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We consider the statistical inverse problem of recovering a function
f: M — R, where M is a smooth compact Riemannian manifold with
boundary, from measurements of general X-ray transforms /,(f) of f, cor-
rupted by additive Gaussian noise. For M equal to the unit disk with “flat”
geometry and a = O this reduces to the standard Radon transform, but our
general setting allows for anisotropic media M and can further model lo-
cal “attenuation” effects—both highly relevant in practical imaging problems
such as SPECT tomography. We study a nonparametric Bayesian inference
method based on standard Gaussian process priors for f. The posterior recon-
struction of f corresponds to a Tikhonov regulariser with a reproducing ker-
nel Hilbert space norm penalty that does not require the calculation of the sin-
gular value decomposition of the forward operator /,. We prove Bernstein—
von Mises theorems for a large family of one-dimensional linear functionals
of f, and they entail that posterior-based inferences such as credible sets
are valid and optimal from a frequentist point of view. In particular we de-
rive the asymptotic distribution of smooth linear functionals of the Tikhonov
regulariser, which attains the semiparametric information lower bound. The
proofs rely on an invertibility result for the “Fisher information™ operator
I*I, between suitable function spaces, a result of independent interest that
relies on techniques from microlocal analysis. We illustrate the performance
of the proposed method via simulations in various settings.

1. Introduction. The Radon transform and its variants play a key role in im-
age reconstruction problems, with important applications in physics, engineering
and other areas of scientific imaging. The classical case is where a function f in
RR? is reconstructed from integrals over straight lines:

o0

Rf(s,a)):/ f(sa)+twj‘)dt, seR,we s,
—0

where @™ is the rotation of w by 90 degrees counterclockwise. Often it is natural to

confine the function f to a bounded subset M of Euclidean space such as the unit
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disk, where integrals are now taken along lines connecting boundary points of M.
Such transforms constitute the basis for imaging methods such as computerised to-
mography (CT) and positron emission tomography (PET), and their mathematical
properties are well studied [28, 40].

Two generalisations of the standard Radon transform are important in appli-
cations: (a) to model an attenuation or absorption effect within M, for example
regions of different levels of biological activity in the physical medium M, and (b)
to model anisotropy or physical heterogeneity of M, for instance when “shortest
travel times” of waves through the earth follow geodesics of a non-Euclidean met-
ric. The methods used for (a) form the basis for SPECT imaging techniques (see,
for instance, [5, 34]) and (b) occurs naturally in seismology, helioseismology and
acoustic tomography problems, to mention a few [14, 19, 39, 52]. Both effects can
be tackled by the general notion of attenuated geodesic X -ray transforms that are
given by the formula

T(x,v)

(L.1) Lafeov) = [ Fen@)eleten O .

where (x, v) parametrises the set of geodesics y(y,v) through M, and where 7 (x, v)
is the “exit time” of the geodesic started at a point x at the boundary dM in the
direction of v—see Section 2.1 for precise definitions. The case a = 0 corresponds
to the case when no attenuation is present, and the ‘geometry” of M is naturally
encoded in the set of geodesics.

The mathematical inverse problem here is to recover f from the line integral
values I,(f) along all geodesics. Explicit reconstruction formulas are available
in some specific settings: in the case of the flat disk in R? and when a = 0 this
was proved in Radon’s celebrated 1917 paper [47], and it has been shown in the
last 2 decades that explicit inversion formulas hold also in a variety of other more
involved settings, namely, “simple” geometries; see [43], [45] and the paper [37]
on numerical implementation. It is, however, generally not clear how the inver-
sion step should be done in case of observations corrupted by statistical noise. The
general approach to noisy inverse problems that can be found in the statistical liter-
ature is typically based on obtaining a singular value decomposition (SVD) of the
forward operator /, and to then construct a procedure based on spectral regularisa-
tion; see, for example, the papers [11, 12, 24, 31-33, 48], just to mention a few. For
the standard Radon transform such methods have been suggested in the seminal
paper by Johnstone and Silverman [31] where the SVD basis is given by Zernike
polynomials. Another approach consists in “rebinning” fan-beam data into parallel
data, for which regularisation methods are well understood thanks to the Fourier-
slice theorem; see [40]. However, neither approach adapts well to more general
X-ray transforms: with attenuation and/or general geodesics, the SVD can rarely
be computed analytically; nor is rebinning an option, as the space of geodesics
is not homogeneous in general, and this removes the possibility of regularisation
methods based on parallel geometry.
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In the present paper we follow the Bayesian approach to inverse problems [17,
54] and study a basic nonparametric inference method built around a standard
Gaussian prior for the unknown function f which does not require the identifica-
tion of the SVD basis of 1,. We show how this method can be implemented in a
standard way and the resulting maximum a posteriori (MAP) point estimates corre-
spond to a Tikhonov regulariser with a common Sobolev norm penalty, where the
Sobolev norm is defined in a classical way (and not implicitly via the SVD of 1,).
We prove a Bernstein—von Mises theorem that entails asymptotic normality of var-
ious “semiparametric aspects” of the posterior distribution. From it we deduce in
particular asymptotic normality and statistical efficiency of the plug-in Tikhonov
regulariser for linear integral functionals (f, ¥);2, where v is any smooth test
function on M. In other words we establish that the semiparametric information
bound in this problem is attained by a standard regularisation method that does not
require the calculation of the SVD basis. The proof is based on a combination of
ideas from Bayesian nonparametric statistics [6, 8, 9] with an inversion result for
the “Fisher information” operator 11, between suitable function spaces (here 1}
is a natural adjoint operator defined below).

Heuristically (by analogy to the finite-dimensional linear model) the semi-
parametric information lower bound for inference on (f, ¥),2 should be Z,; =
1 1,(1} L) 'y ||%2, but in our infinite-dimensional setting it has to be clarified for
which ¢ this quantity is well defined. In Section 4 we invert the “Fisher infor-
mation” operator by solving the homogeneous Dirichlet boundary value problem
for the pseudo-differential operator 1 I,, using techniques from micro-local anal-
ysis. The mapping properties we deduce imply in particular Theorem 2.2(c) below,
which rigorously establishes that Z,, exists for all smooth v/ (and equals the infor-
mation lower bound). In our inversion result for /1,, a key analytical difficulty,
explained in more detail at the outset of Section 4, arises at the boundary dM
of M: for example, when applied to smooth (say constant) functions, /I, can
generate singularities at dM. And even if one assumes that the unknown f, and
thus relevant test functions 1, are supported strictly within M, an application of
Iy 1)~ to such y will produce a function that is fully supported in M (in view of
the nonlocality of the inverse operator). Dealing with boundary issues can there-
fore not be dispensed with. These nonlocality effects can also be seen in numerical
simulations (Example 3).

The connection to partial differential equation (PDE) models just mentioned
deserves a final remark: For M a bounded domain in R¢ with smooth boundary
d M, consider the transport equation

(1.2) v Viulx,v) +ax)ulx,v) =—f(x), xeM,veSd_l,

subject to the boundary condition u(x,v) =0 for x € 9M, v - v(x) > 0, where
v(x) is the outer normal at x. Along each straight line the transport equation (1.2)
becomes an ordinary differential equation that is easily solved to find that the influx
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trace of u is precisely the function I,(f). Our results can thus be cast into the
setting of Bayesian inference for parameters of partial differential equations (here
f) from noisy observations of their solutions [here I,(f)], studied by A. Stuart
and others in the inverse problems literature; see [17, 54] for an overview and [41,
42] for recent related theoretical contributions for parabolic and elliptic PDEs.

This article is organised as follows: In Section 2.1 we introduce general X-ray
transforms and state the invertibility theorem for the information operator. In Sec-
tion 2.2 we propose a Bayesian nonparametric method for inference from noisy
X -ray transform data, and in Section 2.3 we give the theoretical results about the
performance of the Bayes method and the associated Tikhonov regulariser. All
proofs can be found in subsequent sections.

2. Main results.

2.1. Geodesic X -ray transforms and an inversion result for the information op-
erator. In this section we introduce the geodesic X-ray transform / of a compact
Riemannian manifold with boundary as well as the attenuated version . Our main
objective is to establish mapping properties for the normal (information) operator
I;1,.

The geodesic X-ray transform acts on functions defined on a compact ori-
ented d-dimensional Riemannian manifold (M, g) with boundary oM (d > 2).
In essence, it integrates the function along all possible geodesics running between
boundary points. To define the transform with precision we need to introduce some
language that conveniently describes the geodesics on a manifold. Geodesics in a
Riemannian manifold can be defined in many ways, but for our purposes it suffices
to say that they are curves that locally minimize the distance between two points.
It turns out that they obey a second order ordinary differential equation on M and
thus a geodesic is uniquely determined by its initial position and velocity (i.e., a
point in phase space). Geodesics travel at constant speed, so we might as well from
now on fix the speed to be one. It is hence convenient to pack positions and ve-
locities together in what we call the unit sphere bundle SM . This consists of pairs
(x,v), where x € M and v is a tangent vector at x with norm |v|; = 1, where g is
the inner product in the tangent space at x (i.e., the Riemannian metric).

Unit tangent vectors at the boundary of M constitute the boundary dSM of SM
and will play a special role. Specifically

ISM :={(x,v) € SM : x € IM}.

We will need to distinguish those tangent vectors pointing inside (“influx bound-
ary”) and those pointing outside (“outflux boundary”), so we define two subsets of
oSM

0+SM :={(x,v) € ISM : £(v, v(x)>g <0},

where v(x) is the outward unit normal vector on dM at x.
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Given (x,v) € SM, we denote by yx, : R — M the unique geodesic with
¥x.v(0) = x and %(0) = v and let 7(x, v) be the first time when the geodesic
Vx,v €Xits M.

We say that (M, g) is nontrapping if t(x, v) < oo for all (x,v) € SM. In this
paper we will work exclusively with nontrapping manifolds and this is all we need
to define the geodesic X-ray transform. Let C°°(W) denote the set of infinitely

differentiable functions on a manifold W.

DEFINITION 2.1. The geodesic X -ray transform of a function f € C*°(M) is
the function /f : 9+ SM — R given by

T(x,v)

o= [ flma@)dt (v aySH,

In order to obtain good mapping properties for I, we need additional condi-
tions on M. The second condition that we will impose is that M has strictly
convex boundary, that is, the second fundamental form I1, (v, v) := (Vyv, v)g,
for v any tangent vector at x, is positive definite for all x € d M. This ensures
that I : C*°(M) — C*°(34+SM) since strict convexity of the boundary implies
7€ C®(04+SM) ([51], Lemma 4.1.1).

Effectively, the influx boundary 0;SM parametrizes all geodesics going
through M. The space of geodesics carries a natural measure (or volume form)
which in turn equips 9+ SM with the measure

dp(x,v) = |(v(x), v>g\ dx dv

and we shall denote L%L(ELr SM) the space of functions on 94+ SM with inner prod-
uct

u,w = uwdu.
( >L%L(8+SM) /8+SM 128
The measure du is natural in the following sense. If we consider the canonical
map
O {(x,v,0): (x,v) €34(SM); t €[0, T(x,v)]|} > SM

given by ®(x,v,1) = (Y(x,v)(t), Y(x,v)(t)) (the geodesic flow) then a calculation
shows that

2.1) d*(®) = |<v(x),v)g|dxdvdt,

where © is the canonical volume form of SM (also called Liouville form in clas-
sical mechanics) and ®*(®) is a new volume form obtained by pulling back ®
via P.

It is not hard to prove that I extends as a bounded linear map [51], Theo-
rem4.2.1,

I:L*(M)— L7 (3+SM)
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and hence we have a well defined adjoint I* : Li(8+SM ) = L%(M) that can be
easily computed using (2.1). Explicitly

I*w(x) :/ wh(x, v)dv,
SeM

where wﬁ(x, V) == w(yx o (—7(x, =), Yx.o(—7(x, —v))) and S, M denotes the
set of unit tangent vectors at x. In the literature that discusses the standard Radon
transform, this operator is usually referred to as back-projection operator and ap-
pears prominently in the celebrated filtered back-projection formula [40, 47] (see
[34] for an excellent recent presentation of the classical Radon transform). We can
now define the “information operator” I*1 : L2(M) — L3(M).

The third and final condition that we will impose on M is that it is free of conju-
gate points. Intuitively, this means that beams of geodesics emanating from a point
do not focus on or converge to another point (as it would happen for the geodesics
on the sphere connecting south and north poles). Equivalently, two points in M
are joined by a unique geodesic (note that M nontrapping and with strictly convex
boundary implies that M is contractible [56]). This property is fundamental for us
since it implies that the information operator is an elliptic pseudo-differential op-
erator of order —1. Manifolds satisfying the three conditions—nontrapping, strict
convexity of the boundary and absence of conjugate points—are called simple.

The theory of the X-ray transform is well developed in the case of simple man-
ifolds. If one considers only nontrapping manifolds with strictly convex boundary
but allows for conjugate points, the operator /*I loses its pseudo-differential char-
acter. Strict convexity of the boundary is seen as less essential, but dropping it
causes technical complications mostly arising from the noncontinuity of the exit
time t.

The discussion above extends without difficulties to the attenuated case. The
attenuated geodesic X -ray transform I, f of a function f € C*° (M) with attenu-
ation coefficient a € C*°(M) can be defined as the integral:

The transform [, extends as a bounded operator /, : LZ(M ) — Li(8+S M) with

adjoint 1 : Li(8+SM ) = L*(M). In the case of simple manifolds, the informa-
tion operator /71, displays the same features as /*1.

We will consider noisy observations Y of the X-ray transform I, f of an un-
known function f. If W is a standard Gaussian white noise in the Hilbert space
Li (0+8SM) and ¢ > 0 a noise level, our data is

2.2) Y=1I,f+eW.

Up to a discretisation step described in the next section and the usual “Gaussiani-
sation” of Poisson count data, this is a realistic approximate noise model for phys-
ical X-ray transform measurements. Assuming this model the following proper-
ties of the information operator /1, and its inverse will be crucial for the theory

T(x,v) t

a(y(x,v)(s))ds] dt, (x,v)€0L8M.
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that follows: They imply that the inverse Fisher information exists for a variety of
semiparametric inference problems. Their proofs using techniques from microlo-
cal analysis are given in Section 4 below.

THEOREM 2.2. Let M be a simple manifold and suppose
I, :C® (M) — C®(0,.SM)

is injective. Let dyy be any C™ function that equals (the Riemannian) dist(-, dM)
near the boundary and is positive on the interior of M.

(a) The information operator 11, defines a bijection between {dA_,]] / 2g 1g €
C®° (M)} and C*° (M) and hence has a well defined inverse

(I*1,) " C® (M) — {dy, g : g € (M)

such that I;Ia(I;Ia)_lx/f = forall € C*°(M).
(b) We have for some constant ¢ > 0 that depends only on d, M

—1/2
[aldyg 1) 12 o, 5 < litlloo

for every h e C(M).
(¢) Forany y € C®(M) we have that 1,(1}1,) "' € L2 (34 SM) and

1,2
(2.3) 1o (1) 1a) ‘/’||L§(a+(SM))<°O

is the Cramér—Rao lower bound (inverse Fisher information) for estimation of the
parameter (f, ¥) 2y in the model (2.2).

Injectivity of 1, for simple manifolds is known in virtually all cases, so assum-
ing it in the theorem is not a serious restriction. When a = 0, injectivity of [ is a
classical landmark result due to Mukhometov [38]. In two dimensions, injectivity
of I, is known in general [49] and in dimensions > 3, I, is injective as long as M
admits a strictly convex function [44, 58].

Given parts (a) and (b) the proof of the first assertion in Theorem 2.2(c) is
straightforward. The second assertion in Part c) then follows from standard semi-
parametric theory (Chapter 25 in [59]): An application of Lemma 3.1 below im-
plies that the model (2.2) is locally (asymptotically) normal (LAN) with LAN-
norm || - ||LAN = ||Ia(')||Lﬁ(B+SM)’ and since we have for all 4 € L*(M) that

(2.4) L L) 2o, 50 = B Wy 9= (1012) 7',

we can argue as in Section 7.5 in [41] to deduce the information lower bound
I ||% An from (2.3). This identifies in particular the (lower bound for the) asymp-
totic minimax constant

@5  liminfinfsupe 2E (4 — (£.9))" = [ L(LX 1) V17 o, sam-
e—0 ¥of n
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where the infimum is taken over all estimators 1/7 = @(Y) of (f, ) based on ob-
servations in the model (2.2), and where the supremum in f extends over arbitrary
L2—neighb0urhoods of fp of diameter ¢.

2.2. Bayesian inference with Gaussian priors. We now address the statistical
problem of recovering f from a noisy observation of the X-ray transform I, f,
and propose numerical illustrations of the feasibility of the approach to general
geometries. In what follows, we will take M = {(x1, x2) € R2, x% + x% <1}, en-
dowed with either the Euclidean metric g, = dx12 + dx% (generating the classical
Radon transform), or the metric

g(x1, x2) = 1) (dx + dx3),
20 —8((x1—-0.3)2+(x,—0.3)%) —8((x140.3)%+(x2+0.3)?)
)\'(xl ) -xz) = 045(6 X1 . X2 . —e X1 . X2 . )

see Figure 1. We will concentrate on the unattenuated case a = 0 for concise-
ness. We parameterise 04 SM using fan-beam coordinates, defined for (8, ) €
[0,27) x (—m /2,7 /2) by

__(cosp _ awfcos(Bt+m+a)
(B, @) > <x_<sin,8>’v_e (sin(ﬂ—l—rr +oc)>>€a+SM’

with area element du (x, v) = cosa do dp.

Discretisation. We assume in pratice that we are given noisy data at geodesics
{yi}7_, emanating from a fan-beam sample {(8;,;)}/_,, and that the unknown
function is modelled as a finite sum f = Z’}‘Zl fj®;. Specifically, the domain is a
triangular mesh with m nodes x1, ..., x,, (see Figure 1, left), so that f; represents
f(x;) and ¢; is a piecewise linear function on the mesh, uniquely defined by the
relation ¢ (xx) = 8. We then seek to reconstruct X = (fi,..., fm)T from the
observation

(2.7) Y=AX +eW®™ Y =( T
. ) y 1 ERRIIEIE] y n ’
1
1.2
%
TSRO
SRRSO
OO 1.1
RO .
Ay 2 A
R
ORISR
RRSSIERR!
CEREERR? R
R KRN 1
S AYAVAY S ATAVATA A RN
VAR AVAYAY, %) XN R
KR BRI REK
SROOOCORKINSANA 4 LY
R RO R0
051 RO Rl
AN Ay A e TN R ATAVA A 0.9
R IIIRKISRIRSRRROY .
SOOI ISR L
OOISKRBRRRR SRR
B IR AR
) KR TSOAEKT
A SRBRSERNK]
ORISR
1 RRBARREY
- 0.8
-1 -0.5 0 0.5 1

FIG. 1. Left to right: example of a mesh with 886 nodes; geodesics for the Euclidean geometry;
geodesics for the metric given in (2.6), superimposed to a contour plot of the “sound speed” e .
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where the discretised forward operator A is an n x m matrix with entries A;; =
1¢;(Bi, i), and W™ is Gaussian white noise on an ad hoc n-dimensional sub-
space of Li (0+SM). By ad hoc we mean that for this problem to be a faithful
discretisation of the continuous one (2.2), one must endow the domain and range
of A:R™ — R" with inner products (described by matrices m and n, respectively)
which mimick the continuous inner products on L*(M) and L2(8+SM ): More
precisely, if f=3; f;¢; and f'=3; fi¢;. then
m
| reof@dr= 3 mysiff myi= [ giogwax
i,j=1

Similarly, assuming here that the data comes from a uniform cartesian discreti-
sation of 0;SM of size n = ngngy, the n-dimensional subspace of Li(8+SM )
on which (2.7) is posed has an orthogonal basis {e;};_,, where ¢; equals 1 on a

pixel of dimensions i—’; X % centered at (B;, ;) and O elsewhere. A data sample
Y =(y1,..., )| can then be viewed as a function y =3, yie; € Li(8+SM), SO
that

n
[ vy Baosadads = Y niy),
3. SM )
where

272

n;j =/ ei(ﬂ,a)ej(ﬂ,a) cosadadp %(31']' COS ;.
3L SM

nghg
In particular, {e;//n;;};_, is an orthonormal family, and a realisation of a stan-
dard Gaussian white noise on this basis takes the form Y 7_; w;(e;/\/n;;) with
w; ~ N (0, 1). In short, i.i.d. standard Gaussian noise in the “ad hoc” space used
for discretisation equals W® ~ A(0,n~1) in usual coordinates. The computation
of the forward matrix A is now done by solving geodesics by ODE:s first, then com-
puting the integrals via Riemann sums, as in [37]. The main difference is that here
f is defined on an unstructured triangular mesh generated via the package [62],
and interpolating these values at any point is done using barycentric coordinates.
Approach. We take a basic Bayesian approach to this inverse problem: given a
Gaussian prior [T on the function f (or its coefficient vector X), we assume the
Y;| f’s are generated from model (2.7) conditional on f, and obtain the posterior
distribution on f|Y by an application of Bayes’ rule. For inference one needs to
be able to calculate the posterior distribution, at least approximately. To this end,
with the notation above, since W™ ~ A/(0,n™1), then Y|X ~ N (AX,e>n™!).
Assuming the prior distribution is of the form X ~ A/(0, o~ 'T") where the prior
covariance matrix I" and the precision parameter o are known, a standard calcula-
tion gives the posterior distribution X|Y ~ NV (X, I'.), where

(2.8) Fo:=(2ATnA+or )", X.:=e2r.ATny,
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where AT denotes the standard matrix transpose. As the posterior distribution is
Gaussian, the posterior mean equals the posterior mode X, (or MAP-estimate)
and thus the Tikhonov-regulariser; see [16] or [22]. As a consequence the centre
of mass of the posterior distribution is an approximation to the solution of the
optimisation problem

. ) 5 5
&nvr;[[g WY = 1af 72 0,500 01 v )

discretised into

min [¢72(Y — AX)"n(Y — AX) +oXTT71X],

R

where Vi € L2(M) is the reproducing kernel Hilbert space (RKHS) of IT. (See
[22, 23] for standard properties of Gaussian processes and their RKHS.) Natural
choices for Vyy are those coming from kernel-type Gaussian process whose covari-
ance is prescribed by a fixed positive definite function K (-, -); see also Remark 2.6
below. In particular, we choose here the Matérn kernel K (x;, x;) = ky ¢(|x; — xj|),

where
21=v  2vr\Y 2vr
koo (r) 1= (—) KU( )
T\ ¢ ¢

and where K, denotes the modified Bessel function of the second kind. In the ex-
amples below, the four parameters (e, o, v, £) are assumed to be known. To address
uncertainty on these parameters, hierarchical models can be considered and effi-
cient methods can be derived to compute features of the posterior distribution; see,
for example, the recent article [4].

Experiments. The phantoms used are given Figure 2, f is the so-called “mod-
ified Shepp-Logan” phantom (compactly supported) and f» = hy/+/dy with
hy € C®(M) and dy(x, y) := %(1 —x2 - yz) (as discussed in the next section,
the scaling by +/d); is natural in this inverse problem). In all examples, the mesh
has m = 6027 nodes and we use n = 14,450 geodesics. The other parameters are
givenby e = 1073, 0 = 1, v = 1.5 and £ = 0.2. Sampling the posterior distribution
is done by drawing X = X, + G Z, where Z ~ N (0, I,;,x») and G is a matrix sat-
isfying GGT =T, [defined in (2.8)], obtained for instance by Cholesky decompo-
sition (here one may notice that this step is a much cheaper option than computing
the SVD of the information operator). To compute forward data, we use the code
[37] which allows to produce “true” data with higher accuracy, thereby avoiding
the inverse crime of using a forward and inverse solver on the same computational
grid.

EXAMPLE 1. Euclidean geometry, reconstruction of f; from its Euclidean
ray transform. We compute the posterior distribution and visualise the mean and
sample draws. Results are visualised Figure 3. As the Shepp—Logan phantom has
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-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

FI1G. 2. Left: f1, the Shepp—Logan phantom (compactly supported). Right: the function hy such
that fr 1= ho//dp blows up at the boundary.

spatial variations which may be too sharp to be captured by the prior, we expect
over-smoothed reconstructions near sharp edges. This can be seen, for example,
on Figure 3 (bottom-right).

EXAMPLE 2. Same as Example 1, except that the geometry is the non-
Euclidean one characterized by the metric in (2.6) and geodesics displayed Fig-
ure 1 (right). Results are displayed Figure 4, illustrating the applicability of the
approach to nonstandard geometries.

-1 -0.5 0 0.5 1

F1G. 3.  Example 1. Left to right. Top row: I f1; 1 f| noisy (with 8 on the horizontal axis and o on
the vertical axis). Bottom row: posterior mean; cross-section on {xy = 0} of 2000 posterior samples.
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0.5

-0.5

-1 0.5 0 0.5 1 -1 -0.5 0 0.5 1

FI1G. 4. Example 2. Left to right. Top row: I f1; I f1 noisy (with B on the horizontal axis and o on
the vertical axis). Bottom row: posterior mean; cross-section on {xp = 0} of 2000 posterior samples.

EXAMPLE 3. Reconstruction of f, in Euclidean geometry, with noise level
¢ = 1072 (all other parameters unchanged). As explained in the theory that fol-
lows in the next section, an appropriate prior for f> should be of the form d;,,l/ 2h2
where h is drawn from a “standard” Gaussian prior modelling a regular function.
For numerical purposes, it should be more stable to work with /5, and try to re-
construct s, from the transform I 7, :=1 (d;;/ 2h2), as the transform [; naturally
compensates for the blowup by integrating. In the implementation, the only change
is to work with the discretised version of I; rather than / (call the corresponding
matrix Ag), everything else being kept equal. As may be observed on the middle
row of Figure 5, the reconstruction of 4, is quite robust, especially at the boundary
despite the blowup of f> there. For comparison, the bottom row of Figure 5 gives
the outcome of just inverting for f> using A with the usual prior on f, instead of
hs (as in Example 1). As expected, the latter approach is manifestly more unstable
near the boundary, and this instability is propagated to the reconstruction in the
interior of M, as Figure 5 illustrates.

2.3. Asymptotic normality of the posterior distribution and of the MAP estima-
tor. The statistical methodology laid out in the previous section did not rely on
any problem-specific regularisation (it just was based on a standard Gaussian pro-
cess and the penalty norm of its RKHS), particularly no computation of the SVD
of the forward operator I, was required. One may wonder whether the Bayes so-
lution of this inverse problem can be objectively trusted in the sense that it solves
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FIG. 5. Example 3. Left to right. Top row: If>; I f» noisy. Middle row: posterior mean
and 2000 cross-sectioned posterior samples for hy. Bottom row: posterior mean and 2000

cross-sectioned posterior samples for fy, divided by d;,,l/ 2 for comparison with middle
row.

the inverse problem in a prior-independent way. We will now show that for the
recovery of arbitrary C°°-aspects of f, posterior based inference is not only valid
but actually optimal from an information theoretic point of view. The theory will
be given in the “continuous” Gaussian white noise model (2.2).

We start with a Gaussian Borel probability measure IT supported in the space
C (M) of bounded continuous functions on M. If h ~ I1 we let the prior IT for f
be the law of the random function

(2.9) S &x)=D(h)(x):=h(x)/Vdu(x), xeM,

where dj; is any function as in Theorem 2.2. By standard arguments (Exercise
2.6.5in [23] or Lemma .16 in [22]), if Vj; is the RKHS of the initial Gaussian mea-
sure [T then the RKHS Vpy of the induced prior has norm || - ||y = ||«/dM(-)||Vﬁ.
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The linear mapping D transforms a standard Gaussian prior into one that allows for
singularities of functions at the boundary d M of a form suggested by Theorem 2.2.

We will now give some precise asymptotic (¢ — 0) results about the statistical
behaviour of the posterior distribution arising from such a prior, under the frequen-
tist assumption that a fixed fo generates the observations in (2.2). We will require a
mild condition on the prior and on fj expressed through the concentration function
of the initial probability measure IT

2.10) ¢z (8 = inf
m.fo VeV o= folloo<

[El .
|~ dog il <) |

which characterises the asymptotics of the small ball probabilities [T(h : ||h —
Vdy follso < 8) of TT as § — 0. The concentration function of Gaussian priors
is well studied (see [60] or also Chapter 2.6 in [23] and [22]), and the condition
that follows is mild—it can be shown to be satisfied for all sufficiently rich Gaus-
sian processes arising from positive definite kernels K, as soon as /dy fy satisfies
standard smoothness conditions; see Remark 2.6.

CONDITION 2.3. Let fo: M — R such that /dy fo € C(M). Let T1 be a
Gaussian Borel probability measure on C(M) whose RKHS Vp contains C (M)
and whose concentration function satisfies, for ¢ equal the constant from Theo-
rem 2.2(b) and for some sequence §; — O such that §, /¢ — o0,

2.11) .1, (8e/20) < (8c/)°.

CONDITION 2.4. Let P}Z) be the law generating the equation Y = 1, fo + eW,
where I, : L2 (M) — Li(8+(SM)) is the X-ray transform under the conditions
of Theorem 2.2, W is a white noise in Li(8+(SM)), and ¢ > 0 is a noise level.
Let TI(-|Y) be the posterior distribution arising from observing (2.2) under prior
I =L(f), where L(f) = E(d;,ll/zh), h ~ T1, with T1 satisfying Condition 2.3 for
the given fy.

Our main statistical result is the following Bernstein—von Mises theorem for
posterior inference on (f, i) L2(M) for arbitrary test functions { € C>°(M). The
idea of its proof is partly inspired by [6—10], where however priors have to be used
that are diagonal in the inner product induced by the information operator. This is
not the case in the inverse problem setting we consider here, but the invertibility
result in Theorem 2.2 combined with an adaptation of ideas in [8, 9] allow to
overcome this difficulty. We give the result for smooth i but our techniques can
be used to obtain results for less regular v as well in principle; see Remark 2.10.

We employ the usual notion of weak convergence of laws £(X,) —* L(X) of
real random variables X,,, X that converge in distribution, X, —4 X . In (2.12) be-
low we claim convergence of random laws 1, —* p in probability, which means
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that for 8 any metric for weak convergence of laws (11.3 in [18]), the real random
variables B(u,, 1) converge to zero in probability.

THEOREM 2.5. Assume Condition 2.4. If f ~ I1(:|Y), then for every ¢ €
C®®° (M) we have as € — 0 that

2.12) LAV 2o — P)IY) =L N(O,

-1, 92
Ia(I;Ia) 1ﬂHL,%(aJr(SM)))

in P}:) -probability, where
R -1
V= (fo, V) r20m) — lla (I 1a) ¥, W>L§(3+(SM))-

REMARK 2.6 (Examples of Gaussian priors and of fp’s). Regarding M as
a subset of R?, most Gaussian processes that model regular functions in C(R9),
when restricted to C (M), will satisfy Condition 2.3, if we assume that /dy; fo
is sufficiently regular. For example let K : RY — R be a positive definite kernel
function whose Fourier transform F K satisfies, for all ||u|| large enough,

(2.13) colul ™ < FK () <cillull™*,  co<ci,s>d/2,

a concrete example being provided by the Matérn kernel (see page 313 in [22]
and also Section 9.6 of [1]). For such K we can define a unique centred sta-
tionary Gaussian process (G(x) : x € R?) with covariance E Gx)G(y)=K(x —
y),Xx,y € R4, The Gaussian process (G(x) : x € M) obtained by restriction to
M c R? defines a tight Gaussian measure yx on C(M), and its RKHS coincides
with the standard Sobolev space H*(M) obtained from restricting elements of
HS(R?) to M. Moreover if fy = dA_/Il/zd)o for some ¢pg € H*(M),s > d/2, then
I1 = yx satisfies Condition 2.3 with 8, ~ &25/(25+4) Y jkewise, if ¢ is a-Holder
continuous on M for some « > 0 [including the case of arbitrary fy € C®(M)],
it can be approximated from elements in H*(M) in || - ||co-norm and a sequence
8¢ — 0 for which Condition 2.3 holds can still be found. These facts can be proved
just as in [22], page 330f.

From the previous theorem we can deduce the asymptotic distribution of the
posterior mean E'[ f|Y], which, since the posterior distribution is also a Gaus-
sian measure, equals the posterior mode (MAP estimate). From Corollary 3.10 in
[16] (see also Section 11.7 in [22]), MAP estimates can further be seen to equal
the Tikhonov-regularisers with RKHS norm as penalty function. Note that in our
infinite-dimensional setting the Tikhonov regulariser is defined as the maximiser
in f of the Onsager—Machlup functional

1 1 s 1 )
(2.14) Q) = ZUaf- YDz, sm = 57 Ma 2 o sy = 51 -
In the discrete setting from Section 2.2 this is equivalent to minimising Q(f) =
8%||Y —LfI*+ ||f||%/H as usual, but in our setting Y ¢ Li(fbrSM), so the pre-
ceding formulation is the appropriate one.
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THEOREM 2.7. Let f = f(Y) = E[f|Y] € C(M) be the mean of the
posterior distributign in Theorem 2.5. Then for every Y € C°(M) we have
(fX), Y2y — ¥ = op)g (&) as € — 0 and thus also, under P}g,

J0

1 -
(2.15) (= fo, V) 2y >4 Z~ N0,

—1,2
Ia(ljla) 1//||L%L(3+(SM)))'

In particular in (2.12) in Theorem 2.5 we may replace the centring U by

(fs ) 120y

REMARK 2.8 (Exact asymptotic minimaxity). The proof of the last theorem
implies that convergence of all moments in (2.15) occurs, and hence f attains the
lower bound constant from (2.5) in the small noise limit. Thus (f, ) L2(m 18 an
asymptotically exact minimax estimator of (fo, ¥)r2p-

REMARK 2.9 (Confident credible sets). Theorems 2.5 and 2.7 justify the fol-
lowing construction of a confidence set for the Tikhonov regulariser: Consider a
credible interval

Ce={xeR:[(f,¥)—x| <R}, Ry st TI(Ce|Y) =1 —a,

for some given significance level 0 < o < 1. The frequentist coverage probability
of C, will satisfy (arguing as in the proof of Theorem 7.3.23 in [23])

Pi((fo.¥)€Ce) > 1 —a

and
Y
e 1R, = "h &~ 1(1 — )

as ¢ — 0. Here ®~! is the continuous inverse of ® = Pr(|Z| < -) with Z
as in (2.15). To implement this confidence set we use the posterior sampling
method from Section 2.2 to numerically approximate the quantile constants R.—
computation of Var(Z), which could be intricate, is not required.

REMARK 2.10 (Extensions). The above theorem shows that semiparametri-
cally efficient recovery of C* aspects of f is possible. Following the program
laid out in the papers [6-9, 41] one could in principle proceed to use the estimates
in the proof of Theorem 2.5 to derive a result for posterior reconstruction of the
entire parameter f in suitable norms via bounding e ~'(f — fo, ¥)|Y uniformly in
collections of functions i of bounded Sobolev norms. The approximation theo-
retic arguments required to do that in the present setting involve delicate boundary
issues, with standard Sobolev spaces as approximation scales having to be replaced
by the Hormander spaces introduced in Section 4 below. The execution of these
arguments is possible but quite technical and beyond the scope of this paper.
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3. Proofs for Section 2.3.

3.1. Proof of Theorem 2.5. Let H;,i = 1,2 be separable Hilbert spaces and
consider the equation

Y=G(f)+eW, >0,

where G : Hy — H; is a Borel measurable mapping and W is a centred Gaussian
white noise process (W(h) : h € Hy) with covariance EW(h)W(g) = (h, &) n,.
Observing Y then means that we observe a realisation of the Gaussian process
(Y(h) =(Y, h)m, : h € Hy). We sometimes write (W, i), for the random variable
W(h). Arguing as in Section 7.4 in [41] the posterior distribution of f|Y exists and
equals

Jepr(¥)dII(f)
Jrpr(M)dII(f)’
where p(Y) is a likelihood function with respect to a suitable dominating mea-

sure. The following result is a standard application of the Cameron-Martin theorem
(see equation (116) in [41]).

(3.1 I[I(B|Y) =

B € By, a Borel set in H;,

LEMMA 3.1. Let £(f) =log ps(Y) and assume Y = G(fo) + W for some
fixed fo € Hy. Then if G is also linear, we have for any f, g € Hy,

1 5 5 1
LN =) =—55(G(f = ), =16 = fo i) + {G(f = 8). W),

We now prove Theorem 2.5, and will use the above lemma with Hy = L*(M),
H), = Li(8+ SM), G = I,. In what follows the total variation norm between finite
measures [, v is defined to equal the supremum || —v||7v :=supg | (B) —v(B)|
over all Borel sets B.

LEMMA 3.2. Let I1 be a Gaussian Borel probability measure on C(M), and
for fixed fo assume its concentration function ¢g i satisfies (2.11) for some § =

8¢ — 0. Let 1 be the prior for f corresponding to the law of f = D(h), h ~ TI
with D as in (2.9), and let T1(-|Y) be the resulting posterior distribution arising
from observing Y = I, f +eW, where 1, is the X -ray transform from Theorem 2.2.
Then for any Borel set D, C L>(M) for which

(3.2) (DY) < e P0G/ for some Do > 3
and all ¢ > 0 small enough, we have
(3.3) M(DEY) =0 and |TIP(-|Y) = TI(-|Y)] 7y — O

as € — 0 in PY -probability. Here T1P¢(-|Y) is the posterior distribution arising
from the prior I1(- N D,)/I1(Dy) restricted to D, and renormalised.
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PROOF. It suffices to prove the first limit in (3.3), the second then follows from
the basic inequality |T1P: (-|Y) =TI V) |7y < 2T1(Dg|Y).
We have from (3.1) that

I3 e N=EU0) gTI1( f)

M(B|Y) = [ el DR dTI(f)

B e BLz(M)’
and under P }g can use Lemma 3.1 to see

1 1
() = U fo) = =55 a(f = fo) &, + Ha(f = fo), W)y,

Let v be any probability measure on the set B ={f : || I,(f — fo)||%le < 82}, For
any C > 0 we have from Jensen’s inequality

pY ( / LD gy ) < e—<1+c>(sg/s>2>
B

1
= Pr(./B (—@Hla(f — fo) ”%12
5

1
Lo = S0 W)y, ) o) = (140 %)

< Pr(

since the standard Gaussian tail bound P(|Z — EZ| > u) < e~1?/2Var(2) applies
to the random variable Z = [, g1 (Io(f — fo), W) p, dv(f) which has a centred
normal distribution with variance bounded, again using Jensen’s inequality, by

2
/ l(la(f - fo),W)szu(f)‘ > C%) < o C2Gu/eR)2
BE .

2

’ )
E|:/Bg—1<1a(f_fO),W)szV(f)] 58_2/BE(Ia(f—fo),Wﬁ_Izdv(f)S 5

recalling that W is a centred Gaussian white noise in H>. Now we choose v =
[T(- N B)/I1(B) and let

A, — { / LD gy (Y < e—zws/s)z},
B

for which P}:)(Ag) < ¢=0:/2*/2 _, (0 by what precedes (with C = 1). For E}fo the
expectation operator corresponding to P}; and by Markov’s inequality, it suffices
to prove convergence to zero of

EY TU(DE|Y) = EX TU(DEIY) g, + E% TH(DEIY) 1 ac.
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Since T1(:|Y) <1 the first quantity is less than P}:) (A¢) and hence converges to
zero. For the second term we have

EY TI(DE|Y) 1 ac

il Y [HN=t0)]
3.4 < . an
. (S I a(f = fo)lly, <82) /D ol (f

< 20/ 911y Ge/D 1 (D)

noting that E’;O [et(H)—t(f0)] = | and where
3.5) ‘

Jwl?
o5 (8) = ’n

in [
weVIL Ma(w=folll 2 5, 511 =0 2

~log (1L iz 0,50 <9 |

using Proposition 2.6.19 and Exercise 2.6.5 in [23], with RKHS 1,(Vp) of I, f
isometric to Vpy since I, is linear and injective. Now we have for all § > O that
on, 5, (8) < <z>1:1’f0 (8/c) since Theorem 2.2 implies

||Iaf”L/24(8+SM) = ||Ia(D(h))||Li(3+SM) <cllhlle
so that
—logIT(f : Ma Fll2 o, 50y = 8) < —logM(h: ||kl < 8/c)
as well as

o (w — f0)||L12L(B+SM) =[Z(D(v - D_lfO))”LlZL(mSM) <clv— D_lfO”oo’

where v = /dyw € Vg corresponds to w = Dv = dﬂ;l/zv € V. Thus by (2.11)
the right-hand side of (3.4) is bounded above by

o20e/2 P11y o2 1 (pey < (B0 Ge/e)?
for Dg > 3, completing the proof. [J
For ¢ € C°°(M) define now ¢ = —(Ijla)_ll//. We have from Theorem 2.2

that ¥ can be written as ¥ = dA_,Il/ 21& for some ¥ € C°°(M). Therefore, since the
RKHS Vg of I1 contains C*° (M) we have

(3.6) 19115 = IVdu 117, = 17117, < C.

Next, the random variable (¥, f Y, £~ T, is N(O, ||1Z||%,H) and the standard
Gaussian tail inequality guarantees for all u#, § > O that

N vl 8 26672
I — —
<f 19 v >”e> =¢
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hence Lemma 3.2 applies to the set
A 5
D, {f: [ vl _ K_g}’
1V llvey €

whenever K > +/6, and in deriving the asymptotic distribution of the posterior
measure we can restrict to the posterior distribution P (.|Y) arising from the
prior TP = T1(- N D,)/T1(D,).

PROPOSITION 3.3.  Assume Condition 2.4. For € C°(M), define the ran-
dom variables

(3.7) U= (fo. v m, — ella (I} 1a) ™ . W)y, .
Then for all T € R and as ¢ — 0 we have

~ r2 * -

(38) EHDs [e§(<f’w>Hl_\p)|Y] :eTHI‘I(IaIa) ll//H%—]z % (1 +0PY (l))

fo

PROOF. The left-hand side of (3.8) equals, for f; = f + r&/,

EMbe [eaf—fo,w)ﬂl +e(la (1)~ v, W) p, Y]
L(f—fo. L) —L(fo)+E(fr X
:er<la(1;Ia)711/f,W>H2 ffeg(f fo 1//>H1-‘r (H—L(fo)+ (f)dHD (f)
(3.9) [ et dmPe(f)

211913, D, U dTI(f)
=e 2 -
[p, €4 dTI(f)

since by Lemma 3.1

e(f) —e(fo)

1 ~ N
= 11 = = f = Lo+ eeLad ) + U W

2
_ T - T ~
= ~o{la(I310) "V W)y, + S Wal I, + {La(f = fo). Lad)p,
and since by Theorem 2.2

(3.10) (La(f = o). Ta(L 1)~ )y, = (F = fo. V).

By the Cameron—Martin theorem ([23], Theorem 2.6.13) the last ratio in (3.9)
equals, for I1, the shifted law of f;, f ~ I,

7 _ 207,12
Ip.. e‘“w%(g)dn(g) fo,. (&) TV vy —(Te) ||w||vn/2dn(g)
[p, ef@dti(g) Jp, €® dT1(g) ’
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where D, ; ={g = fr : f € D¢}. In view of (3.6) we have s||z/~/||vn —>0ase—0,
and by definition of D, and the Cauchy—Schwarz inequality we have convergence
to zero of

- - - o) - -
e sup [(V, g)vy| =¢ sup (¥, f +1eW)vy| < Ke— |1V llvy + [TV 113,
geD; ¢ feD; €

since 6 — 0. Conclude that the last ratio is, for every t € R,

Ip, . e®dni(g)
[ dwangg — o)

as ¢ — 0, and the proof is completed by showing that both the numerator and
the denominator of the last ratio converge to one in probability: The denominator
[T1(D¢|Y) converges to one in P}g -probability by Lemma 3.2. The same is true for
the numerator by applying Lemma 3.2 once more, since the Gaussian tail inequal-
ity guarantees for /6 < k < K and every 7 € R that for & small enough that

IT(De,c|Y)
II(D,|Y)

(14 o0(D))

n(p:,)="(v: |(¢,UTT8¢)VH| > K8, /¢
19 llvy
v, P N
< H(v LW vival | gede |r|||w||vns) < e P@/e?/2,
19 Ny e

O

Theorem 2.5 now follows from the fact that convergence in total variation dis-
tance implies convergence in any metric for weak convergence, so that in view of
Lemma 3.2 it suffices to prove the theorem with [1P:(-|Y) replacing I1(-|Y), and
using the previous proposition plus the fact that pointwise convergence of Laplace
transforms (in probability) implies weak convergence (in probability); see, for ex-
ample, Proposition 28 in [41].

3.2. Proof of Theorem 2.7. Let (2, S, Pr) be the probability space support-
ing the random variable Y from (2.2) with law P}; (this space is implicitly con-
structed before (3'12 via the results from Section 7.4 in [41]). We show that
e EN[(f, ¥)m, — W|Y] converges to 0 in P -probability which implies the re-

sult since then by definition of U we then have
e F) = fo. V), = —a(I} 1)~ 0. W)y, + opr (1.

We argue by contradiction: Let &, be any sequence such that €,, — 0 but assume
Em YVETUL(f 9) H — W |Y] does not converge to 0 in probability. Then there exists
an event Q' € S of positive probability Pr(R2’) > 0 and & > 0 such that along a
subsequence of m,

(3.11) le LEN[(f )l — WY ()] =&  VYoe.
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Since convergence in probability implies convergence almost surely along a sub-
sequence, we can extract a further subsequence, still denoted by ¢,,, for which we
deduce from Theorem 2.5 that

B(L(ey ((f. )1, — W)IY), L(2)) - 0

almost surely for Pr, and where Z is a N (0, ||, (I;I")_lw”iﬁ(m(SM))) random

variable. Fix the event 29 C €2 of probability one where the last limit holds: then
for every fixed w € ¢ we have the convergence in distribution

(@)= e, ((f, V)i, — W)Y (@) > Z.

By Skorohod’s theorem on almost surely convergent realisations of weakly con-
vergent random variables (Theorem 11.7.2 in [18]) we can find, for every fixed
w € 0, a probability space on which we can define random variables U,, (w), Z
such that L(W,, (w)) = L(V,,()), L(Z) = L(Z) and

U, (w) —Z—>0

almost surely as m — oco. By standard conjugacy arguments the law of h = I, f|Y
is a Gaussian measure on Li(8+ SM). By Theorem 2.2, when integrating against
Y e C°(M) we see
-1
(£ V) 2y = (1 La(1 1a)
which is a well defined normal distribution on the real line since the mapping
b (b, I,(L 1)~ ") 13.(a, 50 from L2 (04 SM) — R is linear and continuous

W)Li (04 SM)

in view of I, (I;‘Ia)_lw € Li(8+SM), using Theorem 2.2 once more. Thus for

every w € g the variables lilm (w) — Z, m €N, are all Gaussian and by the usual
Paley—Zygmund argument (e.g., Exercise 2.1.4 in [23]) almost sure convergence
implies convergence of all moments, in particular E| \Ilm (w) — Z | > 0asm — oo.
From this we deduce, for all w € ¢, Pr(29) =1, that

e LEN(f, ), — WY (0)] = EVp(w) = E[V(0)] > EZ=EZ =0

as m — 00, a contradiction to (3.11) with Pr(2") > 0, completing the proof.

4. Proofs for Section 2.1. In this section we prove Theorem 2.2 and we will
do so by putting the theory into the framework of the transmission condition as
developed in [26, 29]. We will give full details for the case of the geodesic X-
ray transform I and indicate the (minor) modifications necessary for the proof to
work also for the attenuated X -ray transform 1, at the end. We note that previously
known results only give that 7*[ is injective on L>(M) and surjectivity properties
were only obtained after enlarging M (as in [46]). These results are not sufficient
to obtain the theorems in Section 2.3, nor do they expose the precise boundary
behaviour as we do here.
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4.1. Setting up the scene and main ideas. We shall denote by N the normal,
or “information” operator I*I : L>(M) — L*(M) introduced in Section 2.1. An
integral formula for N can be derived directly from the expressions for 7 and I*:

T(x,v)
4.1) Nf(x) =2/S_M dv/o F(yeo(®)dt.

A property of fundamental importance is that whenever (M, g) has no conjugate
points, then, in the interior of M, the operator N is an elliptic pseudo-differential
operator (W DO) of order —1 with principal symbol c;|& |_1; cf. [27], Section 6.3,
[53] or Lemma 3.1 in [46]. (The reference [27] states this property under the so
called Bolker condition, which is seen to be equivalent in our case to the absence
of conjugate points.) We refer to [57] for a treatment of WDOs. In particular recall
that for P a classical WDO of order m € C, a full symbol in local coordinates is
denoted by p(x, &) ~ Z?o:o pj(x,&) where p;(x,t&) = t’”*jpj (x, &), and where
po is the principal symbol. The operator P is elliptic if po(x, &) # 0 for all (x, &)
in the cotangent bundle, & # 0.

Recall that (M, g) is called simple if it is nontrapping, has strictly convex bound-
ary and no conjugate points. Simple manifolds are simply connected; in fact they
are diffeomorphic to balls in Euclidean space. From now on we shall assume that
(M, g) is simple. It will be convenient for what follows to consider (M, g) iso-
metrically embedded into a closed manifold (S, g). Since M is simple, there is an
open neighborhood U; of M in §, such that its closure M7 := U is a compact
simple manifold; see Figure 6. Let I; denote the geodesic ray transform associated
to (M1, g) and let Ny = I]'1.

Following [46] we may cover (S, g) with finitely many simple open sets Uy with
McU,MNU j =@ for j > 2, and consider a partition of unity {¢} subordinate
to {Uy} so that ¢ > 0, supp gy C Ur and > (p,% = 1. We pick ¢ such that ¢; =1 on

FI1G. 6. Setting.
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a neighborhood of M compactly supported in U;. Hence, for I the ray transform
associated to (Ug, g), we can define

(4.2) Pf = oe(LE) (@ ), [ eC™().
k

Each operator I} I : C2°(Uy) — C*°(Uy) is an elliptic ¥DO of order —1 and
principal symbol ¢4|£| ™!, and hence so is P. Having P defined on a closed mani-
fold is convenient, since one can use standard mapping properties for WDOs. For
instance for P defined by (4.2) we have

P:H*(S)— HTI(S)  foralls eR,

where H*(S) denotes the standard L? Sobolev space of the closed manifold S
(when s is a nonnegative integer, H*(S) can be identified with the set of u € L2(S)
such that Du € L2(S) for all differential operators D of order < s with coefficients
in C°(S); see [55] for the definition for arbitrary s € R).

Let rp 2 L2(S) — L3(M) denote restriction to M™, the interior of M, and
ey : L2(M) — L?*(S) extension by zero. (We could consider restriction to M as
well, but this makes no difference since the boundary of M has measure zero.)
Both operators are bounded and dual to each other. Since ¢; = 1 near M, given
f e Cfo(Mim) (smooth functions with compact support contained in M™™) we
have

ruPey f=ruNipiey f =ryNiey f.

Equation (4.1) shows that ryy Niey f = Nf and thus by density of C2°(M ity in
L?(M), we have that P and N are related by the following truncation process:

4.3) N =ry Pey in LZ(M).

Since P : L?(S) — H'(S), this gives immediately the mapping property N :
L?>(M) — H'(M) when the spaces H®(M) are defined by restriction (4.7). Since
the embedding H' (M) < L*(M) is compact, obviously N : L>(M) — L*(M) is
compact (and hence 7).

However, without further analysis not much more can be said about the mapping
properties of N, especially if we are interested in functions supported all the way
to the boundary of M. From (4.3), we see that e); could produce singularities
for higher order Sobolev spaces, preventing good mapping properties in ‘smooth
topologies’. A key input of Boutet de Monvel [2, 3] (see also [13]) was to show
that a necessary and sufficient condition for P, a W D O of order m defined on S, to
satisfy ry Pep (C°(M)) C C*°(M), is that P satisfies the transmission condition
with respect to M in the sense that

(4.4) Lo pj(x.v(x)) =™ "Il og pi(x, —v(x)),
forall j, o, Band x € M.
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Unfortunately such a condition does not hold in the case of Ny (or P) defined
above, as the following example shows: let M be the unit disk in R?. An ele-
mentary calculation gives that N(1) =4FE(r)/m where E is the complete elliptic
integral of the second kind and r is the radial coordinate. As r approaches 1, E'(r)
blows up and hence N (1) ¢ C°°(M), therefore N = ry; N1 cannot satisfy the trans-
mission condition.

Furthermore for purposes of inversion, even if 4 € C°°(M), we cannot expect
the solutions f to N(f) = h to be in C®°(M) either: in the previous example, it
is not hard to check that 7((1 — r2)~1/2) (r denoting distance to the origin) is a
constant function [35], Corollary 3.3, and therefore so is

(4.5) N((1—=r?)""?)=c.

While N; does not satisfies condition (4.4), we show that it satisfies a modified
transmission condition as introduced by Hormander in [29] and recently expanded
and enhanced by Grubb in [26]. Namely, given u € C with real part Rip > —1, we
say that P, a W DO of order m defined on S, satisfies a transmission condition of
type n with respect to d M if its symbol satisfies

(4.6) APog pj(x,v(x)) =™ M2l NgB o b (x, —v(x)),
forall j, o, B and x € dM, generalizing the case = 0 given by (4.4). To tie this
condition with mapping properties, using u as above, let us define

Eu(M) = {emdmu ()" @, 9 € CT (M)},

where djs(x) is a C>°(M)-function equal to dist(x, d M) near d M and positive on
the interior of M. Then, as a generalization to Boutet de Monvel’s result above, the
following theorem appears in [30], Theorem 18.2.18:

THEOREM 4.1. A necessary and sufficient condition in order that ry Pu €
C>®(M) for all u € £,(M) is that P satisfies the p-transmission condition (4.6).

To make use of the theorem above, we first prove in Section 4.3 that

LEMMA 4.2. The operator P defined in (4.2) satisfies the transmission con-
dition of type . = —1/2 with respect to dM.

In particular, Lemma 4.2 and Theorem 4.1 imply that
N: dn}] /2

is well defined. Notice that the domain allows for functions which blow up near
the boundary like dist(x, 9M)~2, explaining (4.5).

After constructing in Section 4.2 appropriate Hilbert-scale versions of
&_1/2(M), namely, the Hérmander spaces H —1/26) (M), the first basic result [26],
Theorem 4.2, applied to rys P gives further mapping properties:

C®(M) — C*(M)
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THEOREM 4.3. rpy P maps H126) (pn) continuously into HSTY(M), where
P is defined in (4.2) and s > —1.

While all the results above only discuss forward mapping properties, using ellip-
ticity will show that such an operator is in fact Fredholm in the functional settings
mentioned above. Then proving that its kernel and co-kernel are trivial will ensure
that it will be invertible in these settings as well. In particular, the main result we
prove below provides a full solution to the homogeneous Dirichlet problem for P
on the domain M.

THEOREM 4.4. Let P be the elliptic WDO of order —1 given by (4.2). For s >
—1 the map ry P : H-'2O (M) — H*Y(M) is a homeomorphism. Moreover,

N: dA_,Il/zCOO(M) — C®(M) is a bijection.

The outline of the remainder is as follows. Section 4.2 contains details on
Sobolev and Hormander spaces. Section 4.3 will be devoted to the proof of
Lemma 4.2, and Section 4.4 to the proof of Theorem 4.4, requiring a few tech-
nical lemmas, followed by the proof of Theorem 2.2.

4.2. Sobolev spaces and Hormander spaces. In this section we summarize
the main functional setting that we will be using. Here we shall be concerned only
with L2-Sobolev and Hormander spaces. The Sobolev spaces are standard but the
Hormander spaces are less so. For the latter we will follow [26] and for the former
[36, 55] (with minor departures in notation). As before we let (M, g) be a compact
Riemannian manifold with boundary which we think isometrically embedded into
a closed manifold (S, g). We write H*(S) for the standard L? based Sobolev space
of the closed manifold S. We denote

HY (M) =ryH*(S) = {ul pyine - u € H*(S)}
equipped with the quotient norm
4.7) Nl s ay := inf{{|w] gs sy : w € H(S), ryw = u}.
We denote
Hjy (S) :={u e H*(S) : supp(u) C M}.
REMARK 4.5. The space Hj, (M) can also be seen as the closure of C2° (Mim)
in H*(S). Finally we can also define Hj(M) as the closure of CX(M™) in

H*(M). When s ¢ 7 + %, there is a natural identification with Hy,(S). When s

is a nonnegative integer, H*(M) can be identified with the set of u € L*(M) such
that Du € L*(M) for all differential operators D of order < s with coefficients in
C®(M).
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One of the main inputs of [26] is the introduction of particularly efficient order
reducing operators; cf. [26], Theorem 1.3. These are classical elliptic ¥WDOs on §

of order y (denoted Aﬁfw) preserving support in M and defining homeomorphisms
(4.8) AW H(S) — Hi(S),

where 9iu denotes the real part of ©. These operators are used to define the Hor-
mander spaces (also known as p-transmission spaces)

H M) (M) = AE’_—M)eMHsfm;L(M)’ s> %R —1/2.

For s > My — 1/2, the maps rMASf) c HHMO) (M) — Hs_m“(M) are homeomor-
phisms with inverse AS__“ e M [26], Proposition 1.7. We have a natural embedding
H3,(S) C HM(M).

As explained in Section 4.1, these spaces are specifically adapted to the u-
transmission condition (4.6) and will provide natural spaces of solutions to the
equation N f = h where u = —1/2.

The order reducing operators Agf) are used in conjunction with their adjoints
A by considering a new operator Q = A% 7m)PAS:“ ), where m is the order
of P. The point is that if P satisfies the p-transmission condition (4.6), then Q
satisfies the transmission condition (4.4) with u = 0 and fits the Boutet de Monvel
calculus. This is the main idea in [26].

Let dys(x) be a C°°(M)-function equal to dist(x, dM) near dM and positive
on the interior of M. For u € C with %in > —1, let £, (M) denote the space of
functions u such that u = eprdy (x)* @ with ¢ € C°°(M). One can show that ([26],
Proposition 4.1)

Eu(M) = H"® (M).
N
The spaces H*)(M) were introduced in [29] as the completion of En(M)
in the topology defined by the seminorms u > |[ra Pu/| gs—sm pry, Where P runs
through the operators satisfying the p-transmission condition (see below) and any

order m € C. Hormander’s starting point was the work of Vishik and Eskin [20,
61].

4.3. Proof of Lemma 4.2.
DEFINITION 4.6. We shall say that P has even symbol if p;(x, —§) =
(=17 pj(x,&) forall j > 0. It is easy to check that this condition is independent

of the coordinates chosen. (Recall that the full symbol is not defined intrinsically.)

LEMMA 4.7. The symbol of N (or Ny) is even.
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PROOF. There are (at least) three possible proofs of this lemma. As explained
in [50] the full geometric symbol of N coincides with its principal symbol cg|&|~!.
In [52] a relation is established between the full geometric symbol and the ordi-
nary full symbol in local coordinates. See, for example, equations (1.6) and (1.7)
in [52]. An inspection of those formulas shows that the symbol is even starting
from the fact that ¢4]&|~! is even. Another more natural proof was suggested to
us by Gunther Uhlmann and is based on the calculation of the full symbol in [53].
Equation (17) in [53] gives an explicit formula for the amplitude M (x, y, £) of the
WDO for the case of 2-tensors. In the case of functions the formula is

nt1 |det G| J
Jdetg

where G(l)(x, y) and G(3)(x, y) are defined in [53], Lemma 3, but we do not need
to know what they are. The terms p;(x, &) may be derived from the amplitude by

M(x,y, &) =/e_is'Z(G(l)Z - Z) Z,

pix. )= %agD;‘M(x,y,sny:x.
lal=j "
Since M (x, y, &) is even in &, we see that once we start taking derivatives in &, the
parity of p; in & changes according to (—1)J = (=1l
The quickest way is perhaps to use [15], Lemma B.1, which covers a broad
range of operators for the form

Af(x):/SU /RA(x,r,w)f(x—|—rw)a’ra’Sx(w).

Our operator N is certainly of this form (after some change of variables). The
lemma proves that A is a classical DO of order —1 and computes explicity the
full symbol deriving a formula

l'k

pr(x.§) = 2n—/ OFAx,0,w)s® (w - &) dSc(w).

k! Js,.u,
From this formula we see right away that pi(x, —§) = (—k p(x, &) since the
delta function § is even. [J

PROOF OF LEMMA 4.2. In a tubular neighbourhood of d M, the full symbol of
P coincides with that of Nj. The result is then a direct consequence of Lemma 4.7
and the fact that m = —1. [0

4.4. Proofs of Theorems 4.4 and 2.2. 'To prove Theorem 4.4, a first step is to
prove that for P defined in (4.2), rp/ P is a Fredholm operator in the functional
settings H=129) (M) — H*T1(M) for s > —1, and E_1/2(M) — C*>°(M). This
is mainly due to the ellipticity of P, and one additional concept from [26], the
factorization index 1. This is defined for elliptic operators of order m as

no:=m/2+ (ay —a_-)/2mi,
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where expat+ = po(x, Fv(x)). For the case of Ni, we have w9 = —1/2 since the
principal symbol of N is (up to a constant) |£|~'; cf. [26], Example 3.2. In general,
for elliptic operators of order m with even symbol, . = po = m /2. Then as a direct
consequence of [26], Theorem 4.4, we obtain the following theorem.

THEOREM 4.8. Assume s > —1. Suppose u € Hy(S) for some o > —1 and
let P be the elliptic WDO of order —1 given by (4.2). If ryy Pu € HSY' (M), then
u € H-'12)(M). Moreover, the mapping ry P : H=V2O) (M) — HT\ (M) is
Fredholm. In particular, if ryy Pu € C®°(M), then u € £_1,2(M). The mapping
ru P E_1(M)— C®(M) is also Fredholm.

Before proving Theorem 4.4, we state and prove a few preliminary lemmas. We
begin with:

LEMMA 4.9. If (M, g) is a nontrapping manifold with strictly convex bound-
ary, there exists a constant Cy > 0 such that

dy (yx,v(t), 9M)
> Cot(t(x,v) — 1) forall (x,v) € 3:5M,t € [0, (x,v)].

PROOF. In what follows, denote a4 : 0+ SM — 04+ SM the antipodal scatter-
ing relation, that is, the map (x, v) = (Yx,» (T (x, V), —Vx (T (X, v))). a4 satisfies
af\ = 1Id and if g(vy, v) =0, then a4 (x, v) = (x, —v).

dM(Vx,v(t)saM) i

It is enough to show that the nonnegative function F'(x, v, 1) := = TGv=D

uniformly bounded away from zero on the set
G={(x,v)€d;:5M,1€(0,7(x,v))}.

In what follows, we will also use [51], Lemma 4.1.2, page 113, stating that there
exists Cp > 0 such that

4.9  t(x,v) <Cl{vx), v>g

, (x,v)€0,5M, (v(x),v>g5£0,

where v(x) is the outer unit normal at x € d M. This is essentially a consequence
of the strict convexity of the boundary of M. Using that dp (yx o (t), OM)|;=0 =0
and %dM(yx,v(t), OM)|;=0 = [{v(x), v)¢| (e.g., by using normal geodesic coordi-
nates), I’Hopital’s rule implies

@) )l _plrw) 1
t(x,v)  t(x,v)  Co

lim F(x,v,t)=
t—0t

Moreover, since Yy v () = Yo, (x,v)(T(x, v) — 1), we have the symmetry property
Fx,v,t) = F(aa(x,v), T(x,v) —t), and this allows to deduce the limit
plaatx,v) 1

lim Fx,v,t)=——"—->—.
t—1(x,v)" T(oa(x, v)) )
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By compactness, the result follows since F' is uniformly bounded away from zero
outside any neighborhood of {t =0} U {r =t(x,v)}in G. U

An important ingredient in what follows is the consideration of the following
weighted space L?(M, d,ll,,/z) where the measure is d ,{,{2 dx. Recall that I* denotes
the usual backprojection, that is, the adjoint of 1 : L?(M) — Li(8+ SM).

LEMMA 4.10. The following hold:

(i) The map I : L*(M, dl/2

1/2 p

) —> Li(8+SM) is bounded with adjoint I, =
dy
(ii) The map I* : Li(8+SM) — L*(M, d;ll/z) is bounded.

PROOF. Let f € LA(M, d,)”

write

) and write f = dﬂ}l/“g for some g € L>(M). We

dt
Ay (Ye,v(t), dM)V/4
dt

et [ oo [
x,v)| < t t )
o 18w 0 du(yen(), 9M)1/?

using the Cauchy—Schwarz inequality. Using Lemma 4.9, we have, for any (x, v) €
0+SM,

T(x,v)
If(x,v) = /0 ¢V (D))

/r(x v) dt
0 dpt (Yo (1), OM)1/2

I/t(w dt =t 1 /1 du
cl/2 (t(t —1))? Cy/? 0 (w1 —uy)?

T
C1/2

Integrating over 0, SM, we then obtain

T T(x,v)
[ Jrrewldes = [ [T gro) drdn
9, SM cy/? Jorsm Jo

N T
Cl/2

7 Vol(§9—1)
= 1/2 /‘ ()C)‘ dx

/ |g()c)|2 dx dv (by Santal6’s formula [51])
SM

JTVOI(Sd_l)
=TI
C

0

L2(M. d1/2)7
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hence (i) holds. Then (ii) is a direct consequence of the factorization

1/2

I*: 129, SM) s LM, d ) D5 12, a ),

where 7)) is continuous by (i) and the second operator (multiplication by d,lw/z) is
an isometry in the setting above. The proof of Lemma 4.10 is complete. [

LEMMA 4.11.  Given ¢ € C®(M), dy; *p € LX(M, d,)*) N LY (M).
PROOF. Obviously ¢ is bounded in M. Since (d[‘_,llﬂgo)zdl/2 =d 1/2<p2 we

just need to prove that d,;l/ % is in L'(M). By taking local geodesic normal co-

ordinates where x,, denotes distance to the boundary, the lemma follows from the
elementary observation

&
f x, V2 dx, < oo
0

since locally dy = x,,. U

REMARK 4.12. The same proof shows that d,, 2 gs (M) C L*(M, dl/z) as

long as s > dim M /2. The latter condition ensures that elements in H¥(M) are
continuous and hence bounded.

We are now ready to give the proof of Theorem 4.4.

PROOF OF THEOREM 4.4. By Theorem 4.8, the map rj; P is Fredholm with
finite dimensional kernel and co-kernel independent of s; in fact elements in the
kernel must be in £_12(M); cf. [25], Theorem 3.5. Hence, it suffices to check that
these kernel and co-kernel are trivial. We begin by proving that the kernel is trivial.

Suppose there is u € £_1,2(M) such that ry Pu = 0. Writing u = eMd_1
with ¢ € C®°(M), we see that Nf = 0 where f = d;,,l/zgo e LX(M, dy”)
by Lemma 4.11. But I;] = d_l/zN hence I;;1f = 0. This implies (/;;1f,
1/2) = =0and hence If = 0 To show that f must in fact be smooth, extend

1/2

f)LZ(M d
f by zero to U and call the extension fi. By Lemma 4.11, f] € LY(U)) so that,
using Santald’s formula, it is easy to see that I; f; makes sense in L'(3, SU;) and
also that Ny f1 = Il*llf makes sense in Ll(Ul). Then I f{ = 0 and thus Ny f1 =
Since N is elliptic, the function f; must be smooth in U; and hence f is smooth
in M. Now we use the standard injectivity result for / acting on smooth functions
on a simple manifold [38] to conclude that f =0.

Let us now check that the co-kernel of r; P is trivial. Consider the injection

v Hy(S) > HTVPS (M),
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where Hj,(S) consists of elements in H*(S) with support in M (cf. Section 4.2).
Let us compute (ry Pt)*. The point of using ¢ is to end up with standard dualities
not involving the Hormander spaces. Note

(rm PO - (H TN (M) — (H3,(S))
where

(HH ) = Hy 7 N(S),

(Hy(8))" = H™ (M)
are the standard dualities. Take u € H &S_I(S) and f € Hjy,(S) and observe
(4.10) (ruPfiwypy = (Pfou)s = (f, P—s—1u)s = (f,rm Pu) .

Thus (*(ry P)* = (ry P)* = ryyP. Hence if u € HA}S_I(M) is such that
(rm P)*u =0 we see that ry Pu = 0. By ellipticity u € £_1,2(M) and since we
have already proved injectivity of rp/ P on this space we deduce that the co-
kernel of ry P is trivial as well. Thus ry P : E_1 (M) — C°°(M) is a bijec-
tion and since N = ry Pey, from the definition of £_1,2(M) we conclude that

N : dA_,Il/ZCOO(M) — C*°(M) is also a bijection. [J

PROOF OF THEOREM 2.2. For the case of /I, part (a) in Theorem 2.2 follows
immediately from Theorem 4.4. Part (b) in Theorem 2.2 is a direct consequence of

Lemma 4.10 and the fact that d;,'*h € L*(M, d,)?) if h € C(M).

To complete the proof of Theorem 2.2 we just need to explain why the same
proof works for the attenuated geodesic X-ray transform /. The microlocal prop-
erties of N, = 11, are studied in detail in [21]. With this in hand, it is straight-
forward to check that N, will fit the theory developed above. For this we need to
extend a € C°°(M) smoothly to S and observe that the third proof of Lemma 4.7
applies to N, since these operators are covered by [15], Lemma B.1; see [21],
Section 4, for a proof. Hence the full symbol of N, is also even, N, satisfies
the transmission condition with u = —1/2 with respect to d M, and we can derive
all the required mapping properties. The proof of Lemma 4.10 works for 7, and
Theorem 4.4 holds as well for 1, as long as we know that I, is injective on smooth
functions. [J
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