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We consider the statistical inverse problem of recovering a function
f : M → R, where M is a smooth compact Riemannian manifold with
boundary, from measurements of general X-ray transforms Ia(f ) of f , cor-
rupted by additive Gaussian noise. For M equal to the unit disk with “flat”
geometry and a = 0 this reduces to the standard Radon transform, but our
general setting allows for anisotropic media M and can further model lo-
cal “attenuation” effects—both highly relevant in practical imaging problems
such as SPECT tomography. We study a nonparametric Bayesian inference
method based on standard Gaussian process priors for f . The posterior recon-
struction of f corresponds to a Tikhonov regulariser with a reproducing ker-
nel Hilbert space norm penalty that does not require the calculation of the sin-
gular value decomposition of the forward operator Ia . We prove Bernstein–
von Mises theorems for a large family of one-dimensional linear functionals
of f , and they entail that posterior-based inferences such as credible sets
are valid and optimal from a frequentist point of view. In particular we de-
rive the asymptotic distribution of smooth linear functionals of the Tikhonov
regulariser, which attains the semiparametric information lower bound. The
proofs rely on an invertibility result for the “Fisher information” operator
I∗
a Ia between suitable function spaces, a result of independent interest that

relies on techniques from microlocal analysis. We illustrate the performance
of the proposed method via simulations in various settings.

1. Introduction. The Radon transform and its variants play a key role in im-
age reconstruction problems, with important applications in physics, engineering
and other areas of scientific imaging. The classical case is where a function f in
R

2 is reconstructed from integrals over straight lines:

Rf (s,ω) =
Z ∞
−∞

f
¡
sω + tω⊥¢

dt, s ∈ R,ω ∈ S1,

where ω⊥ is the rotation of ω by 90 degrees counterclockwise. Often it is natural to
confine the function f to a bounded subset M of Euclidean space such as the unit
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disk, where integrals are now taken along lines connecting boundary points of M .
Such transforms constitute the basis for imaging methods such as computerised to-
mography (CT) and positron emission tomography (PET), and their mathematical
properties are well studied [28, 40].

Two generalisations of the standard Radon transform are important in appli-
cations: (a) to model an attenuation or absorption effect within M , for example
regions of different levels of biological activity in the physical medium M , and (b)
to model anisotropy or physical heterogeneity of M , for instance when “shortest
travel times” of waves through the earth follow geodesics of a non-Euclidean met-
ric. The methods used for (a) form the basis for SPECT imaging techniques (see,
for instance, [5, 34]) and (b) occurs naturally in seismology, helioseismology and
acoustic tomography problems, to mention a few [14, 19, 39, 52]. Both effects can
be tackled by the general notion of attenuated geodesic X-ray transforms that are
given by the formula

(1.1) Iaf (x, v) =
Z τ(x,v)

0
f

¡
γ(x,v)(t)

¢
e

R t
0 a(γ(x,v)(s)) ds dt,

where (x, v) parametrises the set of geodesics γ(x,v) through M , and where τ(x, v)

is the “exit time” of the geodesic started at a point x at the boundary ∂M in the
direction of v—see Section 2.1 for precise definitions. The case a = 0 corresponds
to the case when no attenuation is present, and the ‘geometry” of M is naturally
encoded in the set of geodesics.

The mathematical inverse problem here is to recover f from the line integral
values Ia(f ) along all geodesics. Explicit reconstruction formulas are available
in some specific settings: in the case of the flat disk in R

2 and when a = 0 this
was proved in Radon’s celebrated 1917 paper [47], and it has been shown in the
last 2 decades that explicit inversion formulas hold also in a variety of other more
involved settings, namely, “simple” geometries; see [43], [45] and the paper [37]
on numerical implementation. It is, however, generally not clear how the inver-
sion step should be done in case of observations corrupted by statistical noise. The
general approach to noisy inverse problems that can be found in the statistical liter-
ature is typically based on obtaining a singular value decomposition (SVD) of the
forward operator Ia and to then construct a procedure based on spectral regularisa-
tion; see, for example, the papers [11, 12, 24, 31–33, 48], just to mention a few. For
the standard Radon transform such methods have been suggested in the seminal
paper by Johnstone and Silverman [31] where the SVD basis is given by Zernike
polynomials. Another approach consists in “rebinning” fan-beam data into parallel
data, for which regularisation methods are well understood thanks to the Fourier-
slice theorem; see [40]. However, neither approach adapts well to more general
X-ray transforms: with attenuation and/or general geodesics, the SVD can rarely
be computed analytically; nor is rebinning an option, as the space of geodesics
is not homogeneous in general, and this removes the possibility of regularisation
methods based on parallel geometry.
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In the present paper we follow the Bayesian approach to inverse problems [17,
54] and study a basic nonparametric inference method built around a standard
Gaussian prior for the unknown function f which does not require the identifica-
tion of the SVD basis of Ia . We show how this method can be implemented in a
standard way and the resulting maximum a posteriori (MAP) point estimates corre-
spond to a Tikhonov regulariser with a common Sobolev norm penalty, where the
Sobolev norm is defined in a classical way (and not implicitly via the SVD of Ia).
We prove a Bernstein–von Mises theorem that entails asymptotic normality of var-
ious “semiparametric aspects” of the posterior distribution. From it we deduce in
particular asymptotic normality and statistical efficiency of the plug-in Tikhonov
regulariser for linear integral functionals hf,ψiL2 , where ψ is any smooth test
function on M . In other words we establish that the semiparametric information
bound in this problem is attained by a standard regularisation method that does not
require the calculation of the SVD basis. The proof is based on a combination of
ideas from Bayesian nonparametric statistics [6, 8, 9] with an inversion result for
the “Fisher information” operator I ∗

a Ia between suitable function spaces (here I ∗
a

is a natural adjoint operator defined below).
Heuristically (by analogy to the finite-dimensional linear model) the semi-

parametric information lower bound for inference on hf,ψiL2 should be Iψ =
kIa(I

∗
a Ia)

−1ψk2
L2 , but in our infinite-dimensional setting it has to be clarified for

which ψ this quantity is well defined. In Section 4 we invert the “Fisher infor-
mation” operator by solving the homogeneous Dirichlet boundary value problem
for the pseudo-differential operator I ∗

a Ia , using techniques from micro-local anal-
ysis. The mapping properties we deduce imply in particular Theorem 2.2(c) below,
which rigorously establishes that Iψ exists for all smooth ψ (and equals the infor-
mation lower bound). In our inversion result for I ∗

a Ia , a key analytical difficulty,
explained in more detail at the outset of Section 4, arises at the boundary ∂M

of M : for example, when applied to smooth (say constant) functions, I ∗
a Ia can

generate singularities at ∂M . And even if one assumes that the unknown f , and
thus relevant test functions ψ , are supported strictly within M , an application of
(I ∗

a Ia)
−1 to such ψ will produce a function that is fully supported in M (in view of

the nonlocality of the inverse operator). Dealing with boundary issues can there-
fore not be dispensed with. These nonlocality effects can also be seen in numerical
simulations (Example 3).

The connection to partial differential equation (PDE) models just mentioned
deserves a final remark: For M a bounded domain in R

d with smooth boundary
∂M , consider the transport equation

(1.2) v · ∇xu(x, v) + a(x)u(x, v) = −f (x), x ∈ M,v ∈ Sd−1,

subject to the boundary condition u(x, v) = 0 for x ∈ ∂M,v · ν(x) ≥ 0, where
ν(x) is the outer normal at x. Along each straight line the transport equation (1.2)
becomes an ordinary differential equation that is easily solved to find that the influx
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trace of u is precisely the function Ia(f ). Our results can thus be cast into the
setting of Bayesian inference for parameters of partial differential equations (here
f ) from noisy observations of their solutions [here Ia(f )], studied by A. Stuart
and others in the inverse problems literature; see [17, 54] for an overview and [41,
42] for recent related theoretical contributions for parabolic and elliptic PDEs.

This article is organised as follows: In Section 2.1 we introduce general X-ray
transforms and state the invertibility theorem for the information operator. In Sec-
tion 2.2 we propose a Bayesian nonparametric method for inference from noisy
X-ray transform data, and in Section 2.3 we give the theoretical results about the
performance of the Bayes method and the associated Tikhonov regulariser. All
proofs can be found in subsequent sections.

2. Main results.

2.1. Geodesic X-ray transforms and an inversion result for the information op-
erator. In this section we introduce the geodesic X-ray transform I of a compact
Riemannian manifold with boundary as well as the attenuated version Ia . Our main
objective is to establish mapping properties for the normal (information) operator
I ∗
a Ia .

The geodesic X-ray transform acts on functions defined on a compact ori-
ented d-dimensional Riemannian manifold (M,g) with boundary ∂M (d ≥ 2).
In essence, it integrates the function along all possible geodesics running between
boundary points. To define the transform with precision we need to introduce some
language that conveniently describes the geodesics on a manifold. Geodesics in a
Riemannian manifold can be defined in many ways, but for our purposes it suffices
to say that they are curves that locally minimize the distance between two points.
It turns out that they obey a second order ordinary differential equation on M and
thus a geodesic is uniquely determined by its initial position and velocity (i.e., a
point in phase space). Geodesics travel at constant speed, so we might as well from
now on fix the speed to be one. It is hence convenient to pack positions and ve-
locities together in what we call the unit sphere bundle SM . This consists of pairs
(x, v), where x ∈ M and v is a tangent vector at x with norm |v|g = 1, where g is
the inner product in the tangent space at x (i.e., the Riemannian metric).

Unit tangent vectors at the boundary of M constitute the boundary ∂SM of SM

and will play a special role. Specifically

∂SM := ©
(x, v) ∈ SM : x ∈ ∂M

ª
.

We will need to distinguish those tangent vectors pointing inside (“influx bound-
ary”) and those pointing outside (“outflux boundary”), so we define two subsets of
∂SM

∂±SM := ©
(x, v) ∈ ∂SM : ±­

v, ν(x)
®
g ≤ 0

ª
,

where ν(x) is the outward unit normal vector on ∂M at x.
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Given (x, v) ∈ SM , we denote by γx,v : R → M the unique geodesic with
γx,v(0) = x and dγx,v

dt
(0) = v and let τ(x, v) be the first time when the geodesic

γx,v exits M .
We say that (M,g) is nontrapping if τ(x, v) < ∞ for all (x, v) ∈ SM . In this

paper we will work exclusively with nontrapping manifolds and this is all we need
to define the geodesic X-ray transform. Let C∞(W) denote the set of infinitely
differentiable functions on a manifold W .

DEFINITION 2.1. The geodesic X-ray transform of a function f ∈ C∞(M) is
the function If : ∂+SM →R given by

If (x, v) =
Z τ(x,v)

0
f

¡
γx,v(t)

¢
dt, (x, v) ∈ ∂+SM.

In order to obtain good mapping properties for I , we need additional condi-
tions on M . The second condition that we will impose is that M has strictly
convex boundary, that is, the second fundamental form 5x(v, v) := h∇vν, vig ,
for v any tangent vector at x, is positive definite for all x ∈ ∂M . This ensures
that I : C∞(M) → C∞(∂+SM) since strict convexity of the boundary implies
τ ∈ C∞(∂+SM) ([51], Lemma 4.1.1).

Effectively, the influx boundary ∂+SM parametrizes all geodesics going
through M . The space of geodesics carries a natural measure (or volume form)
which in turn equips ∂+SM with the measure

dμ(x, v) := ¯̄­
ν(x), v

®
g

¯̄
dx dv

and we shall denote L2
μ(∂+SM) the space of functions on ∂+SM with inner prod-

uct

hu,wiL2
μ(∂+SM) =

Z
∂+SM

uw dμ.

The measure dμ is natural in the following sense. If we consider the canonical
map

8 : ©
(x, v, t) : (x, v) ∈ ∂+(SM); t ∈ £

0, τ (x, v)
¤ª → SM

given by 8(x, v, t) = (γ(x,v)(t), γ̇(x,v)(t)) (the geodesic flow) then a calculation
shows that

(2.1) 8∗(2) = ¯̄­
ν(x), v

®
g

¯̄
dx dv dt,

where 2 is the canonical volume form of SM (also called Liouville form in clas-
sical mechanics) and 8∗(2) is a new volume form obtained by pulling back 2

via 8.
It is not hard to prove that I extends as a bounded linear map [51], Theo-

rem 4.2.1,

I : L2(M) → L2
μ(∂+SM)



1118 F. MONARD, R. NICKL AND G. P. PATERNAIN

and hence we have a well defined adjoint I ∗ : L2
μ(∂+SM) → L2(M) that can be

easily computed using (2.1). Explicitly

I ∗w(x) =
Z
SxM

w](x, v) dv,

where w](x, v) := w(γx,v(−τ(x,−v)), γ̇x,v(−τ(x,−v))) and SxM denotes the
set of unit tangent vectors at x. In the literature that discusses the standard Radon
transform, this operator is usually referred to as back-projection operator and ap-
pears prominently in the celebrated filtered back-projection formula [40, 47] (see
[34] for an excellent recent presentation of the classical Radon transform). We can
now define the “information operator” I ∗I : L2(M) → L2(M).

The third and final condition that we will impose on M is that it is free of conju-
gate points. Intuitively, this means that beams of geodesics emanating from a point
do not focus on or converge to another point (as it would happen for the geodesics
on the sphere connecting south and north poles). Equivalently, two points in M

are joined by a unique geodesic (note that M nontrapping and with strictly convex
boundary implies that M is contractible [56]). This property is fundamental for us
since it implies that the information operator is an elliptic pseudo-differential op-
erator of order −1. Manifolds satisfying the three conditions—nontrapping, strict
convexity of the boundary and absence of conjugate points—are called simple.

The theory of the X-ray transform is well developed in the case of simple man-
ifolds. If one considers only nontrapping manifolds with strictly convex boundary
but allows for conjugate points, the operator I ∗I loses its pseudo-differential char-
acter. Strict convexity of the boundary is seen as less essential, but dropping it
causes technical complications mostly arising from the noncontinuity of the exit
time τ .

The discussion above extends without difficulties to the attenuated case. The
attenuated geodesic X-ray transform Iaf of a function f ∈ C∞(M) with attenu-
ation coefficient a ∈ C∞(M) can be defined as the integral:

Iaf (x, v) :=
Z τ(x,v)

0
f

¡
γ(x,v)(t)

¢
exp

·Z t

0
a
¡
γ(x,v)(s)

¢
ds

¸
dt, (x, v) ∈ ∂+SM.

The transform Ia extends as a bounded operator Ia : L2(M) → L2
μ(∂+SM) with

adjoint I ∗
a : L2

μ(∂+SM) → L2(M). In the case of simple manifolds, the informa-
tion operator I ∗

a Ia displays the same features as I ∗I .
We will consider noisy observations Y of the X-ray transform Iaf of an un-

known function f . If W is a standard Gaussian white noise in the Hilbert space
L2

μ(∂+SM) and ε > 0 a noise level, our data is

(2.2) Y = Iaf + εW.

Up to a discretisation step described in the next section and the usual “Gaussiani-
sation” of Poisson count data, this is a realistic approximate noise model for phys-
ical X-ray transform measurements. Assuming this model the following proper-
ties of the information operator I ∗

a Ia and its inverse will be crucial for the theory
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that follows: They imply that the inverse Fisher information exists for a variety of
semiparametric inference problems. Their proofs using techniques from microlo-
cal analysis are given in Section 4 below.

THEOREM 2.2. Let M be a simple manifold and suppose

Ia : C∞(M) → C∞(∂+SM)

is injective. Let dM be any C∞ function that equals (the Riemannian) dist(·, ∂M)

near the boundary and is positive on the interior of M .

(a) The information operator I ∗
a Ia defines a bijection between {d−1/2

M g : g ∈
C∞(M)} and C∞(M) and hence has a well defined inverse

¡
I ∗
a Ia

¢−1 : C∞(M) → ©
d

−1/2
M g : g ∈ C∞(M)

ª
such that I ∗

a Ia(I
∗
a Ia)

−1ψ = ψ for all ψ ∈ C∞(M).
(b) We have for some constant c > 0 that depends only on d , M

°°Ia

¡
d

−1/2
M h

¢°°
L2

μ(∂+SM) ≤ ckhk∞

for every h ∈ C(M).
(c) For any ψ ∈ C∞(M) we have that Ia(I

∗
a Ia)

−1ψ ∈ L2
μ(∂+SM) and

(2.3)
°°Ia

¡
I ∗
a Ia

¢−1
ψ

°°2
L2

μ(∂+(SM)) < ∞
is the Cramér–Rao lower bound (inverse Fisher information) for estimation of the
parameter hf,ψiL2(M) in the model (2.2).

Injectivity of Ia for simple manifolds is known in virtually all cases, so assum-
ing it in the theorem is not a serious restriction. When a = 0, injectivity of I is a
classical landmark result due to Mukhometov [38]. In two dimensions, injectivity
of Ia is known in general [49] and in dimensions ≥ 3, Ia is injective as long as M

admits a strictly convex function [44, 58].
Given parts (a) and (b) the proof of the first assertion in Theorem 2.2(c) is

straightforward. The second assertion in Part c) then follows from standard semi-
parametric theory (Chapter 25 in [59]): An application of Lemma 3.1 below im-
plies that the model (2.2) is locally (asymptotically) normal (LAN) with LAN-
norm k · kLAN = kIa(·)kL2

μ(∂+SM), and since we have for all h ∈ L2(M) that

(2.4) hIah, Iaψ̃iL2
μ(∂+SM) = hh,ψiL2(M), ψ̃ = ¡

I ∗
a Ia

¢−1
ψ,

we can argue as in Section 7.5 in [41] to deduce the information lower bound
kψ̃k2

LAN from (2.3). This identifies in particular the (lower bound for the) asymp-
totic minimax constant

(2.5) lim inf
ε→0

inf
ψ̂

sup
f

ε−2Ef

¡
ψ̂ − hf,ψi¢2 ≥ °°Ia

¡
I ∗
a Ia

¢−1
ψ

°°2
L2

μ(∂+(SM)),
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where the infimum is taken over all estimators ψ̂ = ψ̂(Y ) of hf,ψi based on ob-
servations in the model (2.2), and where the supremum in f extends over arbitrary
L2-neighbourhoods of f0 of diameter ε.

2.2. Bayesian inference with Gaussian priors. We now address the statistical
problem of recovering f from a noisy observation of the X-ray transform Iaf ,
and propose numerical illustrations of the feasibility of the approach to general
geometries. In what follows, we will take M = {(x1, x2) ∈ R

2, x2
1 + x2

2 ≤ 1}, en-
dowed with either the Euclidean metric ge = dx2

1 + dx2
2 (generating the classical

Radon transform), or the metric

g(x1, x2) = e2λ(x1,x2)
¡
dx2

1 + dx2
2
¢
,

λ(x1, x2) := 0.45
¡
e−8((x1−0.3)2+(x2−0.3)2) − e−8((x1+0.3)2+(x2+0.3)2)¢;

(2.6)

see Figure 1. We will concentrate on the unattenuated case a = 0 for concise-
ness. We parameterise ∂+SM using fan-beam coordinates, defined for (β,α) ∈
[0,2π) × (−π/2, π/2) by

(β,α) 7→
µ
x =

µ
cosβ

sinβ

¶
, v = e−λ(x)

µ
cos(β + π + α)

sin(β + π + α)

¶¶
∈ ∂+SM,

with area element dμ(x, v) = cosα dα dβ .
Discretisation. We assume in pratice that we are given noisy data at geodesics

{γi}ni=1 emanating from a fan-beam sample {(βi, αi)}ni=1, and that the unknown
function is modelled as a finite sum f = Pm

j=1 fjφj . Specifically, the domain is a
triangular mesh with m nodes x1, . . . , xm (see Figure 1, left), so that fj represents
f (xj ) and φj is a piecewise linear function on the mesh, uniquely defined by the
relation φj (xk) = δjk . We then seek to reconstruct X = (f1, . . . , fm)T from the
observation

Y = AX + εW(n), Y = (y1, . . . , yn)
T ,(2.7)

FIG. 1. Left to right: example of a mesh with 886 nodes; geodesics for the Euclidean geometry;
geodesics for the metric given in (2.6), superimposed to a contour plot of the “sound speed” e−λ.
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where the discretised forward operator A is an n × m matrix with entries Aij =
Iφj (βi, αi), and W(n) is Gaussian white noise on an ad hoc n-dimensional sub-
space of L2

μ(∂+SM). By ad hoc we mean that for this problem to be a faithful
discretisation of the continuous one (2.2), one must endow the domain and range
of A :Rm →R

n with inner products (described by matrices m and n, respectively)
which mimick the continuous inner products on L2(M) and L2(∂+SM): More
precisely, if f = P

j fjφj and f 0 = P
j f 0

jφj , then

Z
M

f (x)f 0(x) dx =
mX

i,j=1

mij fif
0
j , mij :=

Z
M

φi(x)φj (x) dx.

Similarly, assuming here that the data comes from a uniform cartesian discreti-
sation of ∂+SM of size n = nβnα , the n-dimensional subspace of L2

μ(∂+SM)

on which (2.7) is posed has an orthogonal basis {ei}ni=1, where ei equals 1 on a
pixel of dimensions 2π

nβ
× π

nα
centered at (βi, αi) and 0 elsewhere. A data sample

Y = (y1, . . . , yn)
T can then be viewed as a function y = P

i yiei ∈ L2
μ(∂+SM), so

that Z
∂+SM

y(β,α)y0(β,α) cosα dα dβ =
nX

i,j=1

nij yiy
0
j ,

where

nij =
Z
∂+SM

ei(β,α)ej (β,α) cosα dα dβ ≈ δij

2π2

nβnα

cosαi.

In particular, {ei/
√

nii}ni=1 is an orthonormal family, and a realisation of a stan-
dard Gaussian white noise on this basis takes the form

Pn
i=1 wi(ei/

√
nii) with

wi ∼ N (0,1). In short, i.i.d. standard Gaussian noise in the “ad hoc” space used
for discretisation equals W(n) ∼ N (0,n−1) in usual coordinates. The computation
of the forward matrix A is now done by solving geodesics by ODEs first, then com-
puting the integrals via Riemann sums, as in [37]. The main difference is that here
f is defined on an unstructured triangular mesh generated via the package [62],
and interpolating these values at any point is done using barycentric coordinates.

Approach. We take a basic Bayesian approach to this inverse problem: given a
Gaussian prior 5 on the function f (or its coefficient vector X), we assume the
Yi |f ’s are generated from model (2.7) conditional on f , and obtain the posterior
distribution on f |Y by an application of Bayes’ rule. For inference one needs to
be able to calculate the posterior distribution, at least approximately. To this end,
with the notation above, since W(n) ∼ N (0,n−1), then Y |X ∼ N (AX,ε2n−1).
Assuming the prior distribution is of the form X ∼ N (0, σ−10) where the prior
covariance matrix 0 and the precision parameter σ are known, a standard calcula-
tion gives the posterior distribution X|Y ∼ N (Xc,0c), where

0c := ¡
ε−2AT nA + σ0−1¢−1

, Xc := ε−20cA
T nY,(2.8)
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where AT denotes the standard matrix transpose. As the posterior distribution is
Gaussian, the posterior mean equals the posterior mode Xc (or MAP-estimate)
and thus the Tikhonov-regulariser; see [16] or [22]. As a consequence the centre
of mass of the posterior distribution is an approximation to the solution of the
optimisation problem

min
f ∈V5

£
ε−2kY − Iaf k2

L2
μ(∂+SM)

+ σkf k2
V5

¤
,

discretised into

min
X∈Rm

£
ε−2(Y − AX)T n(Y − AX) + σXT 0−1X

¤
,

where V5 ⊂ L2(M) is the reproducing kernel Hilbert space (RKHS) of 5. (See
[22, 23] for standard properties of Gaussian processes and their RKHS.) Natural
choices for V5 are those coming from kernel-type Gaussian process whose covari-
ance is prescribed by a fixed positive definite function K(·, ·); see also Remark 2.6
below. In particular, we choose here the Matérn kernel K(xi, xj ) = kν,`(|xi −xj |),
where

kν,`(r) := 21−ν

0(ν)

µ√
2νr

`

¶ν

Kν

µ√
2νr

`

¶
,

and where Kν denotes the modified Bessel function of the second kind. In the ex-
amples below, the four parameters (ε, σ, ν, `) are assumed to be known. To address
uncertainty on these parameters, hierarchical models can be considered and effi-
cient methods can be derived to compute features of the posterior distribution; see,
for example, the recent article [4].

Experiments. The phantoms used are given Figure 2, f1 is the so-called “mod-
ified Shepp–Logan” phantom (compactly supported) and f2 = h2/

√
dM with

h2 ∈ C∞(M) and dM(x, y) := 1
2(1 − x2 − y2) (as discussed in the next section,

the scaling by
√

dM is natural in this inverse problem). In all examples, the mesh
has m = 6027 nodes and we use n = 14,450 geodesics. The other parameters are
given by ε = 10−3, σ = 1, ν = 1.5 and ` = 0.2. Sampling the posterior distribution
is done by drawing X = Xc + GZ, where Z ∼ N (0, Im×m) and G is a matrix sat-
isfying GGT = 0c [defined in (2.8)], obtained for instance by Cholesky decompo-
sition (here one may notice that this step is a much cheaper option than computing
the SVD of the information operator). To compute forward data, we use the code
[37] which allows to produce “true” data with higher accuracy, thereby avoiding
the inverse crime of using a forward and inverse solver on the same computational
grid.

EXAMPLE 1. Euclidean geometry, reconstruction of f1 from its Euclidean
ray transform. We compute the posterior distribution and visualise the mean and
sample draws. Results are visualised Figure 3. As the Shepp–Logan phantom has
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FIG. 2. Left: f1, the Shepp–Logan phantom (compactly supported). Right: the function h2 such
that f2 := h2/

√
dM blows up at the boundary.

spatial variations which may be too sharp to be captured by the prior, we expect
over-smoothed reconstructions near sharp edges. This can be seen, for example,
on Figure 3 (bottom-right).

EXAMPLE 2. Same as Example 1, except that the geometry is the non-
Euclidean one characterized by the metric in (2.6) and geodesics displayed Fig-
ure 1 (right). Results are displayed Figure 4, illustrating the applicability of the
approach to nonstandard geometries.

FIG. 3. Example 1. Left to right. Top row: If1; If1 noisy (with β on the horizontal axis and α on
the vertical axis). Bottom row: posterior mean; cross-section on {x2 = 0} of 2000 posterior samples.
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FIG. 4. Example 2. Left to right. Top row: If1; If1 noisy (with β on the horizontal axis and α on
the vertical axis). Bottom row: posterior mean; cross-section on {x2 = 0} of 2000 posterior samples.

EXAMPLE 3. Reconstruction of f2 in Euclidean geometry, with noise level
ε = 10−2 (all other parameters unchanged). As explained in the theory that fol-
lows in the next section, an appropriate prior for f2 should be of the form d

−1/2
M h2

where h2 is drawn from a “standard” Gaussian prior modelling a regular function.
For numerical purposes, it should be more stable to work with h2, and try to re-
construct h2 from the transform Idh2 := I (d

−1/2
M h2), as the transform Id naturally

compensates for the blowup by integrating. In the implementation, the only change
is to work with the discretised version of Id rather than I (call the corresponding
matrix Ad ), everything else being kept equal. As may be observed on the middle
row of Figure 5, the reconstruction of h2 is quite robust, especially at the boundary
despite the blowup of f2 there. For comparison, the bottom row of Figure 5 gives
the outcome of just inverting for f2 using A with the usual prior on f2 instead of
h2 (as in Example 1). As expected, the latter approach is manifestly more unstable
near the boundary, and this instability is propagated to the reconstruction in the
interior of M , as Figure 5 illustrates.

2.3. Asymptotic normality of the posterior distribution and of the MAP estima-
tor. The statistical methodology laid out in the previous section did not rely on
any problem-specific regularisation (it just was based on a standard Gaussian pro-
cess and the penalty norm of its RKHS), particularly no computation of the SVD
of the forward operator Ia was required. One may wonder whether the Bayes so-
lution of this inverse problem can be objectively trusted in the sense that it solves
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FIG. 5. Example 3. Left to right. Top row: If2; If2 noisy. Middle row: posterior mean
and 2000 cross-sectioned posterior samples for h2. Bottom row: posterior mean and 2000
cross-sectioned posterior samples for f2, divided by d

−1/2
M for comparison with middle

row.

the inverse problem in a prior-independent way. We will now show that for the
recovery of arbitrary C∞-aspects of f , posterior based inference is not only valid
but actually optimal from an information theoretic point of view. The theory will
be given in the “continuous” Gaussian white noise model (2.2).

We start with a Gaussian Borel probability measure 5̃ supported in the space
C(M) of bounded continuous functions on M . If h ∼ 5̃ we let the prior 5 for f

be the law of the random function

(2.9) f (x) = D(h)(x) := h(x)/
p

dM(x), x ∈ M,

where dM is any function as in Theorem 2.2. By standard arguments (Exercise
2.6.5 in [23] or Lemma I.16 in [22]), if V5̃ is the RKHS of the initial Gaussian mea-
sure 5̃ then the RKHS V5 of the induced prior has norm k · kV5 = k√dM(·)kV

5̃
.
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The linear mapping D transforms a standard Gaussian prior into one that allows for
singularities of functions at the boundary ∂M of a form suggested by Theorem 2.2.

We will now give some precise asymptotic (ε → 0) results about the statistical
behaviour of the posterior distribution arising from such a prior, under the frequen-
tist assumption that a fixed f0 generates the observations in (2.2). We will require a
mild condition on the prior and on f0 expressed through the concentration function
of the initial probability measure 5̃

(2.10) φ5̃,f0
(δ) = inf

v∈V
5̃

,kv−√
dMf0k∞≤δ

·kvk2
V

5̃

2
− log 5̃

¡
h : khk∞ ≤ δ

¢¸
,

which characterises the asymptotics of the small ball probabilities 5̃(h : kh −√
dMf0k∞ ≤ δ) of 5̃ as δ → 0. The concentration function of Gaussian priors

is well studied (see [60] or also Chapter 2.6 in [23] and [22]), and the condition
that follows is mild—it can be shown to be satisfied for all sufficiently rich Gaus-
sian processes arising from positive definite kernels K , as soon as

√
dMf0 satisfies

standard smoothness conditions; see Remark 2.6.

CONDITION 2.3. Let f0 : M → R such that
√

dMf0 ∈ C(M). Let 5̃ be a
Gaussian Borel probability measure on C(M) whose RKHS V5̃ contains C∞(M)

and whose concentration function satisfies, for c equal the constant from Theo-
rem 2.2(b) and for some sequence δε → 0 such that δε/ε → ∞,

(2.11) φ5̃,f0
(δε/2c) ≤ (δε/ε)

2.

CONDITION 2.4. Let P Y
f0

be the law generating the equation Y = Iaf0 + εW,

where Ia : L2(M) → L2
μ(∂+(SM)) is the X-ray transform under the conditions

of Theorem 2.2, W is a white noise in L2
μ(∂+(SM)), and ε > 0 is a noise level.

Let 5(·|Y) be the posterior distribution arising from observing (2.2) under prior
5 = L(f ), where L(f ) = L(d

−1/2
M h),h ∼ 5̃, with 5̃ satisfying Condition 2.3 for

the given f0.

Our main statistical result is the following Bernstein–von Mises theorem for
posterior inference on hf,ψiL2(M) for arbitrary test functions ψ ∈ C∞(M). The
idea of its proof is partly inspired by [6–10], where however priors have to be used
that are diagonal in the inner product induced by the information operator. This is
not the case in the inverse problem setting we consider here, but the invertibility
result in Theorem 2.2 combined with an adaptation of ideas in [8, 9] allow to
overcome this difficulty. We give the result for smooth ψ but our techniques can
be used to obtain results for less regular ψ as well in principle; see Remark 2.10.

We employ the usual notion of weak convergence of laws L(Xn) →L L(X) of
real random variables Xn, X that converge in distribution, Xn →d X. In (2.12) be-
low we claim convergence of random laws μn →L μ in probability, which means
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that for β any metric for weak convergence of laws (11.3 in [18]), the real random
variables β(μn,μ) converge to zero in probability.

THEOREM 2.5. Assume Condition 2.4. If f ∼ 5(·|Y), then for every ψ ∈
C∞(M) we have as ε → 0 that

(2.12) L
¡
ε−1¡hf,ψiL2(M) − 9̂

¢|Y ¢ →L N
¡
0,

°°Ia

¡
I ∗
a Ia

¢−1
ψ

°°2
L2

μ(∂+(SM))

¢

in P Y
f0

-probability, where

9̂ = hf0,ψiL2(M) − ε
­
Ia

¡
I ∗
a Ia

¢−1
ψ,W

®
L2

μ(∂+(SM)).

REMARK 2.6 (Examples of Gaussian priors and of f0’s). Regarding M as
a subset of Rd , most Gaussian processes that model regular functions in C(Rd),
when restricted to C(M), will satisfy Condition 2.3, if we assume that

√
dMf0

is sufficiently regular. For example let K : Rd → R be a positive definite kernel
function whose Fourier transform FK satisfies, for all kuk large enough,

(2.13) c0kuk−2s ≤ FK(u) ≤ c1kuk−2s, c0 < c1, s > d/2,

a concrete example being provided by the Matérn kernel (see page 313 in [22]
and also Section 9.6 of [1]). For such K we can define a unique centred sta-
tionary Gaussian process (G(x) : x ∈ R

d) with covariance EG(x)G(y) = K(x −
y), x, y ∈ R

d . The Gaussian process (G(x) : x ∈ M) obtained by restriction to
M ⊂ R

d defines a tight Gaussian measure γK on C(M), and its RKHS coincides
with the standard Sobolev space Hs(M) obtained from restricting elements of
Hs(Rd) to M . Moreover if f0 = d

−1/2
M φ0 for some φ0 ∈ Hs(M), s > d/2, then

5̃ = γK satisfies Condition 2.3 with δε ≈ ε2s/(2s+d). Likewise, if φ0 is α-Hölder
continuous on M for some α > 0 [including the case of arbitrary f0 ∈ C∞(M)],
it can be approximated from elements in Hs(M) in k · k∞-norm and a sequence
δε → 0 for which Condition 2.3 holds can still be found. These facts can be proved
just as in [22], page 330f.

From the previous theorem we can deduce the asymptotic distribution of the
posterior mean E5[f |Y ], which, since the posterior distribution is also a Gaus-
sian measure, equals the posterior mode (MAP estimate). From Corollary 3.10 in
[16] (see also Section 11.7 in [22]), MAP estimates can further be seen to equal
the Tikhonov-regularisers with RKHS norm as penalty function. Note that in our
infinite-dimensional setting the Tikhonov regulariser is defined as the maximiser
in f of the Onsager–Machlup functional

(2.14) Q(f ) = 1

ε2 hIaf,Y iL2
μ(∂+SM) − 1

2ε2 kIaf k2
L2

μ(∂+SM)
− 1

2
kf k2

V5
.

In the discrete setting from Section 2.2 this is equivalent to minimising Q(f ) =
1
ε2 kY − Iaf k2 + kf k2

V5
as usual, but in our setting Y /∈ L2

μ(∂+SM), so the pre-
ceding formulation is the appropriate one.
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THEOREM 2.7. Let f̄ = f̄ (Y ) = E5[f |Y ] ∈ C(M) be the mean of the
posterior distribution in Theorem 2.5. Then for every ψ ∈ C∞(M) we have
hf̄ (Y ),ψiL2(M) − 9̂ = oP Y

f0
(ε) as ε → 0 and thus also, under P Y

f0
,

(2.15)
1

ε
hf̄ − f0,ψiL2(M) →d Z ∼ N

¡
0,

°°Ia

¡
I ∗
a Ia

¢−1
ψ

°°2
L2

μ(∂+(SM))

¢
.

In particular in (2.12) in Theorem 2.5 we may replace the centring 9̂ by
hf̄ ,ψiL2(M).

REMARK 2.8 (Exact asymptotic minimaxity). The proof of the last theorem
implies that convergence of all moments in (2.15) occurs, and hence f̄ attains the
lower bound constant from (2.5) in the small noise limit. Thus hf̄ ,ψiL2(M) is an
asymptotically exact minimax estimator of hf0,ψiL2(M).

REMARK 2.9 (Confident credible sets). Theorems 2.5 and 2.7 justify the fol-
lowing construction of a confidence set for the Tikhonov regulariser: Consider a
credible interval

Cε = ©
x ∈R : ¯̄hf̄ ,ψi − x

¯̄ ≤ Rε

ª
, Rε s.t. 5(Cε|Y) = 1 − α,

for some given significance level 0 < α < 1. The frequentist coverage probability
of Cε will satisfy (arguing as in the proof of Theorem 7.3.23 in [23])

P Y
f0

¡hf0,ψi ∈ Cε

¢ → 1 − α

and

ε−1Rε →P Y
f0 8−1(1 − α)

as ε → 0. Here 8−1 is the continuous inverse of 8 = Pr(|Z| ≤ ·) with Z

as in (2.15). To implement this confidence set we use the posterior sampling
method from Section 2.2 to numerically approximate the quantile constants Rε—
computation of Var(Z), which could be intricate, is not required.

REMARK 2.10 (Extensions). The above theorem shows that semiparametri-
cally efficient recovery of C∞ aspects of f is possible. Following the program
laid out in the papers [6–9, 41] one could in principle proceed to use the estimates
in the proof of Theorem 2.5 to derive a result for posterior reconstruction of the
entire parameter f in suitable norms via bounding ε−1hf − f0,ψi|Y uniformly in
collections of functions ψ of bounded Sobolev norms. The approximation theo-
retic arguments required to do that in the present setting involve delicate boundary
issues, with standard Sobolev spaces as approximation scales having to be replaced
by the Hörmander spaces introduced in Section 4 below. The execution of these
arguments is possible but quite technical and beyond the scope of this paper.
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3. Proofs for Section 2.3.

3.1. Proof of Theorem 2.5. Let Hi, i = 1,2 be separable Hilbert spaces and
consider the equation

Y = G(f ) + εW, ε > 0,

where G : H1 → H2 is a Borel measurable mapping and W is a centred Gaussian
white noise process (W(h) : h ∈ H2) with covariance EW(h)W(g) = hh,giH2 .
Observing Y then means that we observe a realisation of the Gaussian process
(Y (h) = hY,hiH2 : h ∈ H2). We sometimes write hW, hiH2 for the random variable
W(h). Arguing as in Section 7.4 in [41] the posterior distribution of f |Y exists and
equals

(3.1) 5(B|Y) =
R
B pf (Y )d5(f )R
F pf (Y )d5(f )

, B ∈ BH1 a Borel set in H1,

where pf (Y ) is a likelihood function with respect to a suitable dominating mea-
sure. The following result is a standard application of the Cameron-Martin theorem
(see equation (116) in [41]).

LEMMA 3.1. Let `(f ) = logpf (Y ) and assume Y = G(f0) + εW for some
fixed f0 ∈ H1. Then if G is also linear, we have for any f,g ∈ H1,

`(f ) − `(g) = − 1

2ε2

¡°°G(f − f0)
°°2
H2

− °°G(g − f0)
°°2
H2

¢ + 1

ε

­
G(f − g),W

®
H2

.

We now prove Theorem 2.5, and will use the above lemma with H1 = L2(M),
H2 = L2

μ(∂+SM), G = Ia . In what follows the total variation norm between finite
measures μ, ν is defined to equal the supremum kμ−νkT V := supB |μ(B)−ν(B)|
over all Borel sets B .

LEMMA 3.2. Let 5̃ be a Gaussian Borel probability measure on C(M), and
for fixed f0 assume its concentration function φ5̃,f0

satisfies (2.11) for some δ =
δε → 0. Let 5 be the prior for f corresponding to the law of f = D(h),h ∼ 5̃

with D as in (2.9), and let 5(·|Y) be the resulting posterior distribution arising
from observing Y = Iaf +εW, where Ia is the X-ray transform from Theorem 2.2.
Then for any Borel set Dε ⊂ L2(M) for which

(3.2) 5
¡
Dc

ε

¢ ≤ e−D0(δε/ε)
2

for some D0 > 3

and all ε > 0 small enough, we have

(3.3) 5
¡
Dc

ε |Y
¢ → 0 and

°°5Dε
¡·|Y ¢ − 5

¡·|Y ¢°°
T V → 0

as ε → 0 in P Y
f0

-probability. Here 5Dε(·|Y) is the posterior distribution arising
from the prior 5(· ∩ Dε)/5(Dε) restricted to Dε and renormalised.
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PROOF. It suffices to prove the first limit in (3.3), the second then follows from
the basic inequality k5Dε(·|Y) − 5(·|Y)kT V ≤ 25(Dc

ε |Y).
We have from (3.1) that

5(B|Y) =
R
B e`(f )−`(f0) d5(f )R
F e`(f )−`(f0) d5(f )

, B ∈ BL2(M),

and under P Y
f0

can use Lemma 3.1 to see

`(f ) − `(f0) = − 1

2ε2

°°Ia(f − f0)
°°2
H2

+ 1

ε

­
Ia(f − f0),W

®
H2

.

Let ν be any probability measure on the set B = {f : kIa(f − f0)k2
H2

≤ δ2}. For
any C > 0 we have from Jensen’s inequality

P Y
f0

µZ
B

e`(f )−`(f0) dν(f ) ≤ e−(1+C)(δε/ε)
2
¶

≤ Pr
µZ

B

µ
− 1

2ε2

°°Ia(f − f0)
°°2
H2

+ 1

ε

­
Ia(f − f0),W

®
H2

¶
dν(f ) ≤ −(1 + C)

δ2
ε

ε2

¶

≤ Pr
µ¯̄̄

¯
Z
B

1

ε

­
Ia(f − f0),W

®
H2

dν(f )

¯̄̄
¯ ≥ C

δ2
ε

ε2

¶
≤ e−C2(δε/ε)

2/2

since the standard Gaussian tail bound P(|Z − EZ| > u) ≤ e−u2/2V ar(Z) applies
to the random variable Z = R

B ε−1hIa(f − f0),WiH2 dν(f ) which has a centred
normal distribution with variance bounded, again using Jensen’s inequality, by

E

·Z
B

ε−1­
Ia(f − f0),W

®
H2

dν(f )

¸2
≤ ε−2

Z
B

E
­
Ia(f − f0),W

®2
H2

dν(f ) ≤ δ2

ε2 ,

recalling that W is a centred Gaussian white noise in H2. Now we choose ν =
5(· ∩ B)/5(B) and let

Aε =
½Z

B
e`(f )−`(f0) dν(f ) ≤ e−2(δε/ε)

2
¾
,

for which P Y
f0

(Aε) ≤ e−(δε/ε)
2/2 → 0 by what precedes (with C = 1). For EY

f0
the

expectation operator corresponding to P Y
f0

and by Markov’s inequality, it suffices
to prove convergence to zero of

EY
f0

5
¡
Dc

ε |Y
¢ = EY

f0
5

¡
Dc

ε |Y
¢
1Aε + EY

f0
5

¡
Dc

ε |Y
¢
1Ac

ε
.
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Since 5(·|Y) ≤ 1 the first quantity is less than P Y
f0

(Aε) and hence converges to
zero. For the second term we have

EY
f0

5
¡
Dc

ε |Y
¢
1Ac

ε

≤ e2(δε/ε)
2

5(f : kIa(f − f0)k2
H2

≤ δ2
ε )

Z
Dc

ε

EY
f0

£
e`(f )−`(f0)

¤
d5(f )

≤ e2(δε/ε)
2
eφ5,f0 (δε/2)5

¡
Dc

ε

¢
(3.4)

noting that EY
f0

[e`(f )−`(f0)] = 1 and where
(3.5)

φ5,f0(δ) = inf
w∈V5,kIa(w−f0)kL2

μ(∂+SM)
≤δ

·kwk2
V5

2
− log5

¡
f : kIaf kL2

μ(∂+SM) ≤ δ
¢¸

,

using Proposition 2.6.19 and Exercise 2.6.5 in [23], with RKHS Ia(V5) of Iaf

isometric to V5 since Ia is linear and injective. Now we have for all δ > 0 that
φ5,f0(δ) ≤ φ5̃,f0

(δ/c) since Theorem 2.2 implies

kIaf kL2
μ(∂+SM) = °°Ia

¡
D(h)

¢°°
L2

μ(∂+SM) ≤ ckhk∞

so that

− log5
¡
f : kIaf kL2

μ(∂+SM) ≤ δ
¢ ≤ − log 5̃

¡
h : khk∞ ≤ δ/c

¢
as well as°°Ia(w − f0)

°°
L2

μ(∂+SM) = °°Ia

¡
D

¡
v − D−1f0

¢¢°°
L2

μ(∂+SM) ≤ c
°°v − D−1f0

°°∞,

where v = √
dMw ∈ V5̃ corresponds to w = Dv = d

−1/2
M v ∈ V5. Thus by (2.11)

the right-hand side of (3.4) is bounded above by

e2(δε/ε)
2
e
φ

5̃,f0
(δε/2c)

5
¡
Dc

ε

¢ ≤ e(3−D0)(δε/ε)
2 → 0

for D0 > 3, completing the proof. ¤

For ψ ∈ C∞(M) define now ψ̃ = −(I ∗
a Ia)

−1ψ . We have from Theorem 2.2

that ψ̃ can be written as ψ̃ = d
−1/2
M ψ̄ for some ψ̄ ∈ C∞(M). Therefore, since the

RKHS V5̃ of 5̃ contains C∞(M) we have

(3.6) kψ̃k2
V5

= kp
dMψ̃k2

V
5̃

= kψ̄k2
V

5̃
≤ C.

Next, the random variable hψ̃, f iV5,f ∼ 5, is N (0,kψ̃k2
V5

) and the standard
Gaussian tail inequality guarantees for all u, δ ≥ 0 that

5

µ
f : |hψ̃, f iV5 |

kψ̃kV5

> u
δ

ε

¶
≤ e−u2(δ/ε)2/2
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hence Lemma 3.2 applies to the set

Dε =
½
f : |hψ̃, f iV5 |

kψ̃kV5

≤ K
δε

ε

¾
,

whenever K >
√

6, and in deriving the asymptotic distribution of the posterior
measure we can restrict to the posterior distribution 5Dε(·|Y) arising from the
prior 5Dε = 5(· ∩ Dε)/5(Dε).

PROPOSITION 3.3. Assume Condition 2.4. For ψ ∈ C∞(M), define the ran-
dom variables

(3.7) 9̂ = hf0,ψiH1 − ε
­
Ia

¡
I ∗
a Ia

¢−1
ψ,W

®
H2

.

Then for all τ ∈ R and as ε → 0 we have

(3.8) E5Dε
£
e

τ
ε
(hf,ψiH1−9̂)|Y ¤ = e

τ2
2 kIa(I∗

a Ia)−1ψk2
H2 × ¡

1 + oP Y
f0

(1)
¢
.

PROOF. The left-hand side of (3.8) equals, for fτ = f + τεψ̃ ,

E5Dε
£
e

τ
ε
hf −f0,ψiH1+τ hIa(I∗

a Ia)−1ψ,WiH2 |Y ¤

= eτ hIa(I∗
a Ia)−1ψ,WiH2

R
F e

τ
ε
hf −f0,ψiH1+`(f )−`(fτ )+`(fτ ) d5Dε(f )R

F e`(f ) d5Dε(f )

= e
τ2
2 kIaψ̃k2

H2

R
Dε

e`(fτ ) d5(f )R
Dε

e`(f ) d5(f )

(3.9)

since by Lemma 3.1

`(f ) − `(fτ )

= − 1

2ε2

¡°°Ia(f − f0)
°°2
H2

−°°Iaf − Iaf0 + τεIaψ̃
°°2
H2

¢ + τ hIaψ̃,WiH2

= −τ
­
Ia

¡
I ∗
a Ia

¢−1
ψ,W

®
H2

+ τ 2

2
kIaψ̃k2

H2
+ τ

ε

­
Ia(f − f0), Iaψ̃

®
H2

and since by Theorem 2.2

(3.10)
­
Ia(f − f0), Ia

¡
I ∗
a Ia

¢−1
ψ

®
H2

= hf − f0,ψiH1 .

By the Cameron–Martin theorem ([23], Theorem 2.6.13) the last ratio in (3.9)
equals, for 5τ the shifted law of fτ , f ∼ 5,

R
Dε,τ

e`(g) d5τ

d5
(g) d5(g)R

Dε
e`(g) d5(g)

=
R
Dε,τ

e`(g)e
τεhψ̃,giV5

−(τε)2kψ̃k2
V5

/2
d5(g)R

Dε
e`(g) d5(g)

,
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where Dε,τ = {g = fτ : f ∈ Dε}. In view of (3.6) we have εkψ̃kV5 → 0 as ε → 0,
and by definition of Dε and the Cauchy–Schwarz inequality we have convergence
to zero of

ε sup
g∈Dε,τ

¯̄hψ̃, giV5

¯̄ = ε sup
f ∈Dε

¯̄hψ̃, f + τεψ̃iV5

¯̄ ≤ Kε
δε

ε
kψ̃kV5 + |τ |ε2kψ̃k2

V5

since δε → 0. Conclude that the last ratio is, for every τ ∈R,

¡
1 + o(1)

¢R
Dε,τ

e`(g) d5(g)R
Dε

e`(g) d5(g)
= ¡

1 + o(1)
¢5(Dε,τ |Y)

5(Dε|Y)

as ε → 0, and the proof is completed by showing that both the numerator and
the denominator of the last ratio converge to one in probability: The denominator
5(Dε|Y) converges to one in P Y

f0
-probability by Lemma 3.2. The same is true for

the numerator by applying Lemma 3.2 once more, since the Gaussian tail inequal-
ity guarantees for

√
6 < k < K and every τ ∈R that for ε small enough that

5
¡
Dc

ε,τ

¢ = 5

µ
v : |hψ̃, v − τεψ̃iV5 |

kψ̃kV5

> Kδε/ε

¶

≤ 5

µ
v : |hψ̃, viV5 |

kψ̃kV5

> K
δε

ε
− |τ |kψ̃kV5ε

¶
≤ e−k2(δε/ε)

2/2.

¤

Theorem 2.5 now follows from the fact that convergence in total variation dis-
tance implies convergence in any metric for weak convergence, so that in view of
Lemma 3.2 it suffices to prove the theorem with 5Dε(·|Y) replacing 5(·|Y), and
using the previous proposition plus the fact that pointwise convergence of Laplace
transforms (in probability) implies weak convergence (in probability); see, for ex-
ample, Proposition 28 in [41].

3.2. Proof of Theorem 2.7. Let (Ä,S,Pr) be the probability space support-
ing the random variable Y from (2.2) with law P Y

f0
(this space is implicitly con-

structed before (3.1) via the results from Section 7.4 in [41]). We show that
ε−1E5[hf,ψiH1 − 9̂|Y ] converges to 0 in P Y

f0
-probability which implies the re-

sult since then by definition of 9̂ we then have

ε−1­
f̄ (Y ) − f0,ψ

®
H1

= −­
Ia

¡
I ∗
a Ia

¢−1
ψ,W

®
H2

+ oP Y
f0

(1).

We argue by contradiction: Let εm be any sequence such that εm → 0 but assume
ε−1
m E5[hf,ψiH1 − 9̂|Y ] does not converge to 0 in probability. Then there exists

an event Ä0 ∈ S of positive probability Pr(Ä0) > 0 and ξ > 0 such that along a
subsequence of m,

(3.11)
¯̄
ε−1
m E5£hf,ψiH1 − 9̂|Y(ω)

¤¯̄ ≥ ξ ∀ω ∈ Ä0.
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Since convergence in probability implies convergence almost surely along a sub-
sequence, we can extract a further subsequence, still denoted by εm, for which we
deduce from Theorem 2.5 that

β
¡
L

¡
ε−1
m

¡hf,ψiH1 − 9̂
¢|Y ¢

,L(Z)
¢ → 0

almost surely for Pr, and where Z is a N (0,kIa(I
∗
a Ia)

−1ψk2
L2

μ(∂+(SM))
) random

variable. Fix the event Ä0 ⊂ Ä of probability one where the last limit holds: then
for every fixed ω ∈ Ä0 we have the convergence in distribution

9m(ω) ≡ ε−1
m

¡hf,ψiH1 − 9̂
¢|Y(ω) →d Z.

By Skorohod’s theorem on almost surely convergent realisations of weakly con-
vergent random variables (Theorem 11.7.2 in [18]) we can find, for every fixed
ω ∈ Ä0, a probability space on which we can define random variables 9̃m(ω), Z̃

such that L(9m(ω)) = L(9̃m(ω)),L(Z) = L(Z̃) and

9̃m(ω) − Z̃ → 0

almost surely as m → ∞. By standard conjugacy arguments the law of h = Iaf |Y
is a Gaussian measure on L2

μ(∂+SM). By Theorem 2.2, when integrating against
ψ ∈ C∞(M) we see

hf,ψiL2(M) = ­
h, Ia

¡
I ∗
a Ia

¢−1
ψ

®
L2

μ(∂+SM)

which is a well defined normal distribution on the real line since the mapping
h 7→ hh, Ia(I

∗
a Ia)

−1ψiL2
μ(∂+SM) from L2

μ(∂+SM) → R is linear and continuous

in view of Ia(I
∗
a Ia)

−1ψ ∈ L2
μ(∂+SM), using Theorem 2.2 once more. Thus for

every ω ∈ Ä0 the variables 9̃m(ω) − Z̃, m ∈ N, are all Gaussian and by the usual
Paley–Zygmund argument (e.g., Exercise 2.1.4 in [23]) almost sure convergence
implies convergence of all moments, in particular E|9̃m(ω)− Z̃| → 0 as m → ∞.
From this we deduce, for all ω ∈ Ä0,Pr(Ä0) = 1, that

ε−1
m E5£hf,ψiH1 − 9̂|Y(ω)

¤ = E9m(ω) = E
£
9̃m(ω)

¤ → EZ̃ = EZ = 0

as m → ∞, a contradiction to (3.11) with Pr(Ä0) > 0, completing the proof.

4. Proofs for Section 2.1. In this section we prove Theorem 2.2 and we will
do so by putting the theory into the framework of the transmission condition as
developed in [26, 29]. We will give full details for the case of the geodesic X-
ray transform I and indicate the (minor) modifications necessary for the proof to
work also for the attenuated X-ray transform Ia at the end. We note that previously
known results only give that I ∗I is injective on L2(M) and surjectivity properties
were only obtained after enlarging M (as in [46]). These results are not sufficient
to obtain the theorems in Section 2.3, nor do they expose the precise boundary
behaviour as we do here.
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4.1. Setting up the scene and main ideas. We shall denote by N the normal,
or “information” operator I ∗I : L2(M) → L2(M) introduced in Section 2.1. An
integral formula for N can be derived directly from the expressions for I and I ∗:

(4.1) Nf (x) = 2
Z
SxM

dv

Z τ(x,v)

0
f

¡
γx,v(t)

¢
dt.

A property of fundamental importance is that whenever (M,g) has no conjugate
points, then, in the interior of M , the operator N is an elliptic pseudo-differential
operator (9DO) of order −1 with principal symbol cd |ξ |−1; cf. [27], Section 6.3,
[53] or Lemma 3.1 in [46]. (The reference [27] states this property under the so
called Bolker condition, which is seen to be equivalent in our case to the absence
of conjugate points.) We refer to [57] for a treatment of 9DOs. In particular recall
that for P a classical 9DO of order m ∈ C, a full symbol in local coordinates is
denoted by p(x, ξ) ∼ P∞

j=0 pj (x, ξ) where pj (x, tξ) = tm−jpj (x, ξ), and where
p0 is the principal symbol. The operator P is elliptic if p0(x, ξ) 6= 0 for all (x, ξ)

in the cotangent bundle, ξ 6= 0.
Recall that (M,g) is called simple if it is nontrapping, has strictly convex bound-

ary and no conjugate points. Simple manifolds are simply connected; in fact they
are diffeomorphic to balls in Euclidean space. From now on we shall assume that
(M,g) is simple. It will be convenient for what follows to consider (M,g) iso-
metrically embedded into a closed manifold (S, g). Since M is simple, there is an
open neighborhood U1 of M in S, such that its closure M1 := U1 is a compact
simple manifold; see Figure 6. Let I1 denote the geodesic ray transform associated
to (M1, g) and let N1 = I ∗

1 I1.
Following [46] we may cover (S, g) with finitely many simple open sets Uk with

M ⊂ U1, M ∩Uj = ∅ for j ≥ 2, and consider a partition of unity {ϕk} subordinate
to {Uk} so that ϕk ≥ 0, suppϕk ⊂ Uk and

P
ϕ2

k = 1. We pick ϕ1 such that ϕ1 ≡ 1 on

FIG. 6. Setting.
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a neighborhood of M compactly supported in U1. Hence, for Ik the ray transform
associated to (Uk, g), we can define

(4.2) Pf := X
k

ϕk

¡
I ∗
k Ik

¢
(ϕkf ), f ∈ C∞(S).

Each operator I ∗
k Ik : C∞

c (Uk) → C∞(Uk) is an elliptic 9DO of order −1 and
principal symbol cd |ξ |−1, and hence so is P . Having P defined on a closed mani-
fold is convenient, since one can use standard mapping properties for 9DOs. For
instance for P defined by (4.2) we have

P : Hs(S) → Hs+1(S) for all s ∈ R,

where Hs(S) denotes the standard L2 Sobolev space of the closed manifold S

(when s is a nonnegative integer, Hs(S) can be identified with the set of u ∈ L2(S)

such that Du ∈ L2(S) for all differential operators D of order ≤ s with coefficients
in C∞(S); see [55] for the definition for arbitrary s ∈ R).

Let rM : L2(S) → L2(M) denote restriction to M int, the interior of M , and
eM : L2(M) → L2(S) extension by zero. (We could consider restriction to M as
well, but this makes no difference since the boundary of M has measure zero.)
Both operators are bounded and dual to each other. Since ϕ1 = 1 near M , given
f ∈ C∞

c (M int) (smooth functions with compact support contained in M int) we
have

rMPeMf = rMN1ϕ1eMf = rMN1eMf.

Equation (4.1) shows that rMN1eMf = Nf and thus by density of C∞
c (M int) in

L2(M), we have that P and N are related by the following truncation process:

(4.3) N = rMPeM in L2(M).

Since P : L2(S) → H 1(S), this gives immediately the mapping property N :
L2(M) → H 1(M) when the spaces Hs(M) are defined by restriction (4.7). Since
the embedding H 1(M) ,→ L2(M) is compact, obviously N : L2(M) → L2(M) is
compact (and hence I ).

However, without further analysis not much more can be said about the mapping
properties of N , especially if we are interested in functions supported all the way
to the boundary of M . From (4.3), we see that eM could produce singularities
for higher order Sobolev spaces, preventing good mapping properties in ‘smooth
topologies’. A key input of Boutet de Monvel [2, 3] (see also [13]) was to show
that a necessary and sufficient condition for P , a 9DO of order m defined on S, to
satisfy rMPeM(C∞(M)) ⊂ C∞(M), is that P satisfies the transmission condition
with respect to ∂M in the sense that

∂β
x ∂α

ξ pj

¡
x, ν(x)

¢ = eπi(m−j−|α|)∂β
x ∂α

ξ pj

¡
x,−ν(x)

¢
,(4.4)

for all j , α, β and x ∈ ∂M .
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Unfortunately such a condition does not hold in the case of N1 (or P ) defined
above, as the following example shows: let M be the unit disk in R

2. An ele-
mentary calculation gives that N(1) = 4E(r)/π where E is the complete elliptic
integral of the second kind and r is the radial coordinate. As r approaches 1, E0(r)
blows up and hence N(1) /∈ C∞(M), therefore N = rMN1 cannot satisfy the trans-
mission condition.

Furthermore for purposes of inversion, even if h ∈ C∞(M), we cannot expect
the solutions f to N(f ) = h to be in C∞(M) either: in the previous example, it
is not hard to check that I ((1 − r2)−1/2) (r denoting distance to the origin) is a
constant function [35], Corollary 3.3, and therefore so is

(4.5) N
¡¡

1 − r2¢−1/2¢ = c.

While N1 does not satisfies condition (4.4), we show that it satisfies a modified
transmission condition as introduced by Hörmander in [29] and recently expanded
and enhanced by Grubb in [26]. Namely, given μ ∈C with real part <μ > −1, we
say that P , a 9DO of order m defined on S, satisfies a transmission condition of
type μ with respect to ∂M if its symbol satisfies

∂β
x ∂α

ξ pj

¡
x, ν(x)

¢ = eπi(m−2μ−j−|α|)∂β
x ∂α

ξ pj

¡
x,−ν(x)

¢
,(4.6)

for all j , α, β and x ∈ ∂M , generalizing the case μ = 0 given by (4.4). To tie this
condition with mapping properties, using μ as above, let us define

Eμ(M) := ©
eMdM(x)μϕ,ϕ ∈ C∞(M)

ª
,

where dM(x) is a C∞(M)-function equal to dist(x, ∂M) near ∂M and positive on
the interior of M . Then, as a generalization to Boutet de Monvel’s result above, the
following theorem appears in [30], Theorem 18.2.18:

THEOREM 4.1. A necessary and sufficient condition in order that rMPu ∈
C∞(M) for all u ∈ Eμ(M) is that P satisfies the μ-transmission condition (4.6).

To make use of the theorem above, we first prove in Section 4.3 that

LEMMA 4.2. The operator P defined in (4.2) satisfies the transmission con-
dition of type μ = −1/2 with respect to ∂M .

In particular, Lemma 4.2 and Theorem 4.1 imply that

N : d−1/2
M C∞(M) → C∞(M)

is well defined. Notice that the domain allows for functions which blow up near

the boundary like dist(x, ∂M)− 1
2 , explaining (4.5).

After constructing in Section 4.2 appropriate Hilbert-scale versions of
E−1/2(M), namely, the Hörmander spaces H−1/2(s)(M), the first basic result [26],
Theorem 4.2, applied to rMP gives further mapping properties:
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THEOREM 4.3. rMP maps H−1/2(s)(M) continuously into Hs+1(M), where
P is defined in (4.2) and s > −1.

While all the results above only discuss forward mapping properties, using ellip-
ticity will show that such an operator is in fact Fredholm in the functional settings
mentioned above. Then proving that its kernel and co-kernel are trivial will ensure
that it will be invertible in these settings as well. In particular, the main result we
prove below provides a full solution to the homogeneous Dirichlet problem for P

on the domain M .

THEOREM 4.4. Let P be the elliptic 9DO of order −1 given by (4.2). For s >

−1 the map rMP : H−1/2(s)(M) → Hs+1(M) is a homeomorphism. Moreover,
N : d−1/2

M C∞(M) → C∞(M) is a bijection.

The outline of the remainder is as follows. Section 4.2 contains details on
Sobolev and Hörmander spaces. Section 4.3 will be devoted to the proof of
Lemma 4.2, and Section 4.4 to the proof of Theorem 4.4, requiring a few tech-
nical lemmas, followed by the proof of Theorem 2.2.

4.2. Sobolev spaces and Hörmander spaces. In this section we summarize
the main functional setting that we will be using. Here we shall be concerned only
with L2-Sobolev and Hörmander spaces. The Sobolev spaces are standard but the
Hörmander spaces are less so. For the latter we will follow [26] and for the former
[36, 55] (with minor departures in notation). As before we let (M,g) be a compact
Riemannian manifold with boundary which we think isometrically embedded into
a closed manifold (S, g). We write Hs(S) for the standard L2 based Sobolev space
of the closed manifold S. We denote

Hs(M) = rMHs(S) = ©
u|M int : u ∈ Hs(S)

ª
equipped with the quotient norm

(4.7) kukHs(M) := inf
©kwkHs(S) : w ∈ Hs(S), rMw = u

ª
.

We denote

Hs
M(S) := ©

u ∈ Hs(S) : supp(u) ⊂ M
ª
.

REMARK 4.5. The space Hs
M(M) can also be seen as the closure of C∞

c (M int)

in Hs(S). Finally we can also define Hs
0 (M) as the closure of C∞

c (M int) in
Hs(M). When s /∈ Z + 1

2 , there is a natural identification with Hs
M(S). When s

is a nonnegative integer, Hs(M) can be identified with the set of u ∈ L2(M) such
that Du ∈ L2(M) for all differential operators D of order ≤ s with coefficients in
C∞(M).
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One of the main inputs of [26] is the introduction of particularly efficient order
reducing operators; cf. [26], Theorem 1.3. These are classical elliptic 9DOs on S

of order μ (denoted 3
(μ)
+ ) preserving support in M and defining homeomorphisms

(4.8) 3
(μ)
+ : Hs

M(S) → H
s−<μ
M (S),

where <μ denotes the real part of μ. These operators are used to define the Hör-
mander spaces (also known as μ-transmission spaces)

Hμ(s)(M) := 3
(−μ)
+ eMHs−<μ(M), s > <μ − 1/2.

For s > <μ − 1/2, the maps rM3
(μ)
+ : Hμ(s)(M) → Hs−<μ(M) are homeomor-

phisms with inverse 3
(−μ)
+ eM [26], Proposition 1.7. We have a natural embedding

Hs
M(S) ⊂ Hμ(s)(M).
As explained in Section 4.1, these spaces are specifically adapted to the μ-

transmission condition (4.6) and will provide natural spaces of solutions to the
equation Nf = h where μ = −1/2.

The order reducing operators 3
(μ)
+ are used in conjunction with their adjoints

3
(μ̄)
− by considering a new operator Q = 3

(μ−m)
− P3

(−μ)
+ , where m is the order

of P . The point is that if P satisfies the μ-transmission condition (4.6), then Q

satisfies the transmission condition (4.4) with μ = 0 and fits the Boutet de Monvel
calculus. This is the main idea in [26].

Let dM(x) be a C∞(M)-function equal to dist(x, ∂M) near ∂M and positive
on the interior of M . For μ ∈ C with <μ > −1, let Eμ(M) denote the space of
functions u such that u = eMdM(x)μϕ with ϕ ∈ C∞(M). One can show that ([26],
Proposition 4.1)

Eμ(M) = \
s

Hμ(s)(M).

The spaces Hμ(s)(M) were introduced in [29] as the completion of Eμ(M)

in the topology defined by the seminorms u 7→ krMPukHs−<m(M), where P runs
through the operators satisfying the μ-transmission condition (see below) and any
order m ∈ C. Hörmander’s starting point was the work of Vishik and Eskin [20,
61].

4.3. Proof of Lemma 4.2.

DEFINITION 4.6. We shall say that P has even symbol if pj (x,−ξ) =
(−1)jpj (x, ξ) for all j ≥ 0. It is easy to check that this condition is independent
of the coordinates chosen. (Recall that the full symbol is not defined intrinsically.)

LEMMA 4.7. The symbol of N (or N1) is even.
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PROOF. There are (at least) three possible proofs of this lemma. As explained
in [50] the full geometric symbol of N coincides with its principal symbol cd |ξ |−1.
In [52] a relation is established between the full geometric symbol and the ordi-
nary full symbol in local coordinates. See, for example, equations (1.6) and (1.7)
in [52]. An inspection of those formulas shows that the symbol is even starting
from the fact that cd |ξ |−1 is even. Another more natural proof was suggested to
us by Gunther Uhlmann and is based on the calculation of the full symbol in [53].
Equation (17) in [53] gives an explicit formula for the amplitude M(x,y, ξ) of the
9DO for the case of 2-tensors. In the case of functions the formula is

M(x,y, ξ) =
Z

e−iξ ·z¡G(1)z · z¢−n+1
2

|detG(3)|√
detg

dz,

where G(1)(x, y) and G(3)(x, y) are defined in [53], Lemma 3, but we do not need
to know what they are. The terms pj (x, ξ) may be derived from the amplitude by

pj (x, ξ) = X
|α|=j

1

α!∂
α
ξ Dα

y M(x, y, ξ)|y=x.

Since M(x,y, ξ) is even in ξ , we see that once we start taking derivatives in ξ , the
parity of pj in ξ changes according to (−1)j = (−1)|α|.

The quickest way is perhaps to use [15], Lemma B.1, which covers a broad
range of operators for the form

Af (x) =
Z
SxU1

Z
R

A(x, r,w)f (x + rw)dr dSx(w).

Our operator N is certainly of this form (after some change of variables). The
lemma proves that A is a classical 9DO of order −1 and computes explicity the
full symbol deriving a formula

pk(x, ξ) = 2π
ik

k!
Z
SxU1

∂k
r A(x,0,w)δ(k)(w · ξ) dSx(w).

From this formula we see right away that pk(x,−ξ) = (−1)kp(x, ξ) since the
delta function δ is even. ¤

PROOF OF LEMMA 4.2. In a tubular neighbourhood of ∂M , the full symbol of
P coincides with that of N1. The result is then a direct consequence of Lemma 4.7
and the fact that m = −1. ¤

4.4. Proofs of Theorems 4.4 and 2.2. To prove Theorem 4.4, a first step is to
prove that for P defined in (4.2), rMP is a Fredholm operator in the functional
settings H−1/2(s)(M) → Hs+1(M) for s > −1, and E−1/2(M) → C∞(M). This
is mainly due to the ellipticity of P , and one additional concept from [26], the
factorization index μ0. This is defined for elliptic operators of order m as

μ0 := m/2 + (a+ − a−)/2πi,
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where expa± = p0(x,∓ν(x)). For the case of N1, we have μ0 = −1/2 since the
principal symbol of N1 is (up to a constant) |ξ |−1; cf. [26], Example 3.2. In general,
for elliptic operators of order m with even symbol, μ = μ0 = m/2. Then as a direct
consequence of [26], Theorem 4.4, we obtain the following theorem.

THEOREM 4.8. Assume s > −1. Suppose u ∈ Hσ
M(S) for some σ > −1 and

let P be the elliptic 9DO of order −1 given by (4.2). If rMPu ∈ Hs+1(M), then
u ∈ H−1/2(s)(M). Moreover, the mapping rMP : H−1/2(s)(M) → Hs+1(M) is
Fredholm. In particular, if rMPu ∈ C∞(M), then u ∈ E−1/2(M). The mapping
rMP : E−1/2(M) → C∞(M) is also Fredholm.

Before proving Theorem 4.4, we state and prove a few preliminary lemmas. We
begin with:

LEMMA 4.9. If (M,g) is a nontrapping manifold with strictly convex bound-
ary, there exists a constant C0 > 0 such that

dM

¡
γx,v(t), ∂M

¢
≥ C0t

¡
τ(x, v) − t

¢
for all (x, v) ∈ ∂+SM, t ∈ £

0, τ (x, v)
¤
.

PROOF. In what follows, denote αA : ∂+SM → ∂+SM the antipodal scatter-
ing relation, that is, the map (x, v) 7→ (γx,v(τ (x, v)),−γ̇x,v(τ (x, v))). αA satisfies
α2

A = Id and if g(νx, v) = 0, then αA(x, v) = (x,−v).

It is enough to show that the nonnegative function F(x, v, t) := dM(γx,v(t),∂M)

t (τ (x,v)−t)
is

uniformly bounded away from zero on the set

G = ©
(x, v) ∈ ∂+SM, t ∈ ¡

0, τ (x, v)
¢ª

.

In what follows, we will also use [51], Lemma 4.1.2, page 113, stating that there
exists C2 > 0 such that

τ(x, v) ≤ C2
¯̄­
ν(x), v

®
g

¯̄
, (x, v) ∈ ∂+SM,

­
ν(x), v

®
g 6= 0,(4.9)

where ν(x) is the outer unit normal at x ∈ ∂M . This is essentially a consequence
of the strict convexity of the boundary of M . Using that dM(γx,v(t), ∂M)|t=0 = 0
and d

dt
dM(γx,v(t), ∂M)|t=0 = |hν(x), vig| (e.g., by using normal geodesic coordi-

nates), l’Hôpital’s rule implies

lim
t→0+ F(x, v, t) = |hν(x), vig|

τ(x, v)
= μ(x, v)

τ (x, v)
≥ 1

C2
.

Moreover, since γx,v(t) = γαA(x,v)(τ (x, v) − t), we have the symmetry property
F(x, v, t) = F(αA(x, v), τ (x, v) − t), and this allows to deduce the limit

lim
t→τ(x,v)−

F(x, v, t) = μ(αA(x, v))

τ (αA(x, v))
≥ 1

C2
.
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By compactness, the result follows since F is uniformly bounded away from zero
outside any neighborhood of {t = 0} ∪ {t = τ(x, v)} in G. ¤

An important ingredient in what follows is the consideration of the following
weighted space L2(M,d

1/2
M ) where the measure is d

1/2
M dx. Recall that I ∗ denotes

the usual backprojection, that is, the adjoint of I : L2(M) → L2
μ(∂+SM).

LEMMA 4.10. The following hold:

(i) The map I : L2(M,d
1/2
M ) → L2

μ(∂+SM) is bounded with adjoint I ∗
w =

d
−1/2
M I ∗.

(ii) The map I ∗ : L2
μ(∂+SM) → L2(M,d

−1/2
M ) is bounded.

PROOF. Let f ∈ L2(M,d
1/2
M ) and write f = d

−1/4
M g for some g ∈ L2(M). We

write

If (x, v) =
Z τ(x,v)

0
g
¡
γx,v(t)

¢ dt

dM(γx,v(t), ∂M)1/4 ,

¯̄
If (x, v)

¯̄2 ≤
Z τ(x,v)

0

¯̄
g
¡
γx,v(t)

¢¯̄2
dt

Z τ(x,v)

0

dt

dM(γx,v(t), ∂M)1/2 ,

using the Cauchy–Schwarz inequality. Using Lemma 4.9, we have, for any (x, v) ∈
∂+SM , Z τ(x,v)

0

dt

dM(γx,v(t), ∂M)1/2

≤ 1

C
1/2
0

Z τ(x,v)

0

dt

(t (τ − t))
1
2

t=τu= 1

C
1/2
0

Z 1

0

du

(u(1 − u))
1
2

= π

C
1/2
0

.

Integrating over ∂+SM , we then obtainZ
∂+SM

¯̄
If (x, v)

¯̄2
dμ ≤ π

C
1/2
0

Z
∂+SM

Z τ(x,v)

0

¯̄
g
¡
γx,v(t)

¢¯̄2
dt dμ

= π

C
1/2
0

Z
SM

¯̄
g(x)

¯̄2
dx dv

¡
by Santaló’s formula [51]

¢

= π Vol(Sd−1)

C
1/2
0

Z
M

¯̄
g(x)

¯̄2
dx

= π Vol(Sd−1)

C
1/2
0

kf k2
L2(M,d

1/2
M )

,
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hence (i) holds. Then (ii) is a direct consequence of the factorization

I ∗ : L2
μ(∂+SM)

I∗
w−→ L2¡

M,d
1/2
M

¢ d
1/2
M ·−→ L2¡

M,d
−1/2
M

¢
,

where I ∗
w is continuous by (i) and the second operator (multiplication by d

1/2
M ) is

an isometry in the setting above. The proof of Lemma 4.10 is complete. ¤

LEMMA 4.11. Given ϕ ∈ C∞(M), d
−1/2
M ϕ ∈ L2(M,d

1/2
M ) ∩ L1(M).

PROOF. Obviously ϕ is bounded in M . Since (d
−1/2
M ϕ)2d

1/2
M = d

−1/2
M ϕ2, we

just need to prove that d
−1/2
M is in L1(M). By taking local geodesic normal co-

ordinates where xn denotes distance to the boundary, the lemma follows from the
elementary observation Z ε

0
x−1/2
n dxn < ∞

since locally dM = xn. ¤

REMARK 4.12. The same proof shows that d
−1/2
M Hs(M) ⊂ L2(M,d

1/2
M ) as

long as s > dimM/2. The latter condition ensures that elements in Hs(M) are
continuous and hence bounded.

We are now ready to give the proof of Theorem 4.4.

PROOF OF THEOREM 4.4. By Theorem 4.8, the map rMP is Fredholm with
finite dimensional kernel and co-kernel independent of s; in fact elements in the
kernel must be in E−1/2(M); cf. [25], Theorem 3.5. Hence, it suffices to check that
these kernel and co-kernel are trivial. We begin by proving that the kernel is trivial.

Suppose there is u ∈ E−1/2(M) such that rMPu = 0. Writing u = eMd
−1/2
M ϕ

with ϕ ∈ C∞(M), we see that Nf = 0 where f = d
−1/2
M ϕ ∈ L2(M,d

1/2
M )

by Lemma 4.11. But I ∗
wI = d

−1/2
M N , hence I ∗

wIf = 0. This implies (I ∗
wIf,

f )
L2(M,d

1/2
M )

= 0 and hence If = 0. To show that f must in fact be smooth, extend

f by zero to U1 and call the extension f1. By Lemma 4.11, f1 ∈ L1(U1) so that,
using Santaló’s formula, it is easy to see that I1f1 makes sense in L1(∂+SU1) and
also that N1f1 = I ∗

1 I1f makes sense in L1(U1). Then I1f1 = 0 and thus N1f1 = 0.
Since N1 is elliptic, the function f1 must be smooth in U1 and hence f is smooth
in M . Now we use the standard injectivity result for I acting on smooth functions
on a simple manifold [38] to conclude that f = 0.

Let us now check that the co-kernel of rMP is trivial. Consider the injection

ι : Hs
M(S) ,→ H−1/2(s)(M),
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where Hs
M(S) consists of elements in Hs(S) with support in M (cf. Section 4.2).

Let us compute (rMP ι)∗. The point of using ι is to end up with standard dualities
not involving the Hörmander spaces. Note

(rMP ι)∗ : ¡
Hs+1(M)

¢∗ → ¡
Hs

M(S)
¢∗

where
¡
Hs+1(M)

¢∗ = H−s−1
M (S),

¡
Hs

M(S)
¢∗ = H−s(M)

are the standard dualities. Take u ∈ H−s−1
M (S) and f ∈ Hs

M(S) and observe

(rMPf,u)M = (Pf,u)S = (f,P−s−1u)S = (f, rMPu)M.(4.10)

Thus ι∗(rMP )∗ = (rMP ι)∗ = rMP . Hence if u ∈ H−s−1
M (M) is such that

(rMP )∗u = 0 we see that rMPu = 0. By ellipticity u ∈ E−1/2(M) and since we
have already proved injectivity of rMP on this space we deduce that the co-
kernel of rMP is trivial as well. Thus rMP : E−1/2(M) → C∞(M) is a bijec-
tion and since N = rMPeM , from the definition of E−1/2(M) we conclude that

N : d−1/2
M C∞(M) → C∞(M) is also a bijection. ¤

PROOF OF THEOREM 2.2. For the case of I , part (a) in Theorem 2.2 follows
immediately from Theorem 4.4. Part (b) in Theorem 2.2 is a direct consequence of
Lemma 4.10 and the fact that d

−1/2
M h ∈ L2(M,d

1/2
M ) if h ∈ C(M).

To complete the proof of Theorem 2.2 we just need to explain why the same
proof works for the attenuated geodesic X-ray transform Ia . The microlocal prop-
erties of Na = I ∗

a Ia are studied in detail in [21]. With this in hand, it is straight-
forward to check that Na will fit the theory developed above. For this we need to
extend a ∈ C∞(M) smoothly to S and observe that the third proof of Lemma 4.7
applies to Na since these operators are covered by [15], Lemma B.1; see [21],
Section 4, for a proof. Hence the full symbol of Na is also even, Na,1 satisfies
the transmission condition with μ = −1/2 with respect to ∂M , and we can derive
all the required mapping properties. The proof of Lemma 4.10 works for Ia and
Theorem 4.4 holds as well for Ia as long as we know that Ia is injective on smooth
functions. ¤
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