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Alison R. Denn*, Paul R. Bierman, Department of Geology, University of Vermont, Burlington, Vermont 05405, USA; Susan R.H.
Zimmerman, Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94550,
USA; Marc W. Caffee, Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA, and
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA; Lee B. Corbett,
Department of Geology, University of Vermont, Burlington, Vermont 05405, USA, and Eric Kirby, College of Earth, Ocean and
Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA

ABSTRACT

Boulder fields are found throughout the
world; yet, the history of these features,
as well as the processes that form them,
remain poorly understood. In high and
mid-latitudes, boulder fields are thought
to form and be active during glacial peri-
ods; however, few quantitative data sup-
port this assertion. Here, we use in situ
cosmogenic '“Be and *°Al to quantify the
near-surface history of 52 samples in and
around the largest boulder field in North
America, Hickory Run, in central
Pennsylvania, USA.

Boulder surface '"Be concentrations
(n =43) increase downslope, indicate
minimum near-surface histories of
70—600 k.y., and are not correlated with
lithology or boulder size. Measurements
of samples from the top and bottom of
one boulder and three underlying clasts as
well as 2°A1/'°Be ratios (n = 25) suggest
that at least some boulders have complex
exposure histories caused by flipping
and/or cover by other rocks, soil, or ice.
Cosmogenic nuclide data demonstrate
that Hickory Run, and likely other boul-
der fields, are dynamic features that per-
sist through multiple glacial-interglacial
cycles because of boulder resistance to
weathering and erosion. Long and com-
plex boulder histories suggest that cli-
matic interpretations based on the pres-
ence of these rocky landforms are likely
oversimplifications.

INTRODUCTION

Areas outside the maximum extent of
Pleistocene glaciation contain landforms
thought to have been produced during

cold climate periods (Clark and Ciolkosz,
1988) by frost action and mass wasting
(periglaciation). These features, particu-
larly unvegetated boulder fields, boulder
streams, and talus slopes (areas of broken
rock distinguished by differences in mor-
phology and gradient [Wilson et al.,
2016]), are believed to be largely

inactive today (Braun, 1989; Clark and
Ciolkosz, 1988).

Boulder fields have been documented
throughout the world, including Australia
(Barrows et al., 2004), Norway (Wilson et
al., 2016), South Africa (Boelhouwers et
al., 2002), the Falkland Islands (Wilson et
al., 2008), Italy (Firpo et al., 2006), Sweden
(Goodfellow et al., 2014), and South
Korea (Seong and Kim, 2003). Hundreds
of such fields exist in eastern North
America (Nelson et al., 2007; Potter and
Moss, 1968; Psilovikos and Van Houten,
1982; Smith, 1953); however, both the
time scale and mechanism of boulder
field formation remain poorly understood
because few quantitative data constrain
the age of boulder field formation or
evolution.

Boulder field formation is usually
explained by one of two process models,
both of which invoke periglaciation as a
catalyst for boulder generation and trans-
port (Rea, 2013; Wilson, 2013): (1) boulders
fall from a bedrock outcrop upslope of the
field and are transported downslope by
ice-catalyzed heaving and sliding (Smith,
1953); or (2) boulders form as corestones
underground, are unearthed by the pro-
gressive removal of surrounding saprolite,
and are later reworked (Andr¢ et al., 2008).
However they form, boulder fields are likely
altered over time by in situ rock weathering,

erosion, accumulation of unconsolidated
soil/regolith, and perhaps by periglacial
action or glaciation during cold periods
(André et al., 2008).

Here, we report 52 measurements of
1"Be and 25 measurements of 2°Al in boul-
ders and outcrops in and near the Hickory
Run boulder field. Data show that boulders
in the field have moved over time and can
have cosmogenic nuclide concentrations
equivalent to at least 600 k.y. of near-sur-
face history. We conclude that boulder
fields survive multiple glacial-interglacial
cycles, calling into question their utility as
climatic indicators.

GEOLOGIC AND PHYSIOGRAPHIC
SETTING

Hickory Run boulder field is ~2 km south
of the Last Glacial Maximum (LGM)
Laurentide Ice Sheet boundary (Pazzaglia
et al., 2006; Sevon and Braun, 2000) in
east-central Pennsylvania, USA (Fig. 1A),
a temperate, forested, inland region of the
Atlantic passive margin. The field sits on a
low-relief upland surface underlain by
gently folded, resistant Paleozoic sandstones
and conglomerates.

The field is an elongate, 550- by
150-m-wide, nearly flat (1°) expanse of
boulders in the axis of a small valley
(Fig. 1) with ~30 m of relief (Smith, 1953).
Boulders in the field range from <1 to >10
m long and are hard, gray-red, medium-
grained sandstone and conglomeratic
sandstone from the Catskill formation
(Sevon, 1975), as are the adjacent ridgelines.
Upslope boulders at the northeast end of
the field (Fig. 1D) are generally more
angular than those downslope to the south-
west (Fig. 1E) (Wedo, 2013), which are
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Figure 1. Study site. (A) Hickory Run location in relation to the extent of the Last Glacial Maximum (LGM) (26 ka, Corbett et al., 2017b), lllinoian (130 ka?),
and pre-lllinoian glaciations, after Sevon and Braun (2000). Hickory Run is 2 km south of the LGM boundary and is mapped within the lllinoian and pre-
lllinoian glaciations. (B) Locations of photographs; (C) tors on a ridgeline 700 m NE of the field; (D) elongate, angular, large boulders upslope; (E) small,
rounded boulders downslope; and (F) massive, angular conglomeritic boulders in the SE sub-field.

mostly subrounded and underlain by small,
polished clasts with a red weathering rind
(Fig. 1E). There is a distinct subsection of
the field to the southeast with boulders
mostly >5 m long; these appear to be bed-
rock shattered along bedding planes (Fig.
1F). The field is surrounded by coniferous
forest with stony loam soils (NRCS,
2014).

Glacial erratics are found south of
Hickory Run (Pazzaglia et al., 2006;
Sevon and Braun, 2000), indicating that it
was covered by ice at least once, although
the timing of ice advances is not well
known (Braun, 2004), and we found no
obvious erratics in the field. The last
glaciation to override Hickory Run is
mapped as Illinoian (ca. 150 ka; Fig. 1A),
though it is possible that it was 400 ka
(Braun, 2004). South of the boulder field,
reversed magnetic polarity deposits indi-
cate that the oldest, most extensive glacia-
tion was in the early Pleistocene (likely
>900 ka); there is another event mapped
between the Illinoian event and the >900
ka event, distinguished by proglacial lake
sediments of normal polarity, likely <740
ka (Braun, 2004).

APPLICATION OF COSMOGENIC
NUCLIDES TO BOULDER FIELDS

Cosmogenic nuclides are produced pre-
dominately in the uppermost meters of
Earth’s surface by cosmic ray bombard-
ment (Gosse and Phillips, 2001; Lal and

Peters, 1967). Nuclides build up over time
and can be used to provide age control for
surficial deposits; however, such dating
requires that at the time of initial surface
exposure, rock contained few if any
nuclides (Lal, 1991). This is not the case for
boulder fields because both models of devel-
opment (see Introduction) include initial
cosmic-ray exposure before incorporation of
blocks into the field (on cliffs or below a
weathered regolith mantle).

The pertinent question becomes,
“Where were the sampled boulders when
they received the cosmic ray dosing that
accounts for the '’Be and 2°Al concentra-
tions they contain today?”” This question
arises because there is no unique and
agreed upon process model for boulder
field development. If boulders were
sourced from outcrops upslope of the field
and moved downfield, they inherited
nuclides from exposure on the outcrops. If
boulders originated in place, they inherited
nuclides from subsurface exposure. In
either case, measured nuclide concentra-
tions do not allow direct dating of the time
any boulder became exposed as part of the
boulder field; rather, they allow for the
calculation of minimum total near-surface
histories for each sampled boulder. Such
histories integrate cosmic-ray exposure
and express it as the equivalent of uninter-
rupted surface exposure. These times are
minima because we know boulders eroded
and also experienced less than surface

production rates before they were
exhumed, when they were covered by
other boulders, and/or when they flipped
during transport.

If rock surfaces experience burial before,
during, or after exposure, by flipping or
cover with soil, snow, ice, or other boulders,
such complex histories can be detected by
measuring two isotopes with different
half-lives in the same sample (Bierman et
al., 1999; Nishiizumi et al., 1991). Such
analyses most commonly employ Al and
1'Be, which are produced in quartz at a
ratio of ~7:1 (Argento et al., 2013; Corbett
et al., 2017a). Because the 2°Al half-life,
0.71 m.y. (Nishiizumi et al., 1991), is about
half that of '°Be, 1.38 m.y. (Chmeleff et al.,
2009; Korschinek et al., 2010), if an
exposed sample is buried, the **A1/'°Be
ratio will decrease; if that sample is re-
exposed, production of nuclides begins
again and the ratio increases. Because of
the relatively long half-lives of °Al and
1"Be, the 2A1/'“Be ratio is only sensitive to
burial by meters of material for >100 k.y.
(Lal, 1991).

Published measurements of cosmogenic
nuclides, made on samples collected from
rock surfaces in high-latitude boulder
fields, suggest that some blocks were
exposed to cosmic rays relatively recently,
while others have concentrations consis-
tent with near-surface histories extending
over hundreds of thousands of years.

For example, *Cl concentrations in 18



Australian boulder stream samples reveal
a cluster of minimum limiting exposure
histories around 21 + 0.5 ka (LGM), while
other samples from the same field have min-
imum total near-surface histories of
60—480 ka (Barrows et al., 2004). Samples
from boulder streams in the Falkland
Islands (n = 16) have '°Be histories of
42-730 ka (Wilson et al., 2008). A Korean
boulder field has Be histories (n = 4)
between 38 and 65 ka (Seong and Kim,
2003), while samples from Swedish boul-
der fields have histories of 33 and 73 ka

(n =2) (Goodfellow et al., 2014). Analysis
(n=15) of paired **Al and '°Be in block
streams suggests some boulders have
histories that include either exposure under
cover and/or burial after near-surface
exposure (Goodfellow et al., 2014; Seong
and Kim, 2003; Wilson et al., 2008).

METHODS

We sampled in and around the Hickory
Run boulder field in eight slope-normal
transects, collecting a total of 52 samples
by removing the surficial few centimeters
of rock. Of these samples, 30 were from
boulders in the main field, six were from
the southeastern sub-field, seven were
from boulders in the surrounding forest,
five were from bedrock tors cropping out
on a ridgeline 700 m NE (Fig. 1C), and one
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was from the bottom of a boulder accom-
panied by three underlying clasts (Fig.
2A). We photographed and recorded the
dimensions, sub-meter resolution UTM
coordinates, sample thickness, and lithol-
ogy of each boulder. Additionally, we used
eCognition software to automatically
extract boulder outlines from aerial imag-
ery to test for trends in boulder size and
orientation.

We purified quartz (Kohl and Nishiizumi,
1992) and extracted '°Be and **Al (Corbett
et al., 2016) at The University of Vermont.
We measured °Be/’Be ratios at Lawrence
Livermore National Laboratory, normal-
izing them relative to ICN standard
07KNSTD3110 with an assumed value of
2.85 x 1072 (Nishiizumi et al., 2007). We
corrected our data using process blanks
(see GSA Data Repository' Table DR1) and
processed four replicates to test reproduc-
ibility; the difference between replicates
ranged from <1%-4% (mean 2%). We then
selected the boulder bottom and clast sam-
ples (n = 4) along with a subset of upslope
(n=10) and downslope (n = 11) boulder
samples for *A1/2’Al analysis at PRIME
Lab. Minimum near-surface histories were
calculated using the CRONUS Earth
online calculator (http:/hess.ess.washing-
ton.edu/), wrapper script 2.2, main calcula-
tor 2.1, constants 2.2.1 (see Balco et al.
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[2008]) based on the constant production
rate model (Lal, 1991; Stone, 2000) using
the regional northeastern U.S. production
rate (Balco et al., 2009).

RESULTS

Boulders at Hickory Run have experi-
enced widely varying and substantial near-
surface exposure. Hickory Run samples
have “Be concentrations ranging from
0.44 t0 3.26 x 10° atoms g! (Fig. 3), the
equivalent of between 70 and 600 k.y. of
surface exposure.

There is no significant correlation
between ’Be concentration and boulder
lithology, size, or proximity to the edge of
the field. Boulders downslope are more
rounded, smaller (Fig. DR1 [see footnote
1]), and have more developed weathering
rinds than those upslope, suggesting that
boulder weathering increases downslope.
We also observe spatial trends in boulder
orientation; downslope boulders align
with the main axis of the field (NE-SW),
whereas upslope boulders align E-W
(Fig. DR1 [see footnote 1]).

Our '"Be results support the inference
of increased weathering and near-surface
exposure time downfield. The strongest
correlation we observe is between down-
field distance and '“Be concentration
(r* = 0.45; Fig. 3); additionally, ’Be
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Figure 2. Measurement of boulder HR10 and underlying clasts. (A) Photograph of boulder HR10 on top of clasts; (B) side view of HR10 samples and
underlying clasts; (C) °Be production decreases exponentially with depth. The black dashed line represents the °Be concentrations expected in HR10B
and samples 10C1-C3 if they remained in place at depth for their entire histories. (D) Depth profile assuming the boulder flipped 180° at 25 ka—the
concentration in HR10T is too high to have flipped then. (E) Sample HR10T aligns with the depth profile assuming the boulder flipped at 200 ka.

' GSA Data Repository Item 2017393, a detailed description of methodology, is online at www.geosociety.org/ft2017.htm.
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Figure 3. °Be concentration (10° atoms g-') of Hickory Run boulders and tors; red dots indicate higher °Be concentration; green dots indicate lower.
Insets show location of tors (Fig. 1C) relative to the main boulder field and positive correlation between °Be concentration and downslope distance.

concentrations within the main body of the field become increas-
ingly different with distance between boulders (Fig. DR2 [see
footnote 1]). Boulders upfield (n = 10) include the two lowest mea-
sured '°Be concentrations (0.4 = 0.07 x 10° atoms g'; Fig. 4)
whereas downfield boulders contain much more '°Be, averaging
2.1 +0.6 x 10° atoms g'. Concentrations on ridgeline tors and in
the southeastern sub-field tend to be lower than the main body of
the field (Fig. 4).

Our measurements of boulder HR10 and of the clasts below it
are inconsistent with simple exposure in place (Fig. 2) and imply
movement and flipping of the boulder. The measured ’Be con-
centration in sample HR10B (from the underside of the boulder,
0.39 m below the surface) is 170% of what it would be if the
boulder had received all of its exposure as currently oriented
(Table DRI [see footnote 1]). Clasts C1, C2, and C3 have more
than triple the expected '’Be concentration than if they had been
continuously irradiated underneath the boulder; all three have
higher concentrations than the sample from the top of the boul-
der. The boulder and clasts could not have been exposed and
irradiated only in their current position.

Concentrations of 2°Al range from 3.00 to 19.3 x 10° atoms g
(n=25), and correlate well with '’'Be measurements (> = 0.99).
2°A1/""Be ratios range from 5.4 to 7.3. When plotted on a two-
isotope diagram (Fig. 5), all but five samples fall below the
upper constant exposure line, consistent either with exposure
followed by erosion (between the upper and lower lines), with at
least one episode of burial after initial exposure, or with expo-
sure under cover followed by exhumation. Samples from the top
of the field (» = 10) have an average *°Al/'°Be of 6.61 + 0.46,
whereas those from the bottom of the field (n = 11) have an aver-
age 2Al/"Be of 5.96 + 0.31 (separable at 95% confidence, Student’s

t-test). In part, this decrease reflects longer near-surface histo-
ries of boulders downfield.

DISCUSSION

Cosmogenic nuclide measurements, when considered along
with field observations, provide a means to infer how boulder
fields change over time. For example, boulders at Hickory Run are
more rounded, smaller, and thus more weathered downfield than
upfield; the downfield increase in '°Be concentration suggests the
importance of near-surface residence time in physical and chemical
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Figure 4. Summed probability plot of 1°Be concentrations (A) in tors, (B) of
the three furthest upslope boulder transects, and (C) of the two furthest
downslope. Red curves represent single °’Be measurements with 2o
internal error; the black line represents the sum of all samples.
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Figure 5. Measured ?°Al/"°Be plotted against measured °’Be concentra-
tions (n = 25). Plot is based on a local production rate of six atoms g-' y~'
and surface production ratio of 7.0 (Argento et al., 2013). The thick black
line indicates constant surface exposure, and the line beneath it marks
the end of the “steady erosion envelope”; points beneath this envelope
have had at least one period of burial or shielding during or after expo-
sure. Thin lines represent the trajectory that a sample would follow if bur-
ied, and dotted lines indicate burial isochrons of 0.5, 1.0, and 1.5 m.y.
assuming surface exposure followed by deep burial (top to bottom).

boulder weathering. The decrease in 2°Al/'°Be ratios downfield
indicates that boulders there have experienced more complex
exposure histories, including erosion, exhumation, burial, and/or
flipping, than upfield boulders. Changes in boulder long-axis
alignment downfield likely indicate at least some downfield, and
thus downslope, boulder transport.

Multiple cosmogenic measurements on a single boulder
(HR10) reveal more about boulder history and boulder field pro-
cesses. Measurements of samples from the top and bottom of the
boulder, as well as the underlying clasts, demonstrate that it has
changed position and not simply weathered in place. Although
there is no unique solution, this disparity in concentration
between the top and bottom of the boulder can be resolved if,
~200,000 years ago, it flipped after initial exposure and was
then deposited on top of the clasts now underlying it (Fig. 2 and
Tables DR3-DRS5 [see footnote 1]). High nuclide concentrations
in clasts under the boulder provide further evidence for boulder
movement. Nuclide concentrations in clasts HR10 C1, C2, and
C3 are comparable to those of nearby surface boulders, and their
2Al/'"Be ratios are indistinguishable from the production ratio.
This is likely because the clasts spent most of their history near
the surface and still receive substantial cosmic ray dosing
through the overlying 48 cm of rock.

The positive linear relationship between °Be concentration and
distance downfield allows calculations of the rate at which the
field changes over time. Assuming boulders were sourced from
outcrops upslope of the field, the relationship between “Be con-
centration and distance downslope can be interpreted as a rate of
transport (Jungers et al., 2009; Nichols et al., 2005; West et al.,
2013). Given a local '’Be production rate of 6 atoms g' y ' and a
regression slope of 4050 atoms m™! (Fig. 3), the average rate of
boulder movement is ~15 mm y' presuming the boulders remain
exposed at the surface, and slower if the boulders were buried or
flipped during transport as suggested by **Al/"°Be ratios, dis-
cussed above. Alternatively, if the field is the result of progressive
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Figure 6. Summed probability plots of minimum total near-surface history
derived from °Be. Red curves represent single °Be measurements with
20 internal error; the black line represents the sum of all samples. (A) All
Hickory Run samples. (B) Quartzite bedrock outcrops. (C) Sandstone out-
crops. (D) Other boulder field samples (Barrows et al., 2004; Goodfellow et
al., 2014; Seong and Kim, 2003; Wilson et al., 2008). (E) Stable &'°0 ratios
in deep sea foraminifera (Railsback et al., 2015). Even numbers represent
cold glacial stages; odd numbers are interglacials. LGM—Last Glacial
Maximum.

up-field stripping of regolith and the boulders have remained in
place, then the speed represents the rate at which the bedrock/
regolith boundary moved upslope.

At Hickory Run, minimum total near-surface histories are var-
ied and long. They range from 70 to 600 k.y. with a mode between
120 and 210 ka. Such histories are similar to those reported in
boulder field samples collected elsewhere (Wilson et al., 2008)
(Fig. 6) and together suggest that boulder fields are persistent fea-
tures that can survive multiple glacial cycles. Boulders at Hickory
Run have much longer minimum total near-surface histories than
sandstone outcrops in the central Appalachian Mountains, but
have minimum total near-surface histories only slightly greater
than quartzite outcrops in the region (Portenga et al., 2013), con-
sistent with the indurated nature of rock exposed at Hickory Run
(Fig. 6). The similarity of near-surface residence time (Fig. 6)
between quartzite outcrops and Hickory Run boulders suggests a
different approach to interpreting boulder fields—considering



them as fractured outcrops, unmantled by
soil and regolith. In this framework, boul-
der field longevity is controlled by the
resistance of boulders to erosion over time.

Although most prior research suggests
that boulder fields result from periglacial
activity (Braun, 1989; Clark and Ciolkosz,
1988), extant cosmogenic data are largely
agnostic as to the timing of boulder gen-
eration. The absence of LGM histories
among the 52 Hickory Run samples we
analyzed could indicate a lack of new boul-
der generation during the most recent cold
period. Conversely, the absence of LGM
histories may reflect pre-exposure of boul-
ders, at depth if they are unroofed, or
upslope if they moved downslope from
source outcrops. Comparison of the cumu-
lative probability distribution of all boulder
analyses (Fig. 6) to the marine oxygen
isotope record of climate shows no obvious
correlation of boulder histories with climate
except that the mode of boulder histories at
Hickory Run is generally consistent with
the Illinoian cold period (130-190 ka,

MIS 6). Either the complexity of boulder
histories (flipping, erosion, exhumation)
blur any coherent time signal in the data or
perhaps boulder field generation is not
strictly a periglacial phenomenon.

Hickory Run is mapped within the
Illinoian glacial margin (Sevon and
Braun, 2000) and, if mapping and dating
of the Illinoian are correct, would have
been under glacial ice ca. 150 ka (Fig. 1A).
The absence of erratics within the field
and the presence of boulders with mini-
mum histories far exceeding 150 k.y. sug-
gest that the “Illinoian” in this part of
Pennsylvania is likely older than previ-
ously assumed, a possibility given the
lack of quantitative age constraints on old
glaciations (Sevon and Braun, 2000).
Alternately, if the mapping were correct,
then any overriding Illinoian ice must
have been cold-based and non-erosive, as
the boulder field was preserved rather
than eroded. The preservation of block
streams under cold-based ice is possible
(Kleman and Borgstréom, 1990), and por-
tions of the southern Laurentide ice sheet
were likely cold-based (Colgan et al.,
2002; Bierman et al., 1999, 2015).

High concentrations of cosmogenic
nuclides in samples collected from Hickory
Run highlight the stability and persistence
of this landform, which has survived at
least one, and likely several, glacial/inter-
glacial cycles. Cosmogenic nuclide

measurements provide limited information
about the timing of boulder field activity
(insufficient to confirm it is a periglacial
feature), but clearly indicate that Hickory
Run and at least some other boulder fields
throughout the world are ancient, dynamic,
multigenerational features, the longevity
of which appears to be controlled by the
resistance of their boulders to erosion.
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