A SUMMATION FORMULA FOR TRIPLES OF QUADRATIC SPACES
JAYCE R. GETZ AND BAIYING LIU

ABSTRACT. Let Vi, Vs, V3 be a triple of even dimensional vector spaces over a number field

F' equipped with nondegenerate quadratic forms Q;, Qo, O3, respectively. Let
yc[[v
i=1

be the closed subscheme consisting of (vq,vs,v3) on which Q1(v1) = Qa(ve) = Qsz(vs).
Motivated by conjectures of Braverman and Kazhdan and related work of Lafforgue, Ngo,
and Sakellaridis we prove an analogue of the Poisson summation formula for certain functions
on this space.
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1. INTRODUCTION

Godement and Jacquet [GJ72], generalizing Tate’s thesis, proved the functional equation
and analytic continuation of the standard L-function of an automorphic representation of
GL,, as a consequence of the Poisson summation formula on gl,. This formula states that
for F' a number field with ring of adeles Ag, ¢ : F\Ar — C* a nontrivial additive character,
feS(gl,(Ar)) and g € GL,(Ap) one has

(1.0.1) Yo flrg) = D ldetg| " flg M),
Y€l (F) v€gl, (F)

-~

where f(X) := fg[ (Ap) Ff(Y)Y(tr XY')dY is the Fourier transform of f.
Braverman and Kazhdan [BK00] have suggested that this is but the first case of a general
phenomenon. Let G be a connected split reductive group over F. For each representation

r:tG° — GL,

of the neutral component of the L-group “G of G satisfying certain assumptions, they conjec-
tured the existence of a corresponding Fourier transform and a Poisson summation formula.
The summation formula should imply the functional equation and meromorphic continuation
of the Langlands L-function L(s,m,r) attached to r and a cuspidal automorphic represen-
tation m of G(Ap). There has been a great deal of interest in the conjectures of Braverman
and Kazhdan and related approaches recently, and we mention in particular the work in
[BNS16, CN18, Get18a, Get18b, Lafl4, Lil7, Lil8b, Lil8a, Sak18, Sak12, Shal8a, Shal8b].
Ngo has emphasized the relationship between the approach of Braverman and Kazhdan and
Langlands’ beyond endoscopy proposal [Lan04], as well as the relationship between Braver-
man and Kazhdan’s work and Vinberg’s theory of reductive monoids [Vin95]. The basic
observation here linking Godement and Jacquet’s theory and the theory of monoids is that
gl,, is a monoid with unit group GL,,.

However, to establish the functional equation and meromorphic continuation of L-functions,
the monoidal structure, though convenient, is not strictly necessary. If one is studying L-
functions of cuspidal automorphic representations of G(Af), the bare minimum one needs
is a G-scheme with a Zariski-open orbit and a summation formula like (1.0.1) for the G-
scheme. This is what is really used in [GJ72, §12], and there are other examples in which
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the G-variety in question is spherical (but not necessarily a reductive monoid) that are in-
vestigated in [Sak12]. We note that Garrett’s integral representation of the triple product
L-function, which plays a key role in this paper, is discussed in §4.5 of loc. cit.

In the present paper we focus on proving summation formulae for schemes admitting natu-
ral actions of reductive groups with Zariski open orbits, generalizing the standard representa-
tion of GL,, in the Godement-Jacquet case. As pointed out to the authors by Y. Sakellaridis,
these summation formulae are the first of their kind, in the sense that this is the first case
where such a summation formula has been proven when the underlying scheme is not a flag
manifold (the case of flag manifolds is treated in [BK02]).

Let dy, ds, ds be three positive even integers, let V; = G%, V := @2_,V;. Then V(F) is an
F-vector space. For each i let Q; be a nondegenerate quadratic form on V;(F). Let Y C V
be the subscheme whose points in an F-algebra R are given by

Y(R) :={(y1,y2,y3) € V(R) : Qi(y1) = Qa2(y2) = Qs(y3)} -

Let J; be the matrix of Q; (see (2.0.2)) and let

3
(1.0.2)  H(R):= {(91,92,93) € HGLdi(R) 2 9iJ; H('gi)J; = M, for some \ € RX} :
i=1
This is a subgroup of the product of the orthogonal similitude groups attached to the Q. It
comes equipped with a character

(1.0.3) A H— Gy,

whose value on (g1, g2, g3) is the similitude norm of g; (which is equal to the similitude norms
of go and g3 by definition). It is easy to see that the natural action of H on V preserves
Y. Using Witt’s theorem it is also easy to see that the action of H on Y has a Zariski-open
orbit Y2 namely the orbit of all vectors (vy, v, v3) such that Q;(v;) # 0. We let Y C Y
be the smooth locus, it is precisely the subscheme of triples (y1, 2, y3) such that no two y;
are zero; thus we have a triple of schemes

ymicysmcy,

all preserved by the action of H.

Our goal in this paper is to formulate and prove a Poisson summation formula for Y (F).
Let Spg be the symplectic group (on a 6-dimensional vector space) and let K < Spg(Ap)
be a maximal compact subgroup such that K is Spg(A%)-conjugate to Sp6(@p). Let
¥ 1 F\Ap — C* be a nontrivial character. Let P < Spy be the standard Siegel parabolic
subgroup (see (2.1.3)) and let X := [P, P]\Sps. Using an idea of Braverman and Kazhdan,
we defined a Schwartz space in [GL17]:

Spr(X(Afp), K).
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It is a subspace of the space of smooth functions on X (A ) that are K-finite. We also defined

a Fourier transform
F = —FBK,w : SBK(X(AF>, K) — SBK(X<AF>, K)

(see §4.1).

Let G := SL3. There is a natural embedding SL3 — Sps; and we sometimes identify G
with its image (see (2.1.2)). The quotient X (F)/G(F) is a finite set. The unique Zariski
open orbit admits a representative 7y such that the stabilizer in G of vy is the unipotent
group whose points in an F'-algebra R are given by

(1.0.4) No(R) : = {((“f),(“f),(“f)) :tieR,Ztizo}

(see §2.2). Let S(V(Ap)) be the usual Schwartz space. For
(f1. f2) € Spr(X(AF), K) x S(V(Ap)) and y e Y™ (Ap),
define

(1.0.5) (1, fa)(y) = / £1(109)p(9) fol)dg

No(Ap)\G(AF)
Here p := py is the Weil representation (see §3.1). The appearance of the Weil representation
is the reason we have assumed that the dimensions of the V; are even; if some of them were
odd then we would have to work with a product of symplectic and metaplectic groups instead

of G.

Our summation formula is as follows:

Theorem 1.1. For (f1, f2) € Spr(X(Ar), K) x S(V(AFr)) such that fi and F(f1) satisfy
(5.0.4) and fy satisfies (5.0.5), one has

Z I(f1, f2)(v) = Z I(F(f1), f2)(7) -

NEYS™(F) NEYSm(F)

We also have the following corollary, proved below in Corollary 5.4:
Corollary 1.2. Let h € H(Ap). For

(f1, f2) € Spr(X(Ap), K) x S(V(Ar))
such that f1, F(f1) satisfy (5.0.3), (5.0.4) and fy satisfies (5.0.5), one has

ST OIfu )7 = ST INR)ESEE2IFE(S), f)(Ah)RTLE).

geysm(F) geYsm(F)

We now outline the proof of Theorem 1.1. In [GL17] following an argument of Braverman

and Kazhdan we proved a summation formula of the form

(1.0.6) Z fi(vg) = Z F(f1)(vg) + boundary terms,

YEX(F) YEX(F)
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where f; € Spr(X(Ap), K). Given fy € S(V(Ap)) one can form a product of three theta

functions

Op9) == > pl9)f2(),

YEV(F)

in the usual manner (see §3.2). We view Oy, as an automorphic form on G(Ar) = SL3(Ap).
One takes this automorphic form, integrates it against the identity (1.0.6), and then unfolds.
The resulting sum is indexed by the finite set X (F)/G(F). The summand corresponding
to the Zariski-open orbit involves an integral over Ny(F)\No(Af), where Ny is defined as
in (1.0.4). This integral eliminates the contribution of all v € V(F) that are not in Y (F').
Using this one obtains Theorem 1.1. Since (1.0.6) is essentially equivalent to the functional
equations of certain degenerate Siegel Eisenstein series, another way of viewing this proof
is that we are substituting Oy, into Garrett’s integral representation of the triple product
L-function [Gar87, PSR87]. We note that we do not need the full strength of the summation
formula proven in [GL17]. The version we use is given in Corollary 5.2. It is slightly more
general than that of [BK02]. However, we still must make use of the growth estimates on
elements of the Schwartz space obtained in [GL17]. These bounds are not proven in [BK02].

This procedure for producing new summation formulae from old is novel and deserves
to be studied carefully with a view to generalizations. The formal argument is short (see
§5). However, it takes substantial space to make it rigorous by proving various bounds and
computing various integrals for unramified data.

We close the introduction by outlining the sections of the paper. In §2 we introduce the
groups and homogeneous spaces relevant for the unfolding procedure mentioned above. We
also record representatives for X (F')/G(F') and the stabilizers of these elements. In §2.3 we
use the Pliicker embedding of X to give a notion of the size for an element of X (F,) for
places v of F. In §3.1 we recall and set notation for the Weil representation.

We define local integrals attached to the open orbit in X (F')/G(F) in §4. The full version
of Theorem 1.1 is stated as Theorem 5.3. In §5 we prove this theorem modulo proving the
absolute convergence of several sums. The remainder of the paper (with the exception of
§10) is devoted to proving these absolute convergence statements. In each case, the absolute
convergence statements amount to bounding local integrals and then bounding their sum
over F-points of certain schemes. The local integrals are computed in the unramified case
in §6. In §7 we bound the non-Archimedean local integrals when the data are ramified. The
Archimedean case is treated in §8. In each case the arguments are straightforward. The
key point is to use the bounds on functions in Spx (X (Ar), K) established by the authors
in [GL17]; these bounds are given in terms of the Pliicker embedding of X (F'). In §9 we use
the bounds established in §6, §7 and §8 to prove the absolute convergence statements used
in §5. In §10 we prove a vanishing result necessary for the proof of our main theorem.
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2. GROUPS AND ORBITS

For this section we let F' be a field of characteristic zero. For each i, let

() VilF) x Vi(F) — F

(z,y) — "y
be the “standard” inner product and let
(,)i:Vi(F)xVi(F) — F
be the (nondegenerate) inner product corresponding to Q;:
(2.0.1) Q;(x) = 3(z,x); .
Let J; € GL4, (F) be the matrix of (, );:
(2.0.2) (x,y); :=="adyy.

Recall that for
(2.0.3) v=][v

and R an F-algebra we have defined

(2.0.4) Y(R):={(y1,92,y3) € V(R) : Qi(11) = Qa(v2) = Qs(y3)} -
We let
(2.0.5) VeV

be the open subscheme of tuples (vq, v2,v3) such that v; # 0 for at least 2 indices i, and, as
in the introduction, set

(2.0.6) Y=y V.
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2.1. A symplectic similitude group. Equip the module Z%% with the alternating form

(2.1.1) (z,y) — Z (T3Yiy3 — YiTivs) -

i=1

Let Spg denote the symplectic group of this form. Concretely, for Z-algebras R, we have

Spe(R) := {g € GLg(R) 39(13 _I*“’)tg(_l3 13) = 1}.

We usually regard Spy as a group over F' (by base change).
Recall that G = SL3. We often identify G(R) with the subgroup SLy(R?) < Spy(R):

ay b1
az bo

(212) G(R) = a3 dy b3 < GL()(R) . aidi — biCi =1for1 S 1 S 3

c1
c2 d2
c3 ds

Let P be the (Siegel) parabolic subgroup of Spg whose points in an F-algebra R are given
by

(2.1.3) P(R) = {(A tA_1> (If” [Z> : Ae GLy(R), 'Z= Z},

and let [P, P] denote its commutator subgroup:

[P, P|(R) := {(A tA_1> <]3 IZ> . A € SLs(R), tZ:Z}.

We let M < P be the Levi subgroup consisting of block diagonal matrices and let N be the
unipotent radical of P.

2.2. Braverman and Kazhdan’s spaces. Let
(2.2.1) X := [P, P]\Spg -

We note that X is an M x Spg variety (with M?® := [M, M]\M acting on the left and Spy
on the right). Note that this is different from the convention in [BK02]. In loc. cit. M?*" acts
on the right. We have chosen to let it act on the left because this is the convention in the
theory of Eisenstein series. By [GL17, Lemma 2.1] the natural maps

[P, PY(F)\Spg(F) — X(F) and  P(F)\Sps(F') = P\Sps(F)

are bijective.
We now compute a set of representatives for

X(F)/G(F)

and the corresponding stabilizers. We start by recalling that P\Sps(F') can be viewed as
the space of maximal isotropic subspaces of F'® equipped with the alternating form (2.1.1).
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Each such space is 3 dimensional, so we can represent such a space by a triple of vectors in
FO. Let

(2.2.2) w = {((0,0,0,1,0,0),(0,0,0,0,1,0), (0,0,0,0,0,1)) .
Then P is the stabilizer of W.

We consider the following maximal isotropic subspaces:

Wo.00: ((1,1,1,0 0 O),(O, 0,0,—1,1,0),(0 0,0, 1,0,1)),
WI,O,O <(0 O 07170 O),(O, 0707071a1)7( 9 7 170a070)>a
Woip: <(0000,1,0),(0,0,0,1,0,1),(, , 1,0,0,0)>,
Woon : <(OOOOO 1),(0,0,0,1,1,0),(1, —1 OOOO)>,
Wi =W: <(0 0,0,1,0, O),(O, 0,0,0,1,0),(0 0,0,0,0, 1)>
Let
000-100
010 0 00
70,0,0 - = (1](1)% 8 88)7
000-110
000-101
100000 01 0000 001000
010000 100000 100000
(71,0,0’70,1,0770,0,1)3: (88 8 98(1) ) 88 8 8(1)(1) 8 8 886(1]
000 011 000 101 000110
01-1000 10-1000 1-10000
All four matrices are in Spg(Z) and W, = Wr,. We denote by I, 4,4, the stabilizer in G of

Wa170«27a3'
For F-algebras R, let

= {((“41) (“y1) (" y1)) @€ R},
2.2.3 3
229 No(R):={((”f%(”f)a(”f)):ti€R7Zti=0}.

These are subgroups of GG, and T normalizes V.

Lemma 2.1. The set P\Sps(F')/G(F') has 5 elements. Representatives for these elements
are given by the spaces Wy, a,.45- The stabilizers of these spaces are given as follows:

(1) Ipo0 = ToNo.

@) hool®) = {((*,5).0.(" 1) g(* 1)) 19 € SLu(R),a € R* 1€ R},
(3) Lono(®) = {(9.(* ,2). (" )g(1 1)) 1 g €SLa(R),a € R*,t € R},
(1) Tooa(R) = { (9 (" )9 (" -1). ("4 ) - g €SLa(R),a € R*,1 € R},
(5)

5) I1n1 = GNP, the upper triangular matrices in G.

Proof. By [PSR87, Lemma 1.1], if P denotes the parabolic subgroup of GSpg containing P
then the given spaces Wy, 4,4, are representatives for P\GSpg(F)/G(F'), where G(F) is the
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group of (g1, g2, g3) € GL3(F) such that det g; = det go = det g3. In the notation of loc. cit.,
Wi as.as € Xay,as,a5- On the other hand one checks that the natural map

P\Sp4(F)/G(F) — P\GSpy(F)/G(F)

is a bijection, so the first two assertions of the lemma follow.

The assertion on the stabilizers is implicit in the corollary of [PSR87, Lemma 1.1]. Since
we have given explicit lifts 7, of W, under the map Sps(F) — X (F) it is easy to verify that
it is correct. UJ

Lemma 2.2. The natural map
[P, PI(E)\Sps(F)/G(F) — P\Spg(F)/G(F)
18 bijective.
In the remainder of the paper it is sometimes convenient to adopt the following notation:

(2-2-4) Y0 = 70,00, V1= 71,00, 72 :=70,,, 73 =70,0,1"-

Proof. We clearly have
[P, PI(F)G(F) = P(F)G(F).

Moreover, for any x € F'*,

o <:c13 x*113> 70—1 _ Y - 7
and det <z_1 z x) = z. Thus x
PIEMGE) = U IP.PIF) el o
zeF'X 21
= U P.AE) (" 1 ) GP)
zeFx

= [P, PI(F)G(F) .

One checks similarly that P(F)y;G(F) = [P, P](F)y;G(F), for 1 < j < 3; the relevant
matrix computations are below:

x — x — x — z—1
ol ( s fqg) =1 ( s fl,?)) = ( s x%) = -

For v € X(F), let G, < G be the stabilizer of 7. A simple matrix computation implies
the following lemma:
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Lemma 2.3. One has
(2.2.5)
G’YO(R) = N0<R)7

GL(R): = {((bfl Zi) : (bzl Z;) : (bs té)) D t1,ta,t3 € R, by, b, by € R, bibobs = 1},
Gu(R) = {(("1).0.(" )9 (")) it e RigeSLa(R) },
Ga(R): = {(9.' D). (* )9 (P 1) ) it € Rog e SLa(R) ],
Gou(R) 1= { (9. L9 ("), (1)) it € Rog e SLa(R) |

O

2.3. A Pliicker embedding of X. Let P the Siegel parabolic subgroup from above. We
can use the Pliicker embedding to give a linear description of X. We construct a commutative

diagram

[P, P)\Sps —— A*GE — {0}

(2.3.1) l l
P\Sps —— P(A’Gy)

of morphisms of F-schemes as follows. The Lagrangian subspace fixed by P is W. For a
ring R and g = (4) € Spg(R) for 3 x 6 matrices A, B we define

where b; is the ith row of B. The bottom arrow just sends a point in P\Spg to the line
spanned by this vector.

Let Spg(F) act on F°® on the right. One obtains an induced action on A3FS. For the
remainder of this section assume that F' is a local field. When F is Archimedean let K <
Spg(F) be a maximal compact subgroup, choose a positive definite bilinear form (-, -) on A3 F°

[F:R)/2.

that is invariant under the action of K and set |z| = (z, ) In the non-Archimedean

case let ey, ..., e be the standard basis of F® and let
{€ar,am.05 = €a1 N €ay Negy 1 1 <y < g < ag <6}

be the natural induced basis of A3F6. Then set

E Tay,o,a3Ca1,a0,a3| = max Tay,az,a3] -
1,02,03 1,02,03 1§a1<a2<a3§6| 1,002, 3|
1<ai<az<asz<6

This norm is invariant under the natural action of GL(A30%) on the left or right by an
easy argument (see [GL17, §2]). Here and below O denotes the ring of integers of a local
non-Archimedean or global field F'. We then set

(2.3.3) lg] := [P(g)] -
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For any c € Z, let
(2.3.4) c(x) == L.

In this way we obtain an isomorphism Z = X, (M/M9"); we often use this isomorphism
to identify integers with cocharacters of M /M. We have chosen our basis so that for
non-Archimedean F' with uniformizer w one has |c(@w)| — 0 as ¢ — oo. The Iwasawa
decomposition implies that
(2.3.5) X(F) = [][P. PI(F)e(w)Sps(O)

cEZ
in the non-Archimedean case, and
(2.3.6) X(F)= |J [P.PI(F)LH)K

teR~o
in the Archimedean case.
By [GL17, Proposition 2.3], there is a continuous injection
X(F)/K — Rag

(2.3.7)
[P, P](F)gK — |g],

where K = Spg(O) in the non-Archimedean case.

3. THE WEIL REPRESENTATION AND THETA FUNCTIONS

3.1. The local definition of the Weil representation. In the introduction we started
with a triple of quadratic spaces of even dimension over a number field F'. For this subsection
we fix a place v of F' which we omit from notation, writing F' := F},, etc.

Let Og, be the orthogonal group of Q;. Weil (following Segal and Shale) defined the Weil

representation
(3.1.1) p = py : SLa(F) x Og,(F) x S(Vi(F)) — S(Vi(F)) .
Let v(Q;) be the Weil number as in [Wei64, Théoreme 2 and §24]. Then the representation
is given on the Og,(F') factor by f +— (v f(h~'v)) and on the SLy(F) factor by

(1) 0 (1Y) F0) = 1(Q) iy FEVEC0 TN

(2) p(11) fv) = (Qi(v)) f(v) for t € F.

(3) (" 41) F(0) = (a (=1)¥ det(J)|al ™ ¥/ f(av) for a € F*.
Here dt is assumed to be the self-dual measure with respect to the pairing (v,t) — ¥ (‘v J;t).
A convenient reference is [YZZ13, Chapter 2|. The Hilbert symbol (a, b) appearing in the def-

inition above takes values in 1 and is bimultiplicative. Thus for each i there are characters
Xo, : F* — =£1 such that

xo.(a) = (a, (~1)% det(J;)).
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We write
3

(3.1.2) xo(a) =[] xe. (@)
i—1

for a € (F*)3. Applying the Bruhat decomposition on SLy(F') we see that the information
above is enough to uniquely define the representation.
Let GOy, denote the similitude group of the form Q;. Consider the semidirect product

SLy x GOg,

where

(gxh)(g'xh):=g (1 /\(h)) g (1 A(h)*l) X hh'.
For h € GOg,(F) and f € S(V;(F)) let
(3.1.3) L(h)f(v) := f(h~'0).
The following is [HK92, Lemma 5.1.2]:
Lemma 3.1. The map

SLa(F) x GOg,(F) x S(Vi(F)) — S(Vi(F))

(g h, f) — p(g)(L(R)f)

defines an action of SLa(F) x GOg,(F) on S(V;(F)). O

Strictly speaking, the definition of L(h) in loc. cit. is slightly different in that they renor-
malized L(h) by a power of the similitude character, but this does not affect the validity of
the lemma. We note in particular that the actions of GOg,(F') and SLy(F') on S(V;(F')) do
not commute.

In fact, it is easy to prove Lemma 3.1 directly from the definition of the Weil representation

given the following fact:

Lemma 3.2. Let W be an even-dimensional vector space over ' and let () be a nondegener-
ate quadratic form on W. Let ® € GLy(F) be the matriz of Q, let xg(a) = (a, (—1)¥% det ®)
and let GOg be the similitude group of Q) with similitude character A : GOg — G,,,. Then

Xo(Ag)) =1
for all g € GOg(F).
The proof of this lemma is omitted in [HK92] so we give it for the convenience of the reader.

Proof. By a lemma of Diedonné A(g) is a norm from the center of the even Clifford algebra
of @ [KMRT98, Lemma 13.22]. This center is the quadratic étale F-algebra

FIX]/(X?% = (=1)44=D2 det @) = F[X]/(X? — (=1)%? det @)

[KMRT98, Theorem 8.2] and the character attached to this quadratic étale F-algebra by
local class field theory is precisely (a, (—1)%2det ®). O
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3.2. Theta functions. In this subsection we work globally over the number field F'. The
global tensor product of the local representations of §3.1 is a representation of SLy(Ag) on
S(Vi(Ar)) and we therefore obtain a representation

For f € S(V(AF)) and g € G(Af), we let
(3.2.2) Or(g) = Y_ plg)f(7).

yeV(F)
It is obvious that the sum here is absolutely convergent. This is the usual © function,
although we are only considering its behavior in the symplectic variable (note that SLy =
Spy). We always take the argument of the function in the orthogonal variable to be the
identity in the appropriate product of orthogonal groups. Thus we have suppressed this

variable from notation.

4. ANOTHER SPACE OF FUNCTIONS

Let v be a place of the number field F' and let F' := F,. In this section we start by
recalling the Schwartz spaces of Braverman and Kazhdan [BK02], specialized to our setting,
and then apply it to construct a new space of functions that combines the space of functions
in loc. cit. with S(V(F)). We should point out that the papers [Shal8a, Shal8b] provide
valuable additional information about Braverman and Kazhdan’s Schwartz spaces.

4.1. Schwartz spaces. Let K < Spg(F) be a maximal compact subgroup that is conju-
gate to Spg(O) if F is non-Archimedean. In [GL17] the authors defined a Schwartz space
Spr (X (F), K) of functions on X (F) roughly following the approach of Braverman and Kazh-
dan. Functions in Spx (X (F), K) are smooth and K-finite under the natural right action of
K on X(F'). We recall the growth properties of these functions in this section.

Recall that the norm of x € X (F) is defined in (2.3.3). The following is [GL17, Lemmas
5.1 and 5.7]:

Lemma 4.1. Let g € Spg(F) and ® € Spr(X(F),K). If F is non-Archimedean one has

1D(g)]ss <o |g| 72

The support of ® is contained in

U [P, P(F)e(=)Sps(0).

c>—N

for sufficiently large N (depending on ®). If F' is Archimedean for any N € Zy one has

1D(g)| <o g2V
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For F non-Archimedean define

(4.1.1) b(g) = Z Z q2j]l[p,p](F)(kJrzj)(w)spG(o) (9) € Spr(X(F),Sps(0)),

=0 k=0

where ¢ is the cardinality of the residue field. The following is [GL17, Lemma 5.3]:

Lemma 4.2. Assume that F' is non-Archimedean. Let ¢ > 0. For q sufficiently large in a

sense depending on € one has

b(g)] < 9|72
0

Let v : F — C* be a nontrivial character. In loc. cit. we also defined a Fourier transform
(412) F = ]:BK,U’ SBK<X(F),K> —>SBK(X(F),K>

Assume F' is non-Archimedean and ¢ is unramified. Then the function b of (4.1.1) enjoys
the following three properties:
(1) b(zk) = b(z) for all (x,k) € X(F) x Spg(O),
(2) F(b) =b (see [GL17, Lemma 5.4]),
(3) The support of b is integral in the sense that it is mapped to elements of A"O?" under
the Pliicker embedding P1 of (2.3.1).

Because of this we refer to b as the basic function in S(X(F'), Sps(0O)). Using “the” is an
abuse of language because the conditions above do not specify b uniquely. For example any
scalar multiple of b would also satisfy these conditions. However it is a convenient abuse of
language that we will continue to use.

4.2. Local functions. For (fi, f2) € Spx(X(F), K) x S(V(F)) let

(4.2.1) I(f1, f2) (v) z/ fi(09) p(9) fo(v)dg, v e Y™ (F).

No(F)\G(F)
This is the local factor of the integral one obtains after unfolding the integral of our theta
function Oy, against > v(x f1(79) as explained informally after (1.0.6). The full argument
is given in the proof of Theorem 5.3 below. It is interesting to note that the integral is not
well-defined if one tries to evaluate it at a general v € V/(F') because the function p(g) fa(v)
is only left invariant under Ny(F') for v € Y(F'). However, the integral

(4.2.2) / 1 (09) p(9) fo(v)ldg, v e V(F).
No(F)\G(F)

is well-defined because |p(g) fo(v)]| is left invariant under Ny(F').
In §6 we will compute (4.2.1) in the unramified case, and in §7 and §8 we will bound it by
bounding (4.2.2) in the non-Archimedean and Archimedean cases, respectively.
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4.3. A transform. Consider the transform

I(f1, f2) — I(F(f1) f2) -

It can profitably be viewed as a sort of Fourier transform.

Remark. If F is non-Archimedean, 1 is unramified, the matrices J; defining the Q; are in
GLg, (0), and p(k)1v (o) = Ly (o) for all k € SL3(O) then I(b, 1y (o)) can be thought of as a
basic function:

(1) I(b, Ly (o)) (k™ v) = I(b, Ly (o) (v) for (k,v) € H(O) x Y (O) (see Proposition 6.3),
(2) The function I(b, 1y (p)) is invariant under the transform I(f1, fo) = I(F(f1), f2),
(3) The support of I(b, 1y () is contained in V(O) NY (O) (see Proposition 6.3).

Here we have given V = H?=1 G% the evident structure of a scheme over O, given Y the
structure of a scheme over O by taking the schematic closure of Yz in V, and given H the

evident structure of a group scheme over O using the assumption that the J; are in GL4, (O).

We now compute the behavior of the transform under the group H in (1.0.2). For h €
H(F) let

(4.3.1) A = (" n )

where A is the similitude norm in (1.0.3). For F-algebras R let
w:M(R) — R”

(4.3.2) |

( tg-1 ) — det A .

For x : ¥ — C* a character and s € C let x, := x|-|°. For f € S(X(F), K) and g € Spg(F)
let

(133) fule) = [ 0o, (olom) ) i

This converges for Re(s) sufficiently large and admits a meromorphic continuation to the s
plane for each fixed g, see [GL17, §4].
For functions f on V(F) let L(h)f(v) := f(h™1v).

Lemma 4.3. Let (f1, f>) € Spr(X(F), K) x S(V(F)) and h € H(F). Let
Fi(g) = f1 (oA (h) 75 L gA(R)) .
Then fi € Spr (X (F), A(R)KA(h)™") and the following equalities hold:
LWI(fr, f2) = X I(fi, L(B) o),
h

HFR), L) f) = RS2 (W) HF) fa).
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Proof. Using Lemma 3.1 we have

LIS, f2) (v) — / f1 (109) L(R)plg) fa(v)dg

No(F)\G(F)

= /N e £ (09) o (M amy) 9 (M am-1)) L(R) f2(v)dg
=AW / fi (oA (R) " gA(R)) p (9) L(h) fo(v)dg
No(F)\G(F)

To show f, € Spx (X(F), A(h)KA(h)™") it suffices to check that for each character y : F* —
C* the section fi,, is excellent in the sense of [GL17, §3]. Since yoA(h) 7' normalizes
M(F) and f,, is an excellent section by definition of Spx (X (F), K), this is obvious.

To complete the proof of the lemma we must compute F (fl) Let

Using the notation of [GL17, §3] we compute
(4.3.4)

My fix,(9) = / / 5;/2(m)xs(w(m))f1 (VoA (h) g 'm ™ wy 'ngA(h)) dmdn .
N(F) J M2 (F)
Here we take Re(s) large to ensure convergence. One has

[0, Mo () g = (M, M](Fym oA () 5 '
= [M, M](F)m ™ wg  (woyoA(h) g twg n.

We have

A(R) 1
—-1_-1, -1 A(h)71
woYoA(h) " g wy - = b

1
A(h)~1

Thus taking a change of variables n — (woyoA(h) ™ vy 'wy t) ™ n(woyoA(R) ™ tyy wy ), we see
that (4.3.4) is

(435) AR M, fi, (woroh(h) ™95 w5 )gA(h)) -
Now
(4.3.6)

M) ()~ -t

-1
A(h)! AR _ A(h)!
A(h) 1 1 AR)~1
1 1 1

AR) A(h)~t 1
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Thus by [GL17, Theorem 4.4]

A(R) ! N
@37 DPFR) W eAty | = F ).
Hence
L(F(f1). L(h) )
1)\(h)—1
_ 2 A()~1 v
pwp [ F) s | 09A®) | 0(0) L) faw)dg

—

= AP /N e T (0 (07, ) 980 (9) L fa(0)dg

- / FUR) (09) 0 (D ) g (Fags ) LR falv)dg
No(F)\G(F)

By Lemma 3.1 this is equal to

[ 0 ) 20 () 5) e

= NS Q) [ F () (09) LK) e (9) ey
No(F)\G(F)
By Lemma 3.2 xo(A(h)) = 1 and this completes the proof. O

5. THE SUMMATION FORMULA

Our goal in this section is to state the main theorem of this paper, Theorem 5.3, and prove
it modulo some convergence statements and a vanishing statement that will be established
in the remainder of the paper. Theorem 5.3 was stated in the introduction as Theorem 1.1.
Before we do this we restate the Poisson summation formula obtained in [GL17] using the
argument of Braverman and Kazhdan.

In this section F'is a number field. Let K := [[, K, < Sps(Ar) be a maximal compact

~

subgroup such that K is Spg(A%¥)-conjugate to Spg(O). We let
Spr(X(AF), K)

be the restricted tensor product of the local spaces Spx (X (F),), K,,) with respect to the basic
functions b, for v { oo (see (4.1.1)).

For algebraic groups @ over F'let [Q] := Q(F)\Q(AF). For f € Spr(X(Ar), K), a Hecke
character x : [G,,] — C* and s € C, let x5 := x| - |* where | - | is the idelic norm, and let

(5.0.) Fulo) = [ onlm) e om) Son g i,
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for all g € Spg(Ar). We then form the Eisenstein series

(5.0.2) E(g: fy.) = >, fu(9)

YEP(F)\Sps(F)
By Langlands’ general theory this Eisenstein series admits a meromorphic continuation to
the plane. The possible poles of E(g; f,.) were computed in [Tke92]. The poles, if they exist,
are simple. The Eisenstein series is holomorphic if x? # 1. If y = 1 there are possible poles
at s = £1,s = &2, and if y # 1 but x? = 1 there are possible poles at s = £1.
Let kp := Ress—1(p(s). The following is [GL17, Theorem 6.7]:

Theorem 5.1. Let f € SBK(X(AF) K). For every g € Sps(Ar) one has

S f) +—2Ressz GFP)+— Y ResaE@F(y)

YEX(F) Xe[@}
x#1,x%=1
Z F(f)g) +—ZRess iE(g; f1,) Z Res,—1E(g; fy.) -
vEX(F XE[G ]
x#1x%=1
All of the sums here are absolutely convergent. U

In view of the theorem the following assumption on a function f € Spr(X(Ap), K) is

natural:

One has Res;—1E(g; fy,) = 0 when x is a quadratic or trivial
(5.0.3) _
character in [G,,| and Res;_2E(g; f1,) =0

We note that it is easy to find functions f satisfying the assumption (5.0.3), see Theorem
10.1 below.

Corollary 5.2. Let f € Spr(X(Ap), K). Assume that f and F(f) satisfy (5.0.3). Then

for all g € Spg(Ar)
Z flog) = > F(f

YEX(F YEX (F)
U
Let v be a place of F'. We will require the following assumption on f € Spx(X(Ar), K):
(5.0.4) There is a place v of F such that f = f,f" and f, € C2°(1G(F,)).
We will also require the following assumption on f € S(V(Ar)):
(5.0.5) One has p(g)f(€) =0 for all g € SL3(Ag), & ¢ V'(F).

Here V" is defined as in (2.0.5). Using the fact that the Fourier transform F is an isomorphism
[GL17, Lemma 4.6] and that K,-finite compactly supported functions on X (F') are contained
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in Spr (X (F,), K,) [GL17, Proposition 4.7], it is easy to find functions f € Spx(X(Ar), K)
such that both f and F(f) satisfy (5.0.4). In practice one can ensure (5.0.5) is valid as
follows. Let

(5.0.6) W < SL3(Z)

be group of order 8 generated by the three matrices that are (_; ') in the ith factor and
the identity in the other factors. Then by the explicit description of the action of the Weil
representation we see that (5.0.5) is implied by the following condition:

(5.0.7)
There is a place v of F' such that f = f,f" and sup(p(w)f,) C V'(F,) for all w € W.

The main theorem of this paper is the following:

Theorem 5.3. For
(f1, f2) € Spr(X(AF), K) x S(V(Ar))
such that fi, F(f1) satisfy (5.0.4) and fo satisfies (5.0.5), one has
o IR =D I(F(h) L)E).

geYsm(F) geys(F)

Here for § € Y™™(F),

(5.0.8) I(f1, f2) (€) :/N(A e )fl (709) p (9) f2(€) dg

We will prove the theorem in this section assuming the absolute convergence statement
given in Proposition 9.2 and Theorem 10.1. We will indicate precisely when they are in-
voked. After this section, the majority of the remainder of the paper is devoted to proving
Proposition 9.2.

One has
/ S A(19)05(9)dg
G(FP)\G(AF) NEX(F)
= > / f1(79)© 1. (9)dg
~eX(F)/G(F) Y Cr(FNG(AF)
(5.0.9) = Z/ f1(%g)/ ©1,(919)dg1dg ,
e G (Ar\G(AR) (G

where the sum is over a set of representatives for X (F')/G(F'). By assumption (5.0.4) only
the contribution of 7, = 7o is nonzero. The stabilizer G, is Ny (see Lemma 2.3 and (1.0.4)).
Using part (2) in the definition of the Weil representation one has

/N png) H(E)dn = >~ plg)f2(8) .

leev(r) ceysm(F)
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Here we have used assumption (5.0.5). It is permissible to switch the sum and integral here
because f5 is Schwartz.
Thus

/ f1(09) / O+,(919)dg1dg
G (ARG (AF)

= / 1(709 / p(ng) f2(§)dndg
No(Ap)\G(Ar) (Nol ecv ()

:/ f1(709) Z p(9) f2(§)dyg
No(Ap)\G(AF) geYsm(F)

= Z I(f1, f2)(&) -

§EYsm(F)

These formal manipulations are justified by Proposition 9.2 and the Fubini-Tonelli Theorem.
We have shown that

/G(F)\G(AF) > h(9)On(gdg = > I(fi, f)(E).

YEX(F) Eeysm(F)

Since f; and F(f;) satisfy (5.0.4) we deduce from Theorem 10.1 that they both satisfy
(5.0.3). Thus by Corollary 5.2 the integral here is

+ Oy, (g)dg.
/G(F)\G(AF)WEE(:F) (/1)(79)8 1, (9)dg

Replacing f; by F(f1) in the argument above we see that this is

> I(F(hH), L))

geysm(F)

Thus assuming the absolute convergence statement in Proposition 9.2 and Theorem 10.1 we

have proven Theorem 5.3. 0

Corollary 5.4. Let h € H(Ap). For

(f1, f2) € Spr(X(AF), K) x S(V(AF))
such that fi, F(f1) satisfy (5.0.4) and fo satisfies (5.0.5), one has

ST Ifu )T = ST IR ESEERIFE(S), f)Ah)RTE).

geysm(F) gey=m(F)

Proof. In view of Theorem 5.3 and Lemma 4.3 it suffices to check that if f; and F(f;) satisfy
(5.0.4) then f; and F(f;) satisfy (5.0.4), where

F1(9) = filyA(R) g gA(R)) .
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(see (4.3.1) for the definition of A(h)). We recall from (4.3.7) that

A(h)~t

INR)PF(fr) A~ gA(h) | = F(f)(g).

A(h)~1
1

Since A(h,) normalizes G(F,) for all v it follows that if f, satisfies (5.0.4) then so does fi.

Since

)\(hv) ’YO = ’YO (}\(h/u)13 13) 5 and (>\(hv)l3 I3> G(F’L))A(hv)_l = G(F'U)

for all v, if F(f,) satisfies (5.0.4) then so does F(f,). O

6. THE UNRAMIFIED CALCULATION

For this section F'is a local field of residual characteristic p with ring of integers O that
is unramified over Q,. We let ¢ : ' — C* be an unramified nontrivial character and we
assume that xo is unramified. To ease notation let

K :=Spg(0).
For c € X, (M/M%") =7 let
(6.0.1) 1. .= lippy(F)e(w)K
(see (2.3.4)).
The following is a consequence of the Iwasawa decomposition:
Lemma 6.1. The functions 1., ¢ € Z, form a basis of C°(X(F)/K) as a C-vector space. [

In view of the injection (2.3.7) we have the following lemma:

Lemma 6.2. One has

Le(g) # 0
if and only if |g| = q—°. O

We recall that the basic function, by definition (4.1.1), is

b:= Z q2j1k+2j .

j,k=0

In this section we compute the function I(b, Ly (o))(v) and then give bounds on it. Tech-
nically speaking the bounds should be proven first to ensure the absolute convergence of the
integrals with which we are working. However we feel that giving the formal computation
first and then proving absolute convergence makes the argument easier to follow.
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Let
(6.0.2) Q(v) := Z Qi(vy) .

We assume that p(k)Ly o) = Ly (o) for all k € SL3(0O). If we begin with global objects this
will be true for the corresponding local objects at almost all places.

Proposition 6.3. Assume that v € Y (F). The integral I(b, 1y (o)) (v) is equal to

y 37 a4
_ 2j 7 X
Z/ <w4m1aga3) tvio) <w2ja> Xo(@™a) H (C]zj> o

where the integral is over the set of a € (O N F*)* such that

max(|a; tazasl, la; taras|, laztaias|) < 1
In particular I1(b, 1y (o)) is supported in V(O).
Proof. Let
(6.0.3) T<G

be the maximal torus of diagonal matrices. We use the Iwasawa decomposition to write

_dngdndadk
I Toprala)

where dng, dn, da and dk are Haar measures on No(F), {(1%) : z € F}, T(F) and K,
respectively. We assume that K and its intersections with the other subgroups here have
measure 1. Then we obtain

(6.04)  I(bLuo) (v)

= / b(109) p(9) Lv(o)(v)dg
No(F)\G(F)

where the integral is over ' x F*3. Now

P(((li) (afl a1> (1) (an a2)7(1§) (agl as))) ﬂv(o)(v)

= Y(tQW)) Ly (o) (a~"0)Xola Hra\ “f2,
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Thus (6.0.4) is equal to
[rn(e0( ) 0(5) ()

X P (tQ(v)) Ty (o) (a™v)Xg(a dtH]a P~ d%a
(6.0.5)

Recall that

Yo = 70,00 =

hence

-1 -1 -1
o <<a;1 a1t> ’ <a;1 a2t) (agl a3t>> _ @ e ag ta; tas tas
ai az )7 as 0 0 0 —ay  ay 0

0 0 0 —a 0 as

(6.0.6) >3 a [ Q) tviofa o)xola) [ la 2" ade,

where the integral is over a,t such that
—k—2j _ ~1 —1 —1
q = max(|taasasl, |ai|, |az|, |as], |a; azas], |ag "aras|, |az "aias|) .

Note that

/ ¥ (tQ(v)) dt = ¢~ ¥ |arazas| o M :
‘t|§qik*2ﬂv‘a1a2a3‘fl a1a2a3

Using this fact we can simplify the ¢ integral in (6.0.6) to see that

o0 B Qv cokt2i
1t ve)0) = 3 0 10 (F2Z ) 1ot ela Hw "

ko j=0 a1a20a3
e e Q(U)wk+2j+1
- qul/lo( 10203 Lv(o)(a”"v)Xgla H|a|1d/2dX

23
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where the first integral is over the set of a € (F'*)3 such that
¢ > max(|ay|, [az|, |as|. |ay azas|, |ay 'aras], |ag ' araz|)
and the second integral is over the set of a € (F*)3 such that

—k—2j—1

q > max(|a1, |as|, |as|, a7 azaz|, |ay ' araz|, [az aras])

If we then take a change of variables (a1, as,as) — @ (a1, as,as) to the first integral
and (ay,as,az) — @2+ (ay, as, a3) in the second integral we obtain the expression in the

statement of the proposition. 0

For the purpose of proving Proposition 9.2 we also require a bound on a related integral:

Lemma 6.4. Assume that v € V'(F). One has
| bu) p (o) byl
No(F)\G(F)
H?Zl(ord(vi) + 130 42 Ly o) (v) if nov; =0,
T T, (ord(v:) + 1)4 o P~ %/2= 42y 0y (v)  if vy = 0.
Here in the lemma ord(v;) is the minimum of the v-adic valuations of the entries of v;.
Proof. Arguing as in the proof of Proposition 6.3 we see that

oo 00 3
(6.0.7) / 10 (v09) p (9) ﬂv<0>(v)|d9=qu%/ﬂwm(a”v)ﬂIaiIQ‘di/Qandt,
No(F)\G(F)

k=0 j=0 i=1
where the integral is over a,t such that
q_k_Zj = max(|taiasas), |a1], |as], |as|, |a1_1a2a3|, |a2_1a1a3|, |a§1a1a2|) )

Note that

/ dt = q_k_Qj]alagagrl
[t|<g=k—27]arazaz|~1

Using this fact we can simplify the ¢ integral in (6.0.7) to see that it is bounded by

3
q—k / lv(o)(a_lv) H |ai‘1—di/2d><a
=1

where the integral is over a € (F*)? such that

(
(

k=0 j=0

¢ ¥ > max(lai], |aal. ], oy asas. oy aras. oz Haran])

We take a change of variables (a1, as, a3z) — @"*% (a1, as, az) to see that this is equal to

(6.08) )W a REN(E ’f*”a)‘lv)f[(q'kﬂj)lMd*a,

k=0 5=0 i=1
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where the integral is over the a; such that 1 > max(|ay|, |as|, |as|, |a; *asas], |ay *ayas|, |az taras]).
If all of the v; are nonzero then we note that (6.0.8) is bounded by the analogous quantity
where we take the integral to be over all @ € O3, and it is easy to obtain the bound claimed
in the lemma from this expression.

Now assume v; = 0 (so vg # 0 # v3). In this case (6.0.8) is bounded by

oo 00 3 1—d;/2
K asaz hoj (V2 U3 |ai| x
E 1 — |1 . = = | | - d
: q /os o< a ) Va(O)x V3(0) (w (ag’ a3)> <qk+2j) a

k=0 j=0 paiey
N Vy Vs > || 2—d;/2—d1/2

< —k 1 w—k—Zj = = ord(a;) + 1 il I

< ’;;q /02 12(0)xV5(0) < o o g( (a;) + 1) s

It is easy to obtain the lemma from this bound. ]

7. BOUNDS ON INTEGRALS IN THE NON-ARCHIMEDEAN CASE

In this section F' is a characteristic zero non-Archimedean local field and K = Spg(O).
Fix
(f1, f2) € Spr(X(F), K) x S(V(F)).
We bound the integrals attached to these functions that appeared in the proof of Theorem
5.3. These bounds will be used to deduce the absolute convergence statement of Proposition
9.2 below. All implicit constants in this section are allowed to depend on f; and fs.

Proposition 7.1. For v € V'(F) one has

[T vl s if all v; 20,
’U2!_dZ/Q_dl/Q|Ug\_d3/2_d1/2 ifvy =0.

/’ 1(09)p(9) falw)ldg <
No(F)\G(F)

As a function of v this integral has support in the intersection of a compact subset of V(F)
with V'(F). Thus I1(f1, f2)(v) admits the same bound and has support in a compact subset

of V(F).

Proof. We decompose the Haar measure dg as in the proof of Proposition 6.3. Arguing as in
that proposition we see that the integral in current proposition is equal to

(7.0.1) /(Fx)smK Ao (o () 00 (5 ,) .00 (5 ))8)

3

x |p(k) f2(a™1v)| (H |ai|2_d"/2> d*adtdk .

i=1
Now
-1 -1 -1
o (D () 0D (=) e )k
(702) = maX(|ta1a2a3‘7 |a’1|7 ’CL2|, ’CLg’, |afla2a3’7 ‘aglala?)’v ‘a‘gla’ch?’)

=:m(t,a).
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By Lemma 4.1 this quantity is bounded for a,t in the support of the integrand in (7.0.1),
and f; itself satisfies the bound

(7.0.3) |filg)] < lgl 2.

For a € F? let |a| := max; |a;|. Let

(7.04) R = [ 1o flw)la.
K

Assume for the moment that no v; is zero. For some ¢ € R.g (7.0.1) is bounded by a

constant times

o7 CL_IU & a~2_d"/2 ><a
(7.0.5) /| . / ) )2 ><H| | )dtd

Iala2a3\

For |a| < ¢ one has
(7.0.6) m(t,a) > |ai| > ¢ ?|ajazas)| .

Thus (7.0.5) is bounded by

oo ol
lal<e J1t|< \a1a2a3\

< f2a v <H|a| ld/Q)dX
la|<e

Since fy is a Schwartz function (in the usual sense) this has compact support as a function
of v € V(F). Moreover, it is bounded by a constant times [>_, [v;|~1~%/2.
Now assume that v; = 0, which implies both v and v3 are nonzero. In this case rather

than using the bound (7.0.5) we use the stronger bound

(7.0.7) / al<e A m(t,a) 2 fa(a" v (H|a 1>~ d/2> dtd*a

lazaz|<cla]|
This bound is still valid when none of the v; are zero, but we did not require it in that case.
We have

S
= lajagag]

m(t7a) = |CL1’ >
0 (7.0.7) is bounded by

la|<c -
aza3|<c|ai —lajagag
< 1< |

‘al‘ d1/2f a 1y (H’a ‘2 d/2> dtd*a

=2
la|<e

1-d; /2 X
|ai / ) d”a
lazas|<c|ai|

< 3
~ 3
<[ R (H |az~|—d”2‘d”2> Pa
laz],|asz|<c pales

< | ‘ 1- d1/2



A SUMMATION FORMULA FOR TRIPLES OF QUADRATIC SPACES 27

Note that the product is now over 2 < ¢ < 3 instead of 1 < ¢ < 3. It is clear that this integral

is supported in a compact subset of Vo(F') x V3(F) and that it is bounded by a constant

times |vy|~92/2~d1/2|yg|~d3/2=d1/2, !

8. BOUNDS ON INTEGRALS IN THE ARCHIMEDEAN CASE

In this section F'is an Archimedean local field and K < Spg(F) is a maximal compact
subgroup. We estimate the local integrals defined in §4.2. The bounds obtained in this
section will be used to prove Proposition 9.2, the absolute convergence statement used in
the proof of Theorem 5.3. As usual, the bound in the Archimedean case is slightly harder
to prove than in the non-Archimedean case, but the basic outline of the proof is the same.

We fix
(f1, f2) € Spr(X(F), K) x S(V(F)).
All implicit constants are allowed to depend on fi, f.
The following lemma will often be used below:

Lemma 8.1. Let A,B € Ry, C € Rsg and let x € F*. If A> B and A # B+ C one has
max(|a~ x|, 1)"*|a|"® max(|a|, 1)~ %d*a < 4 p.c max(|z|,1)” ™"ABFO min(|z],1) 2.
FX

Proof. We break the integral up into two ranges corresponding to |a| < 1 and |a| > 1. If
|z| < 1 then in the first range the integral is

(8.0.1) / la|"Bd*a +/ la|* Pz~ d%a <ap |2| 8.

0<]z|<[a|<1 la|<|z|
If |z| > 1 then in the first range the integral is

/ la|* Bz d*a <ap |2
la]<1
Now consider the second range, in which |a| > 1. If |z] < 1 then this integral is
/ ]a\_B_Can <B,c 1.
la]>1
If |z| > 1 then this integral is
/ max(|a " z|,1)"4|a| B~ Cd*a :/ \a]_B_Can—i-/ la|*~P~C 2|74 d*a
la[>1 |z[<|al 1<|a|<]z]|

<ape o]0+ a7+ |2 7P

Proposition 8.2. For any Ny, No, N3 € Z>( one has

3
/ | f1(709)p(9) f2(v)dg <y no v | [ max(foi], 1)~ min(fog], 1)~ 472,
No(F)\G(F)

i=1
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for v e V'(F) with no v; = 0. Thus I(f1, f2)(v) admits the same bound.

Proof. Let fg =/ x |P(k) f2(v)|dk as before. It is a continuous, rapidly decreasing function
of v. Let N € Zzo- Using Lemma 4.1 and arguing as in the proof of Proposition 7.1 we see
that the integral in the current proposition is bounded by a constant depending on N times

/ min(m(t,a), 1) > max(m(t,a), 1) fala v (1_[\611]2 d/Q) dtd*a
(FX)3xF

=1

with m(t, a) defined as in (7.0.2). For any Ny, Ny, N3 € Zs this is bounded by a constant
depending on Ny, Ny, N3 times

3

(8.0.2) / min(m(t,a), 1) 2 max(m(t,a), 1) N dt Hmax(\afvﬂ, 1)~
(FX)3xF i=1

For a € F? let |a| := max; |a;|. We separate the integral over (F*)* x F in (8.0.2) into

two ranges

(8.0.3) / + /
max(|al,|tarazaz])<1 max(|al,|tarazasz|)>1

We will bound the integral in each of these ranges separately. All the implicit constants from
this point on are allowed to depend on N, Ny, N, N3. We will always assume in the proof
that N; > d;/2 + 1 because this will be necessary in our applications of Lemma 8.1 below.
This is harmless because making the N; larger will only strengthen the bound asserted by
the proposition.

In the first range in (8.0.3) we have

(8.0.4) m(t,a) > |ajasas|

as in (7.0.6). Thus we see that this contribution is bounded by a constant times

3
(8.0.5) / / |a1a2a3|_2Hmax(|ai_lvi|, 1)~ as| >4 2dtd> a
la|<1 J|t

| |a1u.2a3\ i=1
This in turn is bounded by a constant times

3

(8.0.6) / H max(|a; vy, 1)~ .|—1—di/2dxa
la|<1 54

For each factor we apply Lemma 8.1 with A= N;, B=1+d;/2and C > N; —1—d;/2 to
see that this is

(8.0.7) (Hmax lvg], 1)~ min(|vg], 1)~ 1di/2>.
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In second range in (8.0.3) we have m(t,a) > 1. Note that for n € Z~¢ and ay, ..., a, € R,
one has that

n 1/n
(8.0.8) lrélfg);(ai) > (H ai) :

i=1
Thus

(8.0.9) m(t,a) > (max(|tajazas|, 1) max(|ay|, 1) max(|as|, 1) max(|as|, 1))*/* .

Thus the contribution of the second range is bounded by a constant depending on N times

3
/ max(|taiazas|, 1)~V 4dt H max(|a; o], 1) "N max(|a;|, 1)~V*a;|*~%/%d*a
(FX)3xF i=1

3
<¥ / TT mesc(lay terl, 1)~ mas(fag, 1)~ 4)a: 1= /2d%a.
(F*)3 524

For N large enough this is bounded by a constant times

3
/ Hmax(|ai_1vi|, D™ max(|a;|, 1) V4 a;| 1%/ 2d%a.
(F*)? 521

Choosing N > 4max;<;<3(N; — d;/2 — 1) and applying Lemma 8.1 on the ith factor with
A=N;, B=d;/2+ 1 and C = N/4 we arrive at a bound of

3
ON1,N2,N3 (H maX(|Ui|7 1)_Ni min(|vi|, 1)_1_‘11'/2) ,

=1

which is the same as (8.0.7). O

We also require the analogous bound when some v; is zero.

Proposition 8.3. For any N, N3 € Z>( one has

3
(8.0.10) / | f1(709)p(9) f2(v)|dg <y v Hmax(\vi], 1)~ min(|u,|, 1) "0/ 4/2
No(F)\G(F) i=2

forv e V/(F) with vy =0 Thus I(f1, f2)(v) admits the same bound.

Proof. Arguing as in the proof of Proposition 8.2 we see that for any N, No, N3 € Z> this
is bounded by a constant depending on N, Ny, N3 times

(8.0.11)

3
/ min(m(t, a), 1)~ max(m(t, a), 1)~ dt|ay >~4/2 T max(|a o, 1)~
(F*)3xF =9

ai‘2—di/2d><a

with m(¢,a) defined as in (7.0.2). We begin by dividing the integral into ranges as follows:

(8.0.12) / + / .
max(\a|,\aflaza3\,|ta1a2a3|)<1 max(|a\,|a;1a2a3|,|ta1a2a3\)21
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To ease notation, all constants in this proof are allowed to depend on N, Ny, N3 and the d;.
We will also assume that N; > d;/2+ d; /2 in order to justify our applications of Lemma 8.1.
This is harmless for our purposes.

Consider the first range in (8.0.12). We have m(t,a) > |a4|, so this contribution is bounded
by

3
dt|a1|—d1/2 H maX(|ai_IUz‘|, 1)—Ni|ai|2—di/2d><a

(F*)3xF
max(|al,la] *azas],|ta1azas])<1 =2
3
—1—d1/2 —1, 1 1\=Ni|, [1=di/2 7%
< ()3 las | ||max(|ai vil, 1)V ag) T2 d " a
max(|a|,Ja; *azaz|)<1 =2

< max(|a; tvg], 1) ™V |a;| =420 2 0% g,

Ew

(F>< )2
max(|azl,|az])<1 =2

Here we have trivially estimated the integrals over ¢t and a,. For any N > 0 this is bounded
by

(8.0.13) / Hmax a7 o], 1) N max(|ag), 1)~V |a;|~4/2 =4 2d"a; .
F><

Choosing N > maX2<l<3( —d;/2 — dy/2) and applying Lemma 8.1 on the ith factor with
A=N,;, B=d;/2+ d;/2 and C' = N we see that this integral is

(8.0.14) ON,,Ns (Hmax [vg|, 1) min(|vg], 1)~ di/Q_dl/Q) .

1=2

In the second range in (8.0.12) we have m(t,a) > 1. Using (8.0.8) we deduce that
1/5

m(t,a) > (max(|taiasas|, 1) max(|a; 'asas|, 1) max(|aq, 1) max(|as|, 1) max(|as|, 1)) "7,
and hence the contribution of the second range to (8.0.11) is bounded by

—N/5

/ (max(|taiazas|, 1) max(|a; "azas|, 1) max(|ai], 1)) dt
(FX)3xF

X Jaq|*~ d1/2Hmax a7 ], 1) N max(|ag], 1)V a; >4 2d% a
=2

- ~N/5 _
<</ (max(|a; 'agas], 1) max(|a,|, 1)) / |12
(Fx)3

X Hmax(|ai_lvi|’ 1)—N¢ maX(|Clz‘|, 1)_N/5|ai|1_di/2dxa

The contribution of |a;| > 1 is bounded by a constant depending on N times

3
(8.0.15) / Hmax(|ai_1vi|, 1)~ max(|a;|, 1) N5 a;| "4/ d* a;
(F*)2 7~
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Choosing N > bmaxa<;<3(V; — d;/2)+5 and applying Lemma 8.1 on the ith factor with
A= N;, B=d;/2 and C = N/5—1 we see that this integral is

3
(8.0.16) 0 <H max (|v;, 1)~ min(|vy], 1)_di/2> )
i=2

Since we have dealt with the contribution of |a;| > 1, we are left with bounding

3
()3 max(|ay tagas|, 1)~/ |ay |1 74/ H max(|a; o], 1) "N max(|a;|, 1)~/ a; |~/ d*a .
la1]<1 =2
We break this two ranges, namely |asasz| < |a1| < 1 and |a1| < min(1, |azag|). The first range
is bounded by

3
(F¥)3 ‘a1‘—d1/2 H max(|ai—1vi” 1)—Ni max(]ai|, 1)_N/5|ai|1_di/2dxa

lazaz|<|a1]|<1 1=2

3
< / (1 + |agas|~"/?) Hmax(|ai_lvi|, D ~Nomax(|ag|, 1)N?|a; | %/2d%a .
(F)? i=2
This is dominated by (8.0.13) (with N replaced by N/5) and hence bounded by (8.0.14) for
N large enough. Assuming without loss that N/5+4 1 — d;/2 > 0 the second range is
3
(FXY? |agas| =PV H max(|a; v, 1)~ max(|ai], 1)~ |4 /2da
la1|<min(1,|a2as]) =2
3
< / |azas|™"/" min(1, |azas|)N/> /2 H max(|a; 'vi, 1)~ max(|a,], 1) Ve, d*a
(F)? =2
3
< / H max(|a; o], 1) ™ max(|a;|, 1)~/ a, 24/ 2 420" q
(F*)? 325
This is dominated by (8.0.13) (with N replaced by N/5) and hence bounded by (8.0.14) for
N large enough. U

9. ABSOLUTE CONVERGENCE

In this section we prove the absolute convergence statement that makes the proof of the

summation formula in §5 rigorous. We begin with the following lemma:

Lemma 9.1. For x € F and v|co let |z|, == max{|z;|, : 1 <i<n}. Let A>0, N >0,
B€ONF* be given. If a € 71O — 0 then

[ (max(|af,, 1) min(|al,, 1)) <as [ max(|af,, 1)

v|oo v]oo
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Proof. One has

[T (max(al,, 1) *min(|al,, 1)~*) = ] (max(|al,, 1)"|al;*)

ClleS v|oo

= |a|A H max(|aly, 1) )

v]oo

For the remainder of the section we fix
(901) (fl, fg) I~ SBK(X(AF), K) X S(V(AF)) ,

where K is an Spg(A%)-conjugate of Sps(O). All implicit constants are allowed to depend
on fla f2-

Proposition 9.2. The sum

(9.0.2) > o 09000 €

geVs(F)

CONVETGES.

Proof. Let S be a finite set of places of F' including the infinite places such that v is un-
ramified outside of S, p(k)Ly, 5s) = Ly(as) for k € SLy(0%), ff =b% and fy = Ly (ps)- Let
V" C V be the open subscheme of points (&1, &s,&3) such that no § = 0. Let ¢ > 0. Using
Lemma 6.4 and Propositions 7.1 and 8.2 we have a bound on the sum over £ € V”(F) of a

constant depending on ¢ times

2 TT (Tl ) mindedo 1+ T ek Tl =) |

eV (O)NV(F) =1 \v|oo vES—00 vgS

for some 8 € F* N O divisible only by places in S. Using Lemma 9.1 we see that this sum
is dominated by a constant depending on N > 0 times

Z H Hmax (1&ilo, )Y H |fi|;1_di/2H(|§i|11,_di/2+€)

eIV (O)NV(F) 1= v|oo vES—00 vgS

This is finite for N large enough.

We still must bound the contribution of £ € V™ (F) — V”(F). By symmetry, it suffices
to consider the contribution of £ € V(F) such that & = 0 and & and &3 are nonzero. This
contribution can be bounded using Lemma 6.4, Propositions 7.1 and 8.3 and the argument
above. O
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10. A VANISHING STATEMENT

As a public service we state and prove the following theorem in greater generality than
we need for the current paper. Let vy be a place of F'. Let

(10.0.1) X, := [Py, P,]\Sps,, ,
where P, < Sp,, is the Siegel parabolic of [GL17], and let
SBK(XH(Fvo)a Knvo)

be the Schwartz space of [GL17], where K,,, < Sp,,(Fy,) is a maximal compact subgroup
that is conjugate to Spy,(O,,) in the non-Archimedean case. In loc. cit. global analogues

Spr(Xn(Ar), Ky)
were also defined. We again have a Fourier transform
F . SBK(Xn(Fvo)a Knvo) — SBK(Xn(Fv())a K’l’L’Uo)

and a global analogue. When n = 3 all of these reduce to the setting of the current paper.

Let C(X,(Fy, ), Kny,) be the space of compactly supported smooth K,,,-finite functions
on X, (F,,). It is equal to C°(X,(F,,)) if vy is non-Archimedean. By [GL17, Proposition
4.7] one has

(10.0.2) CP (X0 (Fop)s Knvg) < S (Xn(Fug)s K ) -
Let M, < P, be the Levi subgroup of block diagonal matrices and let
w: M,(R) — R*
(41 ,) s det A.

For f € Spr(X,(AF), K,), characters y : F*\Ay — C* and s € C set
(10.0.3) fr. () ::/ 5p(m)Y2xs(w(m)) f(m ™ z)dm .
Mzb(AF)

This is a section of the induced representation I(xs) in the notation of [GL17]. We will also
use the obvious local analogue of this notation. In the proofs in the rest of this section we
will require the usual intertwining operator

Moy = 1(xs) — T(X-s)

and the normalized version Mj that appears in the work of Piatetski-Shapiro and Rallis
and Ikeda. We will use this in both local and global contexts. We refer to [GL17, §3] for
notation. We let E(g, f,.) be the usual degenerate Siegel Eisenstein series [GL17, (1.3.1)]
on Spy, (Ar).
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Theorem 10.1 (Kudla-Rallis). If f,, € CX(X,u(Fyy)s Knwy) < S(Xn(Fiy)s Knwy) for some
non-Archimedean place vy of F', then for any f* € Spr(X,(AR), K'°)

Res :nT-i—l_mE(gyf<fvofvo>1s) =0

S

for integers 0 < m < ”TH, and

Ress:"Tflme(Lq’ *F(fvofvo))(s> = O

or quadratic characters x and integers 0 < m < “==. In particular, when n = 3 the function
dratic charact d int 0< 2=l In particular, wh 3 th ti
F(f fy,) satisfies assumption (5.0.3).

Proof. This is a refinement of [KR94, Theorem 4.12]. Unfortunately Kudla and Rallis have
different assumptions regarding sections, so we explain how to deduce the theorem using the
argument of loc. cit. We also warn the reader that in [KR94] the Kudla and Rallis assume
that the number field in question is totally real. However this is not used in the results we
will quote below.

Let so € {2 —m:m € Z,0 <m < %1}, Then one has a Sp,,(Ar)-intertwining map

Ay I(xs) — A(Spay)
(I)(S) — Ress:soE<g7 (I)(S>> )

where A(Sp,,) is the space of automorphic forms on Sp,, (Ag). If ®(s) = D, (s)P"(s) is a
standard section such that ®,,(s) is in the space denoted by

R, (Vi) N Ry(Va) < 1(Xuos)

in [KR94, Proposition 4.2] then A_;(®(s)) = 0 by loc. cit. Here a standard section is a
section whose restriction to a given maximal compact subgroup of Sp,, (Ar) is independent
of s.

For f € Spx(X(Ap), K) the section F( f),, is not standard, but since d(s, x) := [, d(s, x)
is absolutely convergent for Re(s) > 0 the section F(f),, is holomorphic at s (see [GL17,
§3]). Since the values of standard sections at sy span the space of K-finite vectors in I(xs,)
as a vector space we deduce that

Ress:soE(g7F(f>Xs) = 0

it F(f)yoy € BalVE) (1 R(VA).
We claim that F(f)y.y, € Rn(Vi) N R(V2) whenever f € C°(X(F,,)). Proving the claim

will complete the proof of the theorem. Now
]:(f)Xvos = M’:Jofyi;o—s
by [GL17, Theorem 4.4]. In the notation of [KR92, Proposition 6.5] one has

1
L(s — 5%, yoo) [TV L(25 — nt2r,32)

M;(s) =

wo -
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In particular M (acting on sections in I(X,,_,)) is a nonvanishing entire function times
L(1 4 s+ "2, Xu,) HZZ{QJ L(1+2s+n —2r,x; )M:(—s), and thus M, fx,, . is equal to
M vaofs up to a function that is holomorphic in Re(s) > 0. Thus we can deduce our claim
from [KR92, §6] as in the proof of [KR94, Theorem 4.12]. O
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LIST OF SYMBOLS

basic function
cocharacter of M
quadratic character
Fisenstein series
Fourier transform on a BK space
local (global) Mellin transform
SL3
representatives for X (F)/G(F')
stabilizer of ~;
norm of Pliicker embedding
similitude group
integral
matrix corresponding to Q;
left translation action
element of H(F)

Levi subgroup of P
abelianization of M
unipotent radical of P
stabilizer of ~

characteristic function of 1(p pj(F)c(w)Sps(0)

character of M
Siegel parabolic
Pliicker embedding
quadratic form on V
quadratic form on Vj
local (global) Weil representation
BK Schwartz space X (Ap)
usual Schwartz spaces
maximal torus of G
subtorus of T’

Theta function
quadratic space of even dimension
I, Vi
open subscheme of V

Braverman-Kazhdan space

{v € V(R) : Qi(v1) = Qa(v2) = Q3(v3) = 0}

smooth locus in Y
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