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Abstract. In this paper, we prove the uniqueness of certain Fourier-Jacobi models for the split
exceptional group G2 over finite fields with odd characteristic. Similar results are also proved for

Sp4 and U4.

1. Introduction

Uniqueness of Bessel models and Fourier-Jacobi models for classical groups over local fields,
recently proved in [AGRS, LS, Su, SZ, GGP1] for various cases, has played very important roles in the
study of automorphic representations and L-functions for classical groups. These uniqueness results
are the starting points of the local Gan-Gross-Prasad conjectures [GGP1, Conjecture 17.1], and the
key ingredients to construct new Rankin-Selberg integrals on these groups (see [GPSR, GJRS, JZ]
for some examples). They also give local functional equations, and thus local gamma factors, for
many long-known local zeta integrals for these groups (see [Ka] for example).

After proving the uniqueness of Bessel models and Fourier-Jacobi models for classical groups, a
natural question to ask is whether one could define similar models for exceptional groups and prove
analogous uniqueness. For the simplest exceptional group, the split group of type G2, we can define
a Fourier-Jacobi model which is quite similar to the Sp4 case.

Let k be a local field, and α, β be the two roots of G2(k) with α the short root and β the long
root, and let P = MV be the parabolic subgroup of G2(k) with β in its Levi subgroup M , where
V is the unipotent part of P . Then one has M ∼= GL2(k). Let J = SL2(k) n V ⊂ P . Then one
can check that there is a projection map J → SL2(k) n H , where H is the Heisenberg group
with 3 variables. For a non-trivial additive character ψ of k, one then has a Weil representation

ωψ of S̃L2(k) n H , where S̃L2(k) is the metaplectic cover of SL2(k). Thus we can view ωψ as a

representation of J̃ = S̃L2(k)nV . Given a genuine irreducible representation π of S̃L2(k), the tensor

product π ⊗ ωψ gives a representation of J . Here a representation of S̃L2(k) is called genuine if it

is not inflated from a representation of SL2(k) via the projection S̃L2(k) → SL2(k). Let Π be an

irreducible representation of G2(k), a non-trivial element in HomG2(k)(Π, Ind
G2(k)
J (π⊗ωψ)) is called

a Fourier-Jacobi model of Π. By Frobenius reciprocity,

HomG2(k)(Π, Ind
G2(k)
J (π ⊗ ωψ)) = HomJ(Π, π ⊗ ωψ).

We conjecture that these Hom spaces should have dimension at most one over local fields, at least for
self-dual irreducible representation Π, see Conjecture 6.2. It is worthwhile to mention that Ginzburg
[Gi] has constructed a local zeta integral which naturally lies in these Hom spaces.

The main goal of this paper is to consider the analogue conjecture over finite fields k with odd
characteristic and verify certain uniqueness of Fourier-Jacobi models for G2(k). Precisely, we prove
the following

Theorem A (Theorem 7.1). Let k be a finite field with odd characteristic. Let π be an irreducible

representation of SL2(k) which is not fully induced from the Borel subgroup. Then Ind
G2(k)
J (π⊗ωψ)

is multiplicity free.
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The representation Ind
G2(k)
J (π ⊗ ωψ) is a special case of the generalized Gelfand-Graev represen-

tations considered in [Kaw].
All the representations considered in this paper are complex representations, i.e., over the complex

field C.
Note that, over finite fields, the metaplectic cover S̃L2(k) splits and the Weil representation can

be defined over SL2(k). Moreover, over finite fields, every finite dimensional representation is semi-
simple, and thus the above theorem is equivalent to that for any irreducible representation Π of
G2(k), one has dim HomJ(Π, π ⊗ ωψ) ≤ 1 if π is an irreducible representation of SL2(k) which is
not fully induced from the Borel subgroup. However, if π is indeed an irreducible representation

which is fully induced from the Borel subgroup, then the representation Ind
G2(k)
J (π ⊗ ωψ) may not

be multiplicity free, see Remark 7.2, which is quite different from the conjectural local fields case.
On the other hand, if π is fully induced representation of SL2(k) and if Π is an irreducible cuspidal
representation of G2(k), in [LZ], we prove that HomJ(Π, π ⊗ ωψ) ≤ 1, which is used to prove the
existence of GL1-twisted gamma factors.

When we were working on the above result for the split exceptional group G2, we realized that even
for classical groups over finite fields, the uniqueness of Fourier-Jacobi models has not been settled in
general. Thus we decided to include some results on the uniqueness of certain Fourier-Jacobi models
for Sp4 and U4 over finite fields, which are quite similar to the G2 case:

Theorem B (Theorem 4.1 and Theorem 5.2). Let k be a finite field with odd characteristic and let
E/k be a quadratic extension. Let G = Sp4(k) (respectively U4(k)) and let J be a subgroup of G
which is isomorphic to SL2(k) n H (respectively U2(k) n HE with HE the Heisenberg group of the
form E2 ⊕ k). Let π be an irreducible representation of SL2(k) (respectively U2(k) ) which is not

fully induced from the Borel subgroup. Then IndGJ (π ⊗ ωψ) is multiplicity free.

As in the G2 case, if π is an irreducible representation which is fully induced from the Borel
subgroup, then IndGJ (π⊗ωψ) may not be multiplicity free in general (see Remark 4.2). On the other
hand, since unitary groups are inner forms of general linear groups, one might expect that similar
results also hold for GL4(k). But it turns out that even the Weil representation itself of GL2(k) is
not multiplicity free (see [Ge, Proposition 4.2]), thus we could not expect similar results for general
linear groups. This also shows how tricky things can be over finite fields.

We remark that, when π is a fully induced representation of SL2(k) (resp. U2(k)) from the Borel

subgroup, the fact that IndGJ (π ⊗ ωψ), where G can be G2(k), Sp4(k) (resp. U4(k)), may not be
multiplicity free comes from the fact that π⊗ ωψ|SL2(k) (resp. π⊗ ωψ|U2(k)) is not multiplicity free.
This is quite different from the local fields case and makes the uniqueness problem of Fourier-Jacobi
models over finite fields more complicated and thus more interesting. However, in this case, we still
expect irreducible cuspidal representations of G occur with multiplicity one in IndGJ (π ⊗ ωψ) (see
our subsequent work [LZ]).

Theoretically speaking, all of the above multiplicity one results could be checked using the known
character tables for these groups, see [Sr] for the character table of Sp4(Fq) when q is odd, and
[CR, En, EY] for the character table of G2. More generally, character tables of representations
of general reductive groups over finite fields have been determined by the work of Lusztig ([Lu])
and others, following the seminal work of Deligne-Lusztig [DL]. However, although the groups in
our consideration are relatively small, their character tables are already too complicated to be used
to give a proof of the above multiplicity one results practically. Alternatively, we use a variant of
Gelfand-Kazhdan method (see Section 3.2) to prove the above results. In [T], using this approach,
Teicher proved certain multiplicity one results for GSp2n and On over finite fields.

In general, let k be a finite field with odd characteristic and E/k be a quadratic extension,
Gn(k) = Sp2n(k) or U2n(k), and let ωψ be the Weil representation of Gn(k). A natural question
is then for what kind of irreducible representations π of Gn(k), the tensor product π ⊗ ωψ is still
multiplicity free? If π is the trivial representation or a character, this is known to be true. If π is
the Steinberg representation, it is proved by Hiss and Zalesski ([HZ]) that π⊗ωψ is multiplicity free.
It seems that little is known for general π. According to the decomposition of π ⊗ ωψ|SL2(k) given
in Section 2.5, we guess that if π is an irreducible cuspidal representation of Gn(k), then π ⊗ ωψ
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should be multiplicity free. This uniqueness of general Fourier-Jacobi models towards analogues of
the local Gan-Gross-Prasad conjectures over finite fields is currently our work in progress.

These multiplicity one results have potential applications in establishing certain functional equa-
tions over finite fields and proving the existence of certain twisted gamma factors as done by Roditty
in [Ro] for GLn over finite fields. In [Ni], Nien proved a local converse theorem for GLn(k) using
the local gamma factors in [Ro]. We expect to construct the gamma factors (using an analogue of
Rankin-Selberg method) and prove the converse theorems for other groups over finite fields in the
future.

Finally, we remark that, although few results on the multiplicities of Fourier-Jacobi models over
finite fields have been obtained in the literature, analogue problems for Bessel models have been
vastly studied, see [GGP2, GP, Ha, R, Th, Za] for example.

The paper is organized as follows. In Section 2, we give a review of representations of SL2(k)
over finite fields. In Section 3 and 4, we prove Theorem B for Sp4(k). The U4(k) case is included in
Section 5. We then introduce the Fourier-Jacobi models for G2(k) in Section 6, and prove Theorem
A in Section 7.
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2. Review of representations of SL(2) over finite fields

In this section, we collect some well-known facts on representations of SL2 over finite fields with
odd characteristic.

Throughout the paper, unless otherwise specified, we let q = pr with an odd prime p, and let
k = Fq, the unique (up to isomorphism) finite field with q elements. Let ψ be a fixed non-trivial

additive character of k. Write ε0 =
(
−1
q

)
and ε(x) =

(
x
q

)
for x ∈ k×, where

(
·
q

)
is the Legendre

symbol. Note that ε is the unique non-trivial quadratic character of k× and the kernel of ε is
k×,2 :=

{
x2 : x ∈ k×

}
. We fix a generator κ of the cyclic group k×. Then a set of representatives of

k×/k×,2 can be taken as {1, κ}.
Let E be the unique (up to isomorphism) quadratic extension of k. Let Fr : E → E be the

Frobenius map defined by Fr(x) = xq. Then Fr is the unique non-trivial element in the Galois group
Gal(E/k). Let Nm : E → k be the norm map and let Tr : E → k be the trace map. Note that
Nm(x) = x · Fr(x) = xq+1 and Tr(x) = x + xq. We can realize E as k[

√
κ]. Under this realization,

we have Fr(x + y
√
κ) = x − y

√
κ, Nm(x + y

√
κ) = x2 − y2κ, and Tr(x + y

√
κ) = 2x, for x, y ∈ k.

Let E1 = {x ∈ E× : Nm(x) = 1}. Then the norm map Nm : E× → k× induces an exact sequence
1→ E1 → E× → k× → 1.

2.1. Conjugacy classes and induced representations of SL(2). Table 1 gives the conjugacy
classes of SL2(k) (see [FH, §5]).

In the second to the last row in Table 1,

(
x

x−1

)
and

(
x−1

x

)
are in the same class. In

the last row,

(
x y
κy x

)
and

(
x −y
−κy x

)
are in the same class, and

(
x y
κy x

)
can be mapped
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Representative Number of elements in class Number of classes(
1

1

)
1 1(

−1
−1

)
1 1(

1 1
1

)
(q2 − 1)/2 1(

1 κ
1

)
(q2 − 1)/2 1(

−1 1
−1

)
(q2 − 1)/2 1(

−1 κ
−1

)
(q2 − 1)/2 1(

x
x−1

)
, x 6= ±1 q(q + 1) (q − 3)/2(

x y
κy x

)
, x 6= ±1, y 6= 0 q(q − 1) (q − 1)/2

Table 1. Conjugacy class of SL2(k)

to x + y
√
κ 6= ±1 in E1. Thus these representatives can be indexed by (E1 − {±1})/〈Fr〉. For(

x y
κy x

)
∈ SL2(k), we write ξx,y = x+ y

√
κ.

The simplest class of irreducible representations of SL2(k) is that induced from characters of
the Borel subgroup. Let BSL2

= ASL2
NSL2

be the Borel subgroup of SL2(k) consisting of upper
triangular matrices, with diagonal torus ASL2

∼= k× and upper triangular unipotent subgroup NSL2
.

Let χ be a character of k× ∼= ASL2 . We can view χ as a character of BSL2 such that its action

on NSL2
is trivial. Let I(χ) be the induced representation Ind

SL2(k)
BSL2

(χ), then dim I(χ) = q + 1. If

χ2 6= 1, then it is well-known that I(χ) is irreducible (see [Pr, §2.5] for example), I(χ) ∼= I(χ−1), and
there are totally q−3

2 of them. If χ = 1, the trivial character, then I(1) = 1 ⊕ St, where 1 denotes
the trivial representation of SL2(k) and St denotes the Steinberg representation. Hence, dim St = q.
If χ = ε, then I(ε) is a direct sum of two non-equivalent irreducible representations, each of which
is a Weil representation (cf. the next subsection), and has dimension q+1

2 ,

2.2. Weil representations. In this subsection, we give a quick review of Weil representations,
which will give certain cuspidal representations of SL2(k). Although we mainly care about the
SL2(k) case in this paper, it is worth to give a review of Weil representations of Sp2r(k), where r is a
positive integer and Sp2r is the symplectic group of rank r. The construction of Weil representations
for Sp2r(k) and more general groups over finite fields was given in [Ge] after the seminal work of
Weil [W].

Define a matrix Jr ∈ GLr(k) inductively by

J1 = (1), Jr =

(
1

Jr−1

)
.

Let W2r = k2r endowed with the symplectic structure 〈 , 〉 defined by

〈v1, v2〉 = 2v1

(
Jr

−Jr

)
tv2, v1, v2 ∈W2r.

Here elements in W2r are viewed as row vectors. The group Sp2r(k) is defined to be the isometry
group of (W2r, 〈 , 〉). Note that Sp2(k) = SL2(k). Let H2r be the Heisenberg group associated with
W2r. Explicitly, H2r = W2r ⊕ k with multiplication

[v1, z1] · [v2, z2] = [v1 + v2, z1 + z2 +
1

2
〈v1, v2〉], v1, v2 ∈W2r, z1, z2 ∈ k.
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Let Sp2r(k) act on H2r such that it acts on W2r by right multiplication and acts on the component
k in H2r trivially. Then we can form the semi-direct product Sp2r(k) n H2r. There is a Weil
representation ωψ of Sp2r(k)nH2r on S(kr), where S(kr) is the space of C-valued functions on kr.

We fix a decomposition W2r = X ⊕ Y with maximal isotropic subspace X,Y and dimX =
dimY = r. The Weil representation ωψ is determined by the following formulas

ωψ([x, 0, z])φ(ξ) = ψ(z)φ(ξ + x), x ∈ X, z ∈ k, ξ ∈ kr,
ωψ([0, y, 0])φ(ξ) = ψ(2ytJrξ)φ(ξ), y ∈ Y, ξ ∈ kr,

ωψ(diag(a, Jr
ta−1Jr))φ(ξ) = ε(det(a))φ(ξa), a ∈ GLr(k), ξ ∈ kr,

ωψ

((
Ir b

Ir

))
φ(ξ) = ψ(ξbJr

tξ)φ(ξ), b ∈ Matr(k), bJr = Jr
tb,

ωψ

((
b

−b−1

))
φ(ξ) =

1

γ(b, ψ)

∑
x∈kr

ψ(2ξbJr
tx)φ(x),

(2.1)

where γ(b, ψ) =
∑
x∈kr ψ(−xbJrtx). The above formulas also could be found in [GH, p. 220]. One

could compare these formulas with the Weil representation formulas in the p-adic case [Ku].
We will specialize the above construction to the case when r = 1, i.e., when Sp2r(k) = SL2(k).

Note that the formulas in (2.1) are much simpler in this case. For simplicity, we will drop the
subscripts from W2 and H2, i.e., we will write W2 as W and H2 as H . Since NSL2

∼= k, we
could view ψ as a character of NSL2 . Up to conjugation by ASL2 , there are two non-trivial additive
characters of NSL2 , which are ψ and ψκ, where ψκ is the character given by ψκ(x) = ψ(κx).

The representation ωψ|SL2(k) is reducible. In fact, let

S±(k) = {φ ∈ S(k) : φ(−ξ) = ±φ(ξ), ∀ξ ∈ k} .
Then S+(k) and S−(k) are invariant under the action of SL2(k). Denote the corresponding rep-
resentations by ω+

ψ and ω−ψ respectively. Then ω+
ψ and ω−ψ are irreducible, dimω+

ψ = q+1
2 and

dimω−ψ = q−1
2 . Similarly, from the character ψκ, one can construct the Weil representation

ωψκ = ω+
ψκ
⊕ ω−ψκ . Moreover, we have I(ε) = ω+

ψ ⊕ ω+
ψκ
. One can also check that ω−ψ and ω−ψκ

are cuspidal, in the sense that they are not subrepresentations of I(χ) for any character χ of k×.

2.3. Cuspidal representations. We already have two cuspidal representations ω−ψ , ω
−
ψκ

. The re-
maining cuspidal representations are also constructed from Weil representations.

Let µ be a non-trivial character of E1. Let

W(µ) =
{
f : E → C : f(yx) = µ−1(y)f(x), ∀x ∈ E, y ∈ E1

}
.

For f ∈ W(µ), we have f(0) = µ−1(y)f(0), for all y ∈ E1. Since µ is non-trivial, we get f(0) = 0.
For any a ∈ k×, let xa ∈ E× be such that Nm(xa) = a. Note that a function f ∈ W(µ) is uniquely
determined by its values on the set {xa : a ∈ k×}. Thus dimW(µ) = q − 1.

There is a representation ωψ,µ of SL2(k) on W(µ) such that

ωψ,µ

((
a

a−1

))
f(ξ) = f(aξ),

ωψ,µ

((
1 b

1

))
f(ξ) = ψ(Nm(ξ)b)f(ξ),

ωψ,µ

((
1

−1

))
f(ξ) = −q−1

∑
y∈E

ψ(Tr(Fr(y)ξ))f(y).

(2.2)

See [Bu, §4.1], or [Pr, Chapter 3].
The representation ωψ,µ is cuspidal. If µ2 6= 1, then ωψ,µ is irreducible. Furthermore, ωψ,µ is

isomorphic to ωψ,µ′ if and only if µ′ = µ±1. One can also check that ωψ,µ ∼= ωψκ,µ, and thus the

representation ωψ,µ is independent of the choice of ψ. We then get q−1
2 equivalence classes in the

family
{
ωψ,µ, µ ∈ Ê1, µ2 6= 1

}
. Let µ0 be the unique non-trivial quadratic character of E1, then one

can check that ωψ,µ0 = ω−ψ ⊕ ω
−
ψκ

.
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ch

(
x

x

)
, x = ±1

(
x y

x

)
,
x = ±1
y = 1, κ

(
x

x−1

)
, x 6= ±1

(
x y
κy x

)
,
x 6= ±1
y 6= 0

1 1 1 1 1
St q 0 1 −1
I(χ) (q + 1)χ(x) χ(x) χ(x) + χ(x−1) 0

ωψ,µ, µ
2 6= 1 (q − 1)µ(x) −µ(x) 0 −(µ+ µq)(ξx,y),

ω+
ψ , ω

+
ψκ

ε(x) 0

ω−ψ , ω
−
ψκ

0 −µ0(ξx,y)

Table 2. Character table of SL2(k)

(
1

1

) (
−1

−1

) (
1 1

1

) (
1 κ

1

) (
−1 1

−1

) (
−1 κ

−1

)
ω+
ψ

q+1
2

q+1
2 ε0 s t s′ t′

ω+
ψκ

q+1
2

q+1
2 ε0 t s t′ s′

ω−ψ
q−1

2 − q−1
2 ε0 u v u′ v′

ω−ψκ
q−1

2 − q−1
2 ε0 v u v′ u′

Table 3. Missing part of Table 2

So far, we get a list of irreducible representations

1, St, I(χ) (χ2 6= 1), ω±ψ , ω
±
ψκ
, ωψ,µ (µ2 6= 1),

and the only non-trivial relations among them are I(χ) ∼= I(χ−1) and ωψ,µ ∼= ωψ,µ−1 . One can
easily see that this is a complete list of irreducible representations of SL2(k) by checking that the
cardinality of this list is exactly the same as the number of conjugacy classes of SL2(k).

2.4. Character table. For a finite dimensional representation ρ of a finite group G, we denote by
chρ the character function of G. Recall that chρ(g) = Trρ(g) =

∑
i rii, if ρ(g) is identified with a

matrix (rij). The function chρ is a class function, i.e., it is constant on a conjugacy class. Table 2
gives the character table of SL2(k), which is taken from [FH, §5]:

The missing part of Table 2 is given in Table 3. The parameters s, t, u, v, s′, t′, u′, v′ in Table 3
are given below:

s =
1

2
+

1

2

√
ε0q, t =

1

2
− 1

2

√
ε0q,

u = −1

2
+

1

2

√
ε0q, v = −1

2
− 1

2

√
ε0q,

s′ = ε0s, t
′ = ε0t, u′ = t′ = ε0t, v

′ = s′ = ε0s.

2.5. The tensor product π ⊗ ωψ. Given an irreducible representation π of SL2(k), we want to
determine the decomposition of π ⊗ ωψ. We first notice that chωψ = chω+

ψ
+ chω−ψ

. Thus we have

ch

(
1

1

) (
−1

−1

) (
1 1

1

) (
1 κ

1

) (
−1 1

−1

) (
−1 κ

−1

) (
x

x−1

) (
x y
yκ x

)
ωψ q ε0

√
ε0q −√ε0q ε0 ε0 ε(x) −µ0(ξx,y)

Let π be an irreducible representation of SL2(k), we are going to compute chπ⊗ωψ . It is well-known
that chπ⊗ωψ (g) = chπ(g)chωψ (g). Hence, we have the following character table
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ch St⊗ ωψ I(χ)⊗ ωψ ωψ,µ ⊗ ωψ ω+
ψ ⊗ ωψ ω+

ψκ
⊗ ωψ ω−ψ ⊗ ωψ ω−ψκ ⊗ ωψ(

1
1

)
q2 q(q + 1) q(q − 1) q(q+1)

2
q(q+1)

2
q(q−1)

2
q(q−1)

2(
−1

−1

)
ε0q (q + 1)χ(−1)ε0 (q − 1)µ(−1)ε0

q+1
2

q+1
2

−q+1
2

−q+1
2(

1 1
1

)
0

√
ε0q −√ε0q s

√
ε0q t

√
ε0q u

√
ε0q v

√
ε0q(

1 κ
1

)
0 −√ε0q

√
ε0q −t√ε0q −s√ε0q −v√ε0q −u√ε0q(

−1 1
−1

)
0 ε0χ(−1) −ε0µ(−1) s t t s(

−1 κ
−1

)
0 ε0χ(−1) −ε0µ(−1) t s s t(

x
x−1

)
ε(x) εχ(x) + εχ(x−1) 0 1 1 0 0(

x y
yκ x

)
µ0(ξx,y) 0 (µ+ µq)µ0(ξx,y) 0 0 1 1

where in the last two rows x 6= ±1, and in the last row y 6= 0 as usual.

Let A ⊂ k̂× be a set of representatives of (k̂×−{1, ε})/〈χ = χ−1〉, where 1 is the trivial character.

In other words, for each χ ∈ k̂×−{1, ε}, there is one and only one of χ, χ−1 is in A. Thus |A| = q−3
2 .

Let B be a set of representatives of (Ê1 − {1, µ0})/〈µ = µ−1〉. Then |B| = q−1
2 .

Proposition 2.1. Let χ1 (resp. µ1) be a character of k× (resp. E1) such that χ2
1 6= 1 (resp.

µ2
1 6= 1). We have the following decomposition of representations of SL2(k):

St⊗ ωψ = St
⊕⊕

χ∈A
I(χ)

⊕⊕
µ∈B

ωψ,µ

⊕ω+
ψ

⊕
ω+
ψκ
,

I(χ1)⊗ ωψ = St
⊕

2I(εχ1)
⊕ ⊕

χ∈A,χ 6=εχ±1

I(χ)

⊕⊕
µ∈B

ωψ,µ


⊕ 1 + ε0

2
(ω+
ψ ⊕ ω

−
ψ )
⊕ 1− ε0

2
(ω+
ψκ
⊕ ω−ψκ),

ωψ,µ1
⊗ ωψ = St

⊕⊕
χ∈A

I(χ)

⊕ ⊕
µ∈B,µ 6=µ0µ

±1
1

ωψ,µ


⊕ 1− ε0

2
(ω+
ψ ⊕ ω

−
ψ )
⊕ 1 + ε0

2
(ω+
ψκ
⊕ ω−ψκ),

ω+
ψ ⊗ ωψ = St

⊕ 1 + ε0
2

1⊕
⊕
χ∈A

I(χ)
⊕

ω+
ψ

⊕ 1− ε0
2

⊕
µ∈B

ωψ,µ
⊕

ω−ψκ

 ,

ω−ψ ⊗ ωψ =
1 + ε0

2

1⊕
⊕
χ∈A

I(χ)
⊕

ω+
ψκ

⊕ 1− ε0
2

⊕
µ∈B

ωψ,µ
⊕

ω−ψ

 ,

ω+
ψκ
⊗ ωψ = St

⊕ 1− ε0
2

1⊕
⊕
χ∈A

I(χ)
⊕

ω+
ψκ

⊕ 1 + ε0
2

⊕
µ∈B

ωψ,µ
⊕

ω−ψ

 ,

ω−ψκ ⊗ ωψ =
1− ε0

2

1⊕
⊕
χ∈A

I(χ)
⊕

ω+
ψ

⊕ 1 + ε0
2

⊕
µ∈B

ωψ,µ
⊕

ω−ψκ

 .



8 BAIYING LIU AND QING ZHANG

Proof. Denote by {Vi} a complete set of irreducible representations of SL2(k). Then any represen-
tation V of SL2(k) can be written as

V = ⊕miVi.

We have mi = (chV , chVi), where

(chV , chVi) =
1

|SL2(k)|
∑

g∈SL2(k)

chV (g)chVi(g)

is the standard inner product of chV and chVi . Thus to prove the proposition, one needs to compute
various (chπ⊗ωψ , chπ′) for any pair of irreducible representations π, π′ of SL2(k) using the above
tables. In the following, we only give the computation of (chI(χ1)⊗ωψ , chI(χ)) for a character χ with

χ2 6= 1, and omit similar calculations of other cases.
By the definition of the standard inner product, we have

|SL2(k)|(chI(χ1)⊗ωψ , chI(χ))

= q(q + 1)2 + (q + 1)2χ1χ(−1)ε0 +
q2 − 1

2

√
ε0q +

q2 − 1

2
(−√ε0q)

+
q2 − 1

2
χ1χ(−1)ε0 +

q2 − 1

2
χ1χ(−1)ε0

+ q(q + 1)
∑

x∈(k×−{±1})/(±1)

(χ(x) + χ(x−1))(εχ1(x) + εχ−1
1 (x))

= q(q + 1)2 + 2q(q + 1)χ1χε(−1) + q(q + 1)
∑

x∈k×−{±1}

(χχ1ε(x) + εχ−1χ1(x)).

Since χ(−1) = χ−1(−1) and q(q + 1)2 = q(q + 1)(q − 1) + 2q(q + 1), we get

|SL2(k)|(chI(χ1)⊗ωψ , chI(χ))

= q(q + 1)(q − 1) + q(q + 1)
∑
x∈k×

(χχ1ε(x) + χ−1χ1ε(x)).

Note that when χ 6= εχ±1 , we have
∑
x∈k×(χχ1ε(x) + χ−1χ1ε(x)) = 0, and if χ = εχ1, or χ = εχ−1

1 ,

we have
∑
x∈k×(χχ1ε(x) + χ−1χ1ε(x)) = q − 1. Since |SL2(k)| = q(q + 1)(q − 1), we conclude that

(chI(χ1)⊗ωψ , chI(χ)) = 1 if χ 6= εχ±1
1 , and (chI(χ1)⊗ωψ , chI(χ)) = 2 if χ = εχ±1

1 . �

One can double check the statement in the above theorem by evaluating both sides of each equality
at a set of representatives of the conjugacy classes.

Corollary 2.2. Let π be an irreducible representation SL2(k). If π 6= I(χ1) with χ2
1 6= 1, then the

tensor product π ⊗ ωψ is multiplicity free.

Proof. The assertion follows from Proposition 2.1 and the fact that 1+ε0
2 , 1−ε0

2 ∈ {0, 1}. �

Remark 2.3. Let k be a p-adic field, n be a positive integer. Let S̃p2n(k) be the metaplectic cover

of the symplectic group Sp2n(k), and ωψ be the Weil representation of S̃p2n(k). Then by the main

theorem of [Su], for any irreducible smooth genuine representation π of S̃p2n(k), the tensor product
representation π ⊗ ωψ of Sp2n(k) is multiplicity free. While when k is a finite field, Proposition 2.1
shows that HomSL2(k)(I(εχ1), I(χ1)⊗ωψ) = 2. This shows that the multiplicity one result of π⊗ωψ
fails in general over finite fields. This kind of phenomenon is also known for Bessel models over finite
fields (see [GGP2, R] for examples). �

Remark 2.4. Over finite fields, few results are known on the multiplicities of decomposition of
π ⊗ ωψ|Sp2n(k) for general n and general irreducible representations π of Sp2n(k). To the author’s
knowledge, only when π is the Steinberg representation of Sp2n(k), it is shown in [HZ, Corollary
1.3] that π ⊗ ωψ is multiplicity free. Based on the SL2(k) case given in Proposition 2.1 and the
corresponding results for Bessel models [GGP2, R], one might guess that π ⊗ ωψ|Sp2n(k) should be
multiplicity free when π is an irreducible cuspidal representation on Sp2n(k). �
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2.6. Dual representation. For g ∈ SL2(k), we define ιg = d1gd1, where d1 = diag(−1, 1). Then ι is
an involution of SL2(k). Given an irreducible representation π of SL2(k), let ιπ be the representation
such that its space is the same with π and its action is given by ιπ(g) = π(ιg). For later use, we
record the following result

Lemma 2.5. Let π be an irreducible representation of SL2(k), and π̃ be its dual representation.
Then we have π̃ ∼= ιπ.

Proof. We have chπ̃(g) = chπ(g−1) and chιπ(g) = chπ(ιg). From the character table given in Section
2.4, we can check case by case that chπ̃ = chιπ. Thus π̃ ∼= ιπ. �

The involution ι is called an MVW involution of SL2(k) and can be defined in a more general
setting, see [MVW, p.91].

3. Construction of transpose on certain End spaces

In this section, we introduce the multiplicity one problem of certain Fourier-Jacobi models on Sp4

and general strategies to attack such a problem. We then construct transpose operators on certain
End spaces as preparations for proving the multiplicity one theorems for Sp4, G2, and U4.

3.1. The problem. For a positive integer n, let Jn be the matrix defined by

Jn =

(
1

Jn−1

)
, J1 = (1).

Let

Sp2n(k) =

{
g ∈ GL2n(k)|g

(
Jn

−Jn

)
tg =

(
Jn

−Jn

)}
.

Note that Sp2(k) = SL2(k). We will mainly focus on Sp4(k) in this section. A typical element in
the torus of Sp4(k) has the form t = diag(a, b, b−1, a−1), a, b ∈ k×. Let α, β be the two simple roots
defined by

α(t) = a/b, β(t) = b2, for a, b ∈ k×.
Denote

sα =


1

−1
−1

1

 , and sβ =


1

1
−1

1

 .

Then sα, sβ are representatives of the reflections defined by α and β, respectively. We write

xβ(b) =


1

1 b
1

1

 , b ∈ k.

Let P = MU be the parabolic subgroup of Sp4(k) with Levi subgroup

M =


a g

a−1

 , a ∈ k×, g ∈ SL2(k)

 ,

and unipotent subgroup

U =




1 ∗ ∗ ∗
1 0 ∗

1 ∗
1

 ∈ Sp4(k)

 .

Let M0 = {diag(1, g, 1), g ∈ SL2(k)} and let J = M0U ⊂ P . We view SL2(k) as a subgroup of
Sp4(k) via SL2(k) ↪→M0.
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There is an isomorphism SL2(k) n H → J defined by

(g, [v, z])→

1
g

1

1 v z
I2 v∗

1

 ,

where v = (x, y) ∈ W and v∗ =

(
y
−x

)
. We identify [x, y, z] as an element in J in this way.

Thus the Weil representation ωψ of SL2(k) n H gives a representation of J . Given an irreducible
representation π of SL2(k), we consider the representation π ⊗ ωψ of J . The action of π ⊗ ωψ is
given by π⊗ ωψ(j)(v1 ⊗ v2) = π(p(j))v1 ⊗ ωψ(j)v2, for j ∈ J, v1 ∈ π, v2 ∈ ωψ, where p : J → SL2(k)
is the natural projection. It is known that π⊗ωψ is irreducible as a representation of J , see [Su] for
a proof in the p-adic case which is also valid in the finite fields case.

We might ask the question: for which irreducible representation π of SL2(k), the induced repre-

sentation Ind
Sp4(k)
J (π ⊗ ωψ) is multiplicity free?

For a p-adic field k, given an irreducible genuine irreducible representation π of S̃L2(k), and an
irreducible smooth representation σ of Sp4(k), it is always true that

dim HomJ(σ, π ⊗ ωψ) ≤ 1,

which is the main theorem of [BR]. Any nonzero element in HomJ(σ, π ⊗ ωψ) gives an embedding

σ ↪→ Ind
Sp4(k)
J (π⊗ωψ), which is called a Fourier-Jacobi model of σ for the given datum (π⊗ωψ, J).

Thus the above result of [BR] says that the Fourier-Jacobi model of σ is unique (if it exists). Fourier-
Jacobi models over local fields were defined in a more general context for many classical groups such
as Sp2n, unitary groups and GLn in [GGP1]; the uniqueness of Fourier-Jacobi model in the p-adic
field case was proved in [GGP1, Su], and was proved in [LS] in the Archimedean case.

For a finite field k, our purpose is to show that Ind
Sp4(k)
J (π ⊗ ωψ) is multiplicity free when π is

an irreducible representation not of the form I(χ), where χ is a non-quadratic character of k×, see

Section 4. When π = I(χ), it turns out that the induced representation Ind
Sp4(k)
J (I(χ) ⊗ ωψ) is in

general not multiplicity free, see Remark 4.2. This in fact is not surprising after Proposition 2.1.

3.2. The general strategy. Given a group G, an anti-involution τ on G is a map τ : G→ G such
that τ(τg) = g and τ(g1g2) = τg2

τg1, for all g, g1, g2 ∈ G.
In this subsection, let G be an arbitrary finite group and H be a subgroup of G. Let σ be a

representation of H. We consider the algebra

A(G,H, σ) = {K : G→ EndC(σ) : K(h1gh2) = σ(h1)K(g)σ(h2)} .

The product in A(G,H, σ) is given by convolution:

K1 ∗K2(g) =
∑
x∈G

K1(gx−1)K2(x).

For K ∈ A(G,H, σ) and f ∈ IndGH(σ), we define a function K ∗ f : G→ σ by

(K ∗ f)(x) =
1

|G|
∑
g∈G

K(xg−1)f(g).

One can check that K ∗f ∈ IndGH(σ). Denote by LK ∈ End(IndGH(σ)) the endomorphism f 7→ K ∗f .

Theorem 3.1 (Mackey, see [Pr, p.3]). The assignment K 7→ LK defines an isomorphism between

A(G,H, σ) and EndG(IndGH(σ)).

Corollary 3.2. The induced representation IndGH(σ) is multiplicity free if and only if the algebra
A(G,H, σ) is commutative.

Proof. By Schur’s Lemma, the representation IndGH(σ) is multiplicity free if and only if EndG(IndGH(σ))
is commutative. Then the assertion follows from Mackey’s Theorem, Theorem 3.1, directly. �
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We are going to use the Gelfand-Kazhdan method to prove the commutativity of certain A(G,H, σ).
We assume that there exists an anti-involution τ of G such that τH = H, and there exists an anti-
involution t on EndC(σ) such that t(σ(h)) = σ(τh) for all h ∈ H. Then for K ∈ A(G,H, σ), we can
define τK : G→ EndC(σ) by

(τK)(g) = t(K(τg)).

Lemma 3.3. For K,K1,K2 ∈ A(G,H, σ), we have

(1) τK(h1gh2) = σ(h1)τK(g)σ(h2), ∀h1, h2 ∈ H, g ∈ G; thus τK ∈ A(G,H, σ);
(2) τ (τK) = K;
(3) τ (K1 ∗K2) = τK2 ∗ τK1.

Thus, τ is an anti-involution on A(G,H, σ).

The proof is routine and thus omitted. Certain detailed computation could be found in [T].

Corollary 3.4. Let {gi, 1 ≤ i ≤ n} be a subset of G such that G = ∪i,1≤i≤nHgiH. If τK(gi) = K(gi)

for all i with 1 ≤ i ≤ n for all K ∈ A(G,H, σ), then A(G,H, σ) is commutative and thus IndGH(σ)
is multiplicity free.

Proof. Since G = ∪HgiH and then τK(g) = K(g) for all g ∈ G,K ∈ A(G,H, σ) from the assump-
tion. Thus τK = K. Since τ is an anti-involution, we get that A(G,H, σ) is commutative. �

3.3. An anti-involution. Denote d = diag(−1,−1, 1, 1). For g ∈ Sp4(k), we define

ιg = d−1gd. τg = ιg−1.

Then ι is the MVW involution on Sp4(k), see [MVW, p.91], and τ is an anti-involution on Sp4(k).
We have

ι[x, y, z] = [x,−y,−z],
and

ι


1

a b
c d

1

 =


1

a −b
−c d

1

 .

In particular, ιJ = J . Note that the restriction of the involution ι to SL2(k) is exactly the MVW
involution considered in Section 2.6. Given a representation σ of J , we denote by ισ the representation
ισ(g) = σ(ιg).

Let π be an irreducible representation of SL2(k) which is not fully induced from the Borel subgroup
and let σπ = π ⊗ ωψ. The aim of the rest of this section is to define a transpose t on End(σπ) such
that t(σ(j)) = σ(τj) for all j ∈ J . First we need to define pairs between ωψ and ιωψ, π and ιπ.

3.4. A pair on ωψ × ιωψ. For a, b ∈ k, recall the delta function

δa,b =

{
1, if a = b;
0, if a 6= b.

Then the space S(k) has a basis {δs, s ∈ k}, where δs(t) = δs,t.

Lemma 3.5. Consider the pair

〈φ, φ′〉 =
∑
ξ∈k

φ(ξ)φ′(ξ), φ, φ′ ∈ S(k).

We have

〈ωψ(j)φ, ωψ(ιj)φ′〉 = 〈φ, φ′〉, ∀j ∈ J, φ, φ′ ∈ S(k).

Proof. If j = [x, 0, z], we have ωψ(j)φ(ξ) = ψ(z)φ(ξ + x). On the other hand, we have ι[x, 0, z] =
[x, 0,−z]. Thus ιωψ(j)φ′(ξ) = ωψ([x, 0,−z])φ′(ξ) = ψ(−z)φ′(ξ + x). By changing variable on the
summation, we get

〈ωψ([x, 0, z]φ), ιωψ([x, 0, z])φ′〉 =
∑
ξ∈k

φ(ξ)φ′(ξ) = 〈φ, φ′〉.
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Similarly, we can show that

〈ωψ(j)φ, ιωψ(j)φ′〉 = 〈φ, φ′〉, for j = [0, y, 0], diag(a, a−1),xβ(b).

Let w =

(
1

−1

)
and w′ =

(
−1

1

)
, then under the embedding SL2(k) ↪→ Sp4(k), we have

ιw = w′. We need to show that

〈ωψ(w)φ, ωψ(w′)φ′〉 = 〈φ, φ′〉.
Since S(k) is spanned by {δs} and the pair 〈 , 〉 is bilinear, it suffices to show that

〈ωψ(w)δs, ωψ(w′)δt〉 = 〈δs, δt〉 = δs,t.

By the formula (2.1), we have

ωψ(w)δs(ξ) =
1

γ(1, ψ)
ψ(2sξ), ωψ(w′)δt(ξ) =

1

γ(−1, ψ)
ψ(−2tξ).

Thus we get

〈ωψ(w)δs, ωψ(w′)δt〉 =
1

γ(1, ψ)γ(−1, ψ)

∑
ξ∈k

ψ(2(s− t)ξ) =
q

γ(1, ψ)γ(−1, ψ)
δs,t,

where the last step follows from
∑
ξ∈k ψ(2(s− t)ξ) = qδs,t. On the other hand, it is well-known that

γ(1, ψ)γ(−1, ψ) = q, see [Bu, Exercise 4.1.14, p.420] for example. Thus we get

〈ωψ(w)δs, ωψ(w′)δt〉 = 〈δs, δt〉 = δs,t.

Since J = SL2(k) n H is generated by diag(a, a−1),xβ(b), w, [x, 0, z] and [0, y, 0], we get that

〈ωψ(j)φ, ιωψ(j)φ′〉 = 〈φ, φ′〉, ∀j ∈ J.
This completes the proof of the lemma. �

Note that the pair constructed in Lemma 3.5 is symmetric and satisfies the property

(3.1) 〈δs, δt〉 = δs,t.

3.5. A pair on St⊗ιSt. Let 1 be the trivial character of k×. We consider the induced representation
I(1) of SL2(k). An element f ∈ I(1) is a function f : SL2(k)→ C such that

f (bg) = f(g), ∀b ∈ BSL2
, g ∈ SL2(k),

where BSL2
is the upper triangular subgroup of SL2(k). For f1, f2 ∈ I(1), we define a pair

〈f1, f2〉 =
∑

g∈BSL2
\SL2(k)

f1(g)f2(d1gd1),

where d1 =

(
−1

1

)
∈ GL2(k). Note that this pair is well-defined and symmetric. Moreover, it

satisfies the property

〈r(g)f1, r(
ιg)f2〉 = 〈f1, f2〉, ∀g ∈ SL2(k), f1, f2 ∈ I(1),(3.2)

where r(g)f denotes the right translation action of g on the sections f .

Recall that we have the Bruhat decomposition SL2(k) = BSL2
∪BSL2

wNSL2
, where w =

(
1

−1

)
.

Let f0 ∈ I(1) whose support is in BSL2
and f0(b) = 1, for all b ∈ BSL2

. For r ∈ k, let fw,r ∈ I(1) be

the function such that its support is BSL2w

(
1 r

1

)
, and fw,r

(
bw

(
1 r

1

))
= 1, ∀b ∈ BSL2 . Then

{f0, fw,r : r ∈ k} forms a basis of I(1). Let f1 = f0 +
∑
r∈k fw,r, i.e., f1(g) = 1 for all g ∈ SL2(k).

Lemma 3.6. We have following formulas:

〈f1, f1〉 = q + 1;

〈f1, fw,r〉 = 1, ∀r ∈ k;

〈fw,r, fw,s〉 = δs,−r, ∀r, s ∈ k.
(3.3)
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Proof. This follows from direct computations. �

Recall that I(1) = 1 ⊕ St as a representation of SL2(k). The subspace of I(1) spanned by f1 is
an invariant subspace of I(1) and it corresponds to the trivial representation of SL2(k). For r ∈ k,
define Fr = f1− fw,r. One can check that the space generated by {Fr, r ∈ k} is also invariant under
the action of SL2(k), which is the space of St. By Lemma 3.6, we have

(3.4) 〈Fr, Fr′〉 = q − 1 + δr,−r′ .

3.6. A pair on ω±ψ ⊗ ιω±ψ . Recall that the space S+(k) of ω+
ψ consists of functions φ ∈ S(k)

with φ(−x) = φ(x) for all x ∈ k. Let A0 be a set of representatives of k×/ {±1}. Then the set
{2δ0, δs + δ−s, s ∈ A0} forms a basis of S+(k). For simplicity we write ∆s = δs+ δ−s for s ∈ k× and
∆0 = 2δ0. The pair 〈 〉 defined in Lemma 3.5 gives a pair on ω+

ψ which satisfies

〈ω+
ψ (g)φ, ω+

ψ (ιg)φ′〉 = 〈φ, φ′〉, ∀g ∈ SL2(k), φ, φ′ ∈ S+(k).

We have the formula

(3.5) 〈∆s,∆t〉 = 2(δs,t + δs,−t).

Recall that the space of ω−ψ consists of φ ∈ S(k) such that φ(−x) = −φ(x) for all x ∈ k. For

s ∈ k×, write ∆′s = δs−δ−s. Then {∆′s, s ∈ A0} forms a basis of ω−ψ . The pair 〈 〉 defined in Lemma

3.5 also gives a bilinear symmetric pair on ω−ψ which satisfies

〈ω−ψ (g)φ, ω−ψ (ιg)φ′〉 = 〈φ, φ′〉, ∀g ∈ SL2(k), φ, φ′ ∈ ω−ψ .

And we also have a formula

(3.6) 〈∆′s,∆′t〉 = 2(δs,t − δs,−t).

3.7. A pair on ωψ,µ⊗ ιωψ,µ. Let µ be a character of E1 with µ2 6= 1. We then have an irreducible
cuspidal representation ωψ,µ of SL2(k). We need an explicit pair 〈 〉 : ωψ,µ × ωψ,µ → C such that

〈ωψ,µ(g)v1, ωψ,µ(ιg)v2〉 = 〈v1, v2〉, ∀g ∈ SL2(k), v1, v2 ∈ ωψ,µ.

Recall that the space of ωψ,µ consists of functions f : E× → C such that f(yx) = µ−1(y)f(x) for
all y ∈ E1, x ∈ E×. As in Section 2.3, for each a ∈ k×, we fix an element xa ∈ E× such that
Nm(xa) = a, then a function f ∈ ωψ,µ is uniquely determined by its values on the set {xa, a ∈ k×}.
For each a ∈ k×, we define a function fa ∈ ωψ,µ such that fa(xb) = δa,b. Then {fa : a ∈ k×} forms
a basis of ωψ,µ.

For φ, φ′ ∈ ωψ,µ, notice that the function x 7→ φ(x)φ′(xq) on E× is E1-invariant. We define a
pair

〈φ, φ′〉 =
∑

x∈E1\E×
φ(x)φ′(xq) =

1

q + 1

∑
x∈E

φ(x)φ′(xq),

where we used φ(0) = 0 for φ ∈ ωψ,µ. Then, we have

(3.7) 〈fa, fb〉 = µ−1(xq−1
a )δa,b, ∀a, b ∈ k×.

Lemma 3.7. We have 〈ωψ,µ(g)φ, ωψ,µ(ιg)φ′〉 = 〈φ, φ′〉, ∀φ, φ′ ∈ ωψ,µ, g ∈ SL2(k).

Proof. Note that aq = a for a ∈ k×, and Nm(ξ) = Nm(ξq) = ξq+1 for ξ ∈ E. By Eq.(2.2) and a
simple changing of variables, we get

〈ωψ,µ
((

a
a−1

))
φ, ωψ,µ

((
a

a−1

))
φ′〉 = 〈φ, φ′〉,

and

〈ωψ,µ
((

1 b
1

))
φ, ωψ,µ

((
1 −b

1

))
φ〉 = 〈φ, φ′〉,

for all a ∈ k×, b ∈ k, φ, φ′ ∈ ωψ,µ.
We now check

〈ωψ,µ(w)φ, ωψ,µ(ιw)φ′〉 = 〈φ, φ′〉.
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It suffices to show that

〈ωψ,µ(w)fa, ωψ,µ(ιw)fb〉 = µ−1(xq−1
a )δa,b, ∀a, b ∈ k×.

We have

ωψ,µ(w)fa(ξ) = −q−1
∑
x∈E1

ψ(Tr(xqxqaξ))µ
−1(x),

and

ωψ,µ(ιw)fb(ξ) = −q−1
∑
y∈E1

ψ(−Tr(yqxqbξ))µ
−1(y).

Thus

〈ωψ,µ(w)fa, ωψ,µ(ιw)fb〉

= q−2 1

q + 1

∑
ξ∈E

∑
x,y∈E1

ψ(Tr(xqxqaξ)− Tr(yqxqbξ
q))µ−1(xy)

=
q−2

q + 1

∑
ξ∈E

∑
x,y∈E1

ψ(Tr(x−1y−1xqaξ)− Tr(xqbξ
q))µ−1(xy), ξ 7→ ξy−1

= q−2
∑
ξ∈E

∑
x∈E1

ψ(Tr(x−1xqaξ)− Tr(xqbξ
q))µ−1(x), x 7→ xy−1

= q−2
∑
ξ∈E

∑
x∈E1

ψ(Tr(x−1xqaξ)− Tr(xbξ))µ
−1(x), since Tr(xqbξ

q) = Tr(xbξ)

= q−2µ−1(xq−1
a )

∑
ξ∈E

∑
x∈E1

ψ(Tr(x−1xaξ)− Tr(xbξ))µ
−1(x), x 7→ xxq−1

a .

If a 6= b, for any x ∈ E1, the character ξ 7→ ψ(Tr(x−1xaξ) − Tr(xbξ)) on E is non-trivial, and thus
〈ωψ,µ(w)fa, ωψ,µ(ιw)fb〉 = 0. If a = b, the character ξ 7→ ψ(Tr(x−1xaξ)−Tr(xbξ)) on E is non-trivial
unless x = 1, and thus 〈ωψ,µ(w)fa, ωψ,µ(ιw)fb〉 = µ−1(xq−1

a ). This completes the proof. �

3.8. Transpose operators on End(π ⊗ ωψ). Let π = 1, St, ω±ψ , ω
±
ψκ
, or ωψ,µ, and σπ = π ⊗ ωψ.

We have constructed pairs on π × ιπ and on ωψ × ιωψ in previous subsections. We then can define
a pair on σπ by

〈f1 ⊗ φ1, f2 ⊗ φ2〉 = 〈f1, f2〉〈φ1, φ2〉, f1, f2 ∈ π, φ1, φ2 ∈ ωψ.
From the construction, we have

〈σπ(j)Φ, ισπ(j)Φ′〉 = 〈Φ,Φ′〉, ∀j ∈ J,Φ,Φ′ ∈ σπ.

For A ∈ EndC(σπ), we define tA ∈ EndC(σπ) by

〈tA(Φ),Φ′〉 = 〈Φ, A(Φ′)〉, ∀Φ,Φ′ ∈ σπ.

Lemma 3.8. The assignment A 7→ tA is an anti-involution on EndC(σπ) and satisfies

t(σπ(j)) = σπ(τj), ∀j ∈ J.

Proof. Note that the pair 〈 , 〉 on σπ is in fact symmetric from the construction, and it is routine to
check that A 7→ tA is an anti-involution on EndC(σπ).

For Φ,Φ′ ∈ σπ, j ∈ J , we have that

〈t(σπ(j))Φ,Φ′〉 = 〈Φ, σπ(j)Φ′〉 = 〈σπ(τj)Φ,Φ′〉.

Thus we get t(σπ(j)) = σπ(τj). �

Let σπ|SL2(k) =
⊕

i Vi be the decomposition given in Proposition 2.1, where Vi is an irreducible
representation of SL2(k). Note that each Vi occurred at most once in the decomposition. Let
idVi ∈ End(σπ) be the element such that idVi |Vj = 0 if j 6= i, and idVi |Vi is the identity.

Lemma 3.9. We have tidVi = idVi .
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Proof. Suppose that j 6= i, we need to show that tidVi |Vj = 0. Suppose that this is false, then
there exists vj ∈ Vj such that tidVi(vj) 6= 0. To get a contradiction, it suffices to show that
〈tidVi(vj), v〉 = 0 for all v ∈ σπ. If v /∈ Vi, we have 〈tidVi(vj), v〉 = 〈vj , idViv〉 = 0 since idViv = 0.
If v ∈ Vi, we have 〈tidVi(vj), v〉 = 〈vj , v〉. If this is not zero, we then get a non-trivial pair between

Vi and Vj such that 〈σπ(g)v, σπ(ιg)v′〉 6= 0, which would imply that Ṽi = ιVj . But we know that

Ṽi = ιVi by Lemma 2.5 and ιVj is not isomorphic to ιVi by assumption. This proves the lemma. �

4. Certain multiplicity one theorems for Sp4(k)

Our main theorem for Sp4(k) is the following

Theorem 4.1. The representation Ind
Sp4(k)
J (π⊗ωψ) of Sp4(k) is multiplicity free if π = 1, St, ω±ψ , ω

±
ψκ

,

ωψ,µ, where µ is a character of E1 with µ2 6= 1.

Remark 4.2. Before proving Theorem 4.1, we show that for q large, the representation Ind
Sp4

J (I(χ)⊗
ωψ) is not multiplicity free. In the following, we write Sp4(k) as G for simplicity. Recall that P is
the Kilingen parabolic subgroup with Levi M ∼= GL1(k) × SL2(k). Given characters χ1, χ2 of k×,
view χ1 ⊗ I(χ2) as a representation of M ∼= GL1(k)× SL2(k) and consider the parabolic induction

IndGP (χ1 ⊗ I(χ2)). We claim that, if χ2 = εχ, then

HomG(IndGJ (I(χ)⊗ ωψ), IndGP (χ1 ⊗ I(χ2))) ≥ 2.

In fact, by Frobenius reciprocity law,

HomG(IndGJ (I(χ)⊗ ωψ), IndGP (χ1 ⊗ I(χ2))) = HomJ(I(χ)⊗ ωψ, IndGP (χ1 ⊗ I(χ2))|J).

By Mackey’s Theorem (see [Se, Proposition 22, p.58]),

IndGP (χ1 ⊗ I(χ2))|J =
⊕

s∈J\G/P

IndJPs((χ1 ⊗ I(χs))
s),

where Ps = sPs−1 ∩ J , and for a representation ρ of P , the representation ρs of Ps is defined by
ρs(h) = ρ(s−1hs). Considering the element s = sαsβsα ∈ J\G/P , we have that

HomG(IndGJ (I(χ)⊗ ωψ), IndGP (χ1 ⊗ I(χ2))) ⊃ HomJ(I(χ)⊗ ωψ, IndJPs(χ1 ⊗ I(χ2))s)

= HomPs(I(χ)⊗ ωψ|Ps , (χ1 ⊗ I(χ2))s).

We have Ps ∼= SL2(k) ↪→M , and (χ1 ⊗ I(χ2))s = I(χ2). Thus

dim HomG(IndGJ (I(χ)⊗ ωψ), IndGP (χ1 ⊗ I(χ2))) ≥ dim HomSL2(k)(I(χ)⊗ ωψ, I(χ2)).

By Proposition 2.1, if χ2 = εχ, then

dim HomSL2(k)(I(χ)⊗ ωψ, I(εχ)) = 2.

Thus

dim HomG(IndGJ (I(χ)⊗ ωψ), IndGP (χ1 ⊗ I(εχ))) ≥ 2.

By Mackey’s irreducibility criterion (see [Se, p.59]), if χ1 and εχ are in “general position”, the

induced representation IndGP (χ1 ⊗ I(εχ)) is irreducible. Here two characters χ1, χ2 are said to be in
general position, if (χ1 ⊗ χ2) 6= (χ1 ⊗ χ2)w for all w ∈ W (Sp4) − {1}, where W (Sp4) denotes the
Weyl group of Sp4 and (χ1 ⊗ χ2) is viewed as a character of the maximal torus of G via

(χ1 ⊗ χ2)(diag(a, b, b−1, a−1)) = χ1(a)χ2(b),

and (χ1 ⊗ χ2)w(t) = (χ1 ⊗ χ2)(w.t) for t in the maximal torus. In fact, it is not hard to check that
χ1, χ2 are in general position if and only if χ2

1 6= 1, χ2
2 6= 1, χ1 6= χ±1

2 . For q large (in fact, q ≥ 7

will suffice), one could find χ1 such that χ1, εχ are in general position, so that IndGP (χ1 ⊗ I(εχ)) is

irreducible. Hence IndGJ (I(χ)⊗ ωψ) is not multiplicity free for q large. �
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Before we start the proof of Theorem 4.1, we also need to give the double coset decomposition
J\Sp4(k)/J . Denote t(a) = diag(a, 1, 1, a−1) for a ∈ k×. From the decomposition

Sp4(k) = PsαsβsαP ∪ PsαP ∪ P,
and

P = ∪a∈k×t(a)J = ∪a∈F×Jt(a),

we can get a set of representatives of the double coset J\Sp4(k)/J given by

t(a), η(a) :=


a

a−1

a
a−1

 , ξ(a) :=

 a
I2

−a−1

 , a ∈ k×.

Proof of Theorem 4.1. If π = 1, the multiplicity-freeness of Ind
Sp4(k)
J (ωψ) could be deduced from

the main result of [T]. In the following, for completeness, we still give details of the proof in this
case.

Denote σπ = π ⊗ ωψ for π listed in Theorem 4.1. In Section 3.8, we have constructed an
anti-involution t on End(σπ) such that t(σπ(j)) = σπ(τj). We can define an anti-involution τ on
A(Sp4(k), J, σπ) by

(τK)(g) = t(K(τg)),K ∈ A(Sp4(k), J, σπ), g ∈ Sp4(k).

By Corollary 3.4, it suffices to show that (τK)(g) = K(g) for g = t(a), η(a), ξ(a) for all a ∈ k×
and all K ∈ A(Sp4(k), J, σπ). Replacing K by K − τK, it suffices to show that for K ∈ A(G,H, σπ)
with τK = −K, K(g) = 0 for g = t(a), η(a), ξ(a), ∀a ∈ k×. We shall assume τK = −K and show
that K(g) = 0 for g = t(a), η(a), ξ(a), a ∈ k×, case by case.

Step (1), we show that K(t(a)) = 0 for all a ∈ k×. We first consider t(a), a 6= ±1. Since
t(a)[0, 0, z] = [0, 0, a2z]t(a), from the definition of A(Sp4(k), J, σπ), ψ(z)K(t(a)) = ψ(a2z)K(t(a)).
Since ψ is non-trivial and a2 6= 1, one can choose z ∈ k such that ψ(z) 6= ψ(a2z). Hence, K(t(a)) = 0.
Next, we show that K(t(a)) = 0 if a2 = 1. Since t(a)g = gt(a), ∀g ∈ SL2(k),

K(t(a))σπ(g) = σπ(g)K(t(a)), ∀g ∈ SL2(k).

This implies that K(t(a)) ∈ EndSL2(k)(σπ). As a representation of SL2(k), by Proposition 2.1, we
can write

σπ =
⊕

Vi,

where Vi is an irreducible representation of SL2(k) and i runs in certain index set. By Schur’s
Lemma, we can write

K(t(a)) =
∑
i

CiidVi ,

with Ci ∈ C depending on a. On the other hand, we have τ (t(a)) = t(a) if a2 = 1. Thus (τK)(t(a)) =
t(K(t(a))) by definition. By Lemma 3.9, the idempodents idVi are invariant under transpose, which
implies that t(K(t(a))) = K(t(a)). Then the assumption τK = −K implies that K(t(a)) = 0. This
completes Step (1).

Step (2), we show that K(η(a)) = 0 for all a ∈ k×. We first record the following relations

η(a)xβ(y) = [0, 0, a2y]η(a),(4.1)

η(a)[0, 0, a2y] = xβ(y)η(a),(4.2)

η(a)[0, y, 0] = [0, y, 0]η(a).(4.3)

We now consider the cases π = 1, St, ω±ψ , ω
±
ψκ
, ωψ,µ, respectively.

Case (2.1), π = 1. Recall that σπ = ωψ has a basis {δs, s ∈ k} . Applying formulas (2.1), we have
that

(4.4) ωψ(xβ(y))δs = ψ(ys2)δs, ωψ([0, y, 0])δs = ψ(2sy)δs, ∀y ∈ k.
Assume that K(η(a))δs =

∑
t∈k Cs(t)δt, for Cs(t) ∈ C. From the relation (4.3),

K(η(a))σπ[0, y, 0] = σπ[0, y, 0]K(η(a)).
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Applying the above formula to δs we have that

ψ(2sy)
∑
t

Cs(t)δt =
∑
t

ψ(2ty)Cs(t)δt.

Hence, Cs(t) = 0 if t 6= s, and K(η(a))δs = Cs(s)δs.
We now show that Cs(s) = 0 using the assumption that K + τK = 0. Since τη(a) = η(a),

τK(η(a)) = t(K(η(a))). Thus we have tK(η(a)) +K(η(a)) = 0, which then implies that

〈t(K(η(a))δs, δs〉+ 〈K(η(a))δs, δs〉 = 0, ∀s ∈ k.

From the definition of t(K(η(a))), the above condition implies that 〈K(η(a))δs, δs〉 = 0. From
Eq.(3.1), we then get Cs(s) = 0. This shows that K(η(a)) = 0, for all a ∈ k×.

Case (2.2), π = St. Recall that σπ = St⊗ωψ has a basis {Fr ⊗ δs, r, s ∈ k} , see Section 3.5. Note
that

(4.5) St(xβ(b))Fr = Fr−b, St([x, y, z])Fr = Fr,

where the action of St is given by right translation.
From the relation Eq.(4.1), we get K(η(a))σ(xβ(r)) = ψ(a2y)K(η(a)). Applying this formula to

Fr ⊗ δs and using Eq.(4.4) (4.5), we have

ψ(ys2)K(η(a))Fr−y ⊗ δs = ψ(a2y)K(η(a))Fr ⊗ δs.

In particular, K(η(a))Fr ⊗ δs = ψ((s2 − a2)r)K(η(a))F0 ⊗ δs. Thus to show that K(η(a)) = 0 it
suffices to show that K(η(a))F0 ⊗ δs = 0, ∀s ∈ k.

Assume that K(η(a))F0 ⊗ δs =
∑
b,t∈k Cs(b, t)Fb ⊗ δt. Here Cs(b, t) ∈ C might also depend on a.

From the relation (4.2), we have ψ(a2y)K(η(a)) = σπ(xβ(y))K(η(a)). Applying this to F0 ⊗ δs, we
get that ∑

b,t

ψ(a2y)Cs(b, t)Fb ⊗ δt =
∑
b,t

Cs(b, t)ψ(yt2)Fb−y ⊗ δt

=
∑
b,t

Cs(b+ y, t)ψ(yt2)Fb ⊗ δt.

Hence,

(4.6) Cs(b+ y, t) = ψ((a2 − t2)y)Cs(b, t), ∀b, t, y ∈ k.

On the other hand, using the relation (4.3), we have K(η(a))σ([0, y, 0]) = σ([0, y, 0])K(η(a)). Ap-
plying this to F0 ⊗ δs and using Eqs.(4.4), (4.5), we obtain that∑

b,t∈k

ψ(2sy)Cs(b, t)Fb ⊗ δt =
∑
b,t∈k

Cs(b, t)ψ(2ty)Fb ⊗ δt.

Thus we get ψ(2sy)Cs(b, t) = ψ(2ty)Cs(b, t) for all b, t, y ∈ k. If s 6= t, one can choose y such that
ψ(2sy) 6= ψ(2ty), hence, Cs(b, t) = 0. Write Ds = Cs(0, s), then Cs(b, s) = ψ((a2 − s2)b)Ds by
Eq.(4.6). We get that

K(η(a))F0 ⊗ δs =
∑
b

Cs(b, s)Fb ⊗ δs =
∑
b

ψ((a2 − s2)b)DsFb ⊗ δs.

Since τη(a) = η(a), and τK = −K, we get 〈K(η(a))F0 ⊗ δs, F0 ⊗ δs〉 = 0, where the pair 〈 , 〉 is
defined in Section 3.8. By Eqs.(3.1) and (3.4), the above equation is equivalent to

Ds + (q − 1)
∑
b∈k

ψ((a2 − s2)b)Ds = 0.

Note that
∑
b∈k ψ((a2 − s2)b) is either q or 0 depending on a2 = s2 or not. We then have Ds = 0.

This shows that K(η(a)) = 0 when π = St.
Case (2.3), π = ω±1

ψu
for u = 1, κ. In these cases, the proofs are similar, and we only give details

for π = ω+
ψ . Recall that σπ = ω+

ψ ⊗ ωψ has a basis ∆r ⊗ δs, where r runs over A0 ∪ {0} and s ∈ k.

Recall that A0 is a set of representatives of k×/ {±1} (see Section 3.6).
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We first record the following formulas

(4.7) σ([0, y, z])∆r ⊗ δs = ψ(2sy)∆r ⊗ δs, σ(xβ(b))∆r ⊗ δs = ψ(b(r2 + s2))∆r ⊗ δs.
From the relation η(a)xβ(y) = [0, 0, a2y]η(a), we get K(η(a))σ(xβ(y)) = ψ(a2y)K(η(a)). Applying
this to ∆r ⊗ δs, we get that

ψ((r2 + s2)y)K(η(a))∆r ⊗ δs = ψ(a2y)K(η(a))∆r ⊗ δs.
Since y is arbitrary, we get that

(4.8) K(η(a))∆r ⊗ δs = 0 if r2 + s2 6= a2

If r2 + s2 = a2, assume that K(η(a))∆r ⊗ δs =
∑
b,t Cr,s(b, t)∆b ⊗ δt, where t runs over k, and

b runs over {0} ∪ A0. From the relations (4.2) and (4.7), we can get ψ(a2y)K(η(a))∆r ⊗ δs =
σ(xβ(y))K(η(a))∆r ⊗ δs, or

ψ(a2y)
∑
b,t

Cr,s(b, t)∆b ⊗ δt =
∑
b,t

Cr,s(b, t)ψ(y(b2 + t2))∆b ⊗ δt.

Since y is arbitrary, we can get

(4.9) Cr,s(b, t) = 0, if b2 + t2 6= a2.

From the relation (4.3), we have K(η(a))σ([0, y, 0]) = σ([0, y, 0])K(η(a)). By Eq.(4.7), we have

ψ(2sy)
∑
b,t

Cr,s(b, t)∆b ⊗ δt =
∑
b,t

Cr,s(b, t)ψ(2ty)∆b ⊗ δt.

Hence, Cr,s(b, t) = 0 if t 6= s, and

(4.10) K(η(a))∆r ⊗ δs =
∑
b

Cr,s(b, s)∆b ⊗ δs.

Let b0 ∈ k be such that b20 = a2 − s2. If b2 6= b20, then Cr,s(b, s) = 0 by Eq.(4.9). Thus we get
K(η(a))∆r ⊗ δs = Cr,s(b0, s)∆b0 ⊗ δs. On the other hand, if r 6= ±b0, then Cr,s(b0, s) = 0 by
Eq.(4.8). Thus to show K(η(a)) = 0, it suffices to show that K(η(a))∆b0 ⊗ δs = 0. Note that
K(η(a))∆b0 ⊗ δs = Cb0,s(b0, s)∆b0 ⊗ δs. Since τK = −K and τη(a) = η(a), we have

〈K(η(a))∆b0 ⊗ δs,∆b0 ⊗ δs〉 = 0,

By the definition of the 〈 , 〉 (see Section 3.8) and Eq.(3.5), we get that

0 = 〈K(η(a))∆b0 ⊗ δs,∆b0 ⊗ δs〉 = 2Cb0,s(b0, s0).

Thus we get Cb0,s(b0, s) = 0. This shows that K(η(a))∆b0 ⊗ δs = 0, and hence K(η(a)) = 0.
Therefore, we get K(η(a)) = 0, for all a ∈ k×, when π = ω+

ψ .

Case (2.4), π = ωψ,µ for a character µ of E1 with µ2 6= 1. Recall that π has a basis {fa, a ∈ k×},
see Section 3.7. We record the following formulas

σ([0, y, z])fa ⊗ δs = ψ(2sy + z)fa ⊗ δs;
σ(xβ(b))fa ⊗ δs = ψ(b(a+ s2))fa ⊗ δs.

(4.11)

From the relation (4.1), we can get K(η(a))σ(xβ(y)) = ψ(a2y)K(η(a)). Applying this to fr ⊗ δs,
we get

ψ(y(r + s2))K(η(y))fr ⊗ δs = ψ(a2y)fr ⊗ δs.
Since y is arbitrary, we get K(η(a))fr ⊗ δs = 0 if r + s2 6= a2. Assume that

K(η(a))fa2−s2 ⊗ δs =
∑

b∈k×,t∈k

Cs(b, t)fb ⊗ δt.

From the relations (4.2) and (4.11), we can obtain that

ψ(a2y)K(η(a))fa2−s2 ⊗ δs = σ(xβ(y))K(η(a))fa2−s2 ⊗ δs,
i.e.,

ψ(a2y)
∑
b,t

Cs(b, t)fb ⊗ δt =
∑
b,t

Cs(b, t)ψ(y(b+ t2))fb ⊗ δt.
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Thus we get

(4.12) Cs(b, t) = 0 if b+ t2 6= a2.

Furthermore, using (4.3), we have K(η(a))σ([0, y, 0])fa2−s2 ⊗ δs = σ([0, y, 0])K(η(a))fa2−s2 ⊗ δs,
which is equivalent to ∑

b,t

Cs(b, t)ψ(2sy)fb ⊗ δt =
∑
b,t

Cs(b, t)ψ(2ty)fb ⊗ δt.

Thus we get

(4.13) Cs(b, t) = 0, if t 6= s.

Thus we get

K(η(a))fa2−s2 ⊗ δs = Cs(a
2 − s2, s)fa2−s2 ⊗ δs.

Since τK = −K and τη(a) = η(a), we get 〈K(η(a))fr0 ⊗ δs, fr0 ⊗ δs〉 = 0. By Eq.(3.7), it is easy to
see that Cs(a

2 − s2, s) = 0. This shows that K(η(a)) = 0, for all a ∈ k×, in the case π = ωψ,µ. This
also completes the proof of Step (2).

Step (3), we show that K(ξ(a)) = 0 for all a ∈ k×. One can check that τ(ξ(a)) = ξ(a) and

ξ(a)g = gξ(a), ∀g ∈ SL2(k).

Thus

K(ξ(a))σπ(g) = σπ(g)K(ξ(a)), ∀g ∈ SL2(k).

Hence, K(ξ(a)) ∈ EndSL2(k)(σπ). Let σπ|SL2(k) = ⊕Vi be the irreducible decomposition as in

Proposition 2.1. As in the proof of K(t(a)) = 0 when a2 = 1 in Step (1), we can write K(ξ(a)) =∑
i CiidVi , with Ci ∈ C depending on a. Since idVi is invariant under the transpose t by Lemma 3.9

and tK(ξ(a)) +K(ξ(a)) = 0, we can get Ci = 0 and thus K(ξ(a)) = 0.
This completes the proof of Theorem 4.1. �

5. A multiplicity one theorem for U4 over finite fields

In this section, we briefly introduce a multiplicity one result for the unitary group U4(k), which is
quite similar to the Sp4(k) case. Note that some notations which were used for subgroups of Sp4(k)
in previous sections will be used for subgroups of U4 in this subsection.

Recall that k is a finite field with odd cardinality q and E is the quadratic extension of k. Define

U2n(k) =

{
g ∈ GL2n(E) : g

(
Jn

−Jn

)
tḡ =

(
Jn

−Jn

)}
.

5.1. Conjugacy classes and some simple representations of U2(k). The conjugacy classes of
U2(k) is given in the following table (see [Ca]):

Representative Number of elements in class Number of classes(
x

x

)
, x ∈ E1 1 q + 1(

x x
x

)
, x ∈ E1 (q − 1)(q + 1) q + 1(

x
x̄−1

)
, x ∈ E× − E1 q(q + 1) (q+1)(q−2)

2(
x y
κy x

)
, y 6= 0 q(q − 1) q(q+1)

2

Note that the norm map Nm : E× → k× is surjective and thus

(
1 1

1

)
and

(
1 κ

1

)
are in the same

conjugacy classes. This is different from the SL2(k) case. We explain a little bit about the last row.

The condition

(
x y
κy x

)
∈ U2(k) is equivalent to x̄y = xȳ and xx̄ − κyȳ = 1, which implies that

x ± y
√
κ ∈ E1. Note that unlike in the SL2(k) case, here we don’t require that x, y ∈ k. We now
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count the number of representatives of the form

(
x y
κy x

)
. If x = 0, we get y

√
κ ∈ E1 and there are

totally q + 1 such y. If x 6= 0, y 6= 0, let u1 = x+ y
√
κ, u2 = x− y

√
κ. Then u1, u2 ∈ E1, u1 6= ±u2.

There are totally (q+1)(q−1) choices of u1, u2, and hence such many of x, y. Note that x+y
√
κ and

x− y
√
κ give the same conjugacy class. Thus we totally have 1

2 (q+ 1 + (q+ 1)(q− 1)) = q(q+ 1)/2
classes in the last row. It is not hard to check that the number of elements in each class in the
last row is q(q − 1) by counting the centralizer of each representative. Note that there are (q + 1)2

conjugacy classes and thus there are (q + 1)2 irreducible representations of U2(k).
Let η be a character of E1. View η as a representation of U2(k) via the determinant map

det : U2(k)→ E1. We then have total q + 1 irreducible 1-dimensional representations of U2(k).
Let BU2 = AU2 n NU2 be the upper triangular Borel subgroup of U2(k) with torus AU2 ={

diag(a, ā−1), a ∈ E×
}

and unipotent subgroup NU2
. Given a character χ of E×, view it as a

character on AU2
∼= E× and hence on BU2 such that the action of NU2 is trivial. We then consider

the induced representation I(χ) := Ind
U2(k)
BU2

(χ) which is irreducible if and only if χ 6= χ̄−1, where

χ̄−1 is the character of E× defined by χ̄−1(a) = χ(ā−1), a ∈ E×. Note that the condition χ = χ̄−1

is equivalent to χ ◦NmE/k = 1. Since the norm map NmE/k : E× → k× is surjective, the condition

χ = χ̄−1 is equivalent to that χ|k× = 1 and giving such a character is amount to giving a character
η of E1 via η(a/ā) = χ(a). On the other hand, we have I(χ) ∼= I(χ̄−1) and thus there are totally
1
2 (q + 1)(q − 2) irreducible representations of the form I(χ), χ 6= χ̄−1. Note that dim I(χ) = q + 1.

Consider the induced representation I(1), where 1 is the trivial character of E×. We have I(1) =
1
⊕

St, where 1 denotes the trivial representation of U2(k) by abuse of notation, St is the Steinberg
representation and dim St = q. Given a character η of U2(k), form the tensor product η⊗St, which is
still an irreducible representation of U2(k) of dimension q. We then get another family of irreducible

representations of U2(k) given by
{
η ⊗ St, η ∈ Ê1

}
and there are total q+ 1 of them. Note that if χ

is a character of E× with χ|k× = 1, then I(χ) = η⊗ I(1) = η
⊕

(η⊗ St), where η is the character of
E1 determined by η(a/ā) = χ(a) for a ∈ E×. For simplicity, we write η ⊗ St as Stη. The following

is the character table of the representations η, I(χ), Stη for η ∈ Ê1, χ ∈ Ê×, χ 6= χ̄−1:

chη chI(χ) chStη(
x

x

)
, x ∈ E1 η(x2) (q + 1)χ(x) qη(x2)(

x x
x

)
, x ∈ E1 η(x2) χ(x) 0(

x
x̄−1

)
, x ∈ E× − E1 η(xx̄−1) χ(x) + χ(x̄−1) η(xx̄−1)(

x y
κy x

)
, y 6= 0 η(x2 − κy2) 0 −η(x2 − κy2)

5.2. Cuspidal representation. Recall that ψ is a fixed non-trivial additive character of k, and we
identify ψ as a character of NU2 by the isomorphism NU2

∼= k.
Let µ be a non-trivial character of E1 and let

W(µ) =
{
f : E → C : f(yx) = µ−1(y)f(x), ∀x ∈ E, y ∈ E1

}
.

Recall that we have a representation ωψ,µ of SL2(k) on W(µ). Let η be a character of E1, one can
extend the representation ωψ,µ to a representation ωψ,µ,η of U2(k) such that

ωψ,µ,η

((
a

ā−1

))
φ(x) = η(aā−1)φ(xa), φ ∈ W(µ).

Since any g ∈ U2(k) can be written as g = diag(a, ā−1)g1 for some a ∈ E×, g1 ∈ SL2(k), the above
relation uniquely determines an extension of ωψ,µ. It is not hard to check that the extension ωψ,µ,η
is indeed a representation. Let 1 be the trivial representation of E1, then ωψ,µ,η = η ⊗ ωψ,µ,1. We
now compute the character of ωψ,µ,η.
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For each a ∈ k×, we fix an element xa ∈ E× with Nm(xa) = a. Let fa ∈ W(µ) be the function
such that fa(xb) = δa,b. Then {fa, a ∈ k×} becomes a basis of W (µ). Using this basis, we can
compute the following character table:

chωψ,µ,η(
x

x

)
, x ∈ E1 (q − 1)η(x2)µ−1(x)(

x x
x

)
, x ∈ E1 −η(x2)µ−1(x)(

x
x̄−1

)
, x ∈ E× − E1 0(

x y
κy x

)
, y 6= 0 −η(x2 − κy2)(µ−1(x+ y

√
κ) + µ−1(x− y

√
κ))

From this table, we can check that the representation ωψ,µ,η is irreducible if µ is non-trivial (which
is always assumed). On the other hand, we have ωψ,µ,η ∼= ωψ,µ1,η1 if and only if (µ1, η1) = (µ, η)
or (µ−1, ηµ−1). Thus there are totally (q + 1)q/2 representations of the form ωψ,µ,η. The following
family

η, Stη, I(χ), ωψ,µ,η,

with µ, η ∈ Ê1, µ 6= 1, χ ∈ Ê×, χ 6= χ̄−1, is a complete list of irreducible representations of U2(k).

5.3. The Weil representation. Let W = E ⊕ E, endowed with the skew-Hermitian structure

〈u, v〉 = uJ2
tv̄,

where u, v are viewed as row vectors. We consider the Heisenburg group H = W ⊕ k with addition

[u1, t1] + [u2, t2] = [u1 + u2, t1 + t2 +
1

2
TrE/k(〈u1, u2〉)], u1, u2 ∈W, t1, t2 ∈ k.

The group U2(k) act on H by g.[u, t] = [gu, t], g ∈ U2(k), u ∈ W, t ∈ F . Thus we can form the
semi-direct product U2(k) n H .

There is a Weil representation ωψ of U2(k) n H on S(E) determined by the formulas

ωψ ([x, 0, z]) f(ξ) = ψ(z)f(ξ + x), x ∈ E, z ∈ k,
ωψ([0, y, 0])f(ξ) = ψ(Tr(ȳξ))f(ξ), y ∈ E,

ωψ

((
a

ā−1

))
f(ξ) = f(aξ), a ∈ E×,

ωψ

((
1 b

1

))
f(ξ) = ψ(Nm(ξ)b)f(ξ), b ∈ k,

ωψ(w)f(ξ) = −q−1
∑
y∈E

ψ(Tr(ȳξ))f(y).

Here w =

(
1

−1

)
as usual. The Weil representation for general unitary group over finite fields is

constructed in [Ge]. The above formulas could be found in [Bu, Section 4.1].
We next consider the restriction ωψ|U2(k). Let W(1) be the subspace of S(E) which consists of

functions f ∈ S(E) such that f(ux) = f(x), ∀u ∈ E1, x ∈ E. Then it is not hard to check that
as representations of U2(k), ωψ|W(1)

∼= St. Thus we have the following decomposition as in [Ge,
Corollary 4.5]

ωψ|U2(k) = St
⊕ ⊕

µ∈Ê1,µ 6=1

ωψ,µ,1

 .
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From this decomposition, the character table of ωψ is as following

chωψ(
1

1

)
q2(

x
x

)
, x ∈ E1, x 6= 1 1(
1 1

1

)
−q(

x x
x

)
, x ∈ E1, x 6= 1 1(

x
x̄−1

)
, x ∈ E× − E1 1(

x y
κy x

)
, x± y

√
κ = 1, y 6= 0 −q(

x y
κy x

)
, x± y

√
κ 6= 1, y 6= 0 1

One can compare the above table with [Ge, Theorem 4.5, Corollary 4.8.2 and Theorem 4.9.2].

5.4. On the tensor product of an irreducible representation with the Weil representa-
tion. In this section, we consider the decomposition of π ⊗ ωψ for an irreducible representation π
of U2(k).

Let A be a set of representatives of characters of E× such that χ|k× 6= 1 modulo the relation
χ = χ̄−1. Then the cardinality of A is (q + 1)(q − 2)/2. Let B be a set of representatives of pairs

(µ, η) ∈ Ê1 × Ê1 with µ 6= 1 modulo the relation (µ, η) = (µ−1, ηµ−1). Then the cardinality of B is
(q + 1)q/2. The following proposition is U2(k) analogue of Proposition 2.1 and we omit its proof.

Proposition 5.1. Let χ1 ∈ Ê× with χ1 6= χ̄−1
1 , and η1, µ1 ∈ Ê1 with µ1 6= 1. We have

η1 ⊗ ωψ = Stη1
⊕ ⊕

µ∈Ê1,µ 6=1

ωψ,µ,η1

 ,

I(χ1)⊗ ωψ = 2I(χ1)
⊕ ⊕

χ∈A,χ 6=χ1,χ̄
−1
1

I(χ)

⊕⊕
η∈Ê1

Stη

⊕ ⊕
(µ,η)∈B

ωψ,µ,η

 ,

St⊗ ωψ = 1
⊕⊕

χ∈A
I(χ)

⊕⊕
η∈Ê1

Stη

⊕ ⊕
(µ,η)∈B,η 6=1,η 6=µ

ωψ,µ,η

 ,

ωψ,µ1,1 ⊗ ωψ = 1
⊕

µ−1
1

⊕⊕
χ∈A

I(χ)

⊕ ⊕
η 6=1,η 6=µ

Stη


⊕ ⊕

(µ,η)∈B,η 6=1,η 6=µ,η 6=µ1,η 6=µ1µ

ωψ,µ,η


Note that Stη ⊗ ωψ = η ⊗ St ⊗ ωψ, and ωψ,µ,η ⊗ ωψ = η ⊗ ωψ,µ,1 ⊗ ωψ, the decomposition of

Stη ⊗ ωψ (resp. ωψ,µ,η ⊗ ωψ) can be given using the decomposition of St ⊗ ωψ (resp. ωψ,µ,1 ⊗ ωψ).

5.5. A multiplicity one result for U4(k). In the group U4(k), we consider the subgroup

J =


1 ∗ ∗

g ∗
1

 , g ∈ U2

 .
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Then there is an isomorphism U2 n H → J defined by

(g, [v, z])→

1 v z − 1
2 x̄y + 1

2xȳ
g v∗

1

 , g ∈ U2, v = (x, y) ∈ E2, z ∈ k

where v∗ =

(
ȳ
−x̄

)
. Under this isomorphism, we view ωψ as a representation of J . Given an

irreducible representation π of U2(k), we consider the tensor product representation π ⊗ ωψ of J .
Similar to the Sp4(k) case, we have the following

Theorem 5.2. Let π be an irreducible representation of U2 which is not of the form I(χ). Then

the induced representation IndU4

J (π ⊗ ωψ) is multiplicity free.

Since the proof is similar to that of Theorem 4.1, we omit the details.

6. The group G2

In this section, we introduce the multiplicity one problem of certain Fourier-Jacobi models for the
split exceptional group G2(k), which is quite similar to what we considered in Section 3 for Sp4(k).
In this section, the notations J, P,M, etc., will be used as subgroups of G2(k) rather than subgroups
of Sp4(k) as in Sections 3 and 4. For simplicity, denote G = G2(k).

6.1. Roots and commutator relations. The group G2 has two simple roots, the short root α
and the long root β. The set of the positive roots is Σ+ = {α, β, α+ β, 2α+ β, 3α+ β, 3α+ 2β}.
Let ( , ) be the inner product in the root system and 〈 , 〉 be the pair defined by 〈γ1, γ2〉 = 2(γ1,γ2)

(γ2,γ2) .

For G2, we have the relations:

〈α, β〉 = −1, 〈β, α〉 = −3.

For a root γ, let sγ be the reflection defined by γ, i.e., sγ(γ′) = γ′ − 〈γ′, γ〉γ. We have the relation

sα(β) = 3α+ β, sβ(α) = α+ β.

Let W (G2) be the Weyl group of G2, which is generated by sα, sβ and has size 12.
We use the following standard notations from Chevalley group theory (see [St]). For a root

γ, let Uγ ⊂ G be the root space of γ, and let xγ : k → Uγ be a fixed isomorphism which
satisfies various Chevalley relations (see [St, Chapter 3]). Following [St], for t ∈ k×, denote
wγ(t) = xγ(t)x−γ(−t−1)xγ(t) and wγ = wγ(1). Note that wγ is a representative of sγ . Let
hγ(t) = wγ(t)w−1

γ . For simplicity, we denote

w1 = wαwβw
−1
α , w2 = wαwβwαw

−1
β w−1

α .

Let T be the subgroup of G which consists of elements of the form hα(t1)hβ(t2), t1, t2 ∈ k× and
U be the subgroup of G generated by Uγ for all γ ∈ Σ+. Let B = TU , which is a Borel subgroup of
G.

For t1, t2 ∈ F×, denote h(t1, t2) = hα(t1t2)hβ(t21t2). We can check the following relations

h−1(t1, t2)xα(r)h(t1, t2) = xα(t−1
2 r),

h−1(t1, t2)xβ(r)h(t1, t2) = xβ(t−1
1 t2r).

(6.1)

The notation h(a, b) agrees with that of [Gi], and our h(a, b) is h(a, b, a−1b−1) in the notation of
[CR]. One can also check that

(6.2) wαh(t1, t2)w−1
α = h(t1t2, t

−1
2 ), wβh(t1, t2)w−1

β = h(t2, t1).
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For g1, g2 ∈ G, denote [g1, g2] = g−1
1 g−1

2 g1g2. We have the following commutator relations (see [Re,
p.443]):

[xα(x),xβ(y)] = xα+β(−xy)x2α+β(−x2y)x3α+β(x3y)x3α+2β(−2x3y2),

[xα(x),xα+β(y)] = x2α+β(−2xy)x3α+β(3x2y)x3α+2β(3xy2),

[xα(x),x2α+β(y)] = x3α+β(3xy),

[xβ(x),x3α+β(y)] = x3α+2β(xy),

[xα+β(x),x2α+β(y)] = x3α+2β(3xy).

(6.3)

For all the other pairs of positive roots γ1, γ2, we have [xγ1(x),xγ2(y)] = 1.
We also need the Chevalley relation wγ1xγ2(r)w−1

γ1 = xwγ1 (γ2)(c(γ1, γ2)r) (see [St, Lemma 20,

(b)]), where c(γ1, γ2) ∈ {±1} and c(γ1, γ2) = c(γ1,−γ2). The numbers c(γ1, γ2) are given in the
following:

c(α, α) = c(α, 2α+ β) = c(α, 3α+ β) = −1, c(α, β) = c(α, α+ β) = c(3α+ 2β) = 1,(6.4)

c(β, β) = c(β, α+ β) = c(β, 3α+ 2β) = −1, c(β, α) = c(β, 2α+ β) = c(β, 3α+ β) = 1.

6.2. Subgroups. The group G has two proper parabolic subgroups. Let P = M n V be the
parabolic subgroup of G with Levi M and unipotent V , such that Uβ ⊂ M ∼= GL2(k). The
isomorphism M ∼= GL2 is determined by

xβ(r) 7→
(

1 r
1

)
, h(a, b) 7→

(
a

b

)
.

The unipotent subgroup V of P consists of root spaces of α, α + β, 2α + β, 3α + β, 3α + 2β, and a
typical element of V is of the form

xα(r1)xα+β(r2)x2α+β(r3)x3α+β(r4)x3α+2β(r5), ri ∈ k.
To ease the notation, we write the above element as (r1, r2, r3, r4, r5). Denote by J the following
subgroup of P

J = SL2(k) n V.

We always view SL2(k) as a subgroup of G via the embedding SL2(k) ⊂ GL2(k) ∼= M ↪→ G. Let
V1 (resp. Z) be the subgroup of V which consists of root spaces of 3α + β and 3α + 2β (resp.
2α+ β, 3α+ β and 3α+ 2β). Note that P and hence J normalize V1 and Z.

6.3. An anti-involution on G. For g ∈ G, we define ιg = h(1,−1)gh(1,−1) and τg = ιg−1. Then
we can check that

ι(r1, r2, r3, r4, r5) = (−r1, r2,−r3, r4,−r5),

and
ι

(
a b
c d

)
=

(
a −b
−c d

)
.

In particular, both the involution ι and the anti-involution τ preserve J .

6.4. Weil representations and the problem. Let W = k2, endowed with the symplectic struc-
ture 〈 , 〉 defined by

(6.5) 〈(x1, y1), (x2, y2)〉 = −2x1y2 + 2x2y1.

Note that the symplectic form on W here is different from the one defined in Section 2.2. The reason
for choosing this non-standard symplectic structure on W will be explained below.

Let H be the Heisenberg group associated with the symplectic space W . Explicitly, H = W ⊕k
with addition

[x1, y1, z1] + [x2, y2, z2] = [x1 + x2, y1 + y2, z1 + z2 − x1y2 + x2y1].

Let SL2(k) act on H such that it acts on W from the right and acts on the third component k in H
trivially. Then we can form the semi-direct product SL2(k)nH . The product map in SL2(k)nH
is given by

(g1, v1)(g1, v2) = (g1g2, v1.g2 + v2).



UNIQUENESS OF CERTAIN FOURIER-JACOBI MODELS 25

Let ψ be a fixed non-trivial additive character of k, and let ωψ be the Weil representation of
SL2(k)nH on S(k), where S(k) is the space of C-valued functions on k. The formulas (2.1) should
be adapted to our new symplectic structure on W .

Define a map pr : V →H

pr((r1, r2, r3, r4, r5)) = [r1, r2, r3 − r1r2].

From the commutator relations in (6.3), we can check that pr is a group homomorphism and defines
an exact sequence

0→ V1 → V →H → 0.

Here, to ensure that pr is a group homomorphism, we need to choose the symplectic form on W in
the non-standard way (6.5). It seems that there is a typo in the formula of the projection map pr
in [Gi, p.316].

For g =

(
a b
c d

)
∈ SL2(F ) ⊂M , we have

g−1(r1, r2, r3, 0, 0)g = (r′1, r
′
2, r
′
3, r
′
4, r
′
5),

where r′1 = ar1 − cr2, r
′
2 = −br1 + dr2, r

′
3 − r′1r′2 = r3 − r1r2. This implies that the map pr : J =

SL2(F ) n V → SL2(F ) n H , defined by,

(g, v) 7→ (g∗, pr(v)), g ∈ SL2, v ∈ V,

is a group homomorphism, where g∗ =

(
a −b
−c d

)
= d1gd

−1
1 and d1 = diag(−1, 1) ∈ GL2(k). Now,

we can view the Weil representation ωψ as a representation of J by composing with the map pr.
Given an irreducible representation π of SL2(k), view it as a representation of J via the quotient
map J → SL2(k).

Similarly as the Sp4(k) case, we consider the problem: for what irreducible representation π of

SL2(k), the induced representation Ind
G2(k)
J (π ⊗ ωψ) is multiplicity free? The answer is similar to

the Sp4(k) case and the proof will be given in next section.

Remark 6.1. If k is a local field, let S̃L2(k) be the metaplectic double cover of SL2(k). Then there

is a Weil representation ωψ of S̃L2(k) n H . By composing with the projection map, we could view

ωψ as a representation of S̃L2(k) n V . Given a genuine irreducible representation π of S̃L2(k), the
tensor product π ⊗ ωψ can be viewed as a representation of J = SL2(k) n V . Due to the similarity
between the G2 case and the Sp4 case, we propose the following

Conjecture 6.2. For any self-dual irreducible representation σ of G2(k) and any irreducible genuine

representation π of S̃L2(k), we have

dim HomJ(σ, π ⊗ ωψ) ≤ 1.

Here the “self-dual” condition might be removable and we add it due to certain technical diffi-
culties in the application of the Gelfand-Kazhdan method. A nonzero element in HomJ(σ, π ⊗ ωψ)

defines an embedding σ ↪→ Ind
G2(k)
J (π⊗ ωψ). Such a realization of σ will be called a Fourier-Jacobi

model of σ with respect to the datum (π ⊗ ωψ, J). Given a character χ of GL1(k), consider the

genuine indueced representation Ĩ(s, χ) of S̃L2(k), s ∈ C, given an irreducible generic representa-
tion σ of G2(k), Ginzburg ([Gi]) has contructed a local zeta integral which defines an elements in

HomJ(σ, Ĩ(s, χ) ⊗ ωψ). Thus the above conjecture would imply the local functional equation for

Ginzburg’s local zeta integral in [Gi]. We can prove that dim HomJ(σ, Ĩ(s, χ) ⊗ ωψ) ≤ 1 for non-
supercuspidal representations σ, which could be viewed as a special case and an evidence of the
above conjecture. �

As preparations of our multiplicity results in next section, we record some useful facts on the
Weil representations. From the above description of the projection map and modified versions1 of

1See [Ku], for example, for the dependence of these formulas on the symplectic form.
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Eq.(2.1), we have the following formulas

ωψ((r1, 0, r3, r4, r5))φ(ξ) = ψ(r3)φ(ξ + r1),

ωψ((0, r2, 0, 0, 0))φ(ξ) = ψ(−2ξr2)φ(ξ),

ωψ(h(a, a−1))φ(ξ) = ε(a)φ(aξ),

ωψ(xβ(b))φ(ξ) = ψ(bξ2)φ(ξ),

ωψ

((
b

−b−1

))
φ(ξ) =

1

γ(b, ψ)

∑
x∈k

φ(x)ψ(−2xbξ).

(6.6)

The space S(k) has a basis {δs, s ∈ k}, where δs(t) = δs,t. From formulas (6.6), we have

ωψ(xβ(b))δs = ψ(bs2)δs,

ωψ((0, y, 0, 0, 0))δs = ψ(−2sy)δs,

ωψ((r1, 0, r3, r4, r5))δs = ψ(r3)δs−r1 .

(6.7)

Lemma 6.3. For φ, φ′ ∈ S(k), we define a pair

〈φ, φ′〉 =
∑
ξ∈k

φ(ξ)φ′(−ξ).

Then we have

〈ωψ(j)φ, ωψ(ιj)φ′〉 = 〈φ, φ′〉, ∀j ∈ J, φ, φ′ ∈ S(k).

For A ∈ EndC(S(k)), we define tA by

〈tAφ, φ′〉 = 〈φ,Aφ′〉.

The operator t is an anti-involution on EndC(S(k)) and satisfies tωψ(j) = ωψ(τj).

Proof. The proof is similar to that of Lemma 3.5, and thus is omitted. �

Note that the above pair on S(k) satisfies the property

(6.8) 〈δa, δb〉 = δa,−b, a, b ∈ k.

6.5. Transposes on End(π ⊗ ωψ) for an irreducible representation π of SL2(k). Let π =
1, St, ω±ψ , ω

±
ψκ
, or ωψ,µ, where µ is a character of E1 such that µ2 6= 1. Then π is an irreducible rep-

resentation of SL2(k). We have defined a pair π×ιπ → C in Section 3. Considering the representation
σπ := π ⊗ ωψ of J , we can then define a bilinear pair σπ × ισπ → C by

〈v1 ⊗ φ1, v2 ⊗ φ2〉 = 〈v1, v2〉〈φ1, φ2〉, v1, v2 ∈ π, φ1, φ2 ∈ ωψ,

where 〈φ1, φ2〉 is defined in Lemma 6.3. This pair satisfies the property

〈σπ(j)v, σπ(ιj)v′〉 = 〈v, v′〉, v, v′ ∈ σπ, j ∈ J.

As in the Sp4 case, we define a transpose t : EndC(σπ)→ EndC(σπ) by

〈tAv, v′〉 = 〈v,Av′〉, A ∈ EndC(σπ), v, v′ ∈ σπ.

Then we have
tσπ(j) = σπ(tj), ∀j ∈ J.

By Proposition 2.1, the representation σπ|SL2(k) is multiplicity free. Let σπ|SL2(k) = ⊕iVi be the
decomposition of irreducible representations of SL2(k). As in Lemma 3.9, the idempotent idVi ∈
EndC(σπ) is invariant under the transpose t defined above.
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7. Certain Multiplicity one theorems for G2

In this section, we continue to let G = G2(k) and let J be the Fourier-Jacobi subgroup of G
defined in Section 6.2. For an irreducible representation π of SL2(k), as in Section 6.5, we write
σπ = π ⊗ ωψ.

Theorem 7.1. The representation IndGJ (σπ) is multiplicity free, if π = 1, St, ωψ,µ, ω
±
ψ , ω

±
ψκ

for any

character µ of E1 with µ2 6= 1.

Remark 7.2. (1) If π = I(χ) for a character χ of k× with χ2 6= 1, we can also show that for q large,

the induced representation IndGJ (I(χ)⊗ωψ) is not multiplicity free as in Remark 4.2. In fact, let χ1, χ2

be two characters of k×, we consider the induced representation I(χ1, χ2) = Ind
GL2(k)
BGL2

(χ1 ⊗ χ2) of

GL2(k), where BGL2
is the upper triangular subgroup of GL2(k), and χ1⊗χ2 is viewed as a character

of BGL2
by

χ1 ⊗ χ2

((
a1 b

a2

))
= χ1(a1)χ2(a2).

Recall that P = M n V with M ∼= GL2(k). View I(χ1, χ2) as a representation of P by making V

act trivially on it. Then we consider the induced representation IndGP (I(χ1 ⊗ χ2)) and

HomG(IndGJ (I(χ)⊗ ωψ), IndGP (I(χ1, χ2))).

By Frobenius reciprocity, we have

HomG(IndGJ (I(χ)⊗ ωψ), IndGP (I(χ1, χ2))) = HomJ(I(χ)⊗ ωψ, IndGP (I(χ1, χ2))|J).

By Mackey’s Theory, see [Se, p.58], we have

IndGP (I(χ1, χ2))|J =
⊕

s∈J\G/P

IndJPs(I(χ1, χs)
s),

where Ps = sPs−1 ∩ J and for a representation ρ of P , the representation ρs of Ps is defined by
ρs(h) = ρ(s−1hs). Considering the element w2 = wαwβwαw

−1
β w−1

α ∈ J\G/P , we have Pw2
∼=

SL2(k) ↪→M and I(χ1, χ2)w2 = I(χ1, χ2)|SL2(k). Thus

HomG(IndGJ (I(χ)⊗ ωψ), IndGP (I(χ1, χ2))) ⊃ HomJ(I(χ)⊗ ωψ, IndJPw2
(I(χ1, χ2)|SL2(k)))

= HomSL2(k)(I(χ)⊗ ωψ|SL2(k), I(χ1, χ2)|SL2(k)).

Note that I(χ1, χ2)|SL2(k) = I(χ1χ
−1
2 ). We take χ1 = εχχ2. By Proposition 2.1, we have

dim HomG(IndGJ (I(χ)⊗ ωψ), IndGP (I(εχχ2, χ2))) ≥ dim HomSL2(k)(I(χ)⊗ ωψ|SL2(k), I(εχ)) = 2.

From Mackey’s irreducibility criterion, see [Se, p.59], for χ1, χ2 in “general positions”, the induced

representation IndGP (I(χ1, χ2)) is irreducible. Here χ1, χ2 are called in general position, if (χ1⊗χ2) 6=
(χ1 ⊗ χ2)w for all w ∈ W (G) − {1}, where (χ1 ⊗ χ2) is viewed as a character of the maximal
torus of G via (χ1 ⊗ χ2)(h(a, b)) = χ1(a)χ2(b). One can check that, for q large, it is easy to

find χ2 such that εχχ2, χ2 are in general positions. Then IndGP (I(εχχ2, χ2)) is irreducible and

dim HomG(IndGJ (I(χ)⊗ωψ), IndGP (I(εχχ2, χ2))) ≥ 2. Thus IndGJ (I(χ)⊗ωψ) is not multiplicity free.
(2) For an irreducible representation Π of G, it is in general false that dim HomJ(Π, I(χ)⊗ωψ) ≤ 1

by the above discussion. However, if we require further that Π is cuspidal, in [LZ], we are able to show
that the multiplicity one result dim HomJ(Π, I(χ)⊗ωψ) ≤ 1 still holds. This multiplicity one result
will be used in [LZ] to define twisted gamma factors for irreducible generic cuspidal representations
of G. �

Before proving Theorem 7.1, we give a set of representatives of the double coset decomposition
J\G/J . Recall that w1 = wαwβw

−1
α , w2 = wαwβwαw

−1
β w−1

α .

Lemma 7.3. A set of representatives of J\G/J is given by{
h(a, 1), h(a, a−2)wα, h(−1, a)w1, h(a, 1)w2, a ∈ k×

}
.
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Proof. Considering the double coset decomposition P\G/P , we have

G = Pw2P ∪ Pw1P ∪ PwαP ∪ P.
From the fact P = ∪a∈k×h(a, 1)J = ∪b∈k×Jh(1, b), we can get the statement of the lemma. Note
that h(a, 1/a) ∈ J . Thus h(a, b)w, h(ab, 1)w and h(1, ab)w are in the same double coset Jh(a, b)wJ
for any Weyl element w. We take h(a, a−2)wα and h(−1, a)w1 as representatives because we have
τ(h(a, a−2)wα) = h(a, a−2)wα and τ(h(−1, a)w1) = h(−1, a)w1. �

Before we start the proof of Theorem 7.1, we show one more lemma as follows. Let (ρ, V ) be
an irreducible representation of SL2(k) and a ∈ k×. Let (ρa, V a) be the representation of SL2(k)
defined by V a = V, ρa(g) = ρ(ga), where ga = diag(a, 1)gdiag(a−1, 1). For each (ρ, V ), we fix a
non-trivial pair 〈 , 〉 on V such that

〈ρ(g)v, ρ(ιg)v′〉 = 〈v, v′〉, ∀v, v′ ∈ V, g ∈ SL2(k).

Note that defining such a pair is equivalent to defining an isomorphism ιρ ∼= ρ̃, and thus such a pair
is unique up to a scalar.

Lemma 7.4. If HomSL2(k)(ρ, ρ
a) 6= 0, there exists a unique nonzero λa ∈ HomSL2(k)(ρ, ρ

a) such
that

〈λav1, λ
av2〉 = 〈v1, v2〉, ∀v1, v2 ∈ V,

where λav is viewed as an element in V under the identification V = V a for v ∈ V .
Moreover, for the unique λa defined above, let daV be the constant such that ρ(diag(a−1, a)) ◦ λa ◦

λa = daV idV , then daV = 1. Here, the middle λa is viewed as an element of HomSL2(k)(ρ
a, ρa

2

).

Proof. We first fix any nonzero λa1 ∈ HomSL2(k)(ρ, ρ
a) and consider the pair 〈 , 〉a on V defined by

〈v1, v2〉a := 〈λa1v1, λ
a
1v2〉.

For g ∈ SL2(k), one can check that

〈ρ(g)v1, ρ(ιg)v2〉a = 〈λa1ρ(g)v1, λ
a
1ρ(ιg)v2〉

= 〈ρ(ga)(λa1v1), ρ((ιg)a)(λa1v2)〉
= 〈ρ(ga)(λa1v1), ρ(ι(ga))(λa1v2)〉
= 〈λa1v1, λ

a
1v2〉

= 〈v1, v2〉a,

where we used the relation ι(ga) = (ιg)a. Thus by the uniqueness of the pair, we have that there
exists a constant ca ∈ C× such that 〈v1, v2〉a = ca〈v1, v2〉. Then λa := 1√

ca
λa1 ∈ HomSL2(k)(ρ, ρ

a)

satisfies the property

〈λav1, λ
av2〉 = 〈v1, v2〉, ∀v1, v2 ∈ V,

where
√
ca is a square root of ca. The uniqueness of such λa follows from the fact that

dim HomSL2(k)(ρ, ρ
a) = 1.

The “moreover” part seems very delicate and we don’t have a uniform proof at this moment. We
will check it case by case.

We first consider that (ρ, V ) = ωψ,µ for a quadratic character µ of E1 with µ2 6= 1. For a ∈ F×,
we fix xa ∈ E× with Nm(xa) = xq+1

a = a. Recall that an element f ∈ V is a function on E× such

that f(uy) = µ−1(u)f(y), ∀u ∈ E1, y ∈ E×. For f ∈ V , we consider λaf(ξ) =
√
µ−1(xq−1

a )f(xaξ).

Then we can check that 〈λaf1, λ
af2〉 = 〈f1, f2〉, where 〈f1, f2〉 is the pair defined in §3.7. Moreover,

λa ◦ λaf(ξ) = µ−1(xq−1
a )f(x2

aξ)

= µ−1(xq−1
a )µ−1(x2

aa
−1)f(aξ)

= µ−1(xq+1
a a−1)f(aξ)

= f(aξ)

= ρ(diag(a, a−1))f(ξ).
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Thus daV = 1 in this case.
Next, we consider the case when (ρ, V ) = I(χ) for a character χ of k×. If χ is not quadratic, we

haven’t constructed a 〈 , 〉 on I(χ) in previous sections. We first define a pair below. Consider the
intertwining operator ∆ : I(χ)→ I(χ−1) defined by

∆ ∗ f(g) = q−1
∑
x∈k

f

(
w

(
1 x

1

)
g

)
, ∀f ∈ I(χ),

where w =

(
1

−1

)
. One can check that ∆ ∗ f ∈ I(χ−1). For f1, f2 ∈ I(χ), we define

〈f1, f2〉 =
∑

g∈BSL2(k)\SL2(k)

∆ ∗ f1(g)f2(ιg).

Then, one can check that

〈ρ(g)f1, ρ(ιg)f2〉 = 〈f1, f2〉, ∀f1, f2 ∈ I(χ), g ∈ SL2(k).

For a ∈ k×, f ∈ I(χ), we define

λaf(g) =
√
χ(a)f(ga

−1

).

Then λa ∈ HomSL2(k)(V, V
a), and

∆ ∗ λaf(g) = χ(a−1)∆ ∗ f(ga
−1

).

It follows that
〈λaf1, λ

af2〉 = 〈f1, f2〉.
On the other hand, we have

λa ◦ λaf(g) = χ(a)f(ga
−2

)

= χ(a)f(diag(a−1, a)gdiag(a, a−1))

= f(gdiag(a, a−1))

= ρ(diag(a, a−1))f(g).

Thus we get daV = 1.
We omit the cases when ρ = 1, St, and just remark that the proofs in these cases are similar. �

In the following, for a ∈ k×, we write η(a) = h(a, a−2)wα, and ξ(a) = h(−1, a)w1, for simplicity.
Proof of Theorem 7.1. We have defined an anti-involution τ on G by τg = h(1,−1)g−1h(1,−1),
see Section 6.3. In Section 6.5, we have constructed an anti-involution t on End(σπ) such that
t(σπ(j)) = σπ(τj). We define an anti-involution τ on A(G, J, σπ) by

(τK)(g) = t(K(τg)), ∀g ∈ G,K ∈ A(G, J, σπ).

By Corollary 3.4 and Lemma 7.3, it suffices to show that for all K ∈ A(G, J, ωψ) with τK = −K,
K(g) = 0 for all g = h(a, 1), η(a), ξ(a), h(a, 1)w2, ∀a ∈ k×. We now fix a K ∈ A(G, J, ωψ) with
τK = −K.

Step (1), K(h(a, 1)) = 0. We have

h(a, 1)x2α+β(z) = x2α+β(az)h(a, 1),

see Eq.(6.1). Thus we get
ψ(z)K(h(a, 1)) = ψ(az)K(h(a, 1)).

If a 6= 1, we can take z such that ψ(z) 6= ψ(az). Then we get K(h(a, 1)) = 0 if a 6= 1. If a = 1, we
have h(1, 1)g = gh(1, 1) for all g ∈ J . Thus we get K(h(1, 1)) = Cσπ(1) for some C ∈ C by Schur’s
Lemma. We can get C = 0 from the condition τK = −K.

Step (2), K(η(a)) = 0. From Eqs.(6.1)-(6.4), we can check the relations

η(a)(0, x, y, 0, 0, 0) = (0,−ay, x/a, 0, 3xy)η(a), ∀x, y ∈ k,
η(a)xβ(b) = (0, 0, 0, a−3b, 0)η(a), ∀b ∈ k,
xβ(x)η(a) = η(a)(0, 0, 0,−x/a3, 0), ∀x ∈ k.
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Thus, we have that

K(η(a))σπ((0, x, y, 0, 0, 0)) = σπ((0,−ay, a−1x, 0, 3xy))K(η(a)), ∀x, y ∈ k,(7.1)

K(η(a))σπ(xβ(b)) = K(η(a)), ∀b ∈ k,(7.2)

σπ(xβ(x))K(η(a)) = K(η(a)), ∀x ∈ k.(7.3)

We now consider different π separately.
Case (2.1), π = 1. Put y = 0 in Eq.(7.1) and apply Eq.(6.7), we can get

ψ(−2sx)K(η(a))δs = ψ(a−1x)K(η(a))δs.

We then getK(η(a))δs = 0 if s 6= −1/(2a). Applying Eq.(7.2) and Eq.(6.7), we get ψ(bs2)K(η(a))δs =
K(η(a))δs. Thus if s 6= 0, we get K(η(a))δs = 0. Since −1/(2a) 6= 0, we have K(η(a))δs = 0 for all
s ∈ k.

Case (2.2), π = ωψ,µ. Recall that ωψ,µ has a basis {fb, b ∈ k×}, where fa(xb) = δa,b, see Section
3.7. We can check that σπ(xβ(b))fr ⊗ δs = ψ(b(r + s2))fr ⊗ δs. Plugging y = 0 into Eq.(7.1), we
can get ψ(−2xs)K(η(a))fr ⊗ δs = ψ(a−1x)K(η(a))fr ⊗ δs. Thus we get K(η(a))fr ⊗ δs = 0 if
s 6= −1/(2a). By Eq.(7.2), we can get ψ(b(r + s2))K(η(a))fr ⊗ δs = K(η(a))fr ⊗ δs. Thus we get
K(h(a, 1)wα)fr ⊗ δs = 0 if r 6= −s2. We assume that

K(h(a, 1)wα)f−1/(4a2) ⊗ δ−1/(2a) =
∑

b∈k×,t∈k

C(b, t)fb ⊗ δt

for C(b, t) ∈ C. Applying Eq.(7.1) when x = 0, we can get∑
b,t

ψ(y)C(b, t)fb ⊗ δt =
∑
b,t

ψ(2ayt)C(b, t)fb ⊗ δt.

Thus we get C(b, t) = 0 if t 6= 1/(2a). Applying Eq.(7.3), we can get C(b, 1/(2a)) = 0 if b 6= −1/(4a2).
We denote D(a) = C(−1/(4a2), 1/(2a)). To summarize, we have that

K(η(a))fr ⊗ δs = 0, if s 6= −1/(2a), or r 6= −1/(4a2),

K(η(a))f−1/(4a2) ⊗ δ−1/(2a) = D(a)f−1/(4a2) ⊗ δ1/(2a).

Note that τK(η(a)) = tK(η(a)) since τη(a) = η(a). Since τK +K = 0 and the pair 〈 , 〉 on σπ is
symmetric, we get 〈K(η(a))f−1/(4a2) ⊗ δ−1/(2a), f−1/(4a2) ⊗ δ−1/(2a)〉 = 0. By Eq.(3.7) and Eq.(6.8),
we have

〈K(η(a))f−1/(4a2) ⊗ δ−1/(2a), f−1/(4a2) ⊗ δ−1/(2a)〉 = D(a)µ−1(xq−1
−1/(4a2)).

Thus we get D(a) = 0, which implies that K(η(a)) = 0.
Case (2.3), π = ω+

ψu
for u = 1, κ. Recall that ω+

u has a basis {∆0,∆x, x ∈ A0}, where A0 ⊂ k×

is still a set of representatives of k×/ {±1}, see Section 3.6. We can check that σπ(xβ(b))∆r ⊗
δs = ψ(b(ur2 + s2))∆r ⊗ δs, see Eq.(4.7) and Eq.(6.6). Using Eq.(7.1) when y = 0, we can get
K(η(a))∆r ⊗ δs = 0 if s 6= −1/(2a) as above. Applying Eq.(7.2), we can get K(η(a))∆r ⊗ δs = 0 if
ur2 + s2 6= 0. Note that there is at most one r0 ∈ A0 ∪ {0} such that ur2

0 + 1/(4a2) = 0. If there is
no such r0, we are done. Now assume that there exists r0 with ur2

0 + 1/(4a2) = 0. We assume that
K(η(a))∆r0 ⊗ δ−1/(2a) =

∑
b,t C(b, t)∆b ⊗ δt. Applying Eq.(7.1) when x = 0 we get∑

b,t

ψ(y)C(b, t)∆b ⊗ δt =
∑
b,t

ψ(2ayt)C(b, t)∆b ⊗ δt, ∀y ∈ k.

By choosing appropriate y we can see C(b, t) = 0 if t 6= 1/(2a). Applying Eq.(7.3) to the equation
K(η(a))∆r0 ⊗ δ−1/(2a) =

∑
b C(b, 1/(2a))∆b ⊗ δ1/(2a), we can obtain that∑

b

C(b, 1/(2a))ψ(x(ub2 + 1/(4a2)))∆b ⊗ δ1/2a =
∑
b

C(b, 1/(2a))∆b ⊗ δ1/(2a), ∀x ∈ k,

which implies that C(b, 1/(2a)) = 0 if b 6= r0. Thus we haveK(η(a))∆r0⊗δ−1/(2a) = C(r0, 1/(2a))∆r0⊗
δ1/(2a). From the condition τK +K = 0 and the symmetry of the pair 〈 , 〉 on σπ, we have

〈K(η(a))∆r0 ⊗ δ−1/(2a),∆r0 ⊗ δ−1/(2a)〉 = 0.
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By Eq.(3.5), Eq.(4.9) and the above discussion, the above equation implies that C(r0, 1/(2a)) = 0.
Thus K(h(a, 1)wα) = 0.

Case (2.4), π = ω−ψu . The proof is similar to that the Case (2.3) and thus omitted.

Case (2.5), π = St. Recall that St has a basis {Fr, r ∈ k} , see Section 3.5. By Eqs.(4.5, 6.7, 7.2),
we have

ψ(bs2)K(η(a))Fr−b ⊗ δs = K(η(a))Fr ⊗ δs.
In particular, we have K(η(a))Fr ⊗ δs = ψ(rs2)K(η(a))F0 ⊗ δs. Plugging y = 0 into Eq.(7.1) and
applying it to F0⊗ δs, we get ψ(−2sx)K(η(a))F0⊗ δs = ψ(a−1x)K(η(a))F0⊗ δs using Eq.(4.5) and
Eq.(6.7). By choosing appropriate x, we see that K(h(a, 1)wα)F0 ⊗ δs = 0 if s 6= −1/(2a). Denote
a0 = −1/(2a).

We assume that K(η(a))F0 ⊗ δa0 =
∑
b,t∈k Cs(b, t)Fb ⊗ δt. Plugging x = 0 into Eq.(7.1) and

applying it to F0 ⊗ δa0 , we can get
∑
b,t ψ(y)Cs(b, t)Fb ⊗ δt =

∑
b,t Cs(b, t)ψ(2ayt)Fb ⊗ δt, ∀y ∈ k.

By choosing appropriate y, we have Cs(b, t) = 0 if t 6= −a0. Thus we get K(η(a))F0 ⊗ δa0 =∑
b∈kDbFb ⊗ δ−a0 , where Db = Ca0(b,−a0).
Note that τ (η(a)) = η(a), thus the condition τK +K = 0 implies that

〈K(η(a))Fr ⊗ δa0 , F0 ⊗ δa0〉+ 〈Fr ⊗ δa0 ,K(η(a)F0 ⊗ δa0)〉 = 0, ∀r ∈ k.
In particular, we have 〈K(η(a))F0 ⊗ δa0 , F0 ⊗ δa0〉 = 0 and thus,

〈K(η(a))Fr ⊗ δa0 , F0 ⊗ δa0〉 = ψ(ra2
0)〈K(η(a))F0 ⊗ δa0 , F0 ⊗ δa0〉 = 0.

The above two equations then imply that

〈Fr ⊗ δa0 ,K(η(a)F0 ⊗ δa0)〉 = 0, ∀r ∈ k.
By Eq.(3.4) and Eq.(6.8), 〈Fr ⊗ δa0 ,K(η(a)F0 ⊗ δa0)〉 = D−r + (q − 1)

∑
b∈kDb. Thus we get

D−r + (q − 1)
∑
b∈kDb = 0, ∀r ∈ k. A direct calculation shows that Db = 0, ∀b ∈ k. Hence,

K(η(a)) = 0. This completes the proof of Step (2).
Step (3), K(ξ(a)) = 0. Recall that ξ(a) = h(−1, a)w1 and w1 = wαwβw

−1
α . We can check the

relations

ξ(a)xβ(y) = (0, 0, 0, 0,−ay)ξ(a),

ξ(a)(0, 0, 0, 0,−ay) = xβ(y)ξ(a),

ξ(a)xα+β(x) = xα+β(−x)ξ(a).

Thus we have

K(ξ(a))σπ(xβ(y)) = K(ξ(a)), ∀y ∈ k,(7.4)

K(ξ(a)) = σπ(xβ(y))K(ξ(a)), ∀y ∈ k,(7.5)

K(ξ(a))σπ(xα+β(x)) = σπ(xα+β(−x))K(ξ(a)), ∀x ∈ k.(7.6)

In the following, we still consider different π separately.
Case (3.1), π = 1. Applying Eq.(7.4) to δs, we get

ψ(ys2)K(ξ(a))δs = K(ξ(a))δs, ∀y ∈ k.
For s 6= 0, we can take y such that ψ(ys2) 6= 1. Thus we have

K(ξ(a))δs = 0, if s 6= 0.

Suppose that K(ξ(a))δ0 =
∑
s∈k C(s)δs, where C(s) ∈ C. Applying Eq.(7.5) to δ0, we have∑

s∈k

C(s)δs = K(ξ(a))δ0 = σπ(xβ(y))K(ξ(a))δ0 =
∑
s∈k

ψ(ys2)C(s)δs, ∀y ∈ k.

If s 6= 0, take y 6= 0 such that ψ(ys2 6= 0). By comparing coefficients, we have C(s) = 0 unless s = 0.
Therefore,

K(ξ(a))δs = 0, s 6= 0;K(ξ(a))δ0 = C(0)δ0.

From the relation τ(ξ(a)) = ξ(a), τK + K = 0 and the symmetry of the pair 〈 〉 on σπ, we get
〈K(ξ(a))δ0, δ0〉 = 0. By Eq.(6.8), we have

〈K(ξ(a))δ0, δ0〉 = 〈C(0)δ0, δ0〉 = C(0).
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It follows that C(0) = 0 and K(η(a)) = 0.
Case (3.2), π = ωψ,µ. Applying Eq.(7.4) to fr ⊗ δs, we have

ψ(y(r + s2))K(ξ(a))fr ⊗ δs = K(ξ(a))fr ⊗ δs.

This implies that K(ξ(a))fr⊗δs = 0 if r+s2 6= 0. Suppose that K(ξ(a))f−s2⊗δs =
∑
b,t Cs(b, t)fb⊗

δt. Applying Eq.(7.6) to f−s2 ⊗ δs, we have∑
b,t

ψ(−2sx)Cs(b, t)fb ⊗ δt =
∑
b,t

ψ(2tx)Cs(b, t)fb ⊗ δt, ∀x ∈ k.

An appropriate choice of x ∈ k implies that Cs(b, t) = 0 if t 6= −s. We get K(ξ(a))f−s2 ⊗ δs =∑
b Cs(b,−s)fb ⊗ δ−s. Applying Eq.(7.5) to f−s2 ⊗ δs, we have∑

b

Cs(b,−s)fb ⊗ δ−s =
∑
b

Cs(b,−s)ψ(y(b+ s2))fb ⊗ δ−s, ∀y ∈ k,

which implies that Cs(b,−s) = 0 unless b = −s2. Thus we get K(ξ(a))f−s2 ⊗ δs = D(s)f−s2 ⊗ δ−s,
where D(s) = Cs(−s2,−s). The condition τK +K = 0 implies that

〈f−s2 ⊗ δs,K(ξ(a))f−s2 ⊗ δs〉 = 0.

By Eqs.(3.7) and (6.8), the above equation implies that D(s) = 0. Hence, we have K(ξ(a)) = 0.
Case (3.3), π = ω±ψu for u = 1, κ. The proof is similar to that of Case (3.2) and thus omitted.

Case (3.4), π = St. As in the proof of case (2.5), an application of Eq.(7.4) to Fr ⊗ δs shows that
K(ξ(a))Fr ⊗ δs = ψ(rs2)K(ξ(a))F0 ⊗ δs. Suppose that K(ξ(a))F0 ⊗ δs =

∑
b,t Cs(b, t)Fb ⊗ δt for

Cs(b, t) ∈ C. Applying Eq.(7.6) to F0 ⊗ δs and using Eqs.(4.5), (6.7), we get∑
b,t

ψ(−2xs)Cs(b, t)Fb ⊗ δt =
∑
b,t

Cs(b, t)ψ(2xt)Fb ⊗ δt, ∀x ∈ k.

If t 6= −s, we can choose x ∈ k such that ψ(−2xs) 6= ψ(2xt). Consequently, Cs(b, t) = 0 unless
t = −s, and K(ξ(a))F0 ⊗ δs =

∑
b∈k Cs(b)Fb ⊗ δ−s, where Cs(b) = Cs(b,−s). An application of

Eq.(7.5) to F0 ⊗ δs shows that∑
b∈k

Cs(b)Fb ⊗ δ−s =
∑
b1∈k

Cs(b1)ψ(ys2)Fb1−y ⊗ δ−s, ∀y ∈ k.

By comparing the coefficients of both sides of the above identity, we get Cs(b) = ψ(ys2)Cs(b + y).
In particular, we have Cs(b) = ψ(−bs2)Cs(0). Thus K(ξ(a))F0⊗ δs = Cs(0)

∑
b∈k ψ(−bs2)Fb⊗ δ−s.

As usual, the condition τK + K = 0 implies that 〈K(ξ(a))F0 ⊗ δs, F0 ⊗ δs〉 = 0. By Eq.(3.4) and
Eq.(6.8), we get

Cs(0)

(
(q − 1)

∑
b∈k

ψ(−bs2) + ψ(0)

)
= 〈K(ξ(a))F0 ⊗ δs, F0 ⊗ δs〉 = 0.

Because
∑
b∈k ψ(−bs2) = 0 if s 6= 0, and

∑
b∈k ψ(−bs2) = q if s = 0, we have Cs(0) = 0. Hence

K(ξ(a))F0 ⊗ δs = 0 and K(ξ(a))Fr ⊗ δs = ψ(rs2)K(ξ(a))F0 ⊗ δs = 0. This shows K(ξ(a)) = 0 and
completes the proof of Step (3).

Step (4), K(h(a, 1)w2) = 0. We have

h(a, 1)w2g = gah(a, 1)w2,

where

ga =

(
x11 ax12

a−1x21 x22

)
, for g =

(
x11 x12

x21 x22

)
∈ SL2(k).

Thus,

K(h(a, 1)w2)σπ(g) = σaπ(g)K(h(a, 1)w2), ∀g ∈ SL2(k),

where σaπ(g) = σπ(ga). The above equation implies that

K(h(a, 1)w2) ∈ HomSL2(k)(σπ, σ
a
π).

We first assume that a /∈ k×,2.
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If π = 1, we have σπ|SL2 = ω+
ψ ⊕ ω

−
ψ and σaπ|SL2(k)

∼= ω+
ψκ
⊕ ω−ψκ . We have

HomSL2(k)(σπ, σ
a
π) = 0,

and thus K(h(a, 1)w2) = 0.
If π = ωψ,µ, ω

±1
ψu

for u = 1, κ, then HomSL2(k)(σπ, σ
a
π) 6= 0. In fact, from the decomposition

given in Proposition 2.1, we can write σπ|SL2(k) =
⊕

i∈I Vi, where I is an index set and each
Vi is an irreducible representation of SL2(k) and occurred with multiplicity one. If Vi is one of
1, I(χ), ωψ,µ, St, then Vi ∼= V ai . By Lemma 7.4, we fix an isomorphism λaVi ∈ HomSL2(k)(Vi, V

a
i ) such

that

〈λaViv1, λ
a
Viv2〉 = 〈v1, v2〉, ∀v1, v2 ∈ V2.

If Vi ∼= ω±ψ (resp. ω±ψκ), then V ai
∼= ω±ψκ (resp. ω±ψ ). From the decomposition of σπ|SL2(k), one sees

that

HomSL2(k)(σπ, σ
a
π) =

⊕
i∈I1

Hom(Vi, V
a
i ),

where I1 is the subset of I such that Vi is 1, St, I(χ) or ωψ,µ for i ∈ I1. For example, when π = ωψ,µ1

and ε0 = 1, there are factors ω+
ψκ
⊕ ω−ψκ in the decomposition σπ|SL2(k), but these factors are not

indexed by I1, in fact, one has HomSL2(k)(ω
+
ψκ
⊕ω−ψκ , (ω

+
ψκ
⊕ω−ψκ)a) = 0. Hence, there are constants

Ci ∈ C such that

K(h(a, 1)w2) =
∑
i∈I1

Ciλ
a
Vi .

Note that τ(h(a, 1)w2) = h(1, a)w2 = h(a−1, a)h(a, 1)w2. Thus

K(h(1, a)w2) =
∑
i

Ciσπ(h(a−1, a))λaVi ,

and the condition K = −τK implies that K(h(a, 1)w2) = −(τK)(h(a, 1)w2) = −tK(h(1, a)w2). From
the definition of the transpose operator, we get

〈v1,K(h(a, 1)w2)v2〉+ 〈K(h(1, a)w2)v1, v2〉 = 0, ∀v1, v2 ∈ π ⊗ ωψ.
In particular, if we choose v1, v2 ∈ Vi for a fixed i ∈ I1, we have

Ci
(
〈v1, λ

a
Viv2〉+ 〈σπ(h(a−1, a))λaViv1, v2〉

)
= 0, ∀v1, v2 ∈ Vi.

If we replace v1 by λaViv1, we get

Ci
(
〈λaViv1, λ

a
Viv2〉+ 〈σπ(h(a−1, a))λaViλ

a
Viv1, v2〉

)
= 0, ∀v1, v2 ∈ Vi.

By Lemma 7.4, we have σπ(h(a−1, a))λaVi ◦ λ
a
Vi

= idVi . We then get

Ci
(
〈λaViv1, λ

a
Viv2〉+ 〈v1, v2〉

)
= 0, ∀v1, v2 ∈ Vi,

i.e.,

2Ci〈v1, v2〉 = 0, ∀v1, v2 ∈ Vi.
This implies that Ci = 0 for all i and thus K(h(a, 1)w2) = 0.

Next, we assume that a /∈ k×,2 and π = St. Without loss of generality, we assume that a = κ−1.
The proof is almost identical to the above case, but for completeness we still provide the details
here. Note that we have that σπ|SL2(k)

∼= σaπ|SL2(k). We consider the decomposion σπ|SL2(k) given in
Proposition 2.1:

St⊗ ωψ|SL2(k) = St
⊕⊕

χ∈A
I(χ)

⊕⊕
µ∈B

ωψ,µ

⊕ω+
ψ

⊕
ω+
ψκ
.

Let V be a summand in the above decomposition. If V = St, I(χ) or ωψ,µ, we have V ∼= V a. In
these cases, by Lemma 7.4, we fix a nonzero λaV ∈ HomSL2(k)(V, V

a) such that

〈λaV v1, λ
a
V v2〉 = 〈v1, v2〉, ∀v1, v2 ∈ V.

If V = ω+
ψ , then V a ∼= ω+

ψκ
; and if V = ω+

ψκ
, then V a ∼= ω+

ψ . In fact, a direct calculation shows

that (ωψκ)a is exactly ωψ since we assumed a = κ−1 (if a = a2
0κ
−1 for some a0 ∈ k×, the two
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representations (ωψκ)a and ωψ would differ by an inner automorphism). Let λa
ω+
ψ

∈ Hom(ω+
ψ , (ω

+
ψκ

)a)

and λa
ω+
ψκ

∈ HomSL2(k)(ω
+
ψκ
, (ω+

ψ )a) be the identity maps.

From the decomposition of St⊗ ωψ|SL2(k), we have

HomSL2(k)(σπ, σ
a
π) =

⊕
χ∈A

HomSL2(k)(I(χ), I(χ)a)

⊕⊕
µ∈B

HomSL2(k)(ωψ,µ, ω
a
ψ,µ)


⊕

HomSL2(k)(St, Sta)
⊕

HomSL2(k)(ω
+
ψ , (ω

+
ψκ

)a)
⊕

HomSL2(k)(ω
+
ψκ
, (ω+

ψ )a).

By Schur’s Lemma, each Hom space on the right hand side of the above equation has dimension 1
and is generated by λaV for the corresponding V in the decomposition of St ⊗ ωψ|SL2(k). Thus we
can write

K(h(a, 1)w2) =
∑
V

CV λ
a
V ,

for some constants CV ∈ C.
Since τ(h(a, 1)w2) = h(1, a)w2 = h(a−1, a)h(a, 1)w2 and h(a−1, a) ∈ J , we have that

K(h(1, a)w2) = σπ(h(a−1, a))K(h(a, 1)w2).

Let λa
−1

V = σπ(h(a−1, a))λaV , which is an isomorphism in HomSL2(k)(V, V
a−1

) if V = St, I(χ) or ωψ,µ,

and is an isomorphism in HomSL2(k)(ω
+
ψ , (ω

+
ψκ

)a
−1

) (resp. HomSL2(k)(ω
+
ψκ
, (ω+

ψ )a
−1

)) if V = ω+
ψ (resp.

ω+
ψκ

). Then

K(h(1, a)w2) =
∑
V

CV λ
a−1

V .

Since K is τ -skew-invariant,

K(h(a, 1)w2) = −(τK)(h(a, 1)w2) = −tK(h(1, a)w2).

By the definition of the transpose,

〈v1,K(h(a, 1)w2)v2〉+ 〈K(h(1, a)w2)v1, v2〉 = 0, ∀v1, v2 ∈ St⊗ ωψ.
In particular, choosing v1, v2 ∈ V , where V is still a component of σπ|SL2(k), we have that

(7.7) CV

(
〈v1, λ

a
V v2〉+ 〈λa

−1

V v1, v2〉
)

= 0, ∀v1, v2 ∈ V.

As in the previous case, one can show that CV = 0 for each V 6= ω+
ψ or ω+

ψκ
. If V = ω+

ψ or ω+
ψκ

, then

λaV is simply the identity map and λa
−1

V = σπ(h(a−1, a)). Taking v1 = ∆s = v2 for some s ∈ k× in

Eq.(7.7), then λa
−1

V ∆s = ε(κ)∆κ−1s = −∆κ−1s. Thus we have 〈v1, λ
a
V v2〉 = 2 and 〈λa−1

V v1, v2〉 = 0.
Then Eq.(7.7) implies that CV = 0. Thus K(h(a, 1)w2) = 0.

At last, we assume that a = a2
0, a0 ∈ k×. Since h(a, 1)w2 = h(a0, a

−1
0 )h(a0, a0)w2 and h(a0, a

−1
0 ) ∈

J , we have

K(h(a, 1)w2) = σπ(h(a0, a
−1
0 ))K(h(a0, a0)w2).

Thus it suffices to show K(h(a0, a0)w2) = 0. Note that we have the relation

h(a0, a0)w2g = gh(a0, a0)w2, ∀g ∈ SL2(k),

which implies that

K(h(a0, a0)w2)σπ(g) = σπ(g)K(h(a0, a0)w2), ∀g ∈ SL2(k).

Thus K(h(a0, a0)w2) ∈ HomSL2(k)(σπ, σπ). Let σπ|SL2(k) = ⊕Vi be the decomposition as in Propo-
sition 2.1. We have HomSL2(k)(σπ, σπ) = ⊕EndSL2(k)(Vi). Thus

K(h(a0, a0)w2) =
∑

CiidVi .

Note that τ(h(a0, a0)w2) = h(a0, a0)w2, and tidVi = idVi by the discussion in Section 6.5. Thus

(τK)(h(a0, a0)w2) = tK(h(a0, a0)w2) =
∑
i

Ci
tidVi = K(h(a0, a0)w2).
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The condition τK = −K implies that K(h(a0, a0)w2) = 0. This completes the proof of Theorem
7.1. �
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