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Abstract—Neural networks (NNs) have been adopted in a wide
range of application domains, such as image classification, speech
recognition, object detection, and computer vision. However,
training NNs — especially deep neural networks (DNNs) — can be
energy and time consuming, because of frequent data movement
between processor and memory. Furthermore, training involves
massive fine-grained operations with various computation and
memory access characteristics. Exploiting high parallelism with
such diverse operations is challenging. To address these chal-
lenges, we propose a software/hardware co-design of heteroge-
neous processing-in-memory (PIM) system. Our hardware design
incorporates hundreds of fix-function arithmetic units and ARM-
based programmable cores on the logic layer of a 3D die-stacked
memory to form a heterogeneous PIM architecture attached to
CPU. Our software design offers a programming model and a
runtime system that program, offload, and schedule various NN
training operations across compute resources provided by CPU
and heterogeneous PIM. By extending the OpenCL programming
model and employing a hardware heterogeneity-aware runtime
system, we enable high program portability and easy program
maintenance across various heterogeneous hardware, optimize
system energy efficiency, and improve hardware utilization.

I. INTRODUCTION

Neural networks (NNs) have been adopted by a wide range
of application domains, such as computer vision, speech
recognition, and natural language processing. Today, NN
models employ increasingly larger number of parameters and
data sets. For example, VGG [1] and AlexNet [2] employ
138M and 61M parameters for image classification, respectively.
Training such complex models demands immense computation
and memory resources, energy and time. One critical energy and
performance bottleneck when training NN is data movement
in systems. As NN models are becoming deeper and larger,
the data volume and the pressure on the runtime system
to support data intensive operations substantially increase.
Existing research efforts use low-precision data [3] or prune
NN models [4]. Yet, these efforts impose the difficulty
of quantifying the impact of model simplification on NN
model accuracy; They do not fundamentally address the data
movement problem in NN model training.

Recent development of processing-in-memory (PIM) tech-
niques have been explored as a promising solution to tackle
the data movement challenge in various applications [5, 6].
We profile various NN training workloads and reveal that such
workloads have diverse memory access patterns, computation
intensity, and parallelism (Section II). As a result, NN training
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can significantly benefit from heterogeneous PIM — which
incorporates both fixed-function logic and programmable cores
in the memory — to achieve optimal energy efficiency and
balance between parallelism and programmability. However,
such heterogeneous PIM architecture introduces multiple
challenges in the programming method and runtime system.

First, programming PIMs to accelerate NN training is non-
trivial. Today, the common machine learning frameworks, such
as TensorFlow [7], Caffe2 [8], heavily rely on a variety of
implementations for NN operations on various hardware, and
use a middleware to integrate those operations to provide
hardware transparency to the user. Such a software design can
place high burden on system programmers, because of the
increasing hardware heterogeneity and difficulty for program
maintenance. Most previous PIM software interfaces [5, 6,
9] require programmers to have the detailed knowledge of
underlying hardware. In order to improve productivity and
ease-of-adoption of PIM-based NN training accelerators, we
need to develop a programming method that maximizes code
reuse without asking the programmer to repeatedly program
on different PIMs.

Second, combining fixed-function logics and programmable
cores in PIM further complicates the software design. Fixed-
function and programmable PIMs employ vastly different
programming models: Fixed-function PIMs employ ISA-level
instructions accessed via assembly-level intrinsics or via library
calls; Programmable PIMs employ standard programming
paradigms, such as threading packages or GPGPU program-
ming interfaces [10]. As discussed in recent studies [10], most
previous PIM designs adopt homogeneous PIM architectures
— with either fixed-function or programmable PIMs — which
allows a simplified software interface design. But with hetero-
geneous PIM, it is critical to design a unified programming
model that can accommodate both PIM components.

Finally, the scale of operations in NN training can lead to
unbalanced hardware utilization. Ideally, we want to achieve
high utilization of PIMs without violating the dependency
requirement among NN training operations, by exploiting
abundant operation-level parallelism across the host processor
and PIMs. However, it can be difficult to achieve so in
such a heterogeneous system by pure hardware scheduling,
because of the complexity of tracking operation dependency
and synchronization. Furthermore, NN training typically adopts
a large amount (e.g., tens of thousands) of iterative steps
and hundreds of operations per step. Operation dependency



across the massive amount of steps and operations can impose
synchronization overhead and decrease hardware utilization,
when operations are running on multiple computing devices.
Our goal in this paper is to design a PIM-based NN
training acceleration system that can efficiently accelerate
unmodified training models written on widely-used machine
learning frameworks (e.g., TensorFlow). To achieve our goal,
we propose a software/hardware co-design of a heterogeneous

PIM framework. Our design consists of three components. First,

we adopt a heterogeneous PIM architecture, which integrates

both fixed-function logics and programmable cores in 3D die-

stacked main memory. Second, we extend the OpenCL [11]

programming model to address the programming challenges.

The programming model maps the host CPU and heterogeneous

PIMs onto OpenCL’s platform model and extends OpenCL’s

execution and memory models for efficient runtime scheduling.

Finally, we propose a runtime system, which maximizes PIM

hardware utilization and NN-operation-level parallelism. This

paper makes the following contributions:

e We developed a profiling framework to characterize NN
training models written on TensorFlow. We identify the
heterogeneity requirements across the operations of various
NN training workloads. Based on our profiling results, we
identify opportunities and key challenges in the software
design for efficiently accelerating NN training using PIMs.

e We develop a heterogeneous PIM architecture and demon-
strate the effectiveness of such an architecture for training
NN models.

e We propose an extension to OpenCL programming model in
order to accommodate the PIM heterogeneity and improve
the program maintainability of machine learning frameworks.

e We propose a runtime system to dynamically map and
schedule NN operations on heterogeneous PIM, based on
dynamic profiling of NN operations.

II. BACKGROUND AND MOTIVATION

We motivate our software/hardware coordinated design by
discussing the challenges of accelerating machine learning
training workloads. We employ three widely used CNN training
models — VGG-19 [1], AlexNet [2], and DCGAN [12] — as
examples in this section. However, our observations can also
be applied to various other training workloads (Sections VI).

A. NN Training Characterization

In order to understand the characteristics of NN training
workloads, we develop a profiling framework (Figure 1)
by leveraging TensorBoard [13] and Intel VTune [14] to
collect software and hardware counter information of training
operations. Measuring the number of main memory accesses
of individual operations during training can be inaccurate due
to the extra cache misses imposed by simultaneously executing
operations. As such, we disable inter-operation parallelism to
ensure characterization accuracy of individual operations.

Table I illustrates our profiling results of top five most time-
consuming and memory-intensive operations, respectively, with
three training models. Each model has tens of different types
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Fig. 1: Our profiling framework for profiling NN training
workloads in TensorFlow.

of operations and requires thousands of iterative steps to train;
In each step, each type of operation can be invoked up to tens
of times. We only show results within one training step. But
the characteristics remain stable across training steps.

We make three key observations. First, only several op-
erations dominate training execution time. For example, top
five operations in VGG-19 model consume over 95% of total
execution time. Second, the most time-consuming operations
are also the most memory intensive. In fact, the top five most
time-consuming operations contribute to over 98% of total
main memory accesses across all three models. We further
classify operations into four classes, shown in Figure 2. The
first class of operations is compute intensive, and does not
have to be offloaded to PIMs, but we can offload them when
there are idling hardware units in PIMs. The second class of
operations is our target to offload to PIMs. The third class is
unusual, and the fourth class does not have big performance
impact on model training. The above two observations motivate
us to adopt a PIM architecture to accelerate NN training in
order to reduce data movement between the host processor
and the main memory.

Execution Time | Memory Access % Example Operations
Long Low Conv2D in VGG-19
Long High Conv2DBackpropFilter in VGG-19
Short High Slice in DCGAN
Short Low Reshape in AlexNet

Fig. 2: Four categories of NN training operations.

Third, time-consuming and memory-intensive operations
require heterogeneous computation types. It appears that
many of such operations are multiplication and addition (e.g.,
MatMul) or can be decomposed so (e.g., Conv2D). This is inline
with previous works on machine learning acceleration [5, 6].
Yet, significant amount of top time-consuming and memory-
intensive operations cannot simply be implemented by pure
multiplication and addition. For instance, Relu is an activation
function that incorporates conditional statement; MaxPool
is a sample-based discretization process; ApplyAdam is a
first-order gradient-based optimization of stochastic objective
functions. Complex operations, such as Conv2DBackpropFilter
and Conv2DBackproplnputs, include other logic and computa-
tions beyond multiplication and addition. Such non-multiply-
add operations can consume over 40% of total execution
time. Furthermore, studies on modern multi-tenancy [15]
and multimodel training [16] workloads also demonstrate
such heterogeneous computation requirement. This observation
motivates us to adopt a heterogeneous PIM architecture that
combines fixed-function logic and programmable cores.

Most previous works on PIM adopt either fixed-function [5]



TABLE I: Operation profiling results for three neural network models. “CI”= computation intensive; “MI”=memory intensive.

VGG-19
Top 5 CI Ops Execution Time(%) | #Invocation Top 5 MI Ops #Main Memory Access(%) | #Invocation
1. Conv2DBackpropFilter 40.15 16 1. Conv2DBackpropFilter 42.52 16
2. Conv2DBackpropInput 32.68 15 2. BiasAddGrad 35.68 16
3. BiasAddGrad 11.92 16 3. Conv2DBackpropInput 21.06 15
4. Conv2D 10.34 16 4. MaxPoolGrad 0.22 16
5. MaxPoolGrad 1.49 16 5. Relu 0.14 19
Other 13 ops 3.37 232 Other 13 ops 0.38 229
AlexNet
Top 5 CI Ops Execution Time(%) | #Invocation Top 5 MI Ops #Main Memory Access(%) | #Invocation
1. Conv2DBackpropFilter 33.64 5 1. BiasAddGrad 44.64 3
2. Conv2DBackpropInput 33.46 4 2. Conv2DBackproplnput 36.61 4
3. MatMul 13.54 6 3. Conv2DBackpropFilter 14.79 5
4. Conv2D 10.48 5 4. Relu 1.20 8
5. BiasAddGrad 4.62 3 5. Conv2D 0.46 5
Other 13 ops 4.26 121 Other 13 ops 2.30 119
DCGAN
Top 5 CI Ops Execution Time(%) | #Invocation Top 5 MI Ops #Main Memory Access(%) | #Invocation
1. Conv2DBackpropFilter 19.98 4 1. Conv2DBackpropFilter 37.21 4
2. Conv2DBackpropInput 17.18 4 2. Conv2DBackpropInput 28.09 4
3. MatMul 14.28 12 3. Slice 17.18 14
4. Conv2D 10.53 4 4. Conv2D 5.45 4
5. Mul 9.89 84 5. Mul 222 84
Other 47 ops 28.14 821 Other 47 ops 9.85 819

or programmable [6] computation components in the logic
layer of 3D die-stacked memory. In the following, we discuss
feasibility, challenges, opportunities of accelerating NN training
with software/hardware co-design of heterogeneous PIM.

B. Feasibility of Heterogeneous PIM Architecture

The logic layer of 3D memory stacks has area, power, and
thermal limitations. But previous studies demonstrated the
feasibility of adopting both fixed-function and programmable
PIMs, while meeting these constraints [17]. We adopt similar
methodologies to ensure the feasibility of our architecture
implementation (Section 1V).

C. Software Design Challenges and Opportunities

There are three challenges for the software design (introduced
in Section I): (1) How do we enable high productivity of system
programmers and ease-of-adoption of PIM-based NN training
accelerators? (2) How do we develop a unified programming
model that can efficiently accommodate the host processor,
fixed-function PIMs, and programmable PIMs? (3) How do
we balance hardware utilization at runtime?

One candidate baseline programming model is OpenCL [11],
which is widely used in accelerator-based heterogeneous
computing platforms (e.g., GPU and FPGA). We adopt OpenCL,
due to its portability, expressiveness, and ability to enable
high programming productivity to support programming on

heterogeneous systems (details are discussed in Section III-B).

However, it is not straightforward to adopt OpenCL for NN
model training on the heterogeneous PIM architecture. (1)
How do we map the platform model of OpenCL to the
heterogeneous PIM architecture? (2) Given the execution model
of OpenCL with limited considerations on hardware utilization,
how do we make the best use of CPU (the host processor)
and different types of PIMs? (3) Given the memory model
of OpenCL with limited considerations on synchronization

between hardware units, how do we meet the requirement of
frequent synchronizations from NN operations?

Trade-offs between parallelism and programmability.
Fixed-function PIMs typically offer high computation paral-
lelism by executing fine-grained, simple operations distributed
across massive amount of logic units. However, they are less
flexible than programmable PIMs that can be programmed to
accommodate a large variety of operations. Furthermore, fixed-
function PIMs can impose high performance overhead by (i)
frequent operation-spawning and (ii) host-PIM synchronization.
Programmable PIMs typically execute coarse-grained code
blocks with less frequent host-PIM synchronization. However,
the limited number of computational units in programmable
PIMs can lead to much lower parallelism than in fixed-function
PIMs.

Opportunities in runtime system scheduling. Substantial
opportunities exist in leveraging system-level software to opti-
mize resource sharing among various system components. The
heterogeneity of our architecture introduces requirements on
scheduling model-training operations across the host processor
(CPU), fixed-function PIMs and programmable PIMs, based on
the dynamic utilization of compute resources on these system
components. Yet, we observe that NN training workloads tend
to have repeatable (hence predictable) computation behavior
over the execution time. As such, system software can ac-
curately predict and dynamically schedule the operations by
profiling the resource utilization of various compute elements
in the first few steps of modeling training. Such dynamic
profiling-based scheduling can achieve the best utilization of
computation resources, while improving energy efficiency.

D. CPU vs. GPU — Where to Attach Heterogeneous PIMs?

Today, NN-training workloads can be executed on both CPU-
and GPU-based systems. Recent silicon interposer technology
allows both types of systems to adopt 3D die-stacked memories



closely integrated with logic components. For example, modern
GPU device memories [18] are implemented by high-bandwidth
memory technology. High-end CPU servers integrate high-
bandwidth memories using the DRAM technology adopted
from hybrid memory cubes.

Our heterogeneous PIMs are logic components closely
integrated with die-stacked memories. Therefore, they are
generally applicable to both CPU or GPU systems. However,
this paper focuses on the software design for heterogeneous
PIMs attached on CPU systems, due to the constraint of current
GPU systems. Today, GPU systems often fuse and organize
computation kernels into NN layers rather than fine-grained
operations, because of the inefficiency of compute preemption
and thread scheduling. This significantly limits the flexibility
of operation scheduling on GPU.

The NVIDIA Volta GPU provides certain support for fine-
grained acceleration of NN training operations, yet only
available with limited number of threads. Modern CPU systems
are easy to access and program; this enables easy-to-adopt and
flexible programming abstraction and system library functions.

III. DESIGN

To address the aforementioned challenges, we propose a
software/hardware co-design of heterogeneous PIM framework
to accelerate NN training. Our design consists of a heteroge-
neous PIM architecture, an extended OpenCL programming
model, and a runtime system. Figure 3 depicts our architecture
configuration. Figure 4 shows the process of building and
executing NN training with our software framework. Given
an OpenCL kernel to implement an operation, our system
extracts code sections from the kernel and compiles them into
a set of binaries to run on CPU, programmable PIM, and fixed-
function PIMs, respectively. After the training workload starts to
execute, our runtime scheduler profiles the first step of training
to obtain operation characterization. It then performs dynamic
scheduling of operations across CPU, programmable PIM, and
fixed-function PIMs in the rest of training steps. Our runtime
system incorporates two key components: (i) an operation-
pipeline scheme, which allows multiple NN operations to co-
run on PIMs to improve hardware utilization and (ii) a recursive
operation-execution scheme, which allows the programmable
PIM to call fixed-function PIMs to improve hardware utilization
and avoid frequent synchronization between CPU and PIMs.
Software/hardware co-design principles. Our software de-
sign supports our hardware configuration in the following
manner. First, our software design offers a portable program-
ming model across the host processor, fixed-function PIMs,
and the programmable PIM. Our programming model provides
a unified abstract to program various PIMs, which need to be
programmed in separate manners in conventional systems. Our
runtime scheduling scheme effectively optimizes PIM hardware
utilization. Our runtime system also enables recursive calls
between the programmable PIM and fixed-function PIMs. Our
architecture design supports our software design in two ways:
our heterogeneous PIM architecture enables efficient NN train-
ing acceleration by exploiting the heterogeneous characteristics

of software operations; We employ a set of hardware registers
to track PIM hardware utilization information, which is required
by our runtime scheduling.

A. Heterogeneous PIM Architecture

To accommodate various types of operations that are likely to
execute on PIMs, we adopt a heterogeneous PIM architecture
consisting of (i) a programmable PIM, which is an ARM
core and (ii) massive fixed-function PIMs, which are adders
and multipliers distributed across all memory banks. While
our design can be used with various 3D die-stacked memory
devices, we employ a 32-bank memory stack (where a bank
is a vertical slice in the stack) as an example in this paper.
Figure 3 depicts our architecture configuration. Section IV
describes hardware implementation details.

B. Programming Model for Heterogeneous PIM

We extend the OpenCL programming model to program the
heterogeneous PIM. OpenCL has been widely employed to
enable program portability across accelerator-based, heteroge-
neous computing platforms (e.g., GPU and FPGA). We use
OpenCL because of the following reasons. First, by treating the
fixed-function PIMs and programmable PIM as accelerators, the
semantics of OpenCL naturally fit into the heterogeneous PIM
environment. Second, writing a program for the heterogeneous
PIM based on an abstract and unified hardware model in
OpenCL, the programmer can write the program just once
but run it on a variety of PIMs. Therefore, by using OpenCL,
we can hide hardware variety of the heterogeneous PIM from
system programmers, improve their productivity, and enable
code portability.

Other programming models, such as OpenACC [19, 20]

and OpenMP [21], can also hide hardware heterogeneity and
reduce programmers’ burden. However, these are higher-level
programming models, which rely on compilers to transform
programs into a lower-level programming model, such as
OpenCL, to enable code portability. We focus on OpenCL
in our study, because it provides a foundation for those higher-
level programming models.
Overview of our programming model. Table II summarizes
our extension to OpenCL. Our platform model includes multiple
types of heterogeneous devices. Such platform model is driven
by the characteristics of NN training operations. Our execution
model adds (i) recursive kernel invocation to enable kernel
invocation between PIMs to support complex NN operations
(e.g., Conv2DBackpropFilter) and (ii) operation pipeline to
improve hardware utilization for small NN operations with
limited parallelism (e.g., Slice). Finally, we extend the memory
model to support a single global memory shared between
the host processor and accelerators. We also add explicit
synchronization across different PIMs and CPU (host processor)
to enforce execution orders across NN operations.

OpenCL background. The existing OpenCL adopts a host-
accelerator platform model as shown in Figure 5(a). A host
processor connects to one or more compute devices (i.e.,
accelerators). A compute device is divided into one or more
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compute units, each of which is further divided into one or
more processing elements (PE). An OpenCL program consists
of kernels for compute devices and a host program. The host
program runs on CPU and enqueues commands to a command-
queue attached to a compute device.

In order to employ OpenCL programming model on the
heterogeneous PIM system, we investigate how to map the
heterogeneous PIM system onto the OpenCL model, and
extend the OpenCL model for efficient runtime scheduling.
In the following, we discuss our mapping method from the
perspectives of platform model, execution model, and memory
model. Table II summarizes our programming model extension.

Heterogeneous PIM platform model. Figure 5(b) illustrates
our platform model. A large number of fixed-function PIMs
provide massive parallelism for data processing. Each fixed-
function PIM is a PE (in the OpenCL jargon). All fixed-
function PIMs in all memory banks form a compute device.
All fixed-function PIMs in a bank form a compute unit. Each
programmable PIM is a compute device; each core of the
programmable PIM is a PE. Hence, within the context of
OpenCL, a heterogeneous PIM system has heterogeneous com-
pute devices. We expose fixed-function PIM and programmable
PIM as distinct compute devices to give control flexibility
to the runtime system for operation scheduling. An OpenCL
operation can be offloaded to any compute device that supports
the operation execution.

Execution model. Tasks (i.e., operations in NN model training)
to be launched on any PIM are represented as kernels managed
by a host program, as in a traditional OpenCL program. If
the task includes instructions that cannot be executed on
the fixed-function PIM, then the task will not be scheduled
by the OpenCL runtime to run on the fixed-function PIM.
Otherwise, a task can run anywhere (CPU, fixed-function PIM,
and programmable PIM). The OpenCL runtime (on CPU)

Host B [EE - [EE e
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Fig. 5: Enabling OpenCL platform model on heterogeneous
PIM systems.

is in charge of task scheduling between different PIMs and
CPU. Leveraging low-level APIs (Section IV-A) and hardware
registers, the runtime can determine whether a specific PIM
is busy and whether a specific task is completed. We describe
the scheduling algorithm in Section III-C. Binary files for a
task to run on CPU, fixed-function PIM, or programmable PIM
are generated during the compilation stage. Given an OpenCL
kernel for a task, we generate four binary files as shown in
Figure 4. Section IV discusses details of binary generation.
Binaries (#3) and (#4) in Figure 4 allow recursive PIM
kernel, a new execution scheme for our heterogeneous PIM
design. A kernel in the programmable PIM can trigger data
processing with fixed-function PIMs. This is supported by
the programmable PIM runtime and implemented by calling
small kernels loadable on fixed-function PIMs. By combining
multiple kernels into a single kernel, the recursive PIM
kernel scheme reduces overhead of kernel spawning and
synchronization between the host and PIMs. Figure 6 shows an
example that further explains the recursive PIM kernel. In the
example, we illustrate an NN operation, Conv2DBackpropFilter,
which is offloaded to the programmable PIM as a kernel; the
kernel includes computation phases 1 and 2 that cannot be
offloaded to the fixed-function PIMs. Conv2DBackpropFilter
includes convolution computation (“Conv(...)” in the figure);
The programmable PIM offloads this portion of computation
to fixed-function PIM as a smaller kernel. The computation



TABLE II: Extending OpenCL for the heterogeneous PIM.

Native OpenCL

Extensions for Heterogeneous PIM

Platform model Host + accelerators (e.g., host + GPU).

Host + two types of accelerators (fixed-function PIMs and
programmable PIM) driven by the characteristics of NN
training.

Execution model | Host submits work to accelerators.

o Host submits work to accelerators;

e Accelerators submit work to accelerators (i.e., recursive
kernel invocation);

e Work execution pipeline (i.e., operation pipeline);

Work scheduling based on dynamic profiling.

Memory model

e The global memory is not shared;
e No defined synchronization across accelerators.

e Multiple types of memory with a relaxed consistency model; | e A single global memory with a relaxed consistency model;

The global memory is shared;
Explicit synchronization across PIMs and CPU.

Conv2DBackpropfFilter(...) Fixed-function

PIMs
CEEC
HE-m

Recurssive
Kernel call
>

Programmable PIM

Fig. 6: An example of the recursive PIM kernel.

phases 1, 2 and convolution are combined as a single recursive
PIM kernel, which reduces the synchronization between CPU
and PIMs.

In general, the four binary files provide convenience for
scheduling on CPU, the fixed-function PIMs and programmable
PIM, and hence allows the runtime to maximize utilization of
CPU and PIMs.

Memory model. The existing OpenCL defines four distinct
memory regions in a compute device: global, constant, local,
and private. On a heterogeneous PIM system, only a single
global memory (i.e., the main memory) exists. In addition,
the global memory is shared between CPU and PIMs, and
addressed within a unified physical address space. This mem-
ory model requires synchronization at multiple points: (1)
between CPU and PIMs; and (2) between different PIMs. The
synchronization is necessary to avoid data race and schedule
operations.

To implement effective synchronization, we employ the pro-
grammable PIM to drive the synchronization and avoid frequent
interrupts to CPU. In particular, for synchronization between
CPU and PIMs, the programmable PIM checks the completion
of operations offloaded to PIMs (either programmable or fix
function PIMs) and sends the completion information to CPU.
For synchronization between different PIMs, the programmable
and fix function PIMs synchronize through global variables in
main memory.

Between CPU and PIMs, we introduce explicit synchroniza-
tion points to synchronize the accesses to shared variables.
To the host processor, the whole set of fixed-function PIMs
or the programmable PIM appear as another processor. We
employ standard synchronization schemes (e.g., barriers and
locks), similar to the ones in a shared-memory multiprocessor.
For fixed-function PIMs, their operations are atomic and the
synchronization points are not expected in the middle of
operations. For programmable PIMs, the synchronization points

can be in the middle of a kernel. This is feasible based on
global lock variables shared between CPU and PIMs. To
support memory consistency, we adopt a relaxed memory
consistency model, which aims to improve performance and
reduce hardware complexity. In particular, an update to a
memory location by a fixed-function PIM is not visible to
all the other fixed-function PIMs at the same time. Instead,
the local view of memory from each fixed-function PIM is
only guaranteed to be consistent right after the kernel call
to fixed-function PIMs. Between the fixed-function PIMs and
programmable PIM, we employ the same consistency scheme:
updates to memory locations by the entire set of fixed-function
PIMs are not visible until the end of the kernel call to the
fixed-function PIMs.

Because of our shared memory model, there is no data copy
overhead before and after PIM kernel calls. Based on the above
synchronization schemes, PIM kernel calls can be launched
asynchronously to overlap computation on CPU and PIMs.

Support for easy program maintenance. To use the extended
OpenCL programming model, operations need to be re-
written using OpenCL. To write OpenCL code for operations,
one can use OpenACC directives and compilers [19, 20]
to automatically transform the original code into OpenCL
code. This can significantly simplify the programming work.
Furthermore, the number of operations for machine learning
models is limited (tens of operations). Hence, using OpenCL
to implement those machine learning operations is feasible.
Other than that, however, the higher level software components
(e.g., most of the middleware components, operation APIs,
and Python syntax for using machine learning models) remain
the same. This enables easy maintenance of machine learning
frameworks.

C. Runtime System Design

Our runtime system is in charge of scheduling operations
to fixed-function PIMs, programmable PIM, and CPU. To
minimize NN training time, the runtime strives to maximize
utilization of PIMs and CPU to optimize system throughput.
The runtime schedules operations based on the following two
steps.

Step 1: profiling. The runtime profiles performance of all
operations on CPU. The profiling happens in only one step
of NN model training. NN model training typically has a



large amount of iterative steps (thousands and even millions
of steps). Using one step for profiling has ignorable impact on
performance. In addition, all steps almost have the same classes
of operations; performance of operations (particularly execution
time and the number of main memory access) remains stable
across steps. Therefore, one step is sufficient for profiling
purpose. During profiling, the runtime executes operations one
by one in CPU, collecting execution time and the number of
main memory access level cache misses of each operation with
hardware counters. Based on the profiling results in the step,
the runtime employs the following algorithm to determine the
candidate operations to be offloaded to PIMs.

To determine the candidate operations, the runtime sorts
operations into two lists (in descending order) based on
execution time and the number of main memory accesses,
respectively. Each operation in each of the two lists is correlated
to an index, i.e., each operation has two indexes. With each
operation, the runtime calculates a global index by adding
these two indexes. Based on the global indexes, the runtime
sorts operations into a global list. The runtime chooses top
operations in the global list to offload to PIMs. Those top
operations account for x% of total execution time of one step
(x = 90 in our evaluation). The above algorithm is inspired by
feature selection process in machine learning [22]. The goal
of this algorithm is to select those operations that are both
time-consuming and have a large number of main memory
accesses.

Step 2: scheduling. Given the candidate operations to offload,

the runtime makes the scheduling decision based on the

following three principles.

e Scheduling operations to execute on fixed-function PIMs as
much as possible.

e Scheduling operations to execute on PIMs (not CPU) as much
as possible. In case all fixed-function or programmable PIMs
are busy, the runtime will schedule the candidate operations
to execute on CPU;

e Scheduling needs to respect data dependency across opera-

tions.
The first principle favors fixed-function PIMs over other

compute units, because fixed-function PIMs are more energy
efficient and typically performs faster with higher parallelism
than other compute units. The second principle avoids CPU
idling and introduces parallelism between CPU and PIMs. The
third principle ensures execution correctness. Each operation de-
fined in the machine learning frameworks typically has explicit
input and output data objects (e.g., Tensors in TensorFlow),
which provides convenience in tracking data dependencies
across operations.
Operation pipeline. The above scheduling algorithm and
principles enable operation pipeline to maximize hardware
utilization. In particular, when an operation in a step cannot
fully utilize fixed-function PIMs, our runtime schedules an
operation in the next step to execute a portion of its computation
by utilizing idling fixed-function PIMs as long as the two
operations do not depend on each other.

In essence, these two operations can enable a pipelined

execution manner. For instance, in AlexNet, a single convo-
lution operation with a filter size of 11x11 consumes 121
multiplication and 120 addition (241 fixed-function PIMs
in total). In case we have 444 fixed-function PIMs in total
(Section IV-D), the utilization of fixed-function PIMs is only
54%. To improve hardware utilization, the runtime can schedule
multiplication and addition from an operation (or operations)
in the next step to execute on fixed-function PIMs. Once
the convolution operation in the current step is completed,
the partially executed operation(s) from the next step can
immediately utilize the newly released fixed-function PIMs to
improve hardware utilization and performance. This indicates
that an operation can dynamically change its usage of PIMs,
depending on the availability of PIMs. Such dynamic nature
of operation execution is feasible based on a runtime system
running on the programmable PIM (Section IV-C presents
implementation details).

IV. IMPLEMENTATION
A. Low-level APIs for PIM Runtime System

We introduce several low-level API functions for fixed-
function and programmable PIMs. These API functions allow
direct control of individual PIMs, and provide foundation for
our runtime. The API achieves the following functionality: (1)
offloading a specific operation into specific PIM(s); (2) tracking
the status of PIMs, including examining whether a PIM is busy
or not; (3) querying the completion of a specific operation;
(4) querying the computation location (i.e., which PIM) and
input/output data location (i.e, which DRAM banks) for a
specific operation. Table III summarizes our API functions.

B. OpenCL Binary Generation

To schedule operations to execute on CPU, fixed-function
PIMs, or programmable PIM, we generate four binary files
(Figure 4). In order to generate the binary file (#3) that
corresponds to a portion of a large operation (an OpenCL
kernel) to execute on fixed-function PIMs (e.g., the convolution
within the operation Conv2DBackpropFilter), we first extract
code sections from the corresponding OpenCL kernel. We
then transform these code sections into a set of small kernels
to execute on fixed-function PIMs. Finally we compile them
into binary file (#3). In the original OpenCL kernel, these
extracted code regions are replaced with the kernel calls
and then compiled into binary file (#4) to execute on the
programmable PIM. Binary files (#1) and (#2) are generated
during the regular compilation stage.

C. Runtime Implementation

Our runtime consists of two components, which execute on
the CPU and the programmable PIM, respectively.
The runtime on CPU. To support our runtime scheduling,
we extend the runtime system of TensorFlow by adding
approximately 2000 lines of code. The runtime on CPU
schedules operations on CPU and PIMs, based on hardware
utilization information provided by the low-level APIs. It does
not support the implementation of recursive PIM kernels. In



TABLE III: Low-level APIs for PIMs.

Name

Description

int pim_fix(int* pim_ids, void* args, void* ret, size_t num_pim)

Asks specific fixed-function PIMs to work with input arguments args and return results ret and a work ID.

int pim_prog(int pim_id, pim_program kernel, void* args, int* args_offset, void* ret, size_t ret_size)

Asks a programmable PIM to work on a kernel (an operation) and return a work ID.

int pim_status(int pim_id)

Checks whether a specific PIM is busy.

int work_query(int work_id)

Checks whether a specific operation is completed.

void work_info(int work_id, int* pim_ids, int* data_loc)

Queries the computation location (pim_ids) and input/output data location (i.e, which DRAM banks) for a specific operation.
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Fig. 7: Heterogeneous PIM implementation.

other words, the runtime on CPU is only responsible for
offloading a kernel — which can have a part of its computation
offloadable to fixed-function PIMs — to the programmable PIM.
Our modifications to TensorFlow runtime include (1) device
initialization and characterization using OpenCL intrinsics;
(2) creating a device context and instance for a PIM device;
(3) providing a new OpenCL device abstraction to other
components of Tensorflow; (4) a mechanism to communicate
with the runtime on the programmable PIM. This is one-
time modification to Tensorflow, but can support various PIM
hardware configurations without involving system programmers’
future efforts.

The runtime on programmable PIM. The runtime on
the programmable PIM supports recursive PIM kernels and
operation pipeline. In particular, a kernel with a part of its
computation replaced with kernel calls to fixed-function PIMs
is handled by the runtime on the programmable PIM, which
automatically offloads the computation to fixed-function PIMs.
In order to keep track of the dynamic utilization of fixed-
function PIMs, our runtime on the programmable PIM records
the numbers of additions and multiplications already completed
in each operation offloaded to the programmable PIM, as well
as the remaining additions and multiplications.

D. Hardware Implementation

Figure 3 and Figure 7 illustrate our hardware implementation.
The programmable PIM employs an ARM Cortex-A9 processor
with four 2GHz cores. Each core has an in-order pipeline.
In individual NN training models, operations that are poten-
tially offloaded to the programmable PIM (e.g., ApplyAdam,
MaxPooling, and ReLU) are typically not executed at the
same time. Therefore, we only adopt one programmable PIM
in our design. Even if we simultaneously train multiple NN
models, the chance of having multiple operations to use the
programmable PIM at the same time is low according to our
evaluation with mixed workload analysis (Section VI-F).

Because a significant portion of NN training operations can
be decomposed to addition and multiplications (Section II-A),
we implement our fixed-function PIMs as 32-bit floating
point multipliers and adders. We implement equal numbers of
multipliers and adders in the pool of fixed-function PIMs. Our
low-level APIs allow us to map operations to fixed-function

PIMs that are in the same bank as input data of the operations.
In addition, we accommodate random memory access pattern
in NN computation by adopting buffering mechanisms [5]. We
determine the fixed-function PIM configurations by employing
a set of architectural level area, power, and thermal modeling
tools, including McPAT [23] and HotSpot [24], to perform
design space exploration of the logic die of 3D DRAM. Based
on our study, the total number of allowed fixed-function PIMs
is limited by the area of the logic die. With our baseline 3D
DRAM configuration (Section V), we can distribute 444 fixed-
function PIMs (pairs of multipliers and adders) across the 32
banks in the logic die. It is impossible to distribute these fixed-
function PIMs evenly to each bank. We consider the placement
of the fixed-function PIMs on 32 banks based on the following
policy: we place more fixed-function PIMs on edge and corner
banks than on central banks (Figure 3 (a)). The rationale behind
is that the banks at the edge and corner have better thermal
dissipation paths than central banks. Therefore, these banks
can support higher computation density.

Furthermore, we employ a set of registers as shown in
Figure 7. Each register indicates the idling of either a bank of
fixed-function PIMs or the programmable PIM. The registers
allow our software runtime scheduler to query the completion
of any computation and decide the idleness of processing units.

V. EXPERIMENTAL SETUP

A. Simulation Framework

In order to evaluate the performance of our design, we
model fixed-function PIM and programmable PIM architectures,
respectively, using Synopsys Design Compiler [25] and Prime-
Time [26] with Verilog HDL. We adopt HMC 2.0 [27] timing
parameters and configurations for our evaluation of 3D memory
stack. Baseline memory frequency is set to 312.5 MHz, which
is the same as HMC 2.0 specification [27]. This is also used as
the working frequency of our heterogeneous PIM. We employ
a trace generator developed on Pin [28] to collect instruction
trace, when running our OpenCL kernel binaries on CPU. We
develop a python-based, trace-driven simulation framework
based on our design to evaluate the execution time of various
training workload traces. Our simulator also incorporates our
runtime scheduling mechanisms.

B. Power and Area Modeling

We adopt 10nm technology node for the host CPU and the
logic die of the PIMs; 25nm technology node for the DRAM
dies. We measure CPU and GPU power with VTune [29] and
nvidia-smi, respectively. Our power model considers whole
system power when we evaluate the power of heterogeneous-
PIM-based systems, including CPU and the memory stack.
We calculate the power and area of the programmable PIM



TABLE IV: System configurations.

CPU
Main memory
Operating system

Intel Xeon E5-2630 V3@2.4GHz
16GB DDR4
Ubuntu 16.04.2

GPU NVIDIA GeForce GTX 1080 Ti (Pascal)
GPU cores 28 SMs, 128 CUDA cores per SM, 1.5GHz
L1 cache 24KB per SM
L2 cache 4096KB

Memory interface
GPU main memory

8 memory controllers, 352-bit bus width
11GB GDDRS5X

using McPAT [23]. We evaluate the power and area of fixed-
function PIMs using Synopsys Design Compiler [25] and
PrimeTime [26].

C. Workloads

We evaluate various training models, including VGG-19 [1],
AlexNet [2], Deep Convolutional Generative Adversarial Net-
works (DCGAN)) [12], ResNet-50 [30], Inception-v3 [31],
Long Short Term Memory (LSTM) with dropout [32] and
Word2vec [33]. LSTM and Word2vec are evaluated in Sec-
tion VI-F. The rest models are widely used in recent studies
on CNN training and image classification.

Training Datasets. We employ ImageNet as training data set
of VGG-19, AlexNet, ResNet-50, and Inception-V3. ImageNet
is a large image dataset with millions of images belonging to
thousands of categories. DCGAN employs MNIST dataset [34].
LSTM adopts Penn Tree Bank (PTB) [32] dataset. Word2vec
employs “questions-words” dataset [35] in TensorFlow.
Training framework and batch Size. We adopt Tensor-
Flow [7] as our training framework. We adopt default batch
sizes of each training model in TensorFlow. The batch size of
VGG-19, AlexNet and Inception-v3 is 32. The batch size of
Word2vec and ResNet-50 is 128. DCGAN has a batch size of
64. LSTM employs a batch size of 20.

D. Real Machine Configurations

To compare performance and energy efficiency of heteroge-
neous PIM with GPU and CPU, we run the training models on
(1) NVIDIA GeForce GTX 1080 Ti graphic card [36] and (2)
CPU listed in Table IV. Our GPU-based training evaluations
adopt CUDA 8 [37] and NVIDIA cuDNN 6.0 library [38]. GPU
utilizations of each training model in TensorFlow are: Inception-
v3 (average: 62%; peak: 100%); ResNet-50 (average: 44%;
peak: 58%); AlexNet (average: 30%; peak: 34%); VGG-19
(average: 63%; peak: 84%); DCGAN (average: 28%; peak 42%.
We use NVIDIA’s profiling tool [39] and Intel’s VTune [14]
to collect performance and power statistics.

VI. EVALUATION

Our experiments compare among the following five configu-

rations, including our design.

e CPU - Executing all training operations on CPU;

e GPU - Executing all training operations on GPU;

e Progr PIM - Programmable PIMs only, which executes all
operations on as many ARM-based programmable cores as
needed by workloads (without our runtime scheduling);

e Fixed PIM - Fixed-function PIMs only, which executes the
operations that can be offloaded on fixed-function PIM and
other operations on CPU (without our runtime scheduling);

e Hetero PIM — Our heterogeneous PIM design (including
our runtime scheduling).

A. Execution Time Analysis

Figure 8 shows execution (training) time of various NN
training models. We break down the execution time into
synchronization time, data movement time and operation time
(i.e., computation time in CPU, GPU or PIMs). For GPU-
based systems, the data movement time is the time for data
transfer between main memory and GPU global memory.
Certain amount of data transfer time is overlapped with GPU
computation, e.g. by copying a minibatch of images to the
GPU memory, while the computation on GPU is processing
another minibatch. Our breakdown only shows the data transfer
time that is not hidden by the computation. For PIM-based
systems, the data movement time is the time for data transfer
between CPU and the main memory. Our runtime scheduling
allows operations to execute concurrently on CPU and PIMs.

We observe that PIM-based designs (including Fixed PIM,
Progr PIM and Hetero PIM) perform much better than CPU,
with 19%-28x performance improvement. Compared with
Progr PIM and Fixed PIM, our design has 2.5x-23x and
1.4x-5.7x performance improvement, respectively. PIM-based
designs also significantly reduce data movement overhead,
compared to CPU and GPU. Overall, Hetero PIM leads to the
lowest synchronization and data movement overhead among
all configurations.

The performance benefit of Hetero PIM stands out with
larger training models and larger working sets due to (i) more
reduction in data movement and (ii) higher parallelism between
host CPU and PIMs introduced by more offloadable operations.
DCGAN has smaller model and working set than others. There-
fore, Hetero PIM appears to result in worse performance than
GPU with DCGAN; yet, compared with other configurations,
our design still significantly improves performance. ResNet is
a large training model with large working sets. As a result,
Hetero PIM leads to better performance than GPU with ResNet.
With other training models, Hetero PIM leads to performance
close to (within 10% of) GPU. GPU has good performance
because of its massive thread-level parallelism. Our design
leads to much better performance than all other configurations.

B. Energy Consumption Analysis

Figure 9 shows the dynamic energy consumption of the
five NN models with five different configurations. The energy
consumption results are normalized to the results of Hetero
PIM. We observe substantial energy benefit of using our design:
it consumes 3x-24x and 1.3x-5x less energy than CPU and
GPU, respectively. CPU consumes higher dynamic energy than
Hetero PIM, Fixed PIMs, and GPU, even though its power
consumption is the lowest among all of these configurations
(note that we take CPU power into account when we calculate
the power of PIMs and GPU, in order to evaluate full-system
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(b) Energy consumption comparison.

power consumption). This is because CPU has the longest
execution (training) time. Furthermore, we notice that the
dynamic energy consumption of Progr PIM is higher than
that of other configurations, because the speed of Progr PIM is
only slightly faster than that of CPU, yet the dynamic power
of Progr PIM is higher than that of CPU due to the additional
processing units in Progr PIM. Overall, Hetero PIM leads to the
lowest dynamic energy consumption across all configurations.

C. Comparison with Prior PIM-based NN Acceleration

Figure 10 shows a quantitative comparison between our
design and a recent PIM-based NN accelerator design, Neu-
rocube [6] (qualitative comparison is in Section VII). Neu-
rocube also reduces data movement overhead and improves
energy efficiency by using PIM technology. However, our work
outperforms Neurocube in terms of performance and energy
efficiency. With highly compute-intensive models, such as VGG-
19 and Inception-V3, our design achieves much higher per-
formance and energy-efficiency improvement than Neurocube.
Even with less compute-intensive models, such as DCGAN, our
work can achieve at least 3x higher performance and energy
efficiency than Neurocube. The reason for the improvement
is two-fold: (1) Neurocube only adopts programmable PIMs,
while our design employs energy-efficient, highly-parallel fixed-
function PIMs to accelerate fine-grained operations; (2) Our
design employs runtime scheduling that effectively optimizes
hardware utilization (evaluated in Section VI-E).

D. Sensitivity Study

Frequency Scaling. We adopt three different frequencies for
fixed-function PIMs and programmable PIM: their original
frequencies (1x), doubling of their frequencies (2x) and
quadrupling of their frequencies (4x). We use a phase-locked
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than GPU, with VGG-19 and AlexNet, respectively. With 4x
frequency, Hetero PIM performs 37% and 60% better than
GPU, with VGG-19 and AlexNet respectively. We also observe
that the synchronization and data movement overheads are
reduced, when using higher frequencies.
Programmable PIM Scaling. We employ three different
configurations for Hetero PIM, while keeping the area of logic
die in the memory stack unchanged. We scale the number of
Progr PIM (ARM cores) from one to two to 16, while the rest
of the logic die area is used to implement Fixed PIM. The three
configurations are labeled as /P, 4P and /6P, respectively.
Figure 12 shows our results. The figure reveals that the
performance difference between the three configurations is
relatively small. The performance difference between 16P
and /P is 12%—-14%. The reason is two-fold: (1) One Progr
PIM is sufficient for the NN models to schedule and pipeline
operations; (2) Using more Progr PIMs loses more Fixed PIMs,
given the constant area in the logic layer of memory stacks.

E. Evaluation of Software Impact

We isolate the the impact of our software (runtime)
techniques from that of Hetero PIM hardware. We aim
to provide more insightful analysis on the effectiveness of
software/hardware co-design. In particular, we study execution
time, energy and utilization of Fixed PIM with and without
the recursive PIM kernel call (RC) and operation pipeline
(OP) — our two major runtime techniques. Without RC and
OP, we also compare Hetero PIM hardware design with Fixed
PIM and Progr PIM, in terms of execution time and energy.
This comparison allows us to study the impact of Hetero PIM
architecture with the absence of our runtime techniques.
Execution time analysis. As shown in Figure 13, Hetero PIM
without runtime scheduling performs better than Progr PIM
and Fixed PIM by up to 8.5x. This demonstrates the necessity
of using Hetero PIM architecture. However, comparing with
Fixed PIM, the performance benefit of Hetero PIM hardware
is not significant (7%-30%). After incorporating the runtime
scheduling techniques, the performance of Hetero PIM is
improved by up to 3.8 x. This result demonstrates the necessity
of using an efficient runtime to maximize the benefit of Hetero
PIM architecture.
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Energy analysis. Figure 14 shows our energy results normal-
ized to the energy of Hetero PIM with RC and OP. We have
similar observations as the execution time analysis: Hetero
PIM without runtime scheduling performs better than Progr
PIM and Fixed PIM by up to 2.7x. With RC and OP, we
further reduce the energy of Hetero PIM by up to 3.9x.
PIM utilization analysis. Figure 15 shows our utilization
results. With RC only, the utilization of Fixed PIM in Hetero
PIM is improved by up to 66% (VGG-19); With OP, the
utilization of Fixed PIM is further improved by up to 18%
(AlexNet); With RC and OP, the utilization of Fixed PIM is
close to 100%. The reason for the poor hardware utilization
with neither RC nor OP is the lack of scheduling for the
operations that do not have sufficient parallelism or cannot be
completely offloaded to Fixed PIM.

F. Mixed Workloads Analysis

We also evaluate the case, when multiple models co-run
in the same system [40]. We co-run two NN training models:
a CNN model and a non-CNN model. The CNN model can
execute on CPU and PIMs, subject to our runtime scheduling;
the non-CNN model executes on CPU or the programmable
PIM, when they are idle. Figure 16 shows the results of six
co-run cases. In each case, “Hetero. PIM” indicates that we
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simultaneously execute both models, with the total execution
time matched (i.e., when the CNN model executes for one
step, the non-CNN model can execute one or multiple steps
because the latency of the CNN model in one step can be
longer than the non-CNN model in one step); “Sequential
Execution” indicates that we execute the two models one after
another in serial.

The results show that Hetero. PIM achieves 69%-83%
performance improvement compared with Sequential Execution.
Such improvement comes from high utilization of CPU and the
programmable PIM in our design. With Sequential Execution,
there can be no operations available to execute even though
CPU and the programmable PIM are idle due to dependency
between operations within the same model. Hetero. PIM avoids
hardware idling, because operations across different models
have no dependency and can execute simultaneously.

G. Energy Efficiency Analysis

We study energy efficiency of the PIMs with different
frequencies as in SectionVI-D. We use energy-delay-product
(EDP) as the metric to evaluate energy efficiency. Figure 17 (a)
shows the results. The figure reveals that the most energy
efficient point is not the original frequency for the five
models. The 4x frequency is the most energy efficient for
the five models. The tradeoff between energy consumption and
execution time leads to such results. Thus, we conclude that
higher frequency tends to be more energy efficient for NN
model training. Figure 17 (b) compares power consumption
between GPU and Hetero PIM with different frequencies. In
general, GPU is very power hungry. It consumes 1.5x to
2.6x more power than Hetero PIM with high frequency (4 x).
Compared with GPU, Hetero PIM can be highly power efficient.

VII. RELATED WORK

To our knowledge, this is the first paper to propose a
software/hardware co-design of a heterogeneous-PIM-based
acceleration framework for NN training. Whereas previous
PIM-based accelerator designs [5, 9, 10, 41-45] investigated
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the mapping of workloads on either fixed-function or pro-
grammable PIMs, it is unclear how to coordinate software and
hardware designs to best utilize PIM technologies to support
the heterogeneity requirement of NN training workloads.

Processing-in-memory for machine learning. Recent PIM-
based machine learning accelerator designs strive to leverage
the memory cells of nonvolatile memory technologies to
execute NN inference operations [5, 46—48]. However, NN
training typically incorporates substantial complex operations
as we identified. It is difficult to accommodate these complex
operations in previous processing-in-memory-cell designs.
Azarkhish et al. [49] and Schuiki et al. [50] adopt RISC-V
cores [51] and a streaming coprocessor in die-stacked DRAM to
accelerate convolution networks or SGD. However, the RISC-V
cores are merely used to control the arithmetic elements in the
streaming coprocessor. Furthermore, both designs require users
to modify code and perform tiling based on new APIs. Schuiki
et al.’s study [50] only focuses on a specific operation (SGD).
Azarkhish et al’s design [49] primarily aims at inference
and requires data to be carefully laid out in memory with
4D tiling. This constraint on data layout leads to inefficient
training, because intermediate activations after each layer
need to be re-tiled [50]. Neurocube [6] accelerates CNN
inference and training by integrating programmable processing
elements in the logic layer of 3D die-stacked DRAM. However,
using programmable PIMs alone cannot provide the massive
parallelism and execution efficiency enabled by heterogeneous
PIMs. Furthermore, the aforementioned previous studies do
not consider dynamic runtime scheduling of operations. Our
experiment results demonstrate an efficient heterogeneous PIM
design with runtime scheduling.

Processing-in-memory for general applications. Fujiki et
al. [9] proposed a ReRAM-based in-memory processor ar-
chitecture and data-parallel programming framework. The
study introduces a compact instruction set for memory ar-
ray with processors. The programming framework combines
dataflow and vector processing, employs TensorFlow input,
and generates code for in-memory processors. Our work also
employs TensorFlow, but optimizes operations scheduling and
introduces PIM heterogeneity. Ahn et al. [41] explores mapping
of PIM operations based on data locality of applications, while
we schedule operations in multiple dimensions — hardware
utilization, data locality, and data dependency. Ahn et al. [45]
introduced PIM for parallel graph processing. The design
offers an efficient communication method between memory
partitions and develops prefetchers customized for memory
access patterns of graph processing. Other works introduce
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PIM architectures based on 3D-stacked memory. For example,
Zhang et al. [52] presented an architecture for programmable,
GPU-accelerated, in-memory processing implemented using
3D die-stacking. The throughput-oriented nature of GPU
architectures allows efficient utilizaztion of high memory
bandwidth provided by 3D-stacked memory, while offering
the programmability required to support a broad range of
applications. Akin et al. [42] presented a set of mechanisms
that enable efficient data reorganization in memory using
3D-stacked DRAM. However, the aforementioned studies
cannot efficiently accelerate NN training workloads, because
they cannot fully accommodate the heterogeneous computing
requirement in NN training. Furthermore, these studies do not
consider efficient programming model and runtime system to
accommodate the hardware heterogeneity as explored in our
study.

Other accelerator optimization for machine learning. Re-
cent works explored software- and hardware-based approaches
for a variety of inference acceleration [53-57]. Most of these
works focused on improving performance and energy efficiency
of NN inference. However, training is much more compute
and memory intensive than inference. The data movement
overhead in training is much more significant. Several prior
studies [58—60] investigated architecture design for NN training.
However, these studies focus on addressing the memory
capacity constraint issues caused by a large amount of feature
maps generated in CNN training. The data movement bottleneck
is not fully explored.

VIII. CONCLUSIONS

In this paper, we propose a software and hardware co-
design of heterogeneous PIM approach, combining the power
of programmable PIM and fixed-function PIMs, for NN
training. Our software design enables (1) a portable and unified
programming model across CPU, fixed-function PIMs, and
programmable PIM; (2) runtime scheduling that effectively op-
timizes PIM hardware utilization and maximizes NN-operation-
level parallelism. Our design not only allows natively training
models to execute on heterogeneous PIM, but also enables
easy maintenance of machine learning frameworks. Our design
achieves significant improvement in performance and energy
efficiency with various NN training workloads.
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