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ABSTRACT

Non-coding genetic variants/mutations can play functional
roles in the cell by disrupting regulatory interactions between
transcription factors (TFs) and their genomic target sites.
For most human TFs, a myriad of DNA-binding models
are available and could be used to predict the effects of
DNA mutations on TF binding. However, information on the
quality of these models is scarce, making it hard to evaluate
the statistical significance of predicted binding changes.
Here, we present QBiC-Pred, a web server for predicting
quantitative TF binding changes due to nucleotide variants.
QBiC-Pred uses regression models of TF binding specificity
trained on high-throughput in vitro data. The training is
done using ordinary least squares (OLS), and we leverage
distributional results associated with OLS estimation to
compute, for each predicted change in TF binding, a p-
value reflecting our confidence in the predicted effect.
We show that OLS models are accurate in predicting the
effects of mutations on TF binding in vitro and in vivo,
outperforming widely-used PWM models as well as recently
developed deep learning models of specificity. QBiC-Pred
takes as input mutation data sets in several formats, and
it allows post-processing of the results through a user-
friendly web interface. QBiC-Pred is freely available at http:
//qbic.genome.duke.edu.

INTRODUCTION

Genetic variants and mutations play important roles in human
disease (1). Most variants occur in non-coding genomic
regions, where they can impact gene expression by disrupting
interactions between transcription factors (TFs) and DNA.
In previous work we have introduced an ordinary least
squares (OLS)-based method for assessing the impact of non-
coding mutations on TF-DNA interactions (2). Briefly, we
used high-throughput in vitro TF binding data from universal
protein-binding microarray (uPBM) experiments (3) to train
regression models of TF-DNA binding specificity using OLS
estimation. Next, we used the OLS models to predict changes
in TF binding due to DNA mutations, and we showed that
our binding change predictions correlate well with measured
changes in gene expression.

∗To whom correspondence should be addressed. Tel: +1 (919)684-9881; Email: raluca.gordan@duke.edu

Our approach is novel compared to previous models
because, by using OLS, we obtain not only estimates of the
model coefficients, but also the variance of these estimates,
which allows us to compute normalized binding change scores
(z-scores) and significance levels (p-values) reflecting our
confidence that a mutation affects TF binding. The computed
p-values implicitly take into account the quality of the model
and of the training data, so in the case of poor predictive
models a large change in binding is required for a mutation
to be called significant (2).

Here, we introduce QBiC-Pred (Quantitative Predictions of
TF Binding Changes Due to Sequence Variants), or QBiC for
short, a web service that allows users to run our OLS models
through a user-friendly web interface.

Input. QBiC takes as input mutation/variant data sets
containing single nucleotide variants, in several formats: 1)
variant files in the standard variant call format (VCF); 2)
‘simple somatic mutations’ files generated by the International
Cancer Genome Consortium (ICGC) (4); 3) tab- or comma-
separated values files with the columns: chromosome,
chromosome pos, mutated from, and mutated to; and 4) text
files containing 17-bp DNA sequences with the mutated
nucleotide in the center, followed by the ‘mutated to’
nucleotide, separated by a space character. The first three
formats can be used with genomic coordinates from versions
hg19 and hg38 of the reference human genome, while the
sequence format allows users to input custom DNA sequences.
For the sequence format, the context of each variant (8-
bp on each side) is needed in order to assess the binding
status of each allele, using uPBM 8-mer enrichment scores
(E-scores) (3, 5). Examples of input mutations files are
described in the About section of the website, and available
for download. QBiC also takes as input a list of TF proteins
of interest, from a list of 577 human TFs with available OLS
models. All TF names are specified using the standard HUGO
gene nomenclature (HGNC) (6). The list of available TFs and
models is available on the QBiC website in the Downloads
section.

Output. For each input variant, QBiC runs the OLS models
for the list of specified human TFs, and it computes the
predicted TF binding changes, the normalized changes (z-
scores), the significance of the changes according to each
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Figure 3. Performance of OLS models in predicting in vitro TF binding
changes, compared to PWM and DeepBind models. When multiple PWM
models are available for a TF, we choose the one that gives the best prediction
result. We note that DeepBind ChIP-seq models are not available for RUNX1,
and DeepBind SELEX models are not available for GATA1, CREB1, and
STAT3. The in vitro binding data used in this analysis is available in
Supplementary Table 1.

binding changes using six types of models: OLS models,
PWM models used in (16), PWM-based sTRAP models (18),
and DeepBind models (12) trained on in vivo ChIP-seq data,
in vitro HT-SELEX data, and in vitro uPBM data. The uPBM
data sets used to train DeepBind and OLS models were the
same. The PWMs were obtained from the JASPAR (11) and
HOCOMOCO (19) databases. For TFs with multiple PWMs
available, the results we report below are for the PWM that
performed best in our evaluation (ETS1: HOCOMOCO
ETS1 HUMAN.H11MO.0.A, ELK1: HOCOMOCO
ELK1 HUMAN.H11MO.0.B, GATA1: JASPAR MA0035.2,
CREB1: JASPAR MA0018.2, RUNX1: JASPAR MA0002.2,
STAT3: HOCOMOCO STAT3 HUMAN.H11MO.0.A). For
DeepBind ChIP-seq and SELEX models, we used the v0.11
tools made available for download by the authors (12).
For DeepBind PBM models, the authors kindly provided
assistance training the models on our uPBM data.

OLS models can directly predict the TF binding change
due to a variant in a fixed-length or variable-length sequence.
In contrast, for PWM and DeepBind models we computed
likelihood scores for the wild-type and mutant sequences,
based on fixed-length window scores. For these models, we
predicted the binding change as the difference between the
maximum of all wild-type window scores and the maximum of
all mutant window scores. This definition is the same as delta
track metric defined in Wagih et al. (16), which performed best
in their study.

The correlations between model predictions and the TF
binding changes measured using custom PBM experiments
across the six TFs are shown in Figure 3. Except for RUNX1,
for which the DeepBind SELEX model was slightly better
than the rest of the models, DeepBind PBM models and our
OLS models outperformed the other models in predicting
TF binding changes in vitro. Compared to DeepBind PBM
models, our OLS models are simpler and much faster for
training and for predictions. In addition, OLS models can be
used to assess the statistical significance of the TF binding
changes predicted for each variant.

Figure 4 shows a detailed comparison of five models (OLS,
PWM, sTRAP, DeepBind SELEX, and DeepBind PBM) for

a binding site of TF ELK1. The input mutation file used in
QBiC to generate the ELK1 binding change predictions shown
in Figure 4 is available as Supplementary Table 2, and can also
be downloaded from the QBiC website as the sample input file
in sequence format.

The cross-validation accuracy of OLS models correlates
with their accuracy in predicting in vitro TF binding
changes

A TF can have multiple PWM models and DeepBind models
available, and it is often difficult to choose which model to use
for prediction. In contrast, for our OLS-based approach, we
are able to rank the models based on cross-validation accuracy
on the uPBM training data set. As expected, we found that
there is a positive relationship between the in-sample cross-
validation accuracy and the TF binding change prediction
accuracy on independent in vitro data (Figure 5). Thus, when
a TF has multiple OLS models, we recommend choosing the
model with the highest cross-validation accuracy. Detailed
information on the available OLS models for each human TF
can be found in the About section of the QBiC website.

OLS models of TF binding specificity outperform PWMs
and DeepBind models in predicting in vivo allele-specific
binding variants

To test the performance of OLS models on in vivo data, we
used the allele-specific binding (ASB) and non-ASB variants
in (16). We compared the performance of OLS models, PWM
models, and DeepBind models in distinguishing ASB variants
from non-ASB variants. The performance of each model
was assessed using the area under the Receiver Operating
Characteristic curve (AUROC) measure. For PWMs and
DeepBind ChIP-seq models, we used the binding change
scores reported by Wagih et al. (16). For DeepBind SELEX
and PBM models we derived the binding change scores
similarly to Wagih et al. (16), and used them for the
classification. For OLS models we used the z-score outputs
to classify the variants. The DeepBind PBM and OLS models
were trained on the same sets of PBM data. To illustrate how
QBiC can be used to analyze ASB and non-ASB variants,
in Supplementary Table 3 we provide the input mutation file
corresponding to the ASB data for TF MAFK, in VCF format.
This file is also available on the QBiC website, as the sample
input file for the VCF format.

A total of 14 human TFs have PWM models, OLS models,
and DeepBind models available. For these TFs we divided
their ASB variants into gain-of-binding and loss-of-binding
variants (for which the TF binding changes have opposite
signs), and for each set we used the different TF binding
models to distinguish between ASB and non-ASB variants.
OLS models clearly outperformed PWMs (Figure 6a), which
was expected given the limitations of PWM models in
capturing TF binding specificity (7, 20, 21, 22). OLS models
also outperformed DeepBind SELEX models trained on in
vitro binding data from HT-SELEX experiments (Figure 6b)
and DeepBind PBM models trained on in vitro data from PBM
experiments (Figure 6c) demonstrating that, when using only
DNA sequence information for training, OLS models perform
best in predicting in vivo allele-specific binding variants.
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Figure 4. Measured and predicted effects of single nucleotide mutations in an ELK1 binding site and its flanking regions. Since the wild-type sequence contains
an ELK1 binding site, most of the variants decrease binding. The A to T mutation in the middle generates a perfect match to core ELK1 motif TTCC. This,
however, does not increase the binding signal, likely because the flanking regions already made the ATCC site very strong. Both the PWM and DeepBind models
incorrectly predict a dramatic increase in binding due to the A to T mutation. The OLS model, however, correctly predicts the TF binding to be nearly unchanged.
There are also positions where the magnitude of the TF binding change seems to be overestimated by our OLS model but not so much by PWM-based and
DeepBind models, such as the T to C mutation at the last position. We note, however, that in this case the correctness of the magnitude of the predicted increase is
difficult to assess. For the PWM and the DeepBind SELEX models, the largest predicted increases are incorrect, so we cannot compare them directly to predicted
increase at the last position. For the PWM-based sTRAP model and the DeepBind PBM model, the magnitude of the predicted increase at the last position is larger
than for other correctly-predicted increases, similarly to our OLS model. Thus, it is difficult to judge which model performed best at predicting this particular
increase. Nevertheless, over all mutations tested, the OLS model performs best (see also Figure 3).
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Figure 5. Relationship between OLS model quality (assessed as the
in-sample cross-validation correlation) and the prediction accuracy on
independent in vitro mutation data. Figure shows the performance of OLS
models trained on 9 different uPBM data sets for TF ELK1.

We also compared the performance of OLS models
to DeepBind models trained on in vivo ChIP-seq data
(Figure 6d). Using OLS models we obtained larger AUROC
values for about half of the TFs, and overall the two models

had similar power in distinguishing ASB from non-ASB
variants. Nevertheless, we note that the DeepBind ChIP-seq
models were trained on ChIP-seq data from the same cell type
as the ChIP-seq data from which the ASB variants were called.
Therefore, OLS models managed to reach similar performance
to models trained on the ChIP-seq data itself, despite the fact
that OLS models do not use any cell type specific information.

DISCUSSION

Quantitative predictions of TF binding changes can help
us understand the functional roles of genetic variants, and
prioritize variants that are likely to have regulatory effects.
QBiC-Pred provides a fast and accurate approach to predict TF
binding changes due to genetic variants, based solely on their
sequence context. QBiC-Pred models are trained on in vitro
high-throughput universal PBM data, and they outperform
current PWM-based models and DeepBind models, which are
also based mainly on DNA sequence information. In addition,
QBiC-Pred offers a way to statistically test the significance
of each variant, taking the quality of the predictive models
into account. The quality measure of the models also helps
circumvent the problem of deciding which model to use when
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Figure 6. Performance of OLS, DeepBind, and PWM models in distinguishing between ASB and non-ASB variants identified from in vivo ChIP-seq data.

multiple models are available, which is often encountered
when making predictions using PWMs.

Several recent methods, including Sasquatch (23),
DeepSEA (24), and deltaSVM (25), predict the impact
of non-coding variants by taking advantage of cell- and
tissue-specific information, oftentimes beyond TF binding
data. These methods are complementary to ours: they focus
on overall functional changes caused by non-coding variants,
while we examine more specifically the potential binding
changes for each individual TF. For example, Sasquatch
predicts the change in the DNase footprint due to a variant,
but does not directly pinpoint the binding of which TF(s) is
affected by the variant (unless one post-processes the results
using specific TF binding models). In contrast, QBiC-Pred
can make quantitative predictions in a TF-specific manner,
for a large number of TFs, although it cannot predict the
effect of the variant in any specific cell type. Using these
methods together would give us a better understanding of the
functional impact of non-coding variants in the cell.

Annotation-based methods such as rVarBase (26),
INFERNO (27), HaploReg (28), and RegulomeDB (14)
can also be used to investigate potential regulatory variants.
These methods test whether the input variants fall within
known regulatory regions annotated, for example, using
PWM models and cell type-specific data. Thus, predictions

made by annotation-based methods depend on the quality of
the existing annotations, and, in the case of TF binding sites,
these methods are unlikely to detect variants that lead to the
creation of new binding sites in the genome. In addition, we
note that none of the methods mentioned above provides a
direct measure of the confidence in the predicted changes
in TF binding, based on the quality of the binding data and
model, which is a distinguishing feature of QBiC-Pred.

In summary, QBiC-Pred uses OLS models of TF-DNA
binding specificity to make accurate predictions of TF binding
changes due to single nucleotide variants. In addition to
the current functionalities of QBiC-Pred, a natural extension
would be to allow input sequences containing multiple
variants. As shown in our previous work, OLS models perform
very well on data containing multiple variants, being able to
predict ∼50% of the resulting variation in gene expression (2).
Another extension would be to include models trained on
other types of high-throughput in vitro TF binding data, such
as HT-SELEX data (29, 30). This would extend the list of
human TFs that can be analyzed using QBiC-Pred beyond
the 577 TFs with available high-quality uPBM data. This
extension, however, will require the development of new
methodology that takes into account the statistical properties
of the HT-SELEX data, in order to allow us to use the data
directly to compute significance levels (p-values) reflecting
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our confidence in the predicted effects of mutations on TF
binding.
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