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Abstract

Microbial fuel cell is a unique energy technology where both wastewater treatment
and electricity generation take place concurrently. However, the performance is typically
rather limited due to the sluggish electron-transfer kinetics of oxygen reduction reaction at
the cathode. Thus, development of high-performance cathode catalysts is of fundamental
significance for the wide-spread application of microbial fuel cell. In this study,
nanocomposites based on cobalt oxide nanoparticles supported on nitrogen-doped carbon
nanotubes (Co/N-CNT) were synthesized by controlled pyrolysis of graphitic carbon nitride
and cobalt acetate. Electrochemical tests indicated that the Co/N-CNT nanocomposites
exhibited a high ORR electrocatalytic activity with a half-wave potential of +0.82 V and
onset potential of +0.91 V vs. RHE, mostly via a four-electron reduction pathway. This was

ascribed to the formation of high-efficiency Co-N active sites that facilitated the ORR
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kinetics. A microbial fuel cell using the as-prepared Co/N-CNT as the cathode catalyst
achieved a maximum power density of 1260 mW m™, which was 16.6% higher than that
based on state-of-art Pt/C catalyst (1080 mW m™). The results suggest that Co/N-CNT

nanocomposites may serve as viable cathode catalysts in microbial fuel cell application.
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1. Introduction

Microbial fuel cell (MFC) has been attracting extensive attention lately because it can
degrade organic pollutants in wastewater and concurrently produce electricity using anode
bacteria [1-4]. Of these, MFC with an air cathode is a promising design for practical
utilization, due to the direct use of freely available oxygen in the air as electron acceptors
[5-7]. Nevertheless, despite substantial progresses in recent years, the power density of MFC
has remained relatively low, primarily due to the high overpotential and sluggish
electron-transfer kinetics of oxygen reduction reaction (ORR) at the cathode [8, 9]. This is a
major limitation hindering the practical application of MFC. Platinum (Pt)-based
nanoparticles have been used extensively as the catalysts of choice for ORR; yet the high
cost, low earth abundance, and low poison tolerance in the presence of contaminants in
wastewater have been detrimental to the device performance and applications [10, 11].
Within this context, a range of non-precious metal/carbon nanocomposites have been
prepared by using select organometallic complexes as precursors, such as iron(Il)
phthalocyanine and cobalt tetramethoxyphenylporphyrin, and exhibited rather remarkable

electrocatalytic performance as the air cathode catalysts of MFC | ]. In fact,
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carbon-supported non-precious metal-based catalysts have been proposed as viable
alternatives as cathode catalysts for MFC, because of their low costs, high natural abundance,
apparent catalytic activity, and good mechanical strength [9, 14-23]. For nitrogen-doped
carbon, metal-nitrogen coordination (MNx) moieties are typically formed within the carbon
matrix (M-N-C) and serve as the ORR active sites [10, 24, 25]. For instance, an MFC using
Fe,N-codoped carbon as the cathode catalyst has been found to deliver a maximum power
density (Pmax) of 3118.9 mW m™, which is markedly higher than that obtained with a Pt/C
cathode (2017.6 mW m) under the same operating conditions [14].

In general, the preparation of M-N-C hybrids entails two steps, synthesis of the
carbon substrates, such as graphene and carbon nanotubes, followed by controlled pyrolysis
after the addition of select nitrogen-containing precursors to facilitate N doping (e.g., HNO3,
NH3, and urea) and metal salts to incorporate metal dopants. Graphitic carbon nitride (C3Nas)
represents a unique precursor. It is a conjugated organic semiconductor consisting of sp?
hybridized nitrogen and carbon atoms [26], where the abundant pyridinic nitrogen moieties
can be exploited for the coordination of transition metal centers [27, 28].

Herein, we demonstrate that Co,N-codoped carbon nanotubules can be
synthesized pyrolytically by using cobalt acetate as the cobalt precursor and C3N4 as
the carbon and nitrogen sources. The structures of the resulting Co/N-CNT
nanocomposites were characterized by X-ray diffraction (XRD), X-ray photoelectron
spectroscopy (XPS) and Raman measurements. Electrochemical tests showed that the
Co/N-CNT nanocomposites exhibited a high ORR electrocatalytic activity with a

half-wave potential of +0.82 V and onset potential of +0.91 V vs. RHE, mostly via a



four-electron reduction pathway. This was ascribed to the high efficiency of Co-N
active sites that facilitated the ORR kinetics. Furthermore, the performance of the
resulting Co/N-CNT nanocomposites as MFC air cathode catalysts was examined in a
home-made MFC, which achieved a maximum power density of 1260 mW m™, 16.6%
higher than that based on a state-of-art Pt/C catalyst (1080 mW m™). These results
suggest that Co/N-CNT nanocomposites may serve as viable ORR catalysts in MFC
applications.
2. Experimental Section
2.1 Synthesis of C3N4

CsN4 was prepared by direct pyrolysis of melamine under ambient condition, as
described previously [28]. In brief, melamine (8 g) was placed in a crucible and the
temperature was increased to 600 °C at the heating rate of 2.3 °C min™!. The sample
was heated at 600 °C for 2 h and then cooled down to room temperature. The yellow
product was collected, ground into powders, and dispersed in water under sonication
overnight to produce C3N4 nanosheets.
2.2 Synthesis of cobalt, nitrogen codoped carbon nanotube

In a typical experiment, 50 mg of the Cs3Ns4 powders prepared above was
dispersed in 50 mL of Nanopure water and sonicated overnight, into which was then
added 0.319 g of cobalt(Il) acetate (Co(OAc)2-4H20). The solution was refluxed at
100 °C for 30 min. The pH of the mixture was then adjusted to ~12 by using a 0.1 M
NaOH solution, and the dispersion was then refluxed for another 30 min. The

precipitate was collected by centrifugation at 4500 rpm for 10 min. The obtained



product was dried at 80 °C, and then the temperature was increased to 800 °C at the
heating rate of 5 °C min!, where pyrolysis was performed for 2 h, affording
Co,N-codoped carbon nanotubes that were denoted as Co/N-CNT.
2.3 Characterizations

The morphology of the samples was characterized by using a transmission
electron microscope (TEM, Philips CM300 at 300 kV). The TEM samples were
prepared by dropcasting a dilute dispersion of the samples in ethanol onto a TEM grid
and dried in a vacuum oven. XRD patterns were acquired with a Rigaku Americas
Miniflex Plus powder diffractometer operated at 40 kV and 30 mA. Raman spectra
were acquired on a LabRAM HR Evolution using an Ar ion laser at the excitation
wavelength of 514.5 nm. XPS measurements were conducted using a PHI 5400/XPS
instrument equipped with an Al Kq source operated at 350 W and 10° torr.
2.4 Electrochemistry

Electrochemical tests were carried out on a CHI710 workstation and electrochemical
impedance spectra were collected with a Gamry Reference 600 instrument. A Ag/AgCl (1 M
KCl) and a graphite rod were used as the reference and counter electrode, respectively, while
a rotating (golden) ring—(glassy carbon) disk electrode (RRDE, from Pine Instrument) was
used as the working electrode. The Ag/AgCl electrode was calibrated against a reversible
hydrogen electrode (RHE) and all potentials in the present study were referenced to this RHE.
To prepare catalyst inks, 5 mg of the as-prepared catalysts (or 5 mg of commercial Pt/C, 20
wt.%) were dispersed in 2 mL of a water/ethanol (v:v 1:2) mixture along with 10 mL of a

Nafion solution, and the mixture was sonicated for at least 30 min to achieve good dispersion



of the materials. Then 20 pL of the above inks was dropcast onto the clean surface of the
glassy carbon electrode and dried at room temperature, corresponding to a catalyst loading of
0.203 mg cm™2. Prior to use, the RRDE was polished with 50 nm Al,O3 powders and washed
extensively with Nanopure water.

The RRDE tests were conducted in nitrogen-sparged 0.1 M NaOH and then switched
to an oxygen-saturated NaOH solution. During the tests, the potential of the working
electrode was scanned from +1 to 0 V vs. RHE at the potential sweep rate of 10 mV s with
the rotation rate varied from 400 to 2500 rpm. The current acquired in the nitrogen-saturated
solution was subtracted from that in oxygen-sparged solution to obtain the ORR current. The
number of electron transfer (n) and yield of hydrogen peroxide (H>0:%) were calculated

based on the following equations,

4i4;
n=- .dlsk (1)
ldisk'”ring/Nr

ZOOiring

H202% = (2)

where igisk 1s the disk current, irng 1s the ring current due to the oxidation of hydrogen
peroxide, and N is the collection efficiency of the gold ring (0.4).
2.5 Assembly and set-up of MFCs

To construct an MFC, air cathodes were prepared by coating a catalyst layer
onto teflonized carbon cloth (WOS 1002 PHYCHEMi Co. Ltd., China) at a catalyst
loading of 2 mg cm™ for Co/N-CNT and 0.5 mg cm™ Pt/C. In brief, the carbon cloth
was teflonized by brushing four layers of polytetrafluoroethylene (60 wt.% solution,

Sigma Aldrich) on one side and thermally treated at 370 °C for 20 min. The prepared

catalyst ink was then dropcast onto the other side of the teflonized carbon cloth and



dried at 80 °C for 1 h. Carbon cloth was directly used as anode after washing in
acetone. The surface area of both the anode and cathode was 7 cm? The resulting
anode and air cathode were mounted onto the two sides of a cubic MFC with a
cylindrical chamber (a volume of 28 mL with 3 cm diameter, and 4 cm spacing
between the anode and cathode). The MFC was inoculated with anaerobic digester
sludge containing exoelectrogenic bacteria. During the inoculation process, an external
resistor of 1000 Q was connected to the MFC. The MFC was operated in the fed-batch
mode at room temperature (30 £ 1 °C). Anolyte was replenished with a fresh medium
when the cell voltage fell below 50 mV. The fresh medium was composed of 2.04 g
L' sodium acetate, 11.82 g L™! NaxHPOs4, 2.32 g L™! KH2PO4, 0.1 g L™ NH4C1, 0.5 g
L' NaClL, 0.1 g L' MgSO47H,0, 15 mg L™! CaCl,-:2H,O and 1.0 mL L' trace
elements

The power density and cell voltage were evaluated by LSV measurements in
the potential range between open circuit voltage (OCV) and 50 mV at the potential
scan rate of 0.2 mV s™!. The cathode was the working electrode, and the anode was
connected to the counter and reference electrodes. The power density and current
density was normalized to the projected surface of cathode (7 cm?).

3. Results and discussion



Fig. 1 Representative TEM images of Co/N-CNT at different magnifications. Scale bars are (a)
100 nm, (b) 20 nm and (c) 5 nm.

Fig. 1 shows the representative TEM images of the as-obtained Co/N-CNT
nanocomposites. One can see that the sample consisted of a number of bamboo-like hollow
carbon nanotubes, with a length up to a few hundred nm, an outer diameter of 15-30 nm and
a wall thickness of ca. 5 nm (Fig. 1a,b) [30]. The formation of bamboo-like carbon nanotubes
was probably due to the presence of pentagon structures in the graphite network caused by
nitrogen doping [31]. These nanotubes were also decorated with dark-contrast nanoparticulate
objects with a diameter of 15-30 nm (marked by red circles in Fig. 1c) that were most likely
CoOy nanoparticles. The nanoparticles were encapsulated within discontinuous graphite
layers, which displayed an interplanar distance of 0.347 nm that was consistent with the (210)

planes of graphitic carbon [32].
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Fig. 2 (a) XRD and (b) Raman spectra of Co/N-CNT and C3Na.

The XRD patterns of the obtained samples are shown in Fig. 2a. A main peak can be
identified at 26.5° for Co/N-CNT, corresponding to the diffraction of the (002) crystalline
planes of the graphitic carbon frameworks [32]. For comparison, C3N4 showed a diffraction
peak at a somewhat higher angle of 27.5°, characteristic of its (002) planes [27, 28]. These
results suggest effective conversion of C3Ns into graphitic carbon skeletons by pyrolytic
treatments. Several additional diffraction peaks can also be seen at 44.3°, 51.5° and 75.8° that
are consistent with the (111), (200), and (220) planes of metallic Co (PDF# 15-0806) [33],
whereas the peak at 47.5° likely arose from the (100) planes of hexagonal centered (hcp)
cobalt (PDF# 5-0727) [34]. In addition, the small peaks at 41.7° and 61.5° are likely due to

the (200) and (220) diffractions of CoO (PDF# 48-1719) [35]. This suggests the formation of



CoOy supported in a carbon matrix. Further structural insights were obtained by Raman
measurements (Fig. 2b). It is found that C3N4 exhibited four characteristic vibrations at ca.
472,712, 980 and 1226 cm™! [36], whereas for Co/N-CNT, two major peaks can be identified
at ca. 1352 cm™! and 1580 cm™, due to the D and G bands of graphitic carbons [37], and the
ratio of the band intensity (Ip/lg) was estimated to be 1.71, indicative of a moderately

defective structure of the carbon scaffolds.
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Fig. 3 High-resolution XPS scans of the (a) C1s, (b) N1s and (c) Co 2p electrons of Co/N-CNT
and C3Nas. Black circles are experimental data and colored curves are deconvolution fits.
XPS analysis was then conducted to evaluate the chemical composition and
valence states of the nanocomposites. Fig. 3a depicts the C 1s spectra of Co/N-CNT

and C3Ns. It can be seen that C3Ns exhibited a peak at 288.4 eV, which can be
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assigned to the sp>-hydridized carbon in the N-C=N ring [27, 28]. For the Co/N-CNT
sample, the C 1s spectrum can be deconvoluted into three subpeaks at 284.8, 285.53
and 288.8 eV, due to sp? C, sp> C/C-N, and C=0, respectively [10]. In Fig. 3b, the N
Is spectrum of C3Ns was deconvoluted into two subpeaks at 398.9, and 400.5 eV,
corresponded to the pyridinic-N and N-(C)s, respectively [27, 28], whereas for the
Co/N-CNT sample, three subpeaks can be resolved at 398.4, 401.0, and 399.9 eV,
corresponding to the pyridinic-N, graphitic-N and pyrrolic-N, respectively. Two
additional nitrogen species can also be identified at 403.3 and 399.1 eV, which can be
ascribed to oxidized-N and N in Co—N moieties, respectively [38]. These indicate that
indeed both Co and N species were incorporated into the carbon skeletons forming
CoN, moieties. The contents of these nitrogen dopants were then quantified, based on
the integrated peak areas ( ). It can be seen that Co/N-CNT consisted of a
pyridinic-N content of 1.37 at.% and graphitic-N of 1.61 at.%. Fig. 3c shows the Co
2p spectrum of Co/N-CNT. One can see that the sample exhibited three pairs of peaks.
The first doublet can be identified at ~778 and 794 eV due to metallic Co, and another
at 781 and 796 eV to Co?" in CoO, whereas the peaks at 785 and 802 eV are the
satellites [39], in good agreement with results from XRD measurements (Fig. 2a). In

addition, the Co content in Co/N-CNT was estimated to be 2.82 at.%.
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Fig. 4 (a) CV of Co/N-CNT in N2 and Oz saturated NaOH electrolyte, (b) LSV curves of
Co/N-CNT at different rotating rate, (¢) LSV curves of Co/N-CNT, C3N4 and Pt/C at the rotation
rate 1600 rpm, (d) electron transfer number of Co/N-CNT, Co/N-GO, C3sN4 and Pt/C.

The electrochemical activity of the obtained catalysts was then evaluated in a
typical three-electrode configuration in 0.1 M NaOH. From Fig. 4a, it can be seen that
with an oxygen-saturated electrolyte solution, a cathodic peak appeared at +0.8 V, in
contrast to the featureless response when the electrolyte was purged with No,
indicating apparent ORR activity of the Co/N-CNT sample. The ORR activity was
then tested in RDE measurements. From Fig. 4b and S1, one can see that the current
density reached a plateau at potentials more negative than +0.7 V and increased with

increasing rotation rates. At 1600 rpm, the half-wave potential (E:;) can be identified
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at +0.84 V for Pt/C, +0.82 V for Co/N-CNT, and +0.64 V for C3Na, with the
corresponding onset potential (Eonset) at +0.93, +0.91, and +0.76 V, respectively (Fig.
4c¢). That is, the performance of Co/N-CNT was higher than that of C3N4, and close to
that of Pt/C. It should be noted that the E, (+0.82 V) of Co-NCNT is actually more
positive than or comparable to those of relevant nitrogen-doped carbon supported
cobalt oxide catalysts reported in recent literature (Table S2), demonstrating the
remarkable activity of the as-prepared Co-NCNT composite. This high activity
probably arose from the formation of Co-N species, as manifested in XPS
measurements (Fig. 3), that have been argued to be the active sites for ORR, with
additional contributions from select N dopants such as pyridinic-N and graphitic-N
[38].

The number of electron transfer (n) was then evaluated according to eq (1),
which was over 3.4, suggesting that ORR proceeded mainly via the 4e” pathway on
Co/N-CNT. In fact, at +0.6 V, the n value was 3.9 for Pt/C, 3.4 for Co/N-CNT, and 3.1
for C3N4. The slightly lower n value of Co/N-CNT than that of Pt/C suggests a
somewhat higher yield of H>O> during the ORR process (Fig. S2). From the practical
point of view, the high half-wave potential and high limiting current of Co/N-CNT
ensure an efficient ORR performance, and the slightly higher H>O> yield by
Co/N-CNT might actually provide an additional benefit to inhibit the formation of

biofilms on the cathode surface, as compared to Pt/C [40, 41].
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Fig. 5 (a) Tafel plots derived from LSV curves, (b) Koutecky-Levich plot of the catalyst samples
at +0.6 V vs. RHE, (c) cyclic voltammogram within the range of +1.0 to +1.1 V vs. RHE, (d)
variation of the double-layer charging currents at +1.1 V versus scan rate, (e) Nyquist plots of
catalysts at an open circuit potential, (f) chronoamperometric responses of Co/N-CNT and Pt/C
at the constant potential of +0.7 V vs. RHE before and after the addition of S% poisoning
species.

The ORR kinetics and the effective electrochemical surface area (ECSA) of
catalysts are then evaluated. The Tafel plot was obtained by using the linear segments
of the LSV curves, as shown in Fig. 5a. It can be seen that the Pt/C, Co/N-CNT, and
C3N4 show a Tafel slope of 88, 74, and 100 mV dec™!, respectively. In addition, from
the Koutecky-Levich plot in Fig. 5b, the kinetic current density (Jx) at +0.6 V can be
estimated to be 16.29 mA cm™ for Pt/C, 23.05 mA cm™ for Co/N-CNT, and 2.15 mA
cm for C3Na. With the lowest Tafel slope and highest Jk, Co/N-CNT stood out as the

best ORR catalyst among these samples. Consistent results were obtained with the
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comparison of ECSA among the catalysts, which can be represented by the electrode
double-layer capacitance (Ca). As shown in Fig. 5b, C4 can be estimated by linear
regression of the (non-faradaic) current vs. potential scan rate at 4.27 x 107 mF cm™
for Co/N-CNT, about an order of magnitude higher than that (0.48 x 10> mF cm™) for
CsNy (Fig. S3). Electrochemical impedance measurements were then performed to
evaluate the corresponding charge-transfer resistance (Rc) under open circuit
potential, as shown in Fig. 5e. The Nyquist plots were fitted based on the equivalent
circuit (Fig. S4), with the fitting results summarized in Table S3. One can see that R
was only 23.4 Q for Co/N-CNT, over three hundred times lower than that (7829 Q) for
CsN4 [28].

Stability and poison tolerance of catalysts are additional important factors
affecting the practical application of MFC. In wastewater and activated sludge, a
variety of sulfur-related pollutants are generally present, which can poison catalyst
active sites and degrade the MFC performance [11]. In the present study, the stability
and poisoning tests were conducted using S** as the poisoning species. As shown in
Fig. 5f, chronoamperometric tests at +0.7 V show that the current response of the
Co/N-CNT catalyst remained stable for over 1 h, whereas a 5% decrease was observed
with Pt/C, indicating enhanced stability of Co/N-CNT. In addition, when 5 mM L S*
was added into the electrolyte, 93% of the current was retained with Co/N-CNT,
significantly higher than that (44%) for Pt/C, indicating markedly enhanced poison

tolerance. The higher poison tolerance of Co/N-CNT catalysts was probably due to the
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weak absorption of poison species, due to a relatively lower spin density on active

sites, as compared to Pt [10].
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Fig. 6 (a) Polarization and power density curves and (b) LSV curves of MFC using Co/N-CNT and
Pt/C as air cathode catalysts.

The application of Co/N-CNT as the air cathode of MFC was then examined, in
comparison with Pt/C. As shown in Fig. 6a, the cell performance was first tested based
on polarization curves. It is obvious that the cell voltages of both MFCs decrease with
the increase of current densities, and the MFC based on Co/N-CNT air cathode
exhibited a higher cell voltage at current densities higher than 400 mA m™, indicating
a higher power output than that with Pt/C. Indeed, it can be seen that the former MFC
delivered a Pmax of 1260 mW m, which is 16.7% higher than that of the latter (1080
mW m™). The catalytic current of cathodes was also evaluated based on LSV tests, as
shown in Fig. 6b. One can see that the Co/N-CNT cathode showed a higher current
response than Pt/C, suggesting a higher cathode performance under the MFC operation
condition (current density < 8000 mA m™). These results showed that the Co/N-CNT
sample can be used as a viable ORR catalyst for MFC with a power output even higher
than that of Pt/C.
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It should be noted that the above MFC measurements were carried out in a
neutral electrolyte solution, whereas the assessments of the electrocatalytic activity
were performed in alkaline media (Fig. 4). This is because the ORR proceeds through
the production of hydroxyl from oxygen and water in the cathodes even at neutral pH
[42-44], such that the microenvironment in the catalyst layer of the air cathode tends
to be very alkaline, in comparison to the neutral condition in the bulk solution. For
instance, Yuan et al. [45] demonstrated that the pH near the air cathode surface could
reach up to 11.6 = 0.3 in the presence of a biofilm with a 100 Q external resistance.

As the catalyst loading of air cathode varies greatly in the literature, it is
difficult to directly compare the MFC performance with literature results. To give a
reasonable comparison, we normalize the power density by the catalyst mass loading.
The obtained mass specific power (MSP) was listed in Table S4. It can be seen that
Co/N-CNT showed a high MSP of 63 W g, one of the highest among leading results
in the literature. The high MSP means that the cathode can use a low loading of
catalyst to maintain a high-power output in MFC operation, and hence a reduced cost
of the device.

4. Conclusion

In this study, nitrogen-doped carbon nanotubes decorated with cobalt oxides
nanoparticles (Co/N-CNT) were synthesized by a facile pyrolysis procedure. The
prepared nanocomposites showed apparent electrocatalytic activity towards ORR, with
a half-wave potential of +0.82 and onset potential of +0.91 V vs. RHE, respectively,

highly comparable to that of Pt/C. This can be attributed to the high content of active
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Co-N sites, which facilitated ORR kinetics. The Co/N-CNT composite also showed
enhanced stability and tolerance against poisoning species, as compared to Pt/C. Using
Co/N-CNT as the air cathode catalyst, the corresponding MFC achieved a maximum
power density of 1260 mW m™, which was 16.7% higher than that with a Pt/C
cathode. These results show that the Co/N-CNT might serve as a high-efficiency ORR
catalyst for MFC cathode.
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