UNIQUENESS OF CERTAIN FOURIER-JACOBI MODELS OVER FINITE
FIELDS

BAIYING LIU AND QING ZHANG

ABSTRACT. In this paper, we prove the uniqueness of certain Fourier-Jacobi models for the split
exceptional group Gz over finite fields with odd characteristic. Similar results are also proved for
Sp, and Uy.

1. INTRODUCTION

Uniqueness of Bessel models and Fourier-Jacobi models for classical groups over local fields,
recently proved in [AGRS, LS, Su, SZ, GGP1] for various cases, has played very important roles in the
study of automorphic representations and L-functions for classical groups. These uniqueness results
are the starting points of the local Gan-Gross-Prasad conjectures [GGP1, Conjecture 17.1], and the
key ingredients to construct new Rankin-Selberg integrals on these groups (see [GPSR, GJRS, JZ]
for some examples). They also give local functional equations, and thus local gamma factors, for
many long-known local zeta integrals for these groups (see [Ka] for example).

After proving the uniqueness of Bessel models and Fourier-Jacobi models for classical groups, a
natural question to ask is whether one could define similar models for exceptional groups and prove
analogous uniqueness. For the simplest exceptional group, the split group of type G, we can define
a Fourier-Jacobi model which is quite similar to the Sp, case.

Let k be a local field, and «, 8 be the two roots of Ga(k) with « the short root and S the long
root, and let P = MV be the parabolic subgroup of Ga(k) with S in its Levi subgroup M, where
V is the unipotent part of P. Then one has M 2 GLy(k). Let J = SLy(k) x V' C P. Then one
can check that there is a projection map J — SLao(k) x 2, where 4 is the Heisenberg group
with 3 variables. For a non-trivial additive character ¢ of k, one then has a Weil representation
wy of SLo(k) x A, where SLy(k) is the metaplectic cover of SLy(k). Thus we can view wy as a

representation of J = SLy(k) x V. Given a genuine irreducible representation 7 of SLa(k), the tensor
product ™ ® wy, gives a representation of J. Here a representation of SNLQ(k:) is called genuine if it
is not inflated from a representation of SLy(k) via the projection SL, (k) — SLa(k). Let II be an
irreducible representation of Go(k), a non-trivial element in Homg, (1) (I, Ind§2(k) (T @wy)) is called
a Fourier-Jacobi model of II. By Frobenius reciprocity,

Homg, (1) (T, Ind?Q(k) (T ®wy)) = Hom ;(II, 7 ® wy).

We conjecture that these Hom spaces should have dimension at most one over local fields, at least for
self-dual irreducible representation II, see Conjecture 6.2. It is worthwhile to mention that Ginzburg
[Gi] has constructed a local zeta integral which naturally lies in these Hom spaces.

The main goal of this paper is to consider the analogue conjecture over finite fields & with odd
characteristic and verify certain uniqueness of Fourier-Jacobi models for Go(k). Precisely, we prove
the following

Theorem A (Theorem 7.1). Let k be a finite field with odd characteristic. Let m be an irreducible
representation of SLo(k) which is not fully induced from the Borel subgroup. Then Ind?z(k)(ﬂ Qwy)

is multiplicity free.
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The representation Ind%(k)(ﬁ ® wy) is a special case of the generalized Gelfand-Graev represen-
tations considered in [Kaw].

All the representations considered in this paper are complex representations, i.e., over the complex
field C. .

Note that, over finite fields, the metaplectic cover SLo(k) splits and the Weil representation can
be defined over SLs(k). Moreover, over finite fields, every finite dimensional representation is semi-
simple, and thus the above theorem is equivalent to that for any irreducible representation II of
Ga(k), one has dimHom ;(II, 7 ® wy) < 1 if 7 is an irreducible representation of SLo(k) which is
not fully induced from the Borel subgroup. However, if 7 is indeed an irreducible representation
which is fully induced from the Borel subgroup, then the representation Ind%(k)(ﬂ ® wy) may not
be multiplicity free, see Remark 7.2, which is quite different from the conjectural local fields case.
On the other hand, if 7 is fully induced representation of SLy(k) and if IT is an irreducible cuspidal
representation of Go(k), in [LZ], we prove that Hom ;(II, 7 ® wy) < 1, which is used to prove the
existence of GLi-twisted gamma factors.

When we were working on the above result for the split exceptional group Go, we realized that even
for classical groups over finite fields, the uniqueness of Fourier-Jacobi models has not been settled in
general. Thus we decided to include some results on the uniqueness of certain Fourier-Jacobi models
for Sp, and Uy over finite fields, which are quite similar to the Go case:

Theorem B (Theorem 4.1 and Theorem 5.2). Let k be a finite field with odd characteristic and let
E/k be a quadratic extension. Let G = Sp,(k) (respectively Uy(k)) and let J be a subgroup of G
which is isomorphic to SLa(k) x J (respectively Uy (k) x HAx with H the Heisenberg group of the
form E? ® k). Let 7 be an irreducible representation of SLa(k) (respectively Ua(k) ) which is not
fully induced from the Borel subgroup. Then Ind?(w ® wy) is multiplicity free.

As in the Gy case, if 7 is an irreducible representation which is fully induced from the Borel
subgroup, then Ind?(w@ww) may not be multiplicity free in general (see Remark 4.2). On the other
hand, since unitary groups are inner forms of general linear groups, one might expect that similar
results also hold for GL4(k). But it turns out that even the Weil representation itself of GLy(k) is
not multiplicity free (see [Ge, Proposition 4.2]), thus we could not expect similar results for general
linear groups. This also shows how tricky things can be over finite fields.

We remark that, when 7 is a fully induced representation of SLa(k) (resp. Uz(k)) from the Borel
subgroup, the fact that Ind§ (7 ® wy), where G' can be Go(k),Sp,(k) (resp. Uy(k)), may not be
multiplicity free comes from the fact that ™ ® wy|sr, k) (resp. T ® wy|u,)) is not multiplicity free.
This is quite different from the local fields case and makes the uniqueness problem of Fourier-Jacobi
models over finite fields more complicated and thus more interesting. However, in this case, we still
expect irreducible cuspidal representations of G occur with multiplicity one in Ind(j(ﬂ' ® wy) (see
our subsequent work [LZ]).

Theoretically speaking, all of the above multiplicity one results could be checked using the known
character tables for these groups, see [Sr| for the character table of Sp,(F,) when ¢ is odd, and
[CR, En, EY] for the character table of Go. More generally, character tables of representations
of general reductive groups over finite fields have been determined by the work of Lusztig ([Lu])
and others, following the seminal work of Deligne-Lusztig [DL]. However, although the groups in
our consideration are relatively small, their character tables are already too complicated to be used
to give a proof of the above multiplicity one results practically. Alternatively, we use a variant of
Gelfand-Kazhdan method (see Section 3.2) to prove the above results. In [T], using this approach,
Teicher proved certain multiplicity one results for GSp,,, and O,, over finite fields.

In general, let k be a finite field with odd characteristic and E/k be a quadratic extension,
Gn(k) = Spy, (k) or Uy, (k), and let wy, be the Weil representation of G, (k). A natural question
is then for what kind of irreducible representations = of G, (k), the tensor product ™ ® wy is still
multiplicity free? If 7 is the trivial representation or a character, this is known to be true. If 7 is
the Steinberg representation, it is proved by Hiss and Zalesski ([HZ]) that 7 ® w,; is multiplicity free.
It seems that little is known for general 7. According to the decomposition of ™ ® wy|sr, k) given
in Section 2.5, we guess that if 7 is an irreducible cuspidal representation of G, (k), then ™ ® wy
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should be multiplicity free. This uniqueness of general Fourier-Jacobi models towards analogues of
the local Gan-Gross-Prasad conjectures over finite fields is currently our work in progress.

These multiplicity one results have potential applications in establishing certain functional equa-
tions over finite fields and proving the existence of certain twisted gamma factors as done by Roditty
in [Ro] for GL,, over finite fields. In [Ni], Nien proved a local converse theorem for GL,, (k) using
the local gamma factors in [Ro]. We expect to construct the gamma factors (using an analogue of
Rankin-Selberg method) and prove the converse theorems for other groups over finite fields in the
future.

Finally, we remark that, although few results on the multiplicities of Fourier-Jacobi models over
finite fields have been obtained in the literature, analogue problems for Bessel models have been
vastly studied, see [GGP2, GP, Ha, R, Th, Za] for example.

The paper is organized as follows. In Section 2, we give a review of representations of SLy(k)
over finite fields. In Section 3 and 4, we prove Theorem B for Sp, (k). The Uy(k) case is included in
Section 5. We then introduce the Fourier-Jacobi models for Go(k) in Section 6, and prove Theorem
A in Section 7.
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2. REVIEW OF REPRESENTATIONS OF SL(2) OVER FINITE FIELDS

In this section, we collect some well-known facts on representations of SLo over finite fields with
odd characteristic.

Throughout the paper, unless otherwise specified, we let ¢ = p” with an odd prime p, and let
k = F,, the unique (up to isomorphism) finite field with ¢ elements. Let ¢ be a fixed non-trivial

additive character of k. Write ¢y = (%) and e(z) = (%) for x € k>, where (5) is the Legendre

symbol. Note that e is the unique non-trivial quadratic character of k™ and the kernel of € is
EX2 = {x2 cx e kX } We fix a generator k of the cyclic group k*. Then a set of representatives of
k* /k*? can be taken as {1, r}.

Let E be the unique (up to isomorphism) quadratic extension of k. Let Fr : E — E be the
Frobenius map defined by Fr(z) = . Then Fr is the unique non-trivial element in the Galois group
Gal(E/k). Let Nm : E — k be the norm map and let Tr : E — k be the trace map. Note that
Nm(z) = x - Fr(z) = 29%! and Tr(z) =  + 29. We can realize E as k[/r]. Under this realization,
we have Fr(z + yv/k) = © — yv/k, Nm(z + yv/k) = 22 — y?k, and Tr(z + yv/k) = 2z, for z,y € k.
Let E' = {x € EX : Nm(z) = 1}. Then the norm map Nm : EX — k* induces an exact sequence
1= E'— EX = kX — 1.

2.1. Conjugacy classes and induced representations of SL(2). Table 1 gives the conjugacy
classes of SLa(k) (see [FH, §5]).

-1
In the second to the last row in Table 1, (x xl) and (m x) are in the same class. In

the last row, (:v y) and
KY

( x y) are in the same class, and (a: y) can be mapped
x x Ky

—KY
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Representative Number of elements in class | Number of classes
1
< 1) | |
-1
L 1 1

(1) (- 1)/2 1

(1) @ -1)/2 i
(" 1) (- 1)/2 1

(" o) (- 1)/2 1

(m x—l) o 7 F1 q(g+1) (q—3)/2
</jy Z)ﬂf?éil’y#() q(qg—1) (g—1)/2

TABLE 1. Conjugacy class of SLo(k)

to © + yy/k # £1 in E'. Thus these representatives can be indexed by (E' — {#1})/(Fr). For
:y Z) € SLy(k), we write &, , = = + y/k.
The simplest class of irreducible representations of SLy(k) is that induced from characters of
the Borel subgroup. Let Bgsr, = Asr,Nsp, be the Borel subgroup of SLa(k) consisting of upper
triangular matrices, with diagonal torus Asr,, = k£ and upper triangular unipotent subgroup Ngi,,.

Let x be a character of k* = Agr,. We can view x as a character of Bgr, such that its action

on Ngp,, is trivial. Let I(x) be the induced representation Ind%iiik)(x), then dim I(x) = ¢+ 1. If

X2 # 1, then it is well-known that I () is irreducible (see [Pr, §2.5] for example), I(x) = I(x~!), and
there are totally ‘%3 of them. If x = 1, the trivial character, then I(1) = 1 @ St, where 1 denotes
the trivial representation of SL2(k) and St denotes the Steinberg representation. Hence, dim St = g.
If x = ¢, then I(e) is a direct sum of two non-equivalent irreducible representations, each of which

is a Weil representation (cf. the next subsection), and has dimension %,

2.2. Weil representations. In this subsection, we give a quick review of Weil representations,
which will give certain cuspidal representations of SLa(k). Although we mainly care about the
SLa (k) case in this paper, it is worth to give a review of Weil representations of Sp,,.(k), where r is a
positive integer and Sps,. is the symplectic group of rank r. The construction of Weil representations
for Sp,,. (k) and more general groups over finite fields was given in [Ge] after the seminal work of
Weil [W].

Define a matrix J, € GL, (k) inductively by

Ti=(), J.—= (JH 1).

Let Wy, = k?" endowed with the symplectic structure ( , ) defined by

Iy
(v1,v2) = 201 (_J ) g, 01,02 € W,
T

Here elements in Wo, are viewed as row vectors. The group Sp,,.(k) is defined to be the isometry
group of (Wa,, (, )). Note that Spy(k) = SLa(k). Let 7%, be the Heisenberg group associated with
Wa,.. Explicitly, 54, = Wa, @& k with multiplication

1
[v1, 21] - [ve, z2] = [v1 + V2, 21 + 22 + §<U17U2>]7U1702 € Wor, 21,22 € k.
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Let Sp,,. (k) act on J%, such that it acts on W, by right multiplication and acts on the component
k in %, trivially. Then we can form the semi-direct product Spo, (k) X ,. There is a Weil
representation wy, of Spy,.(k) x %, on S(k"), where S(k") is the space of C-valued functions on k".

We fix a decomposition Wy, = X @ Y with maximal isotropic subspace X,Y and dim X =
dimY = r. The Weil representation wy, is determined by the following formulas

wy([2,0,2])0(8) = Y(2)p(E +2), z€X,z€k, €k,

Ww([o Y, ) ( ) (2y J7€)¢(§)a yeY,fek’,
wy (diag(a, J,.'a 1 J,.))p(€) = e(det(a))¢p(éa), a € GL,.(k),& € k",

0]
))o

(2.1) (< )) $(€) = (DT )(E), b€ Mat,(k),bJ, = J,.'b,
J#o

()

where v(b, 1) = >, cjr ¥(—2bJ,'z). The above formulas also could be found in [GH, p. 220]. One
could compare these formulas with the Weil representation formulas in the p-adic case [Ku].

We will specialize the above construction to the case when r = 1, i.e., when Sp,,.(k) = SLa(k).
Note that the formulas in (2.1) are much simpler in this case. For simplicity, we will drop the
subscripts from Wy and 7%, i.e., we will write Wy as W and % as J¢. Since Ngi, = k, we
could view ¢ as a character of Ngr,,. Up to conjugation by Agr,,, there are two non-trivial additive
characters of Ngr,,, which are ¢ and 1),;, where v, is the character given by 1, (x) = ¥ (k).

The representation wy|sr,, &) is reducible. In fact, let

S*(k) = {p € S(k) : p(—€) = +¢(¢), V€ € k}.

Then ST (k) and S~ (k) are invariant under the action of SLa(k). Denote the corresponding rep-

P&

(260, "v) (),

xekr

resentations by wj/j and Wy, respectively. Then wj/j and w,, are irreducible, dimw;r = % and
dimw, = q;21. Similarly, from the character 1., one can construct the Weil representation

Wep,, = w;z;ﬁ © wy, . Moreover, we have I(e) = w;}; @ w;}fﬂ. One can also check that w,, and w,,

are cuspidal, in the sense that they are not subrepresentations of I() for any character y of k*.

2.3. Cuspidal representations. We already have two cuspidal representations Wy 5 Wy, - The re-
maining cuspidal representations are also constructed from Weil representations.
Let i be a non-trivial character of E'. Let

W) ={f:E—C: flyx) =p '(y)f(2),Ve € E,y c E'}.

For f € W(p), we have f(0) = u~'(y)f(0), for all y € E'. Since u is non-trivial, we get f(0) = 0.
For any a € k*, let x, € E* be such that Nm(z,) = a. Note that a function f € W(u) is uniquely
determined by its values on the set {z, : a € k*}. Thus dim W(u) = ¢ — 1.

There is a representation wy , of SLa(k) on W(u) such that

o ((* 41) ) 116 = 1(a8),

22) won (1 1)) 100 = vivmiems(©),
v (L4 1)) 50 =~ S w@we) ).

yeE
See [Bu, §4.1], or [Pr, Chapter 3].

The representation wy, ,, is cuspidal. If pu? # 1, then wy , is irreducible. Furthermore, wy ,, is
isomorphic to wy , if and only if 4/ = p*. One can also check that wy , = wy, ., and thus the
representation wy, ,, is independent of the choice of ¥. We then get % equivalence classes in the
family {Ww,w we E17 u? # 1}. Let 1o be the unique non-trivial quadratic character of E*, then one

can check that wy ., = w, S w, .
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ch <”“" I),x:il (x i);_fi (m x1>,x7ﬁi1 <5y i’),xyiiol
1 1 1 1
St q 0 1 )
I(x) (¢ + Dx(x) x(x) x(@) + x(z™") 0
wyu 2 # 1] (g —Dplx) —p(x) 0 —(u+ p1)(Ea):
w;',w;z}'n e(x) 0
Wy » Wy, 0 —#o(&ayy)
TABLE 2. Character table of SLo(k)
C ) C o) Gy C ) )
1 -1 1 1 -1 -1
w:/j %1 %160 s t s’ t
w;fm %1 %160 t s t !
Wy q;—l —L=eo U v ! v
Wy, q;—l —(I;Qleo v U v !

TABLE 3. Missing part of Table 2

So far, we get a list of irreducible representations

LSt I(x) (X* # 1), wy,wy s wpp (B # 1),

and the only non-trivial relations among them are I(x) = I(x™') and wy, = wy ,-1. One can
easily see that this is a complete list of irreducible representations of SLy(k) by checking that the

cardinality of this list is exactly the same as the number of conjugacy classes of SLa(k).

2.4. Character table. For a finite dimensional representation p of a finite group G, we denote by
ch, the character function of G. Recall that ch,(g) = Tr,(g9) = >, i, if p(g) is identified with a
matrix (r;;). The function ch, is a class function, i.e., it is constant on a conjugacy class. Table 2
gives the character table of SLy(k), which is taken from [FH, §5]:

The missing part of Table 2 is given in Table 3. The parameters s,t,u,v,s’,t',u',v" in Table 3
are given below:

1 1 1 1
= — — t: _ — =
S 3 + 2\/60 , 5 2\/60117
1 1 1 1

U:*§+§ﬁ, v=—5 T pved

s =e€ps,t' =€pt, u =t =ept,v =5 =¢ps.

2.5. The tensor product 7™ ® wy. Given an irreducible representation 7 of SLy(k), we want to
determine the decomposition of ™ ® wy,. We first notice that ch,,, = Chof; +ch wy Thus we have

] ()] ) IC)IC )T )1 ) )

)

Wy q €0 vV €oq —+/€0q €0 €0 €(z) —H0(§a,y)

Let 7 be an irreducible representation of SLy(k), we are going to compute chrge,,. It is well-known
that chrgw, (9) = chr(g)chy, (g). Hence, we have the following character table
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ch St ® wy I(x) ® wy Wi, @ Wy th ® Wy, "‘4/1 Quy | wy Buwy | wy Bwy

(1 1) ¢ alg+1) alg—1) Q(q2+1) q(q2+1) Q(qgl) q(qgl)
(" )| ar [ @rorena | @ovuene | | | |

(t1) | o Ve ~VEd | VT | Wi | u/ed | vyad

(1) | o - e VET | e | syaT | ey | -uye
(") o | e | centen | t t ;
(1 _H1> 0 eox(—1) —eop(—1) t S s t
(" )| @@ [a@raen] o 1 1 0 0

< y y) po(&ey) 0 (1 + 1) 0 (Ea,y) 0 0 1 1

Yk

where in the last two rows x # +1, and in the last row y # 0 as usual.
Let A C k> be a set of representatives of (k% —{1,€})/(x = x~!), where 1 is the trivial character.
In other words, for each x € kX — {1, ¢}, there is one and only one of y, x ! is in A. Thus |A| = %

Let B be a set of representatives of (E1 — {1, uo})/(u = p=1). Then |B| = q;21.

Proposition 2.1. Let x1 (resp. p1) be a character of k* (resp. E') such that x3 # 1 (resp.
u? #1). We have the following decomposition of representations of SLo(k):

Stows =St | D100 | D | D v | Dwi Dwy..

XEA

I(X1) Q Wy = St@?[(exl) @

1+€0 +
@ 2 (“w

Wap, iy ®ww28t® @I(X) @

XEA

1760 _ 1+60
@ 2 (@@”w)@ 2 (wy,

1‘/}K

neB

D

XEAxFexE

_ 1—eo +
sw;) D 5 Wy,

D

HEB uFtpopt?

neB

Duwy, ),
Wip,

@w’l;h",)7

wimu =P (1o D10 D] | P52

XEA

w; Qwy =

+

W,

_ 1
Wy, B wy =

1+e¢o
2

1—
®w¢28t@ 260

XEA

1@69](9()@&12; @

XEA

XEA

1—60

neB

1o DI, | B 5"

neB

I(x) @ @Wwﬁu

72 (10D 100De] | D5 | Dwen Der,

2

@ Wap, @wln y

neB

D v Pwy |
D wonDwy |

neB
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Proof. Denote by {V;} a complete set of irreducible representations of SLa(k). Then any represen-
tation V' of SLa(k) can be written as

We have m; = (chy, chy,), where
1 .
(chy,chy;) = ——= > chy(g)chy,(g)
|SLa (k)|
gESLz(k)

is the standard inner product of chy and chy,. Thus to prove the proposition, one needs to compute
various (chrgew,,chy) for any pair of irreducible representations m, 7" of SLa(k) using the above
tables. In the following, we only give the computation of (chj(y,)guw,chr(y)) for a character x with
x? # 1, and omit similar calculations of other cases.

By the definition of the standard inner product, we have

ISLa (k)| (chz(x;)@w, s Chr(y))

= gla+ 12 + (a4 DPax(-De + Lot vag + Lot -y
-4 2_1X1X(—1)€0+ ! _1X1X(—1)60
Fgt) Y K@) eaw) et @)

we(k*—{£1})/(£1)

=q(g+1)* +2¢(q+ Dxaxe(-1) +qg+1) Y (el +ex 'xa(x).
xekX —{+1}

Since x(—1) = x~'(—1) and q(g +1)> = q(¢ + 1)(¢ — 1) + 2q(g + 1), we get
|SL2(k)|(ChI(X1)®wwCh[(X))

= q(g+D(g—1) +qlg+1) Y (xxae(@) +x xae(x)).
z€ekX

Note that when y # 6X1i7 we have > (xxie(z) + X" txie(z)) =0, and if x = ex1, or x = ex] ',
we have > . (xx1e(z) + x 'x1e(x)) = ¢ — 1. Since |SLy(k)| = (¢ + 1)(¢ — 1), we conclude that
(chI(X1)®chhI(X)) =1if x # exlﬂ, and (ChI(X1)®w¢7ChI(X)) =2if y = exlﬂ. O

One can double check the statement in the above theorem by evaluating both sides of each equality
at a set of representatives of the conjugacy classes.

Corollary 2.2. Let  be an irreducible representation SLo(k). If m # I(x1) with X3 # 1, then the
tensor product ™ ® wy s multiplicity free.

Proof. The assertion follows from Proposition 2.1 and the fact that HTE", 1_75" € {0,1}. O

Remark 2.3. Let k be a p-adic field, n be a positive integer. Let é\f)%(k) be the metaplectic cover

of the symplectic group Sp,,, (k), and w,, be the Weil representation of Sps,, (k). Then by the main
theorem of [Su], for any irreducible smooth genuine representation 7 of é\f)zn(k:), the tensor product
representation m ® wy, of Spy,, (k) is multiplicity free. While when k is a finite field, Proposition 2.1
shows that Homgr,, 1) (I(ex1), I(x1) ®wy) = 2. This shows that the multiplicity one result of T ®wy,
fails in general over finite fields. This kind of phenomenon is also known for Bessel models over finite
fields (see [GGP2, R] for examples). O

Remark 2.4. Over finite fields, few results are known on the multiplicities of decomposition of
TR Ww|Sp2n(k) for general n and general irreducible representations m of Sp,, (k). To the author’s
knowledge, only when = is the Steinberg representation of Sp,, (k), it is shown in [HZ, Corollary
1.3] that ™ ® w, is multiplicity free. Based on the SLy(k) case given in Proposition 2.1 and the
corresponding results for Bessel models [GGP2, R], one might guess that ™ ® w¢|5p2”(k) should be
multiplicity free when 7 is an irreducible cuspidal representation on Sp,,, (k).
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2.6. Dual representation. For g € SLy(k), we define ‘g = dygdy, where dy = diag(—1,1). Then * is
an involution of SLy(k). Given an irreducible representation 7 of SLa(k), let ‘7 be the representation
such that its space is the same with 7 and its action is given by ‘r(g) = w(‘g). For later use, we
record the following result

Lemma 2.5. Let © be an irreducible representation of SLo(k), and 7 be its dual representation.
Then we have 7™ = ‘.

Proof. We have chz(g) = ch.(¢g™") and chi;(g9) = ch.(‘g). From the character table given in Section
2.4, we can check case by case that chz = chy,. Thus 7™ = ‘r. O

The involution * is called an MVW involution of SLy(k) and can be defined in a more general
setting, see [MVW, p.91].

3. CONSTRUCTION OF TRANSPOSE ON CERTAIN END SPACES

In this section, we introduce the multiplicity one problem of certain Fourier-Jacobi models on Sp,
and general strategies to attack such a problem. We then construct transpose operators on certain
End spaces as preparations for proving the multiplicity one theorems for Sp,, Go, and Uy.

3.1. The problem. For a positive integer n, let J,, be the matrix defined by

Ty = <Jn_1 1) T = (1),

Spy, (k) = {g € GLay (k)|g (_ 7, J”) 9= <—Jn Jn) } '

Note that Spy(k) = SLa(k). We will mainly focus on Sp,(k) in this section. A typical element in
the torus of Sp,(k) has the form t = diag(a,b,b=%,a71), a,b € kX. Let a, 3 be the two simple roots
defined by

Let

a(t) =a/b, B(t)=0b? fora,bec k™.

Denote
1 1
-1 1
S0 = 1 and sg = .
1 1
Then s,,sg are representatives of the reflections defined by « and §, respectively. We write
1
xg(b) = ! Z{ ,bek

Let P = MU be the parabolic subgroup of Sp, (k) with Levi subgroup

a
M = g ,a € k™, geSLhy(k) p,

and unipotent subgroup

U= € Spy(k)

— % % ¥

Let My = {diag(1l,g,1),g9 € SLa(k)} and let J = MoU C P. We view SLy(k) as a subgroup of
Sp4(]€) via SLQ(k) — Mo.
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There is an isomorphism SLs(k) x S — J defined by

1 1 v =z
(97 [’U,Z]) — g I? v* )
1 1

where v = (x,y) € W and v* = (yx) We identify [z,y,2] as an element in J in this way.

Thus the Weil representation wy, of SLa(k) X . gives a representation of J. Given an irreducible
representation 7 of SLo(k), we consider the representation m ® wy of J. The action of 7 ® wy is
given by m @ wy (7)(v1 ® v2) = 7(p(j))v1 ® wy(j)ve, for j € J,v1 € m,v2 € wy, where p: J — SLa(k)
is the natural projection. It is known that m ® wy, is irreducible as a representation of .J, see [Su] for
a proof in the p-adic case which is also valid in the finite fields case.

We might ask the question: for which irreducible representation 7 of SLa(k), the induced repre-

sentation IndSp4(k) (

T ® wy) is multiplicity free?
For a p-adic field k, given an irreducible genuine irreducible representation = of SLy(k), and an

irreducible smooth representation o of Sp,(k), it is always true that
dim Hom (o, 7 ® wy) <1,

which is the main theorem of [BR]. Any nonzero element in Hom j(o,m ® wy) gives an embedding

o= Ind§p4(k) (m®@wy), which is called a Fourier-Jacobi model of o for the given datum (7 Qwy, J).
Thus the above result of [BR] says that the Fourier-Jacobi model of ¢ is unique (if it exists). Fourier-
Jacobi models over local fields were defined in a more general context for many classical groups such
as Sp,,,, unitary groups and GL,, in [GGP1]; the uniqueness of Fourier-Jacobi model in the p-adic
field case was proved in [GGP1, Su|, and was proved in [LS] in the Archimedean case.

For a finite field k, our purpose is to show that IndSp“( )( ® wy) is multiplicity free when 7 is
an irreducible representation not of the form I(x), Where X is a non-quadratic character of k%, see
Section 4. When 7 = I(), it turns out that the induced representation IndSp‘*(k)( I(x) ® wy) is in
general not multiplicity free, see Remark 4.2. This in fact is not surprising after Proposition 2.1.

3.2. The general strategy. Given a group G, an anti-involution ™ on G is a map " : G — G such

that "("g) = g and "(g192) = "92"¢1, for all g, 91,92 € G.
In this subsection, let G be an arbitrary finite group and H be a subgroup of G. Let o be a
representation of H. We consider the algebra

A(G,H,0) ={K : G = Endc(0) : K(highs) = o(h1)K(g)o(h2)} .
The product in A(G, H, o) is given by convolution:

Ky« Ks(g ZKl gz~ ) Ka(x).
zeG
For K € A(G,H,0) and f € Ind§ (o), we define a function K * f : G — o by
(K * f) G ZK (zg™")
| |9€G

One can check that K  f € Ind% (o). Denote by Lx € End(Ind% (o)) the endomorphism f — K x f.

Theorem 3.1 (Mackey, see [Pr, p.3]). The assignment K — Ly defines an isomorphism between
A(G, H,0) and Endg(Ind% ().

Corollary 3.2. The induced representation Indg(a) is multiplicity free if and only if the algebra
A(G, H, o) is commutative.

Proof. By Schur’s Lemma, the representation Ind$ (o) is multiplicity free if and only if Endg (Ind$ (o))
is commutative. Then the assertion follows from Mackey’s Theorem, Theorem 3.1, directly. ]
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We are going to use the Gelfand-Kazhdan method to prove the commutativity of certain A(G, H, o).
We assume that there exists an anti-involution 7 of G such that "H = H, and there exists an anti-
involution * on Endc(c) such that *(o(h)) = o("h) for all h € H. Then for K € A(G, H, ), we can
define 'K : G — Endc(o) by

("K)(9) = "(K("g))-
Lemma 3.3. For K, Ky, K> € A(G,H,o), we have

(1) "K(high2) = o(h1)"K(g)o(h2),Yhi,hy € H,g € G; thus "K € A(G,H,0);
(2) "(K) = K;
(3) T(Kl * KQ) = TK2 * TKl.

Thus, ™ is an anti-involution on A(G, H,o).
The proof is routine and thus omitted. Certain detailed computation could be found in [T].

Corollary 3.4. Let {g;,1 < i <n} be a subset of G such that G = U; 1<i<nHg: H. If"K(g;) = K(9;)
for all i with 1 < i <n for all K € A(G,H,0), then A(G, H,0o) is commutative and thus ITnd% (o)
is multiplicity free.

Proof. Since G = UHg;H and then "K(g) = K(g) for all g € G, K € A(G, H, o) from the assump-
tion. Thus "K = K. Since 7 is an anti-involution, we get that A(G, H, o) is commutative. |

3.3. An anti-involution. Denote d = diag(—1,—1,1,1). For g € Sp,(k), we define
‘g=d tgd. Tg="'g7".
Then * is the MVW involution on Spy(k), see [MVW, p.91], and 7 is an anti-involution on Sp, (k).
We have
(2,9, 2] = [, =y, —2],
and

QU
\

)

SH

1 1

In particular, *J = J. Note that the restriction of the involution * to SLa(k) is exactly the MVW

involution considered in Section 2.6. Given a representation ¢ of J, we denote by ‘o the representation
L,

a(g) = o('9)-

Let 7 be an irreducible representation of SLa (k) which is not fully induced from the Borel subgroup
and let o0, = T ® wy. The aim of the rest of this section is to define a transpose * on End(o,) such
that *(c(j)) = o(7j) for all j € J. First we need to define pairs between wy, and ‘wy, 7 and ‘7.

3.4. A pair on wy X 'wy. For a,b € k, recall the delta function
%b_{], ﬁa:@
’ 0, ifa#b.
Then the space S(k) has a basis {Js,s € k}, where §,(t) = 05 4.
Lemma 3.5. Consider the pair
= 0()¢'(©), 6, ¢ € S(k).
ek
We have
(wy (7)8,wy (5)e') = (6,¢),Vj € J,6,¢" € S(k).
Proof. If j = [z,0, z], we have wy(j)¢ ( ) = Y(2)p(§ + ). On the other hand, we have ‘[z,0, z] =

[2,0,—2]. Thus ‘wy(j)¢'(§) = wy([z,0,—2])¢'(§) = ¥(—2)¢' (£ + x). By changing variable on the
summation, we get

(wy([,0,2]9), ‘wy (2,0, 21)¢') = > ¢(€)d' (&) = (6, ¢').

ek
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Similarly, we can show that
<w7/J (J)¢7 wa (])¢/> = <¢7 ¢/>7 fOI‘ .] = [07 Y, 0]7 dia‘g(av a’il)a Xﬂ(b)

Let w = 1 1) and w' = <1 _1>, then under the embedding SLo(k) < Spy(k), we have

‘w = w’. We need to show that
(wp (W), wy (w')¢') = (&, ).
Since S(k) is spanned by {d,} and the pair ( , ) is bilinear, it suffices to show that
(wep (W) 8sy wyp (W) = (ds, 0t) = s 4.
By the formula (2.1), we have

1 , -
V2 e w)oE) = s

Thus we get

! S 5 — SR S—
(wy (w)ds, wy (w')dr) = ST (—1.9) glb(?( £)€) 7(17@7(_17@55,“

where the last step follows from » ., 1(2(s —t)§) = qds+. On the other hand, it is well-known that
v(1,9)y(=1,%) = ¢, see [Bu, Exercise 4.1.14, p.420] for example. Thus we get

(wep (W), wip (W)Ge) = (Fs, Ot) = O .
Since J = SLay(k) x # is generated by diag(a,a™t),x5(b), w, [x,0, 2] and [0,y,0], we get that
(wy (7)o, ‘wy(5)¢) = (6,¢),Yj € J.
This completes the proof of the lemma. O
Note that the pair constructed in Lemma 3.5 is symmetric and satisfies the property
(3.1) (0s,0¢) = 05 1.

3.5. A pair on St®"St. Let 1 be the trivial character of k™. We consider the induced representation
I(1) of SLa(k). An element f € I(1) is a function f : SLa(k) — C such that

f(bg) = f(g),Vb € Bsy,,g € SLa(k),
where Bgy,, is the upper triangular subgroup of SLa(k). For f1, fo € I(1), we define a pair

(ff2)= > filg)fa(digdy),

QGBSLZ\SLQ(]C)
where d; = <_1 1) € GLy(k). Note that this pair is well-defined and symmetric. Moreover, it
satisfies the property
(32) <7’(g)f1, T(Lg)f2> = <f1a f2>7vg € SLQ(k)ﬂ flv f2 € I(l)a

where r(g)f denotes the right translation action of g on the sections f.

1
—1
Let fo € I(1) whose support is in Bgr,, and fo(b) =1, for all b € Bgy,,. For r € k, let fi,,» € I(1) be

the function such that its support is Bgr,,w (1 ;), and fy, r (bw (1 T)) =1,Vb € Bgr,. Then

Recall that we have the Bruhat decomposition SLy (k) = Bsr,,UBsr,wNsr,,, where w =

1
{fo, fwr 7 € k} forms a basis of I(1). Let f1 = fo+ >, cp fuwr i€, fi(g) =1 for all g € SLa(k).

Lemma 3.6. We have following formulas:
(fifi)=q+1;
(3-3) (fi, fwr) = 1,Vr € k;
(fuw,rs fu,s) = 0s,—r, V1, 5 € k.
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Proof. This follows from direct computations. O

Recall that I(1) = 1 @ St as a representation of SLa(k). The subspace of I(1) spanned by f; is
an invariant subspace of I(1) and it corresponds to the trivial representation of SLqa(k). For r € k,
define F,. = f1 — fu,. One can check that the space generated by {F,,r € k} is also invariant under
the action of SLs(k), which is the space of St. By Lemma 3.6, we have

(34) <Fr7 FT/> =q—1+ 61“,77"-

3.6. A pair on wj ® Lwi. Recall that the space ST (k) of w:; consists of functions ¢ € S(k)

with ¢(—2x) = ¢(z) for all z € k. Let Ay be a set of representatives of k*/{£1}. Then the set
{200,05 + d_s,5 € Ag} forms a basis of ST (k). For simplicity we write Ay = §5+d_, for s € kX and
Ay = 2dp. The pair ( ) defined in Lemma 3.5 gives a pair on w;f which satisfies

(Wi (9)0,w (‘9)¢") = (6, 0"),Vg € SLa(k), ¢, 6" € S* (k).
We have the formula
(3.5) (A, Ar) = 2(8s,0 + 0s,—1)-
Recall that the space of w,, consists of ¢ € S(k) such that ¢(—z) = —¢(z) for all z € k. For

s € k™, write Ay = s —d_s. Then {A}, s € Ap} forms a basis of w,,. The pair () defined in Lemma
3.5 also gives a bilinear symmetric pair on w,; which satisfies

(g (9)p.wy (“9)¢") = (b, ¢'), Vg € SLa(k), ¢, ¢" € wyy.
And we also have a formula

(3'6) <A;7 A:&> = 2(55,15 - 63,—:‘.)-

3.7. A pair on wy , ® ‘wy . Let pu be a character of E' with y? # 1. We then have an irreducible
cuspidal representation wy, ,, of SLa(k). We need an explicit pair () : wy,, X wy,, — C such that

Wy, (9)v1, Wy, (‘g)ve) = (v1,v2), Vg € SLa(k),v1,v2 € Wy p-

Recall that the space of wy ,, consists of functions f : EX — C such that f(yz) = p~'(y)f(z) for
all y € E',x € EX. As in Section 2.3, for each a € k*, we fix an element z, € E* such that
Nm(z,) = a, then a function f € wy , is uniquely determined by its values on the set {z,,a € k*}.
For each a € k*, we define a function f, € wy , such that fo(zp) = da,p. Then {f, : a € k*} forms
a basis of wy ;.
For ¢, ¢’ € wy i, notice that the function z — ¢(z)¢/(z9) on E* is E'-invariant. We define a
pair
(0.) = D o) @)= —= > $x)¢' (),
TzE€EN\EX

where we used ¢(0) =0 for ¢ € wy ,. Then, we have
(3.7) (far fo) = (2T 1oy, Ya, b € k™.
Lemma 3.7. We have (wy . ()¢, wy, . (‘9)¢") = (9, d), Yo, ¢ € wy 1, g € SLa(k).

Proof. Note that a? = a for a € kX, and Nm(¢) = Nm(£9) = €971 for € € E. By Eq.(2.2) and a
simple changing of variables, we get

(wy.n ((“ a_1)>¢,w¢,u ((“ a_1>)¢>’>=<¢,¢’>,
o (1 9) ) oo ((* 7)) 00 =100,

foralla € kX, b€ k,¢,¢' € wy .
‘We now check

and

(W, (W) d, wy u (w)¢') = (¢, ¢').
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It suffices to show that

<W¢,H(w)faaww,u( )fb> (xq 1)5a,b,Va,bekX.
We have
W (W) fal€) = —¢7" Y P(Tr(aai&)u (x),
z€EE!
and
wy (W) fo(§) = =1 D (=Tr(y af&)) " ().
yeE!
Thus

(ww( ) faswyu(‘0) fo)
Z D G(Tr(@288) — Tr(y afe®))p (xy)

SGEI yeE!
= q+1 Z D (T ty tele) — Tr(afe))u (zy), €&yt
(EE zyeEL
= ¢ 2> D p(Tr(@'ale) = Tr(afe))n " (@), x> ay™
(EE zcE?
=¢230 ) U(Tr(e'al6) — Te())p (@), since Tr(xf€?) = Tr(w€)
(EFE zeE?
= ¢ 2 @Y D (Tr(a wal) — Tr(weé))u ' (2), @ xal "
EEE z€E!

If a # b, for any @ € E', the character £ — (Tr(z 124,&) — Tr(zp€)) on E is non-trivial, and thus
(Wep, (W) fa, Wy (W) fo) = 0. If @ = b, the character§ — w Tr(x~tw,&) — Tr(xp€)) on E is non-trivial
unless z = 1, and thus (wy (W) fo,wy (W) fo) = = (x271). This completes the proof. O

3.8. Transpose operators on End(m @ wy). Let 7 = I,St,wi,wi, Or Wy py, aNd 07 = T ® Wy
We have constructed pairs on 7 X ‘7 and on wy X ‘wy, in previous subsections. We then can define
a pair on o, by

<f1 ®¢17f2 ®¢2> = <f17f2><¢17¢2>7f17f2 S 7T7¢13¢2 S Wd)

From the construction, we have
(0:(5)®,'0,(j)®) = (®,0"),Vj € J, @, € 0.
For A € Endc(o,), we define ‘A € Endc(o,) by
('A(®),®") = (D, A(D)), VD, D’ € 0.
Lemma 3.8. The assignment A~ A is an anti-involution on Endc (o) and satisfies
Yow(4) = ox(7§),Vj € J.

Proof. Note that the pair { , ) on o, is in fact symmetric from the construction, and it is routine to
check that A +— A is an anti-involution on Endc(o,).
For ®,9' € 0,7 € J, we have that

((02(1))2, ) = (B,0,(j) ) = (04(75)®, ).
Thus we get '(0(j)) = o (7). 0

Let ox|sr,(k) = €, Vi be the decomposition given in Proposition 2.1, where V; is an irreducible
representation of SLy(k). Note that each V; occurred at most once in the decomposition. Let
idy, € End(o) be the element such that idy, |y, = 0 if j # 4, and idy; |y, is the identity.

Lemma 3.9. We have 'idy, = idy,.
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Proof. Suppose that j # i, we need to show that *idy, v, = 0. Suppose that this is false, then
there exists v; € V; such that ‘idy,(v;) # 0. To get a contradiction, it suffices to show that
(*idy, (v;),v) = 0 for all v € 0. If v ¢ V;, we have (‘idy, (v;),v) = (vj,idy,v) = 0 since idy,v = 0.
If v € V;, we have (*idy; (v;),v) = (v;,v). If this is not zero, we then get a non-trivial pair between
Vi and V; such that (o,(g)v,o.(‘g)v") # 0, which would imply that Vv = *V;. But we know that
‘72- = ‘V; by Lemma 2.5 and *V} is not isomorphic to *V; by assumption. This proves the lemma. [

4. CERTAIN MULTIPLICITY ONE THEOREMS FOR Sp, (k)
Our main theorem for Sp, (k) is the following
Theorem 4.1. The representation Ind§p4(k) (m®uwy) of Spy(k) is multiplicity free if m = 1, St, wi,wiﬁ,
Wy, where pu is a character of EY with p* # 1.

Remark 4.2. Before proving Theorem 4.1, we show that for ¢ large, the representation Indip4 (I(x)®
wy) is not multiplicity free. In the following, we write Sp,(k) as G for simplicity. Recall that P is
the Kilingen parabolic subgroup with Levi M = GL; (k) x SLa(k). Given characters xi, x2 of k%,
view x1 ® I(x2) as a representation of M = GL; (k) x SLa(k) and consider the parabolic induction
d$(x1 ® I(x2)). We claim that, if x5 = e, then

Homg (Ind§ (1(x) @ wy), Indg (x1 @ I(x2))) > 2.
In fact, by Frobenius reciprocity law,
Homg (Ind§ (I(x) @ wy), IndE (x1 @ 1(x2))) = Hom(I(x) @ wy, IndE (x1 @ 1(x2))] ).

By Mackey’s Theorem (see [Se, Proposition 22, p.58]),

mdf(xa @ Il = P Idf (1 ® I(x.))%),
seJ\G/P
where P, = sPs~' N J, and for a representation p of P, the representation p°® of P, is defined by
p*(h) = p(s~*hs). Considering the element s = s,s55, € J\G/P, we have that
Homg (Ind§ (I(x) @ wy), IndE (x1 @ 1(x2))) D Hom(I(x) @ wy, Indp, (x1 @ I(x2))°)
= Homp, (I(x) ® wy|p,, (x1 ® I(x2))*)-

We have P; = SLy(k) — M, and (x1 ® I(x2))® = I(x2). Thus
dim Homg (Ind§ (I(x) ® wy), Ind% (x1 ® I(x2))) > dim Homgr,, () (1 (x) ® wy, I(x2))-
By Proposition 2.1, if xo = €y, then
dim Homsr,, (1) (1 () ® wy, I(ex)) = 2.
Thus
dim Homg(Ind (1(x) © wy), IndE (x1 © I(ex))) > 2.

By Mackey’s irreducibility criterion (see [Se, p.59]), if x1 and ex are in “general position”, the
induced representation Ind%(y; ® I(ey)) is irreducible. Here two characters x1, 2 are said to be in
general position, if (x1 ® x2) # (x1 ® x2)* for all w € W(Spy) — {1}, where W(Sp,) denotes the
Weyl group of Sp, and (x1 ® x2) is viewed as a character of the maximal torus of G via

(x1 ® x2)(diag(a, b,0™",a™")) = x1(a)x2(b),

and (x1 ® x2)"(t) = (x1 ® x2)(w.t) for ¢ in the maximal torus. In fact, it is not hard to check that
X1, X2 are in general position if and only if x% # 1,x3 # 1,x1 # Xéﬂ. For ¢ large (in fact, ¢ > 7
will suffice), one could find x; such that xi,ex are in general position, so that Ind%(x; ® I(ey)) is
irreducible. Hence Tnd§ (I(x) ® wy) is not multiplicity free for ¢ large. O
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Before we start the proof of Theorem 4.1, we also need to give the double coset decomposition
J\Sp,(k)/J. Denote t(a) = diag(a,1,1,a~!) for a € k*. From the decomposition

Spa(k) = PsqspsaP U Psa P U P,

and
P = Uaekxt(a)J = UaEFX Jt((l),
we can get a set of representatives of the double coset J\Sp,(k)/J given by

—1 a

t(a),n(a) = ,(a) == I ,a € k.

Proof of Theorem 4.1. If 7 = 1, the multiplicity-freeness of Ind§p4(k)(w¢) could be deduced from
the main result of [T]. In the following, for completeness, we still give details of the proof in this
case.

Denote 0, = m™ ® wy for 7 listed in Theorem 4.1. In Section 3.8, we have constructed an
anti-involution * on End(c,) such that *(0,(j)) = 0.(7j). We can define an anti-involution 7 on
A(Spy(k), J, o) by

("K)(9) = (K ("9)), K € A(Spy(k), J,0x), 9 € Spa(k).

By Corollary 3.4, it suffices to show that ("K)(g) = K(g) for g = t(a),n(a),&(a) for all a € k*
and all K € A(Spy(k), J, o). Replacing K by K — 7K, it suffices to show that for K € A(G, H,0,)
with 'K = —K, K(g) = 0 for g = t(a),n(a),&(a),Va € k*. We shall assume "K = —K and show
that K(g) =0 for g = t(a),n(a),£(a),a € k™, case by case.

Step (1), we show that K(t(a)) = 0 for all a € k*. We first consider t(a),a # £1. Since
t(a)[0,0,2] = [0,0,a%2]t(a), from the definition of A(Sp,(k),J,0x), ¥(2)K(t(a)) = ¥(a®2)K (t(a)).
Since 1 is non-trivial and a? # 1, one can choose z € k such that 1(z) # ¥(a?z). Hence, K (t(a)) = 0.
Next, we show that K (t(a)) = 0 if a® = 1. Since t(a)g = gt(a),Vg € SLa(k),

K(t(a))ox(g) = ox(9)K(t(a)),Vg € SLa(k).
This implies that K(t(a)) € Endgy,x)(0x). As a representation of SLa(k), by Proposition 2.1, we

can write
Or = @ ‘/1',3

where V; is an irreducible representation of SLa(k) and 7 runs in certain index set. By Schur’s
Lemma, we can write

K(t(@) = Y Ciidy,

with C; € C depending on a. On the other hand, we have ™ (t(a)) = t(a) if a> = 1. Thus ("K)(t(a)) =
Y(K(t(a))) by definition. By Lemma 3.9, the idempodents idy, are invariant under transpose, which
implies that *(K(t(a))) = K(t(a)). Then the assumption "K = —K implies that K (t(a)) = 0. This
completes Step (1).

Step (2), we show that K(n(a)) =0 for all a € k*. We first record the following relations

(4.1) n(a)xs(y) = [0,0,ayln(a),
(4.2) 1(a)[0,0,a%y] = x5(y)n(a),
(43) 77(@)[0731’0] = [07y70]77(a)'

We now consider the cases m = 1, St, wj}[, wi , Wy, Tespectively.
Case (2.1), m = 1. Recall that o, = wy, has a basis {d,,s € k}. Applying formulas (2.1), we have
that

(44) wlﬁ(xﬁ(y))és = w(y82)5sa ww([ov Y, 0})65 = ¢(23y)5s,Vy €k.
Assume that K(n(a))ds = > _,cp, Cs(t)ds, for Cy(t) € C. From the relation (4.3),
K(n(a))or[0,y,0] = or[0,y, 0] K (n(a)).
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Applying the above formula to §; we have that

P(2sy) Y Ca(t)d = > 1(2ty)Cs(t)5;

Hence, Cs(t) = 0if t # s, and K(n(a))ds = Cs(8)ds.
We now show that Cs(s) = 0 using the assumption that K + "K = 0. Since ™(a) = n(a),
"K(n(a)) =*(K(n(a))). Thus we have 'K (n(a)) + K(n(a)) = 0, which then implies that

("(K(n(a))ds, ds) + (K (1(a))ds, ds) = 0,Vs € k.

From the definition of *(K(n(a))), the above condition implies that (K(n(a))ds,ds) = 0. From
Eq.(3.1), we then get Cs(s) = 0. This shows that K(n(a)) =0, for all a € k*.

Case (2.2), m = St. Recall that o, = St ® wy, has a basis {F, ® ds,r, s € k}, see Section 3.5. Note
that

(4.5) St(xs(0)Fy = Frss St(,y,2)Fy = Fy,

where the action of St is given by right translation.
From the relation Eq.(4.1), we get K(n(a))o(x(r)) = ¢(a*y)K (n(a)). Applying this formula to
F. ® Js and using Eq.(4.4) (4.5), we have

U(ys®) K (n(a) Fr—y @ 65 = P(a’y) K (1(a)) Fy © 0.

In particular, K(n(a))F, ® 65 = ¥((s* — a®)r)K(n(a))Fy ® 6s. Thus to show that K(n(a)) = 0 it
suffices to show that K( (a))Fo®6s =0,Ys € k.
Assume that K(n(a))Fo ® 65 = > ;cp, Cs(b, 1) F, @ 6;. Here Cs(b,t) € C might also depend on a.

From the relation (4.2), we have 1 (a?y)K(n(a)) = o.(x5(y)) K (n(a)). Applying this to Fy ® ds, we
get that

> W(a®y)Ca(b,t) Fy @ 6 = ZC (b, ) (yt*) Fy_y @ 6,
b,t

3

= Z Ca(b+ y, O (y2) By © 0.

Hence,
(4.6) Cs(b+y,t) =((a® — t*)y)Cs(b, 1), Vb, t,y € k.

On the other hand, using the relation (4.3), we have K(n(a))o(]0,y,0]) = o([0,y,0])K(n(a)). Ap-
plying this to Fy ® §; and using Eqs.(4.4), (4.5), we obtain that

> (2sy)Ca(b, )P, @6 = Y Culb, t)ib(2ty) F, @ 6.
bitek b,tek

Thus we get 1(2sy)Cs(b, ) = Y (2ty)Cs(b,t) for all b,t,y € k. If s # t, one can choose y such that

P(2sy) # ¥(2ty), hence, Cys(b,t) = 0. Write D, = C4(0, ), then C,(b,s) = ¥((a? — s?)b)D, by
Eq.(4.6). We get that

K(n(a))Fo ® 6, = > Culb,5)F, @0, = Y ((a® — s*)b) Do Fy @ .
b b

Since ™M(a) = n(a), and 'K = —K, we get (K(n(a))Fy ® ds, Fy @ d5) = 0, where the pair (, ) is
defined in Section 3.8. By Eqs.(3.1) and (3.4), the above equation is equivalent to

Di+(g—1))_¥((a® = s*)b)D, = 0.
bek

Note that >, ¥((a® — s?)b) is either ¢ or 0 depending on a? = s? or not. We then have D, = 0.
This shows that K(n(a)) = 0 when 7 = St.

Case (2.3), m = wil for u = 1, k. In these cases, the proofs are similar, and we only give details
for m = wfg. Recall that o, = w;f ® wy, has a basis A, ® 05, where r runs over Ay U {0} and s € k.
Recall that Ay is a set of representatives of k> / {1} (see Section 3.6).
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We first record the following formulas
AT) o0,y DA @6, = Bsy)A, @8, o(xa(b) A, @5, = BB + 52)A, D 6,.

From the relation n(a)xs(y) = [0,0,a*y]n(a), we get K(n(a))o(xs(y)) = ¥ (a*y)K(n(a)). Applying
this to A, ® d5, we get that

P((r? + s*)y) K (n(a))Ar @ 65 = (a’y) K (n(a) A, @ ds.

Since y is arbitrary, we get that
(4.8) K(n(a)A, @6, = 0 if r* 4 s> # a?

If 72 + 52 = a2, assume that K (n(a))A, ® 6 = Eb’t Cy.s(b,t)Ap ® 0, where ¢ runs over k, and
b runs over {0} U Ag. From the relations (4.2) and (4.7), we can get ¥ (a?y)K (n(a))A, ® §s =
U(Xﬁ(y))K(Tl(a))A ® ds, or

(@%y) > Cra(b,t) Ay @ 6, = Zcm b, 1)(y(b? +°)) Ay @ 0.
byt

Since y is arbitrary, we can get
(4.9) Crs(byt) =0, if b* +t* # a®.

)

From the relation (4.3), we have K(n(a))o([0,y,0]) = o([0,y,0])K(n(a)). By Eq.(4.7), we have
P(2sy) Z Cra(b,t) Ay @6y = > Cro(b, )0 (2ty) Ay @ 6.

Hence, C, s(b,t) =0 if t # s, and
(4.10) K(n(a))Ar @8, =Y Cr(b,5)Ay @ 6.
b

Let b

t 0o
K(n(a)A, @ 6s = Cs(bo, s)Ap, @ ds. On the other hand, if r # +bg, then C, 4(bo,s) = 0 by
Eq.(4.8). Thus to show K(n(a)) = 0, it suffices to show that K(n(a))Ap, ® 65 = 0. Note that
K(n(a))Ap, ® 65 = Ch, s(bo, $)Ap, @ ds. Since "K = —K and (a) = n(a), we have
<K(n(a))Ab0 ® 687 Abo ® 5‘?> = O
By the definition of the (, ) (see Section 3.8) and Eq.(3.5), we get that
0= <K(n(a))Abo ® 557 Abo & 5s> = 2Cb0,8(b07 50)~

Thus we get Ch, s(bo,s) = 0. This shows that K(n(a))Ay, @ 6s = 0, and hence K(n(a)) = 0.
Therefore, we get K(n(a)) =0, for all @ € k*, when 7 = w;z;.

Case (2.4), m = wy,, for a character p of E' with u? # 1. Recall that 7 has a basis {fa,a € k*},
see Section 3.7. We record the following formulas
a([0,y, 2]) fa ® 05 = Y(25y + 2) fa ® Js;

(x4(b) fo ® 85 = Y (b(a+ 5%)) fa @ bs.

From the relation (4.1), we can get K(n(a))o(x5(y)) = ¢(a*y)K (n(a)). Applying this to f, ® ds,
we get

€ k be such that b3 = a? — s%. If b # b, then C, 4(b,s) = 0 by Eq.(4.9). Thus we get

(4.11)

Dy + s Eny)) fr @ 0 = P(a®y) f, @ 8.
Since y is arbitrary, we get K (n(a))f, ® §s = 0 if r + s? # a®. Assume that

K(n(a))fa?'fsQ ®0s = Z CS(bvt)fb®(5t~
bek* tek
From the relations (4.2) and (4.11), we can obtain that

U(a®y) K (1(a)) faz -2 @ 85 = 0(x5(y) K (n(a)) far -2 @ 0,

P(a®y) > Culb,t) fo® 6, = ZC (b, ) (y (b + 1)) f @ 6.

bt
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Thus we get
(4.12) Cy(b,t) = 0 if b+ t* # a®.

Furthermore, using (4.3), we have K(n(a))o([0,y,0])fu2_s2 @ s = o([0,y,0]) K (n(a))foz_s2 ® Js,
which is equivalent to

> Cub, ) (2sy) fo @ 6 = ZC (b, )0 (2ty) fr @ 6.

b,t

Thus we get
(4.13) Co(bt) =0, if t # s.
Thus we get
K(’r/(a’))fa2752 ® 58 = Cs(a2 - S2a S)far"fs2 & 53-
Since 'K = —K and n(a) = n(a), we get (K(n(a))fr, ® ds, fro ® ds) = 0. By Eq.(3.7), it is easy to
see that Cs(a® — s2,s) = 0. This shows that K(n(a)) = 0, for all a € k*, in the case m = wy ,. This

also completes the proof of Step (2).
Step (3), we show that K(£(a)) =0 for all a € k*. One can check that "(£(a)) = £(a) and

§(a)g = g&(a), Vg € SLa(k).
Thus
K(€(@))ox(9) = o2 (9) K (€(a)), ¥g € SLa (k).

Hence, K({(a)) € Endsp,x)(0r). Let oxl|sL,x)y = ©V; be the irreducible decomposition as in
Proposition 2.1. As in the proof of K(t(a)) = 0 when a® = 1 in Step (1), we can write K({(a)) =
>, Ciidy,, with C; € C depending on a. Since idy, is invariant under the transpose * by Lemma 3.9
and 'K (£(a)) + K(£(a)) = 0, we can get C; = 0 and thus K(£(a)) = 0.

This completes the proof of Theorem 4.1. a

5. A MULTIPLICITY ONE THEOREM FOR U4 OVER FINITE FIELDS

In this section, we briefly introduce a multiplicity one result for the unitary group Uy (k), which is
quite similar to the Sp, (k) case. Note that some notations which were used for subgroups of Sp, (k)
in previous sections will be used for subgroups of Uy in this subsection.

Recall that k is a finite field with odd cardinality g and F is the quadratic extension of k. Define

Unn(h) = {o < GLan(rso ()= (L, ")}

5.1. Conjugacy classes and some simple representations of Us(k). The conjugacy classes of
Us (k) is given in the following table (see [Ca]):

Representative Number of elements in class Number of classes
T
<x i>7er1 (a—1(g+1) g+1
<x x_1>,erX_El q(q+1) (e
* _ q(g+1)
(Hy x) y#0 (g — 1) el

Note that the norm map Nm : E* — k> is surjective and thus (1 1) and 1 T) are in the same
conjugacy classes. This is different from the SLo(k) case. We explain a little bit about the last row.
The condition (ny z> € Ua(k) is equivalent to zy = zy and xx — kyy = 1, which implies that

x + yy/k € E'. Note that unlike in the SLa(k) case, here we don’t require that z,y € k. We now
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count the number of representatives of the form (/;ry g) If z = 0, we get yy/k € B! and there are

totally ¢ + 1 such y. If # # 0,y # 0, let u; = 2 + yy/k, uz = © — yy/k. Then uy,us € B, uy # Fus.
There are totally (¢+1)(¢—1) choices of uy, us, and hence such many of z,y. Note that 2+ y+/k and
2 — y+/k give the same conjugacy class. Thus we totally have %(q +14+(g+1)(g—1))=qlg+1)/2
classes in the last row. It is not hard to check that the number of elements in each class in the
last row is ¢(q — 1) by counting the centralizer of each representative. Note that there are (g + 1)2
conjugacy classes and thus there are (q + 1)? irreducible representations of Uy(k).

Let n be a character of E'. View 7 as a representation of Uy(k) via the determinant map
det : Uy(k) — E'. We then have total ¢ + 1 irreducible 1-dimensional representations of Us(k).

Let By, = Ay, X Ny, be the upper triangular Borel subgroup of Us(k) with torus Ay, =
{diag(a,c‘fl),a € EX} and unipotent subgroup Ny,. Given a character y of E*, view it as a

character on Ay, = E* and hence on By, such that the action of Ny, is trivial. We then consider

1

the induced representation I(x) := Indgfj(j)(x) which is irreducible if and only if xy # Y~ ', where

X! is the character of E* defined by ¥~ !(a) = x(a~!),a € E*. Note that the condition y = y~!
is equivalent to x o Nmp/, = 1. Since the norm map Nmpg/, : E* — k* is surjective, the condition
X = X! is equivalent to that x|,x = 1 and giving such a character is amount to giving a character
n of E' via n(a/a) = x(a). On the other hand, we have I(x) = I(Y~') and thus there are totally
+(q+ 1)(g — 2) irreducible representations of the form I(x),x # x~'. Note that dim I(x) = ¢ + 1.

Consider the induced representation I(1), where 1 is the trivial character of E*. We have I(1) =
1P St, where 1 denotes the trivial representation of Uy (k) by abuse of notation, St is the Steinberg
representation and dim St = ¢. Given a character 1 of Uy (k), form the tensor product n® St, which is
still an irreducible representation of Us(k) of dimension g. We then get another family of irreducible
representations of Uy (k) given by {n ® St,n € El} and there are total ¢+ 1 of them. Note that if x
is a character of E* with x|xx =1, then I(x) = n® I(1) = n@(n ® St), where 7 is the character of
E*' determined by n(a/a) = x(a) for a € E*. For simplicity, we write n ® St as St,. The following
is the character table of the representations 7, I(x), St, for n € El, X € E~* X A X

Chy] Ch[(X) ChStn
<x x) € B n(z?) (g + Dx(x) qn(a?)
<x i) ,x € Bt n(x?) x(z) 0
(" o) e -] ) [x@are | )
</_fy Z) Y #0 n(z? — ky?) 0 —n(z® — ky?)

5.2. Cuspidal representation. Recall that v is a fixed non-trivial additive character of k, and we
identify 1 as a character of Ny, by the isomorphism Ny, = k.
Let i be a non-trivial character of E' and let

W(p) ={f:E—C: flyz)=p '(y)f(z),Vz € E,y € E'}.

Recall that we have a representation wy , of SLa(k) on W(p). Let n be a character of E', one can
extend the representation wy ,, to a representation wy , , of Ua(k) such that

o ((* 42) ) 900) = nlaa=)otaa), 6 € Wi

Since any g € Us(k) can be written as g = diag(a,a ')g; for some a € EX, g; € SLa(k), the above
relation uniquely determines an extension of wy ,. It is not hard to check that the extension wy .y
is indeed a representation. Let 1 be the trivial representation of E', then wy ., =1 ® wy 1. We
now compute the character of wy ,, ».
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For each a € k>, we fix an element x, € E* with Nm(z,) = a. Let f, € W(u) be the function
such that f,(zp) = d4p. Then {fs,a € k*} becomes a basis of W(u). Using this basis, we can
compute the following character table:

(* ) e T Do)
( ) ve B —n(@?)u (x)

x
< ):rEEX 0

Qw:J A0 | 0@ — k) )+ e = yyR)

From this table, we can check that the representation wsy , , is irreducible if p is non-trivial (which
is always assumed). On the other hand, we have wy ;. = Wy 4y 0, if and only if (u1,m) = (1, 7m)
or (u=t,mu~"'). Thus there are totally (q + 1)q/2 representations of the form wy ,,,. The following
family

m, Stn7 I(X)? w’l/)ﬂiv’?’

with u,n € El, nw#1lx € EX ,X # X1, is a complete list of irreducible representations of Ua (k).

5.3. The Weil representation. Let W = E @ E, endowed with the skew-Hermitian structure
<u7 ’U> = UJQtrDa
where u, v are viewed as row vectors. We consider the Heisenburg group 42 = W @ k with addition
1
[u1,t1] + [ug, ta] = [u1 + ug, t1 +t2 + inE/k(<U1,U2>)],U1,u2 € Wit1,t2 € k.

The group Us(k) act on 2 by g.[u,t] = [gu,t],g € Usz(k),u € W,t € F. Thus we can form the
semi-direct product Us(k) x J€.
There is a Weil representation wy of Us(k) x # on S(E) determined by the formulas
wy ([2,0,2]) f(§) =(2)f(§+x),2 € B,z €F,
wy ([0,,0]) (&) = »(Tx(5€)) f(£),y € E,

f
e (( ))f f(af),a € EX,
(( ))f Nm(€)b)£(€),b € k,

wy (W) f(€) = — 12¢ﬁ%fﬁ
yeE
Here w = (_1 1) as usual. The Weil representation for general unitary group over finite fields is

constructed in [Ge]. The above formulas could be found in [Bu, Section 4.1].

We next consider the restriction wy|u, ). Let W(1) be the subspace of S(E) which consists of
functions f € S(E) such that f(uz) = f(z),Yu € E',z € E. Then it is not hard to check that
as representations of Ua(k), wylwa) = St. Thus we have the following decomposition as in [Ge,
Corollary 4.5]

Ww|U2(k) = St@ @ wd,’#’l

nEE! p£1
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From this decomposition, the character table of wy, is as following

ch,

1 o

() v
1

. e e BN x#£1 1
1 1

1) =

(x i),erl,z;ﬁl 1

<x _1),erx—E1 1
x
X Yy o .
<;<y x),xiyﬁ—lay#o q
Ty
oy x),ziy\/ﬁ#l,y#O 1

One can compare the above table with [Ge, Theorem 4.5, Corollary 4.8.2 and Theorem 4.9.2].

5.4. On the tensor product of an irreducible representation with the Weil representa-
tion. In this section, we consider the decomposition of ™ ® wy, for an irreducible representation 7
of U2 (k)

Let A be a set of representatives of characters of E* such that x|px # 1 modulo the relation
X = X . Then the cardinality of A is (¢ + 1)(q — 2)/2. Let B be a set of representatives of pairs
(1,m) € E' x E' with p # 1 modulo the relation (1,7) = (1~1, 7). Then the cardinality of B is
(¢ + 1)g/2. The following proposition is Us(k) analogue of Proposition 2.1 and we omit its proof.

Proposition 5.1. Let x; € EX with X1 # X1 and i, p € E' with w1 # 1. We have

@ Wy pm |

nEE 1

D

XEA,x#X1,X "

Stow,=1H D10 | D | P st | D

M Wy = Stm @

I(x1) @wy = 2I(x1) P

I | D | D st | P

7]6@1

@ Wy | >

(wm€eB

D

Wep,p,m |

XEA nek1 (km)EBM#LnFp
Wp, g, 1 & Wy = 1@#;169 @I(X) @ @ Sty
xeA n#ALn#u
@ @ Wep

(1) €EB AL NF N7 1 ,NF 1 1

Note that St,;, ® wy = 7 ® St @ wy, and wy 4y @ Wy = N Q Wy 41 @ wy, the decomposition of
Sty ® wy (resp. wy 4y ® wy) can be given using the decomposition of St ® wy, (resp. wy 41 @ wy).

5.5. A multiplicity one result for Uy (k). In the group Uy(k), we consider the subgroup
1

*

J:

ES

1

*
g ,QGUQ



UNIQUENESS OF CERTAIN FOURIER-JACOBI MODELS 23

Then there is an isomorphism Uy x 57 — J defined by

1 v z—%i‘y—i—%mgj

(9, v, 2]) — g v .9 €Us,v=(z,y) € E*,z€k
1
where v* = y:‘r) Under this isomorphism, we view w, as a representation of J. Given an

irreducible representation m of Us(k), we consider the tensor product representation 7 ® wy, of J.
Similar to the Sp,(k) case, we have the following

Theorem 5.2. Let 7 be an irreducible representation of Us which is not of the form I(x). Then
the induced representation IndIJJ4 (m @ wy) is multiplicity free.

Since the proof is similar to that of Theorem 4.1, we omit the details.

6. THE GROUP Gog

In this section, we introduce the multiplicity one problem of certain Fourier-Jacobi models for the
split exceptional group Ga(k), which is quite similar to what we considered in Section 3 for Sp, (k).
In this section, the notations J, P, M, etc., will be used as subgroups of Go(k) rather than subgroups
of Sp, (k) as in Sections 3 and 4. For simplicity, denote G = Ga(k).

6.1. Roots and commutator relations. The group G, has two simple roots, the short root «

and the long root 3. The set of the positive roots is X7 = {a, 8, + 3,2a + 8,3 + B, 3c + 23}.
_ 2(71,72)

Let (, ) be the inner product in the root system and ( , ) be the pair defined by (v1,72) = e

For Go, we have the relations:
<O[7ﬁ> = _17 <B7O[> = 3.
For a root 7, let s, be the reflection defined by +, i.e., sy (v') =" — (¥,7)y. We have the relation

sa(B) =3a+ 6,s5(a) =a+ .

Let W (Gz) be the Weyl group of G, which is generated by s., sg and has size 12.

We use the following standard notations from Chevalley group theory (see [St]). For a root
v, let Uy, C G be the root space of 7, and let x, : k — U, be a fixed isomorphism which
satisfies various Chevalley relations (see [St, Chapter 3]). Following [St], for ¢ € k*, denote
wy(t) = xy(t)x_(—t71)x4(t) and w, = w,(1). Note that w, is a representative of s,. Let
ho(t) = wy(t)w;". For simplicity, we denote

wy = wawgw(;l, Wo = wawgwawglwgl.

Let T be the subgroup of G which consists of elements of the form hq (t1)hg(t2),t1,t2 € k™ and
U be the subgroup of G generated by U, for all v € ¥*. Let B = TU, which is a Borel subgroup of
G.

For t1,ty € F*, denote h(t1,ts) = ha(tita)hg(t3ta). We can check the following relations

(6.1) hil(h’fz)xa(r)h(tl,tg) = a(t: ),
™ (t1, ta)xp(r)h(t1, t2) = xp(t] tar).

The notation h(a,b) agrees with that of [Gi], and our h(a,b) is h(a,b,a=*b~1) in the notation of
[CR]. One can also check that

(6.2) wah(thtg)w;l = h(tﬂfz,t;l), w5h<t17t2)w51 = h(tQ,tl).



24 BAIYING LIU AND QING ZHANG

For g1,g92 € G, denote [g1, 92] = g7 195 1 g1g2. We have the following commutator relations (see [Re,
p.443)):

Xa (%), %5(4)] = Xats(—2Y)X2a+5(—2°Y) X304 5(2°Y) X302 (—227y?),
%o (2), Xa18(Y)] = X204 8(—22Y) X304 5(35°Y) X301 25(3297),
(6.3) [Xa (%), X204+5(Y)] = X3a-+5(32Y),
[x5(2), X30+5(Y)] = X3a+28(2Y),
] =

Xa+5(T), X20+5(Y) X3a+26(32Y).

For all the other pairs of positive roots 71,72, we have [x,, (), %, (y)] = 1.
We also need the Chevalley relation wy, X, (r)wy' = %, o, () (€(v1,72)7) (see [St, Lemma 20,
(b)]), where ¢(v1,72) € {£1} and c(y1,72) = (71, —72). he numbers ¢(vy1,72) are given in the

following:

(6.4) clo,a) =cla,2a+B) =c(a,3a+0) =—1, cla,f) =clo,a+ p) =c(Ba+28) =1,
c(B,B) =c(B,a+B) =c(B,3a+28) = -1, c(B,a)=c(B,2a+8)=c(B,3a+8)=1.

6.2. Subgroups. The group G has two proper parabolic subgroups. Let P = M x V be the

parabolic subgroup of G with Levi M and unipotent V, such that Us € M = GLy(k). The
isomorphism M = GL, is determined by

Xg(?")i—)(l 7{) h(a,b)'—><a b).

The unipotent subgroup V of P consists of root spaces of o, a + 3,2a + 8,3 + 5,3 + 23, and a
typical element of V' is of the form

Xa(r1)Xa+5(r2)X20+6(r3)X3048(r4)Xsa+25(75), i € k-
To ease the notation, we write the above element as (r1,r2,73,74,75). Denote by J the following
subgroup of P
J =SLao(k) x V.
We always view SLg(k) as a subgroup of G via the embedding SLo(k) C GLa(k) = M — G. Let
Vi (resp. Z) be the subgroup of V' which consists of root spaces of 3a + 5 and 3a + 2 (resp.
2ac+ B,3a+ (8 and 3a + 23). Note that P and hence J normalize V; and Z.

6.3. An anti-involution on G. For g € G, we define ‘g = h(1,—1)gh(1,—1) and "g = ‘g~ . Then
we can check that
“(r1,72,73,74,75) = (71,72, =73, 74, —75),

()

In particular, both the involution * and the anti-involution ™ preserve J.

and

6.4. Weil representations and the problem. Let W = k2, endowed with the symplectic struc-
ture ( , ) defined by

(6.5) ((z1,91), (v2,y2)) = —221Y2 + 272y1.

Note that the symplectic form on W here is different from the one defined in Section 2.2. The reason
for choosing this non-standard symplectic structure on W will be explained below.

Let S be the Heisenberg group associated with the symplectic space W. Explicitly, 5 = W & k
with addition

(1, Y1, 21) + @2, Y2, 22] = (21 + T2, Y1 + Y2, 21 + 22 — T1Y2 + T2y1).

Let SLy(k) act on .2 such that it acts on W from the right and acts on the third component k in 57
trivially. Then we can form the semi-direct product SLa(k) x 5. The product map in SLy(k) X 52
is given by

(91,v1)(g1,v2) = (9192, v1.92 + v2).
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Let 9 be a fixed non-trivial additive character of k, and let wy be the Weil representation of
SLa(k) x 2 on S(k), where S(k) is the space of C-valued functions on k. The formulas (2.1) should
be adapted to our new symplectic structure on W.

Define a map pr: V — 5

PT((T177‘277’3,T4,T5)) = [7‘177‘2,7“3—7“1T2]~

From the commutator relations in (6.3), we can check that pr is a group homomorphism and defines
an exact sequence
0->Vi=>V =># —0.

Here, to ensure that pr is a group homomorphism, we need to choose the symplectic form on W in
the non-standard way (6.5). It seems that there is a typo in the formula of the projection map pr
in [Gi, p.316].

For g = (CCL Z) € SLy(F) C M, we have

9_1(7"13 r2,T3, 0) O)g = (T{h 7'/2, TIS’ r:h T/S)’
where r} = ar; — cro,vh, = —bry + dra, 5 — riry = rs — ryro. This implies that the map pr: J =
SLo(F) x V — SLo(F) x 42, defined by,
(g,U) = (g*apr(v))ag € SL271} c ‘/7

_“C _db> = dygd;! and d; = diag(—1,1) € GLy(k). Now,
we can view the Weil representation wy, as a representation of J by composing with the map pr.
Given an irreducible representation 7 of SLy(k), view it as a representation of J via the quotient
map J — SLy(k).

Similarly as the Sp,(k) case, we consider the problem: for what irreducible representation 7 of

is a group homomorphism, where g* = <

SLo(k), the induced representation Ind%(k)(ﬂ ® wy) is multiplicity free? The answer is similar to
the Sp, (k) case and the proof will be given in next section.

Remark 6.1. If k is a local field, let SAI/JQ(IC) be the metaplectic double cover of SLy(k). Then there
is a Weil representation wy, of SLo(k) X #. By composing with the projection map, we could view
w,y as a representation of SLo(k) x V. Given a genuine irreducible representation m of SLa(k), the

tensor product ™ ® w,, can be viewed as a representation of J = SLa(k) x V. Due to the similarity
between the Go case and the Sp, case, we propose the following

Conjecture 6.2. For any self-dual irreducible representation o of Go(k) and any irreducible genuine
representation w of SLa(k), we have

dim Hom (o, 7 @ wy) < 1.

Here the “self-dual” condition might be removable and we add it due to certain technical diffi-
culties in the application of the Gelfand-Kazhdan method. A nonzero element in Hom j(o, 7 ® wy)
defines an embedding o — Ind?z(k) (m ® wy). Such a realization of ¢ will be called a Fourier-Jacobi
model of o with respect to the datum (7 ® wy,J). Given a character x of GLi(k), consider the
genuine indueced representation I (s,x) of §i42(k’), s € C, given an irreducible generic representa-
tion o of Ga(k), Ginzburg ([Gi]) has contructed a local zeta integral which defines an elements in
Hom (o, I(s,x) ® wy). Thus the above conjecture would imply the local functional equation for
Ginzburg’s local zeta integral in [Gi]. We can prove that dim Hom (o, I(s,x) ® wy) < 1 for non-
supercuspidal representations o, which could be viewed as a special case and an evidence of the
above conjecture. O

As preparations of our multiplicity results in next section, we record some useful facts on the
Weil representations. From the above description of the projection map and modified versions! of

ISee [Ku], for example, for the dependence of these formulas on the symplectic form.
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Eq.(2.1), we have the following formulas

wy((11,0,73,74,75))$(§) = ¥(r3)d(§ + 1),
wy ((0,72,0,0,0))p(8) = (—28r2)9(§),
(6.6) wy (h(a,a™"))p(€) = e(a)p(al),
wy (%5(0))P(E) = p(bE*)(£),

The space S(k) has a basis {05, s € k}, where d5(t) = d, ;. From formulas (6.6), we have

wy (x5(0))d5 = P(bs?)ds,
(6.7) wy((0,9,0,0,0))ds = 1h(—2sy)ds,
ww((rlvo 7377’4,7“5)) 1/)( )55 Tt

Lemma 6.3. For ¢,¢' € S(k), we define a pair
) =2 d(6)d(-)
ek
Then we have
(wy (1)@, wy ()¢') = (6, ¢),Vj € J,d,¢" € S(k).
For A € Endc(S(k)), we define 'A by
(‘Ag,¢') = (¢, A¢').
The operator * is an anti-involution on Endc(S(k)) and satisfies 'wy (j) = wy(77).

Proof. The proof is similar to that of Lemma 3.5, and thus is omitted. O

Note that the above pair on S(k) satisfies the property
(68) <5a7 5b> = 5a,—b7 a, bek.

6.5. Transposes on End(m ® wy) for an irreducible representation 7w of SLy(k). Let m =
1, St,wjf,wjfn, or wy ,, where y is a character of E' such that y? # 1. Then 7 is an irreducible rep-
resentation of SLy (k). We have defined a pair 7 x‘r — C in Section 3. Considering the representation
or =T ®wy of J, we can then define a bilinear pair o, x ‘o, — C by

(V1 ® ¢1,02 ® P2) = (v1,v2)(P1, P2), V1,02 € T, 1, P2 € Wy,
where (@1, o) is defined in Lemma 6.3. This pair satisfies the property
(o:(f)v,0x()0") = (v,0"), 0,0 €0y, j € J.
As in the Sp, case, we define a transpose * : Endc (o) — Endc (o) by
("Av,v") = (v, Av"), A € Endc(ox),v,0" € oy
Then we have
ox(j) = o (%), ¥ € J.

By Proposition 2.1, the representation or|gr, ) is multiplicity free. Let orx|gr,x) = ©:iV; be the
decomposition of irreducible representations of SLo(k). As in Lemma 3.9, the idempotent idy, €
Endc(o,) is invariant under the transpose ! defined above.
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7. CERTAIN MULTIPLICITY ONE THEOREMS FOR G

In this section, we continue to let G = Gay(k) and let J be the Fourier-Jacobi subgroup of G
defined in Section 6.2. For an irreducible representation 7 of SLs(k), as in Section 6.5, we write
O =T Q Wy
Theorem 7.1. The representation Ind?(aw) is multiplicity free, if m =1, St,wwwwi,wi for any
character i of E* with u? # 1.

Remark 7.2. (1) If 7 = I(x) for a character x of k* with x? # 1, we can also show that for ¢ large,
the induced representation Ind? (I(x)®wy ) is not multiplicity free as in Remark 4.2. In fact, let x1, x2
be two characters of k™, we consider the induced representation I(x1,x2) = IndGLz(k)(Xl ® x2) of

BgL,

GLa(k), where Bgy, is the upper triangular subgroup of GLa(k), and x1 ® x2 is viewed as a character

of BGL2 by
a b
X1 ® X2 (( ! a2>) = x1(a1)x2(asz).

Recall that P = M x V with M = GLa(k). View I(x1,X2) as a representation of P by making V
act trivially on it. Then we consider the induced representation Ind%(I(x1 ® x2)) and

Home (Ind§ (1(x) ® wy ), Ind$(I(x1, x2))).

By Frobenius reciprocity, we have

Home(Ind§ (1(x) ® wy ), IndB (I (x1, x2))) = Homs (1(x) ® wy, IndF (1 (x1, X2))|1)-

By Mackey’s Theory, see [Se, p.58], we have

mdB(I(x1,x2)ls = @ Tdp (I(x1,x5)%),
seJ\G/P

where P, = sPs~! N J and for a representation p of P, the representation p* of Py is defined by
p°(h) = p(s~ths). Considering the element wy = wawﬁwawﬁ_lwgl € J\G/P, we have P,, =
SLa(k) < M and I(x1,x2)"* = I(x1,X2)|sLy(k)- Thus

Homg (Ind§ ((x) ® wy), IndB(I(x1, x2))) D Hom s (I(x) ® wy, Indp, (I(x1,X2)sLa(k)))
= HomSLg(k)(I(X) ® w¢|SL2(k)7 I(xa, X2)|SL2(1<:))-
Note that I(x1,x2)|sL,k) = I(x1x3"). We take x; = exx2. By Proposition 2.1, we have

dim Homg(IndS;(I(X) @ W), Indg(l(exxg, X2))) > dim Homgg,, (1) (I(x)® w¢|SL2(k), I(ex)) = 2.

From Mackey’s irreducibility criterion, see [Se, p.59], for x1, x2 in “general positions”, the induced
representation Ind% (I(x1, x2)) is irreducible. Here 1, x2 are called in general position, if (y1 ®x2) #
(x1 ® x2)¥ for all w € W(G) — {1}, where (x1 ® x2) is viewed as a character of the maximal
torus of G via (x1 ® x2)(h(a,b)) = x1(a)x2(b). One can check that, for ¢ large, it is easy to
find x2 such that exxa, X2 are in general positions. Then Ind,%’([(exm, X2)) is irreducible and
dim Home (Ind§ (1(x) ® wy), nd% (I (exx2, x2))) > 2. Thus Ind§ (I(x) ® wy) is not multiplicity free.

(2) For an irreducible representation II of G, it is in general false that dim Hom ;(II, I (x) ®wy) < 1
by the above discussion. However, if we require further that Il is cuspidal, in [LZ], we are able to show
that the multiplicity one result dim Hom ;(II, I(x) ® wy) < 1 still holds. This multiplicity one result
will be used in [LZ] to define twisted gamma factors for irreducible generic cuspidal representations
of G. O

Before proving Theorem 7.1, we give a set of representatives of the double coset decomposition

J\G/J. Recall that w; = wawgw; !, wy = wawgwawglwgl.

Lemma 7.3. A set of representatives of J\G/J is given by
{h(a7 1)v h(a7 a72)wa7 h(_17 a)wla h(av 1)102, ac k> } .
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Proof. Considering the double coset decomposition P\G/P, we have
G = PwyPU PwPU Pw,PUP.

From the fact P = Ugepxh(a,1)J = Uperpx Jh(1,b), we can get the statement of the lemma. Note
that h(a,1/a) € J. Thus h(a,b)w, h(ab, 1)w and h(1,ab)w are in the same double coset Jh(a,b)w.J
for any Weyl element w. We take h(a,a 2?)w, and h(—1,a)w; as representatives because we have
"(h(a,a=?)wy) = h(a,a ?)w, and "(h(—1,a)w;) = h(—1,a)w;. O

Before we start the proof of Theorem 7.1, we show one more lemma as follows. Let (p, V) be
an irreducible representation of SLo(k) and a € k*. Let (p®, V®) be the representation of SLa(k)
defined by V¢ = V,p%(g) = p(g*), where g* = diag(a, 1)gdiag(a=!,1). For each (p,V), we fix a
non-trivial pair {, ) on V such that

(p(g)v, p(‘g)v") = (v,0'),Yv,0" € V, g € SLa(k).
Note that defining such a pair is equivalent to defining an isomorphism ‘p & p, and thus such a pair

is unique up to a scalar.

Lemma 7.4. If Homgy,, ) (p, p*) # 0, there exists a unique nonzero \* € Homgy, x(p, p*) such
that
<>\avla )\a,u2> = <’U1,’l}2>,V'U171)2 € ‘/a

where A\*v is viewed as an element in V under the identification V. =V forv e V.
Moreover, for the unique \* defined above, let d% be the constant such that p(diag(a™',a)) o A% o
2

A = d{,idy, then df, = 1. Here, the middle \* is viewed as an element of Homgy,, 1) (p®, p*°).
Proof. We first fix any nonzero A\{ € Homgr, 1)(p, p*) and consider the pair { , ), on V' defined by
<'U1, ’U2>a = <)\(11U1, )\?'UQ>.

For g € SLy(k), one can check that
(p(g)v1, p(*g)v2)a =

- <vla 'U2>a7

L,

where we used the relation {¢g*) = (‘g)®. Thus by the uniqueness of the pair, we have that there
1

exists a constant ¢, € C* such that (v1,v2)q = ¢a(v1,v2). Then A\* := J=AT € Homgr,, () (p, p%)

satisfies the property
(A1, Av2) = (v1,v2), Voi,v9 €V,
where ,/c, is a square root of ¢,. The uniqueness of such A follows from the fact that
dim Homgy,, () (p, p*) = 1.

The “moreover” part seems very delicate and we don’t have a uniform proof at this moment. We
will check it case by case.

We first consider that (p, V) = wy,, for a quadratic character u of E' with u? # 1. For a € F*,
we fix z, € E* with Nm(z,) = 24" = a. Recall that an element f € V is a function on E* such

that f(uy) = = (u)f(y),Yu € B,y € EX. For f € V, we consider A*f(€) = \/p~ (x4 ") f(x4£).
Then we can check that (A f1, A* fa) = (f1, f2), where (f1, f2) is the pair defined in §3.7. Moreover,

Ao Af(€) = !
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Thus df, = 1 in this case.

Next, we consider the case when (p, V) = I(x) for a character x of k. If x is not quadratic, we
haven’t constructed a ( , ) on I() in previous sections. We first define a pair below. Consider the
intertwining operator A : I(x) — I(x™!) defined by

<g>=q—1zf(w (1 f) g),wef(x),

ek

where w = (_1 1) . One can check that A = f € I(x™1). For f1, fo € I(x), we define

(fi, f2) = > A fi(g) f2('9).

gGBSLQ(k)\SLQ(k)

Then, one can check that

(p(9)f1, p(‘g) f2) = (f1, f2), Y f1, f2 € I(X), g € SLa(k).
For a € k*, f € I(x), we define
A f(g) = Vx(a)f(yg

Then A* € Homgy,, (1) (V, V%), and
1

AxX'f(g) =x(a A f(g* ).
It follows that
AU f1, A fo) = (f1, fa)-
On the other hand, we have

Ao A" f(g)

a)f(g" )

a)f(diag(a™?, a)gdiag(a,a™ "))
gdiag(a, a 1))

diag(a,a™")) f(g).

X

(
(

X
f(
Pl
Thus we get df, = 1.

We omit the cases when p = 1, St, and just remark that the proofs in these cases are similar. [J

In the following, for a € k*, we write n(a) = h(a,a™?)w,, and £(a) = h(—1,a)wy, for simplicity.
Proof of Theorem 7.1. We have defined an anti-involution ™ on G by g = h(1,—1)g *h(1, 1),
see Section 6.3. In Section 6.5, we have constructed an anti-involution * on End(c,) such that
Yorx(4)) = 0x(7j). We define an anti-involution ™ on A(G, J, o) by

(K)(g9) = (K("9)),Vg € G, K € A(G, J,0x).

By Corollary 3.4 and Lemma 7.3, it suffices to show that for all K € A(G, J,wy) with "K = —K,
K(g) = 0 for all g = h(a,1),n(a),&(a),h(a,1)ws, Ya € k*. We now fix a K € A(G, J,wy) with
K =-K.
Step (1), K(h(a,1)) = 0. We have
h(aa 1)X2a+5(z) - X2a+,’3(az)h(av 1)a
see Eq.(6.1). Thus we get
$(2)K(h(a, 1)) = P(az) K (h(a, 1)).
If a # 1, we can take z such that 1(z) # ¢ (az). Then we get K(h(a,1)) =0ifa #1. Ifa =1, we
have h(1,1)g = gh(1,1) for all g € J. Thus we get K(h(1,1)) = Co,(1) for some C € C by Schur’s
Lemma. We can get C' = 0 from the condition "K = — K.
Step (2), K(n(a)) = 0. From Eqgs.(6.1)-(6.4), we can check the relations

n(a)(0,2,y,0,0,0) = (0, —ay,z/a,0,3zy)n(a),Va,y € k,
n(a)xs(b) = (0,0,0,a 3b,0)n(a), Vb € k,
xg(z)n(a) =n(a)(0,0,0,—z/a®,0),Vz € k.
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Thus, we have that

(7.1) K(n(a))or((0,2,y,0,0,0)) = 0x((0, —ay,a™ ', 0, 3zy)) K (n(a)), Y,y € k,
(7.2) K(n(a))ox(xs(b)) = K(n(a)),vb € k,
(7.3) or(xa(x)) K (n(a)) = K(n(a)), Ve € k.

We now consider different 7 separately.
Case (2.1), 7 =1. Put y =0 in Eq.(7.1) and apply Eq.(6.7), we can get

¥(=2s2)K (n(a))ds = y(a” z)K (n(a))ds.

We then get K (n(a))ds = 0if s # —1/(2a). Applying Eq.(7.2) and Eq.(6.7), we get 1(bs*) K
K(n(a))ds. Thus if s # 0, we get K(n(a))ds = 0. Since —1/(2a) # 0, we have K(n(a))ds
s€k.

Case (2.2), m = wy . Recall that wy, , has a basis {f;, b € k*}, where f,(x3) = 04,5, see Section
3.7. We can check that o, (xs(b))fr @ §s = ¢¥(b(r + s?)) f» ® 5. Plugging y = 0 into Eq.(7.1), we
can get ¥(—2xs)K(n(a))fr ® s = ¥(a tz)K(n(a))f, ® 6s. Thus we get K(n(a))f, @ §s = 0 if
s # —1/(2a). By Eq.(7.2), we can get ¢(b(r + s%))K (n(a))f, ® s = K(n(a))f. @ §s. Thus we get
K(h(a,)wy) fr ® 65 = 0 if r # —s?. We assume that

K(h(a,)wa)f-1/4a2) @ 0_1/(20) = Z C(b,t)fo @ ¢
bek* tek

for C(b,t) € C. Applying Eq.(7.1) when x = 0, we can get
> p)Cb 1) fy ® 6y = Zw 2ayt)C(b,t) fy @ 6.
byt

))s

(n(a
=0 for all

Thus we get C(b,t) = 0ift # 1/(2a). Applying Eq.(7.3), we can get C(b,1/(2a)) = 0if b # —1/(4a?).
We denote D(a) = C(—1/(4a?),1/(2a)). To summarize, we have that
K(n(a))fr ® 65 =0, if s # —1/(2a), or r # —1/(4a”),
(W(a))f—1/(4a2) ®0_1/(20) = D(a) f-1/(4a2) ® 1/ (2a)-

Note that "K(n(a)) = 'K (n(a)) since "(a) = n(a). Since "K + K = 0 and the pair (, ) on o, is
symmetric, we get (K (n(a))f-1/4a?) ® 0_1/(2a)> f-1/(4a2) ® 0_1/(24)) = 0. By Eq.(3.7) and Eq.(6.8),
we have

(K (n())f-1/(1a7) ® 5-1/(20)s F-1/(40%) ® 5-1/(20)) = D(@)u™ (@1} (402))-
Thus we get D(a) = 0, which implies that K(n(a)) = 0.

Case (2.3), 7 = w:gu for u = 1, k. Recall that w; has a basis {Ag, A,,z € Ag}, where Ag C k*
is still a set of representatives of k*/{%1}, see Section 3.6. We can check that o.(x5(b))A, ®
§s = Y(b(ur? + s%))A, @ d,, see Eq.(4.7) and Eq.(6.6). Using Eq.(7.1) when y = 0, we can get
K(n(a))A, ® 6s =01if s # —1/(2a) as above. Applying Eq.(7.2), we can get K(n(a))A, ® §; = 0 if
ur? + s2 # 0. Note that there is at most one rq € Ag U {0} such that ur3 + 1/(4a?) = 0. If there is

no such rg, we are done. Now assume that there exists ro with ur2 + 1/(4a?) = 0. We assume that
K(n(a))Ary ®6-1/2a) = Dy, C(b,t)Ap @ 6. Applying Eq.(7.1) when z = 0 we get

Zzp Cb,t)Ay ® 6 = ZQpZayt (b,t) Ay ® 6;,Vy € k.
By choosing appropriate y we can see C(b,t) = 0if t # 1/(2a). Applying Eq.(7.3) to the equation
K(n(a))ATO ® 5_1/(2(1) = Zb C(b, 1/(20,))Ab ® (51/(2(1), we can obtain that
> Cb,1/(20)) 0 (x(ub® + 1/(40%))) Ay @ 8120 = Y C(b,1/(2a)) Ay @ 6120, Y € K,
b b

which implies that C'(b, 1/(2a)) = 0if b # ro. Thus we have K (1(a))Ar,®0_1/(2a) = C(r0,1/(2a))Ar,®
01/(2a)- From the condition K + K = 0 and the symmetry of the pair ( , ) on o, we have

(K(n(a))Ary ® 0_1/(2a) Aro ® 0_1/(24)) = 0.
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By Eq.(3.5), Eq.(4.9) and the above discussion, the above equation implies that C(rg,1/(2a)) = 0.

Thus K(h(a,1)ws) = 0.

Case (2.4), 7 = wy, . The proof is similar to that the Case (2.3) and thus omitted.

Case (2.5), m = St. Recall that St has a basis {F,.,r € k}, see Section 3.5. By Eqs.(4.5, 6.7, 7.2),
we have

Y(bs?)K (n(a))Fr_p @ 05 = K(n(a))F, @ ds.
In particular, we have K(n(a))F, ® §; = ¥(rs?)K(n(a))Fy ® §s. Plugging y = 0 into Eq.(7.1) and
applying it to Fy ® s, we get ¥ (—2sz) K (n(a))Fo ® 6s = ¥(a™'z)K(n(a))Fy ® 65 using Eq.(4.5) and
Eq.(6.7). By choosing appropriate z, we see that K(h(a,1)ws)Fp ® ds = 0 if s # —1/(2a). Denote
ap = —1/(2a).

We assume that K(n(a))Fo ® 6ay = >y i, Cs(0, 1) Fp @ 6;. Plugging x = 0 into Eq.(7.1) and
applying it to Fo ® dq,, we can get >, (y)Cs(b, 1)1 @ 6 = 32y, Cs(b,t)Y(2ayt) Fy @ 64, Vy € k.
By choosing appropriate y, we have Cs(b,t) = 0 if ¢ # —ag. Thus we get K(n(a))Fo ® 6oy =
> ver DoFy ® 0_q,, where Dy = Cy, (b, —ao).

Note that 7(n(a)) = n(a), thus the condition "K + K = 0 implies that

(K(n(a))Fr ® b4y, Fo ® bay) + (Fr ® 4y, K(n(a)Fy ® 0a,)) = 0,Vr € k.
In particular, we have (K (n(a))Fo ® 04y, Fo ® dq,) = 0 and thus,
(K (1(a))Fr ® 8ay, Fo ® 8a,) = $(rad) (K (1(a)) Fo ® bay, Fo @ day) = 0
The above two equations then imply that
(Fr ® 6ag, K(n(a)Fo @ 04,)) = 0,Vr € k.

By Eq.(3.4) and Eq.(6.8), (Fr ® day, K(n(a)Fo ® da,)) = D + (¢ — 1) X _pc, Do Thus we get
D+ (q—1)> e, Dy = 0,¥r € k. A direct calculation shows that D, = 0,vb € k. Hence,
K (n(a)) = 0. This completes the proof of Step (2).
Step (3), K(£(a)) = 0. Recall that £(a) = h(—1,a)w; and w1 = wawsw,'. We can check the
relations
£(a)xa(y) = (0,0,0,0, —ay)é(a),
§(a)xatp (@) = Xarp(—2)é(a).

Thus we have

(7.4) K(§(a))ox(xp(y)) = K(&(a)), Yy € k,
(7.5) K(&(a)) = ox(x5(y)) K (&(a)),Vy € k,
(7.6) K(£(a))or(xa+8(2)) = on(Xats(—2))K({(a), Vz € k.

In the following, we still consider different 7 separately.
Case (3.1), # = 1. Applying Eq.(7.4) to ds, we get

b(ys”) K (€(a))3, = K(E(a))5s. Yy € k.
For s # 0, we can take y such that 1(ys?) # 1. Thus we have
K(&(a))ds =0, if s #£0.
Suppose that K(£(a))do = ), C(s)ds, where C(s) € C. Applying Eq.(7.5) to o, we have
> C(5)5s = K(§(a))do = o (x5(y)) K =Y " p(ys*)C(s)ds, ¥y € k.
sek s€k

If s # 0, take y # 0 such that 1 (ys? # 0). By comparing coefficients, we have C(s) = 0 unless s = 0.
Therefore,

K (&(a))ds = 0,5 # 0; K(§(a))do = C(0)do-
From the relation "(¢(a)) = &(a), "K + K = 0 and the symmetry of the pair () on o, we get
(K (&(a))do, 00y = 0. By Eq.(6.8), we have
(

K (&(a))do, do) = (C(0)do, do) = C(0).
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It follows that C'(0) = 0 and K (n(a)) = 0.
Case (3.2), m = wy,,. Applying Eq.(7.4) to f, ® 65, we have
b(y(r + s*) K (E(a) fr @ 6, = K(&(a)) fr @ 6.
This implies that K(£(a))f, ®0s = 0 if r+ 52 # 0. Suppose that K (£(a))f_s @0, = 2 Cs(b: 1) fo®
;. Applying Eq.(7.6) to f_s2 ® 05, we have

D U(=252)Cs(b, ) fr @ 6 = Zw (2t2)Cy (b, t) fyy @ 6,V € k.

An appropriate choice of z € k implies that Cs(b7 t)=0if t # —s. We get K(£(a))f_s2 ® 65 =
> Cs $)fo ® 6_s. Applying Eq.(7.5) to f_,2 ® 5, we have

ZC ,—8)fp @ g Zc b, —s)(y(b+ s2))fo @ 6_s,Vy € k,

which implies that Cs(b, —s) = 0 unless b = —s2. Thus we get K(£(a))f_s2 @ 85 = D(8)f_g2 ® §_s,
where D(s) = C5(—s2, —s). The condition "K + K = 0 implies that
<f—52 ® 557 K(é(a))f—ﬁ ® 5s> =0

By Eqgs.(3.7) and (6.8), the above equation implies that D(s) = 0. Hence, we have K (£(a)) = 0.
Case (3.3), m = wi for u = 1, k. The proof is similar to that of Case (3.2) and thus omitted.
Case (3.4), m = St. As in the proof of case (2.5), an application of Eq.(7.4) to F, ® d5 shows that
K(&(a)F, ® 0 = (rs?)K(£(a))Fy ® ds. Suppose that K(£(a))Fy @ 8, = >t Cs(b,t)Fy ® &, for
Cs(b,t) € C. Applying Eq.(7.6) to Fy ® d5 and using Eqs.(4.5), (6.7), we get

Zuj —225)Cy(b,t)F, @ 0, = ZC (b, )Y (22t)Fy @ 6,V € k.

If t #£ —s, we can choose z € k such that ¢(f2xs) # 1(2xt). Consequently, Cs(b,t) = 0 unless
t = —s, and K({(a))Fo ® s = > pcp, Cs(b)Fp @ 6_5, where Cs(b) = Cs(b, —s). An application of
Eq.(7.5) to Fy ® 05 shows that

S COF @6 =Y Co(br)yp(ys®) Fy,—y ®6_4,Vy € k.
bek bi€k

By comparing the coefficients of both sides of the above identity, we get Cs(b) = ¥(ys?)Cs(b + y).
In particular, we have C(b) = ¢(—bs*)C,(0). Thus K (&(a))Fo ® 65 = Cs(0) >, cp (—bs?) B @ 6_s.
As usual, the condition 7K + K = 0 implies that (K({(a))Fy ® ds, Fo ® 65) = 0. By Eq.(3.4) and
Eq.(6.8), we get

Cs(0) <(q — 1)) W(=bs®) + ¢(0)> = (K(§(a))Fo ® b, Fo ® 65) =0

bek

Because Y, ¥(—bs?) = 0if s # 0, and >, ), ¥(—bs?) = ¢ if s = 0, we have C;(0) = 0. Hence
K(&(a))Fy ®6s =0 and K(£(a))F, ® 6, = (rs?)K(£(a))Fy ® s = 0. This shows K(£(a)) = 0 and
completes the proof of Step (3).

Step (4), K(h(a,1)ws) = 0. We have

h(a, )wag = g*h(a, 1)w,,

where

Thus,
K(h(a, Yws)or(g) = o7(9) K (h(a, ws),Vg € SLa(k),
where 02(g) = 0.(g*). The above equation implies that
K (h(a,1)ws) € Homgy, x)(0r, 05).
We first assume that a ¢ k*2.
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If 7 = 1, we have o.|sr, = w;Z ®w, and 2 |sLy (k) = wj/; ® w,, . We have
HomSLz(k) (O'm O’i) = 0,
and thus K (h(a,1)ws) = 0.

If # = wwwwj}[j for u = 1,k, then Homgr,x)(0r,0%) # 0. In fact, from the decomposition
given in Proposition 2.1, we can write ox|sr,) = @;c; Vi, where I is an index set and each
V; is an irreducible representation of SLy(k) and occurred with multiplicity one. If V; is one of
L, I(x), Wy, St, then V; = V. By Lemma 7.4, we fix an isomorphism \{, € Homgg, x)(V;, V;*) such
that

<)\l‘l/ V1, )\(‘1/ ”Ug> = <U1, U2> V’Uh vy € Vo
v, = ww (resp. ww ), then V* = wff (resp. ww) From the decomposition of or[sr,,(x), one sees
that
Homgr, (k) (0, 0 @ Hom(V;, V),
i€l
where I is the subset of I such that V; is 1,St, I(x) or wy,, for i € I. For example, when 7 = wy, ,,,
and €y = 1, there are factors wi}'ﬁ ®w,, in the decomposition o|sr, k), but these factors are not

indexed by I, in fact, one has HomSLZ(k)(w;ZN Dw,, (w;})‘n P w;ﬁ)“) = 0. Hence, there are constants
C; € C such that
K(h(a, )wy) = Y i)y,
i€l

Note that "(h(a, 1)ws) = h(l,a)w = h(a‘1 a)h(a,1)ws. Thus
K(h ZCU7r L @))AY;,

and the condition K = —"K implies that K(h(a, Nwsy) = —("K)(h(a, 1)wy) = —*K(h(1,a)ws). From
the definition of the transpose operator, we get

(v1, K(h(a, Dwa)va) + (K (h(1, a)wa)vi,v2) = 0,Yv1,02 € T & wWy.
In particular, if we choose vy, vy € V; for a fixed i € I, we have
C; ((Ul,)\“l,im) + (07r(h(a_1,a)))\%/iv17vg>) =0,Vvi,v9 € V;.
If we replace vy by A{,vi, we get
C; (AL v1, AL v2) + (ox(h(a™", a)AY, AL v1,v2)) = 0,Vur,v3 € V.
By Lemma 7.4, we have o (h(a™!,a))A{, o A{, =idy,. We then get
C; (()\“}ivl,)\“}ivg) + <’U1,’U2>) =0,Vvi,v9 € V;,

ie.,
202'(’1)1, 'U2> = 07VU1,UQ S V;
This implies that C; = 0 for all ¢ and thus K(h(a, 1)wz) = 0.

Next, we assume that a ¢ k*? and m = St. Without loss of generality, we assume that a = x~
The proof is almost identical to the above case, but for completeness we still provide the details
here. Note that we have that Uﬂ|SL2(k) = UTF\SL2 . We consider the decomposion 0W|SL2(;C) given in
Proposition 2.1:

St ®Ww|SL2(k) = St@ @ I(X) @ @ Wep, @wg @w;;.

XEA neB

1

Let V be a summand in the above decomposition. If V' = St, I(x) or wy ., we have V = V¢ In
these cases, by Lemma 7.4, we fix a nonzero \{, € Homgr, ) (V,V?) such that

(AYv1, AT v2) = (v1,02), Y1, v € V.

v = w;f, then V¢ = w;);m; and if V = w{)}'ﬁ, then V¢ & wjp'. In fact, a direct calculation shows

2

that (wy, )® is exactly wy since we assumed a = k=1 (if @ = agx™! for some ag € k*, the two
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representations (wy, )* and wy, would differ by an inner automorphism). Let A? . € Hom(w;f, (o.)?z )%)
M ,

and A, € HomSLz(k)(ww (ww) ) be the identity maps.
w "
From the decomposition of St ® wy|sr,, k), we have

HomSL2(k) O, 0 71' = @HOIHSL2 k) ) I( ) ) @ @HomSLz(k)(ww,u,w&#)
XEA neB

@HOmSLz (St, St%) @HomSLz(k)(ww wwm @Homsb(k)(wwh (ww) ).

By Schur’s Lemma, each Hom space on the right hand side of the above equation has dimension 1
and is generated by A{, for the corresponding V' in the decomposition of St ® wy|sr, k). Thus we
can write

K a 1 ’LUQ Zov)\v,

for some constants Cy € C.
Since "(h(a, 1)ws) = h(1,a)ws = h(a~t,a)h(a, 1)ws and h(a=t,a) € J, we have that
K(h(1,a)ws) = ox(h(a™*,a))K (h(a, 1)ws).
Let )\“1,_1 = ox(h(a™',a))A{,, which is an isomorphism in Homgr,, (x)(V, Ve ') if V = St, I(x) or Wap, s
and is an isomorphism in Homg,, () (w}} , (w;);ﬁ)“fl) (resp. Homgr, (k) (w;) , (w;,)*
w;fﬁ). Then

)itV = wl‘z (resp.

K ]. a U)Q ZCV)\V

Since K is 7-skew-invariant,
K(h(a, Dwz) = —("K)(h(a, )wz) = —'K(h(1,a)ws).
By the definition of the transpose,
(v1, K(h(a, wa)ve) + (K (h(1, a)wa)v1, ve) = 0,Vv1,v2 € St ® wy.

In particular, choosing vy, vs € V, where V' is still a component of o |sr,, k), we have that
(7.7) Cv (@1, A vy) + <A@”v1,v2>) =0,y vz € V.

As in the previous case, one can show that Cy =0 for each V # ww or ww IfV = w or ww , then
A{, is simply the identity map and X{/ = o.(h(at,a)). Taking v; = A, = vy for some s € k* in
Eq.(7.7), then A% A, = €(k)A,-1, = —=A,—1,. Thus we have (vy, A%wvy) = 2 and (A% vy, vy) = 0.
Then Eq.(7.7) implies that Cy = 0. Thus K (h(a,1)ws) = 0.

At last, we assume that a = a2, ag € k*. Since h(a, 1)wy = h(ag, ag *)h(ao, ag)ws and h(ag, ag ') €
J, we have

K (h(a, V)ws) = o (h(ag, ag*)) K (h(ag, ap)ws).
Thus it suffices to show K (h(ag,ap)ws) = 0. Note that we have the relation
h(ag, ap)wag = gh(ao, ag)ws, Vg € SLa(k),
which implies that
K (h(ao, ao)wz)or(g) = ox(9)K (h(ag, ap)w2), Vg € SLa (k).
Thus K (h(ag, ap)wz) € Homgr, () (0x,0x). Let oxlsr, k) = ©V; be the decomposition as in Propo-
sition 2.1. We have Homgr,, (1) (07, 0x) = ®Endgy,, 1) (V;). Thus
K(h(ap,ag)ws) ZCldV

Note that "(h(ag, ag)ws) = h(ag, ap)ws, and tidy, = idy, by the discussion in Section 6.5. Thus

(TK)(h(a07a0)w2) = tK(h ao,ao w2 ZC ldv = (ao,ao)’IUQ).
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The condition "K' = —K implies that K(h(ag,ap)ws) = 0. This completes the proof of Theorem

7.1.

]
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