total

(Section IV-D), the utilization of fixed-function PIMs is only

54%. To improve hardware utilization, the runtime can schedule

multiplication and addition from an operation (or operations)

in the next step to execute on fixed-function PIMs. Once

the convolution operation in the current step is completed,

the partially executed operation(s) from the next step can

immediately utilize the newly released fixed-function PIMs to

improve hardware utilization and performance. This indicates

that an operation can dynamically change its usage of PIMs,

depending on the availability of PIMs. Such dynamic nature

of operation execution is feasible based on a runtime system

running on the programmable PIM (Section IV-C presents

implementation details).

IV. IMPLEMENTATION

A. Low-level APIs for PIM Runtime System

We introduce several low-level API functions for fixed-

function and programmable PIMs. These API functions allow

direct control of individual PIMs, and provide foundation for

our runtime. The API achieves the following functionality: (1)

offloading a specific operation into specific PIM(s); (2) tracking

the status of PIMs, including examining whether a PIM is busy

or not; (3) querying the completion of a specific operation;

(4) querying the computation location (i.e., which PIM) and

input/output data location (i.e, which DRAM banks) for a

specific operation. Table III summarizes our API functions.

B. OpenCL Binary Generation

To schedule operations to execute on CPU, fixed-function

PIMs, or programmable PIM, we generate four binary files

(Figure 4). In order to generate the binary file (#3) that

corresponds to a portion of a large operation (an OpenCL

kernel) to execute on fixed-function PIMs (e.g., the convolution

within the operation Conv2DBackpropFilter), we first extract

code sections from the corresponding OpenCL kernel. We

then transform these code sections into a set of small kernels

to execute on fixed-function PIMs. Finally we compile them

into binary file (#3). In the original OpenCL kernel, these

extracted code regions are replaced with the kernel calls

and then compiled into binary file (#4) to execute on the

programmable PIM. Binary files (#1) and (#2) are generated

during the regular compilation stage.

C. Runtime Implementation

Our runtime consists of two components, which execute on

the CPU and the programmable PIM, respectively.

The runtime on CPU. To support our runtime scheduling,

we extend the runtime system of TensorFlow by adding

approximately 2000 lines of code. The runtime on CPU

schedules operations on CPU and PIMs, based on hardware

utilization information provided by the low-level APIs. It does

not support the implementation of recursive PIM kernels. In

7





TABLE IV: System configurations.

CPU Intel Xeon E5-2630 V3@2.4GHz

Main memory 16GB DDR4

Operating system Ubuntu 16.04.2

GPU NVIDIA GeForce GTX 1080 Ti (Pascal)

GPU cores 28 SMs, 128 CUDA cores per SM, 1.5GHz

L1 cache 24KB per SM

L2 cache 4096KB

Memory interface 8 memory controllers, 352-bit bus width

GPU main memory 11GB GDDR5X

using McPAT [23]. We evaluate the power and area of fixed-

function PIMs using Synopsys Design Compiler [25] and

PrimeTime [26].

C. Workloads

We evaluate various training models, including VGG-19 [1],

AlexNet [2], Deep Convolutional Generative Adversarial Net-

works (DCGAN)) [12], ResNet-50 [30], Inception-v3 [31],

Long Short Term Memory (LSTM) with dropout [32] and

Word2vec [33]. LSTM and Word2vec are evaluated in Sec-

tion VI-F. The rest models are widely used in recent studies

on CNN training and image classification.

Training Datasets. We employ ImageNet as training data set

of VGG-19, AlexNet, ResNet-50, and Inception-V3. ImageNet

is a large image dataset with millions of images belonging to

thousands of categories. DCGAN employs MNIST dataset [34].

LSTM adopts Penn Tree Bank (PTB) [32] dataset. Word2vec

employs “questions-words” dataset [35] in TensorFlow.

Training framework and batch Size. We adopt Tensor-

Flow [7] as our training framework. We adopt default batch

sizes of each training model in TensorFlow. The batch size of

VGG-19, AlexNet and Inception-v3 is 32. The batch size of

Word2vec and ResNet-50 is 128. DCGAN has a batch size of

64. LSTM employs a batch size of 20.

D. Real Machine Configurations

To compare performance and energy efficiency of heteroge-

neous PIM with GPU and CPU, we run the training models on

(1) NVIDIA GeForce GTX 1080 Ti graphic card [36] and (2)

CPU listed in Table IV. Our GPU-based training evaluations

adopt CUDA 8 [37] and NVIDIA cuDNN 6.0 library [38]. GPU

utilizations of each training model in TensorFlow are: Inception-

v3 (average: 62%; peak: 100%); ResNet-50 (average: 44%;

peak: 58%); AlexNet (average: 30%; peak: 34%); VGG-19

(average: 63%; peak: 84%); DCGAN (average: 28%; peak 42%.

We use NVIDIA’s profiling tool [39] and Intel’s VTune [14]

to collect performance and power statistics.

VI. EVALUATION

Our experiments compare among the following five configu-

rations, including our design.

• CPU – Executing all training operations on CPU;

• GPU – Executing all training operations on GPU;

• Progr PIM – Programmable PIMs only, which executes all

operations on as many ARM-based programmable cores as

needed by workloads (without our runtime scheduling);

• Fixed PIM – Fixed-function PIMs only, which executes the

operations that can be offloaded on fixed-function PIM and

other operations on CPU (without our runtime scheduling);

• Hetero PIM – Our heterogeneous PIM design (including

our runtime scheduling).

A. Execution Time Analysis

Figure 8 shows execution (training) time of various NN

training models. We break down the execution time into

synchronization time, data movement time and operation time

(i.e., computation time in CPU, GPU or PIMs). For GPU-

based systems, the data movement time is the time for data

transfer between main memory and GPU global memory.

Certain amount of data transfer time is overlapped with GPU

computation, e.g. by copying a minibatch of images to the

GPU memory, while the computation on GPU is processing

another minibatch. Our breakdown only shows the data transfer

time that is not hidden by the computation. For PIM-based

systems, the data movement time is the time for data transfer

between CPU and the main memory. Our runtime scheduling

allows operations to execute concurrently on CPU and PIMs.

We observe that PIM-based designs (including Fixed PIM,

Progr PIM and Hetero PIM) perform much better than CPU,

with 19%-28× performance improvement. Compared with

Progr PIM and Fixed PIM, our design has 2.5×-23× and

1.4×-5.7× performance improvement, respectively. PIM-based

designs also significantly reduce data movement overhead,

compared to CPU and GPU. Overall, Hetero PIM leads to the

lowest synchronization and data movement overhead among

all configurations.

The performance benefit of Hetero PIM stands out with

larger training models and larger working sets due to (i) more

reduction in data movement and (ii) higher parallelism between

host CPU and PIMs introduced by more offloadable operations.

DCGAN has smaller model and working set than others. There-

fore, Hetero PIM appears to result in worse performance than

GPU with DCGAN; yet, compared with other configurations,

our design still significantly improves performance. ResNet is

a large training model with large working sets. As a result,

Hetero PIM leads to better performance than GPU with ResNet.

With other training models, Hetero PIM leads to performance

close to (within 10% of) GPU. GPU has good performance

because of its massive thread-level parallelism. Our design

leads to much better performance than all other configurations.

B. Energy Consumption Analysis

Figure 9 shows the dynamic energy consumption of the

five NN models with five different configurations. The energy

consumption results are normalized to the results of Hetero

PIM. We observe substantial energy benefit of using our design:

it consumes 3×-24× and 1.3×-5× less energy than CPU and

GPU, respectively. CPU consumes higher dynamic energy than

Hetero PIM, Fixed PIMs, and GPU, even though its power

consumption is the lowest among all of these configurations

(note that we take CPU power into account when we calculate

the power of PIMs and GPU, in order to evaluate full-system

9









REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolu-

tional networks for large-scale image recognition,” arXiv

preprint arXiv:1409.1556, 2014.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”

in Advances in neural information processing systems,

pp. 1097–1105, 2012.

[3] C. De Sa, M. Feldman, C. Ré, and K. Olukotun, “Under-

standing and Optimizing Asynchronous Low-Precision

Stochastic Gradient Descent,” in International Symposium

on Computer Architecture (ISCA), 2017.

[4] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das,

and S. Mahlke, “Scalpel: Customizing DNN Pruning to

the Underlying Hardware Parallelism,” in International

Symposium on Computer Architecture (ISCA), 2017.

[5] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang,

and Y. Xie, “PRIME: A novel processing-in-memory

architecture for neural network computation in ReRAM-

based main memory,” in Proceedings of the 43rd Interna-

tional Symposium on Computer Architecture, pp. 27–39,

2016.

[6] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and

S. Mukhopadhyay, “Neurocube: A programmable digital

neuromorphic architecture with high-density 3D memory,”

in Proceedings of the 43rd International Symposium on

Computer Architecture, pp. 380–392, 2016.

[7] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,

et al., “Tensorflow: Large-scale machine learning

on heterogeneous distributed systems,” arXiv preprint

arXiv:1603.04467, 2016.

[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,

R. Girshick, S. Guadarrama, and T. Darrell, “Caffe:

Convolutional architecture for fast feature embedding,”

arXiv preprint arXiv:1408.5093, 2014.

[9] D. Fujiki, S. Mahlke, and R. Das, “In-memory data

parallel processor,” in Proceedings of the Twenty-Third

International Conference on Architectural Support for

Programming Languages and Operating Systems, ASP-

LOS ’18, (New York, NY, USA), pp. 1–14, ACM, 2018.

[10] G. H. Loh, N. Jayasena, M. H. Oskin, M. Nutter,

D. Roberts, M. Meswani, D. Zhang, and M. Ignatowski,

“A processing-in-memory taxonomy and a case for study-

ing fixed-function PIM,” in WoNDP, pp. 1–6, 2013.

[11] “Khronos Group, the open standard for parallel program-

ming of heterogeneous systems.” https://www.khronos.

org/opencl/.

[12] A. Radford, L. Metz, and S. Chintala, “Unsupervised

representation learning with deep convolutional generative

adversarial networks,” CoRR, vol. abs/1511.06434, 2015.

[13] “TensorBoard: Visualizing learning,”

https://www.tensorflow.org/programmers guide/summa

ries and tensorboard.

[14] “Intel, Vtune user’s guide,” https://software.intel.com/en-

us/get-started-with-vtune/.

[15] S. Boag, P. Dube, B. Herta, W. Hummer, V. Ishakian,

J. K. R., M. Kalantar, V. Muthusamy, P. Nagpurkar, and

F. Rosenberg, “Scalable Multi-Framework Multi-Tenant

Lifecycle Management of Deep Learning Training Jobs,”

in Workshop on ML Systems at NIPS’17, 2017.

[16] “MultiModel: Multi-task machine learning across do-

mains,” https://ai.googleblog.com/2017/06/multimodel-

multi-task-machine-learning.html.

[17] Y. Zhu, B. Wang, D. Li, and J. Zhao, “Integrated thermal

analysis for processing in die-stacking memory,” in

Proceedings of the Second International Symposium on

Memory Systems, pp. 402–414, 2016.

[18] “NVIDIA, TITAN Xp,” https://www.nvidia.com/en-

us/geforce/products/10series/titan-xp/.

[19] “Openarc.” https://ft.ornl.gov/research/openarc.

[20] “Ipmacc compiler.” https://github.com/lashgar/ipmacc.

[21] O. Forum, “OpenMP Fortran application program inter-

face, version 1.1.” http://www.openmp.org, 1999.

[22] H. v. Halteren, J. Zavrel, and W. Daelemans, “Improving

accuracy in word class tagging through the combination

of machine learning systems,” Computational linguistics,

vol. 27, no. 2, pp. 199–229, 2001.

[23] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.

Tullsen, and N. P. Jouppi, “McPAT: An integrated power,

area, and timing modeling framework for multicore and

manycore architectures,” in Proceedings of the 42Nd

Annual IEEE/ACM International Symposium on Microar-

chitecture, pp. 469–480, 2009.

[24] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang,

S. Velusamy, and D. Tarjan, “Temperature-aware mi-

croarchitecture: modeling and implementation,” ACM

Transactions on Architecture and Code Optimization,

vol. 1, no. 1, pp. 94–125, 2004.

[25] Synopsys, “Design compiler.” https://www.synopsys.

com/support/training/rtl-synthesis/design-compiler-rtl-

synthesis.html.

[26] Synopsys, “Primetime.” https://www.synopsys.com/

support/training/signoff/primetime1-fcd.html.

[27] HMCC, “Hybrid memory cube specification 2.0.” http:

//http://www.hybridmemorycube.org/.

[28] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,

“Pin: Building customized program analysis tools with

dynamic instrumentation,” in Proceedings of the 2005

ACM SIGPLAN Conference on Programming Language

Design and Implementation, (New York, NY, USA),

pp. 190–200, 2005.

[29] J. Reinders, “Vtune performance analyzer essentials,” Intel

Press, 2005.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-

ing for image recognition,” in Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016.

[31] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and

Z. Wojna, “Rethinking the inception architecture for

13



computer vision,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 2818–

2826, 2016.

[32] W. Zaremba, I. Sutskever, and O. Vinyals, “Recur-

rent neural network regularization,” arXiv preprint

arXiv:1409.2329, 2014.

[33] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,

and J. Dean, “Distributed representations of words and

phrases and their compositionality,” in Advances in neural

information processing systems, pp. 3111–3119, 2013.

[34] Y. LeCun and C. Cortes, “MNIST handwritten digit

database,” 2010.

[35] “Tensorflow, questions-words dataset,”

http://download.tensorflow.org/data/questions-words.txt.

[36] “NVIDIA, GeForce GTX 1080 Ti,”

https://www.nvidia.com/en-us/geforce/products/.

[37] “NVIDIA CUDA.” http://www.nvidia.com/cuda.

[38] NVIDIA, “cudnn.” https://developer.nvidia.com/cudnn.

[39] “NVIDIA, Profiler user’s guide,”

http://docs.nvidia.com/cuda/profiler-users-guide/.

[40] T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang, “Ease.ml:

Towards multi-tenant resource sharing for machine learn-

ing workloads,” Proc. VLDB Endow., vol. 11, no. 5, 2018.

[41] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled

instructions: A low-overhead, locality-aware processing-

in-memory architecture,” in Proceedings of the 42Nd An-

nual International Symposium on Computer Architecture,

pp. 336–348, 2015.

[42] B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization

in memory using 3D-stacked DRAM,” in Proceedings

of the Annual International Symposium on Computer

Architecture, pp. 131–143, 2015.

[43] L. Nai and H. Kim, “Instruction offloading with HMC

2.0 standard: A case study for graph traversals,” in

Proceedings of the 2015 International Symposium on

Memory Systems, pp. 258–261, 2015.

[44] Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal feasi-

bility of die-stacked processing in memory,” in WoNDP,

pp. 1–6, 2014.

[45] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A

scalable processing-in-memory accelerator for parallel

graph processing,” in Proceedings of the 42nd An-

nual International Symposium on Computer Architecture,

pp. 105–117, 2015.

[46] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubra-

monian, J. P. Strachan, M. Hu, R. S. Williams, and

V. Srikumar, “ISAAC: A convolutional neural network

accelerator with in-situ analog arithmetic in crossbars,”

in Proceedings of the 43rd International Symposium on

Computer Architecture, pp. 14–26, 2016.

[47] P. Wang, Y. Ji, C. Hong, Y. Lyu, D. Wang, and Y. Xie,

“SNrram: an efficient sparse neural network computation

architecture based on resistive random-access memory,”

in Proceedings of the 55th Annual Design Automation

Conference, p. 106, ACM, 2018.

[48] S. Angizi, Z. He, A. S. Rakin, and D. Fan, “CMP-PIM: an

energy-efficient comparator-based processing-in-memory

neural network accelerator,” in Proceedings of the 55th

Annual Design Automation Conference, pp. 105–110,

ACM, 2018.

[49] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Neu-

rostream: Scalable and energy efficient deep learning with

smart memory cubes,” IEEE Transactions on Parallel and

Distributed Systems, vol. 29, no. 2, pp. 420–434, 2018.

[50] F. Schuiki, M. Schaffner, F. K. Gürkaynak, and L. Benini,

“A scalable near-memory architecture for training deep

neural networks on large in-memory datasets,” arXiv,

vol. abs/1803.04783, 2018.

[51] “RISC-V: The free and open RISC instruction set archi-

tecture.” https://riscv.org/.

[52] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse,

L. Xu, and M. Ignatowski, “TOP-PIM: Throughput-

oriented programmable processing in memory,” in Pro-

ceedings of the 23rd International Symposium on High-

performance Parallel and Distributed Computing, pp. 85–

98, 2014.

[53] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee,

S. K. Lee, J. M. Hernández-Lobato, G.-Y. Wei, and

D. Brooks, “Minerva: Enabling low-power, highly-

accurate deep neural network accelerators,” in Proceed-

ings of the 43rd International Symposium on Computer

Architecture, pp. 267–278, 2016.

[54] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial

architecture for energy-efficient dataflow for convolutional

neural networks,” in ISCA, pp. 367–379, IEEE, 2016.

[55] H. Esmaeilzadeh, A. Sampson, and L. Ceze et al., “Neural

acceleration for general-purpose approximate programs,”

in MICRO, pp. 449–460, IEEE Computer Society, 2012.

[56] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-

layer CNN accelerators,” in MICRO, pp. 1–12, IEEE,

2016.

[57] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,

T. Chen, Z. Xu, N. Sun, and O. Temam, “DaDianNao: A

machine-learning supercomputer,” in IEEE/ACM Interna-

tional Symposium on Microarchitecture, 2014.

[58] M. Rhu, N. Gimelshein, and J. C. et al., “vDNN:

Virtualized deep neural networks for scalable, memory-

efficient neural network design,” in MICRO, 2016.

[59] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon,

and S. W. Keckler, “Compressing DMA engine: Leverag-

ing activation sparsity for training deep neural networks,”

in HPCA, pp. 78–91, 2018.

[60] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhi-

menko, “Gist: Efficient data encoding for deep neural

network training,” in ISCA, pp. 1–14, 2018.

14


