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Abstract

We first give a constructive answer to the attenuated tensor tomography problem on
simple surfaces. We then use this result to propose two approaches to produce vector-valued
integral transforms which are fully injective over tensor fields. The first approach is by
construction of appropriate weights which vary along the geodesic flow, generalizing the
moment transforms. The second one is by changing the pairing with the tensor field to
generate a collection of transverse ray transforms.

1 Introduction

Let (M,g) be a non-trapping Riemannian surface with strictly convex boundary 0M. Denote
its unit tangent bundle by

SM = {(z,0) € TM, gu(v,v) = 1},
with inward and outward boundaries
0+SM = {(z,v) € SM : x € OM and =+ (v,v(x)) <0}

where v(z) is the outer unit normal to OM at x. One may then define the geodesic flow
i SM — SM, with infinitesimal generator X, . = %|t:0<pt(x,v). Given F' : SM — C and
w : SM — C a non-vanishing weight, the weighted ray transform I, : L2(SM) — L*(0.SM) is
defined by

(z.v)
I,F(z,v) = /0 w(p(z, ) F(p(z,v)) dt, (x,v) € 04+ SM,
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and several problems of integral geometry arise from restricting such transforms to specific types
of integrands F’, for example functions on M, vector fields and tensor fields. In particular, for f
a symmetric m-tensor field, one may define the transform

Ly f = Ly[lm f], feCce(S™T M),
where we identify a tensor field f with its longitudinal restriction ¢,,f to SM defined by
U f(z,0) = fo(v,...,v), (x,v) € SM. (1)

Examples of such transforms in the literature arise commonly for w = 1 (the geodesic X-ray
transform), or when

7(z,0)
w(z,v) = we(x,v) = exp <—/0 a(Yz(8)) ds)

for some attenuation function a(x) € C*°(M). The associated transform is the attenuated
X-ray transform, which we denote I, instead of I,,. With or without attenuation, it is well-
known that the transform I, ,, has a natural kernel, which increases with m, and the tensor
tomography problem asks whether this natural kernel is the only obstruction to injectivity. Since
a natural complement to this kernel is made of solenoidal tensor fields, the injectivity question is
reformulated as “s(olenoidal)-injectivity”, or injectivity over solenoidal tensor fields. When I, ,,
is s-injective, further interest is given toward finding a reconstruction method for a representative
of f modulo the kernel of I, ,,, (in particular, the solenoidal representative may or may not be
the most practical choice, as argued for instance in [15]). Similar results and studies exist on
higher-dimensional manifolds, closed manifolds, vector bundles and for other types of flows, see
the recent review article [11].

In the absence of attenuation, the answer has been shown to be positive, most recently on
simple surfaces [20], and earlier on disks with a spherically symmetric metric satisfying Herglotz’
non-trapping condition [25], none of which generalizing the other. Explicit inversion approaches
in the Euclidean case have been proposed in [12, 6, 15]. The approach in [12] relies on the
potential-solenoidal decomposition of tensors and SVD bases for solenoidal tensor fields; in [6],
a characterization of solenoidal tensors in terms of higher powers of an operator d* allows to
set up an inversion procedure; finally in [15], the third author relies on another decomposition
of tensor fields which is generalized below in Theorem 2. Approaches were also proposed to
reconstruct the singular support of vector fields [5] and tensor fields [7]. It is conjectured that
the answer to the tensor tomography problem is positive for any non-trapping surface with
strictly convex boundary. In this direction, injectivity has recently been proved over piecewise
constant functions in [10].

In the presence of attenuation, tensor tomography was solved for the cases m = 0,1 in [22],
with constructive approaches in [16, 2], some implemented in [16], and independent numerical



methods in [4]; the case for general m was studied in [17] in the Euclidean case. The latter
provides a fully constructive answer, heavily relying on the ability to construct explicit invariant
distributions with prescribed average on the fibers of SM. In the case of simple surfaces, new
recent formulas were provided for functions and vector fields in [2], following earlier works in
[22, 16]. A first salient feature of our work is to propose a constructive solution to the attenuated
tensor tomography problem on simple surfaces, see Theorem 1 below. This builds upon recent
inversion formulas derived in [2] for sums of functions and one-forms. To generalize this to
general m, we use that a tensor field of arbitrary order admits a gauge representative which
differs from a [function, one-form] pair by higher-order, divergence-free, trace-free elements, see
Theorem 2 below. It is then enough to first reconstruct these, via appropriate pairing of the
data with traces of special invariant distributions, see Section 4.

The second point of focus of this article is to study vector-valued ray transforms which
are fully injective over tensor fields, some coined moment ray transforms, others transverse ray
transforms. To the authors’ knowledge, both were first introduced V.A. Sharafutdinov, the
former in [23] and the latter in [25, Chapter 5], with applications to polarization tomography,
see also [9, 18, 6]. We propose a generalization of both types of transforms to a Riemannian
setting, and show that such transforms provide natural prototypes of injective ray transforms
over tensor fields, constructively invertible in certain cases, even in the presence of certain
weights, see Theorems 3, 4 and 5 below. Prior results in this direction cover the case of vector
fields [26] and we generalize them to tensor fields of arbitrary order.

We now state the main results and provide an outline of the article below.

2 Statement of the main results

2.1 Attenuated tensor tomography on simple surfaces

We first provide a positive answer to the attenuated tensor tomography problem on simple
surfaces. Recall that a Riemannian surface (M, g) is called simple if it is non-trapping, has
strictly convex boundary, and has no conjugate points. Below, we will exploit Fourier analysis
on the tangent circles, indexed by integer frequencies, and a function on SM is said to have
degree m if it is supported on the harmonics k such that |k| < m.

Theorem 1. Let (M, g) a simple Riemannian surface with boundary and a € C*°(M,C). Sup-
pose f is a function of degree m on SM such that I,f = 0. Then there exists p of degree m — 1
with plasy = 0 such that f = Xp+ ap.

The interpretation in the language of tensor fields is as follows. We recall that for a tensor
field h of degree m, the function ¢,,h on SM is supported in the harmonics —m, —m+2,...,m—
2,m. Since the presence of attenuation mixes even and odd Fourier modes, the result is most
naturally stated in terms of pairs of tensor fields, in the sense that if (fy,, fin—1) is a pair of two
tensor fields of consecutive orders and I,(fm—1 + fm) = 0, then there exists a tensor field p of



order m — 1 vanishing at OM such that f,, = d°p and f,,—1 = ap, with d° the symmetrized
covariant derivative.

Theorem 1 is based on the decomposition theorem below, which shows that a general m-
tensor f always differs from a “potential tensor” Xp+ ap by a unique representative over which
the attenuated ray transform is injective and explicitly invertible. In the statement below, the
space VVO1 ’2(M ) is the standard Sobolev space, and the notation H;OI(M ) corresponds to square-
integrable, trace-free, divergence-free k-tensors, see Sec. 3. Below, by a function of “degree m”
on SM, we mean a function in ;" Q, see Sec. 3.

Theorem 2. Let (M, g) be a simply connected Riemannian surface and let f € L*(S™(T*M)).
Then £, f decomposes uniquely as

b f = (X +a)p+ h,

where p is of degree m — 1 with components in Wol’2(M) and where

h:ho—l-XJ_hJ_—l-th (2)
k=1

with ho € L*(M), hy € Wy *(M) and for k > 1, hy, € H{°(M). If f € C*°(S™(T*M)), then p,
ho, hy, hy are all smooth.

In light of Theorem 2, the proof of Theorem 1 consists in proving that the transform I, is
injective over integrands of the form (2).

Such reconstruction approaches provide the building blocks for invertibility and inversion of
the ray transforms considered below.

2.2 Moment transforms

As mentioned above for m > 1, the problem of reconstructing f € S” from [ f is non-injective.
A first approach to recover injectivity is to consider ray transforms involving higher moments
along each geodesic. This was previously tackled by Sharafutdinov in the Euclidean case in [24],
see also [1]. In particular, if 7(z,v) denotes the first time at which the geodesic emanating from
(z,v) hits the boundary, for any k > 0, we define the k-th moment ray transform of f as

7(z,v) 7(z,v)
I F(z,v) = /0 (T(z,v) — t)*F (g (z,v)) dt = /0 (TR F) (@i (z,0)) dt, (x,v) € 0+ SM.

It is proved in [24] in the Euclidean case that the moments of orders 0 < k < m determine an
m-tensor field, i.e. the case where F' = {,,f for some f € C*°(S™(T*M)). A reconstruction
algorithm and Reshetnyak stability estimates for moment ray transforms has been derived in a
recent work as well [13]. We show that unique determination of a tensor field from its moment
ray transform generalizes to Riemannian settings, and in the presence of attenuation coefficients.



Theorem 3. Let (M, g) a non-trapping surface, a € C*°(M) and suppose that 1, is s-injective
for all 0 < k < m. Then for any m-tensor field f € C°°(S™(T*M)), the collection of moment
ray transforms

Lim[mfmf],  0<k<m

determines f uniquely and explicitly.

2.3 Transverse transforms

The second class of vector-valued transforms is a collection of transverse ray transforms, previ-
ously appearing in [24, 9, 18, 26] as mentioned in the Introduction. In what follows, we assume
(M, g) oriented!, giving rise to an operator v + v+ of direct rotation by /2. Similar to the
operator £, given in (1), we define the family of operators ¢,, : C>*(S™(T*M)) — C*>(SM)
by

Em,kf($vv) = fm(vm_k ® (Ul)k)7 0 S k S m (Em = Em,O)- (3)

Each of these identifications can then define a tranverse ray transform by means of integra-
tion, and we provide conditions under which such a collection gives an injective ray transform
over tensor fields. The proof relies on an algebraic reduction to the injectivity of scalar trans-
forms defined over symmetric differentials, previously studied in [14]. In the non-trapping case
where global isothermal coordinates (z,0) exist on M, studying the ray transform I,, over k-
differentials is equivalent to the transform L2(M) > h +— I,,[he*?].

Theorem 4. Fixm any natural integer. Suppose (M, g) is a Riemannian surface with boundary,
and let w : SM — C a weight such that for any k with m — k even and |k| < m, the scalar
transform L?(M) > h s I,[he*?] is injective. Then for any f € C=(S™(T*M)), the collection
of transverse ray transforms

Iw,m[gm,kf]a 0< k <m, (4)

determines f uniquely and explicitly.

Summary of injective settings. So far the injectivity results we have stated rely on the
injectivity of other, simpler transforms. We now summarize on what surfaces Theorems 3 and
4 translate into injective transforms over tensor fields.

Theorem 5. Let (M,g) a simply connected surface with boundary and suppose w = w, for
some attenuation a € C°°(M). Then in either case below, for any m > 0, an m tensor f €

!This is always true since our resting assumption is that (M, g) be nontrapping.



C®(S™(T*M)) is uniquely characterized by the collection of moment transforms {Io m[T% 0y f1}E
or the collection of transverse ray transforms {Io m[lm 1k f1}*,_o:

(1) (M,g) is simple.

(11) (M, g) is a disk endowed with a radial metric satisfying Herglotz” non-trapping condition,
and a = 0.

Proof. Since it was proved in [14] on a simple surface that for any k € Z, the transform L?(M) >
[+ I[e™? f] is injective, (i) follows directly from Theorem 4 for the transverse transforms. The
case of moment transforms follows from Theorems 1 and 3.

To prove (7i), it was proved in [25] in this context that the geodesic X-ray transform is
s-injective over m-tensors for any m > 0. Therefore the result for moment transforms follows
immediately from Theorem 3 while for transverse ray transforms, the result follows by using
Lemma 9. [

Outline. The remainder of the paper is organized as follows. We recall some geometric prelim-
inaries in Section 3. Section 4 deals with attenuated tensor tomography and provides a proof of
Theorems 2 and 1. Section 5 covers the proof of Theorem 3 on moment transforms and Section
6 covers the proof of Theorem 6 on transverse ray transforms.

3 Preliminaries

First note that the non-trapping assumption implies that M is simply connected, hence oriented.
In particular, there exists a circle action on the fibres of the unit tangent bundle SM which is
generated by the vertical vector field V', and we will use the well-known canonical framing of
T(SM) given by {X,V, X | := [X,V]}, where [-, -] denotes the Lie bracket of vector fields. SM is
equipped with the Sasaki metric making (X, X, V') orthonormal and the L?(SM) inner product

(u,v)sp = u T dY?
SM

is defined with respect to its corresponding volume form. For v € C°°(SM) vanishing on 0_SM,
we have the following integration by parts formula

Xu d¥? = —/ u(z,v)p(e, v)ds?, w(z,v) =g (v(x),v)|. (5)
SM 84 SM

We can decompose L?(SM) orthogonally by diagonalizing the vertical Laplacian —V?2, as
the following direct sum:

L*(SM) =& He,  Hy :=ker(-V? — k*Id) N L*(SM).
k>0

m=0>



In what follows, we may also denote €, := Hp N C*>°(SM). Following notation in [21], for each
k > 0, the space Hj decomposes into Hy, = E @ E_j, (resp. Q = A @ A_g), where ELj (resp.
A4y) corresponds to L? (resp. smooth) sections of ker(—iV + kId).

We will decompose an element in L2(SM) (or C°°(SM)) using this orthogonal decomposi-
tion, as follows

oo
u = E U, uy, € Hp,.
k=0

In isothermal coordinates (z,6), the component wuy takes the form
uk($7 0) = uk,+($)eik9 + uk,—(x)e_ikev Uk 4+ € Lz(M)

In these coordinates, an element u € Hj, can be written as u(z, ) = @(x)e™? with @ € L?(M),
so we will somewhat abuse notation by defining

eMEP(M) = {ue Hy,, u=e*u(x), aeF(M)},

for F' some function space (e.g., I/VO1 2(M)). Though the notation suggests isothermal coordi-
nates, these spaces do not depend on the choice of smooth abelian differential (e.g., ¢¥) whose
powers are used to factor out the fiber dependence.

In what follows, we will also use the splitting X = ny + n_ first introduced by Guillemin
and Kazhdan in [8], where

e =5 (X £iX0),
with the property that ny(Q) C Qgsq for all & € Z. In what follows, we also denote
ker” ne = QN ker 7y, ke,
as well as
L?(ker¥ ) == {f € L*(SM) : f, = 0 for p # Fk; n+f =0} (6)

As explained in [2, Sec. 7.1], such spaces are closed subspaces of L?(SM,C) (or Hj), and
as such are Hilbert spaces themselves, admitting complete orthonormal sets, which we denote
{pFhd }(;io-

Of special interest will be, for k > 1, the spaces ker” N— &P ker* n4. Via the identification
lk in (1) for k > 2, such spaces correspond to trace-free, divergence-free tensors of order k. The
L? version will be denoted

HPN M) = L*(ker® n_) @ L2 (ker % n,), k> 1.



4 Scalar attenuated transforms - Proof of Theorems 2 and 1

We first prove the decomposition Theorem 2, whose proof relies on the following lemma.

Lemma 6. Let fi € Hyp for k > 2. Then there exist h € H;::"Z(M), gr_1 € Hp_1 with
Gk—1,+ € Wol’z(M), and wy_o € Hy_o, such that

e = Xgp—1 + wp—2 + hy. (7)

To prove the lemma, recall the following two elliptic decompositions: for any k € Z, any
fr € Ej, can be uniquely written in the following two ways:

fr=n1gk1+he, g1 € €FTVIWIAM), k€ LP(kerF ),

. (8)
fr=n-Ghi1 + ey Ghyy € EFVOWPA(M), B € L (ker® ).

Proof of Lemma 6. Let fi, = fr 4+ + fr,—. Using (8), we can write

fror =014 +hets ey € LP(ket® ), geo14 € Wy (M),
and foe—=0-gp—1— +hp—, hp_ € Lz(ker_k N+), Gk—1,— € W()1’2(M).

Define hy, := hy + + hy— and gp—1 := gr—1,+ + gr—1,—- Using these we rewrite fj as follows:

Je = N4Gk—1,4 + N-gk—1,— + hu,
= XGk—1 = N-9k—1,+ — N+9k—1,— + hu,
and the proof follows upon setting wy_s = —1_gp—1,+ — N4-Gr—1,—- O

Proof of Theorem 2. The proof uses induction on m and Lemma 6. The case m = 0 follows
trivially by taking hg = fy. For the case m = 1, we start by writing as f = fy + f1 and
decompose f according to (8):

fie =nsgos +hig, hig € L(ker'n_), go4 € Wy (M),
and  fi_=n_go— +hi—, hi_ €L (ke lny), go_ € Wyi(M).

Using the identities ny = (X +£iX)/2, we see

90,4+ 1 go,— .90,4+ — 90,—
N+90+ +1M-go,— = X <+7> +X 1 <2;> :

2 2
SN—— —
p h



From this we rewrite f as

f=Jfo+Xp+Xihy+M
= (X +a)p+ (fo—ap) + X h + D1
——
ho
with hg € L3(M), h, € W01’2(M) and hy € H;°'(M). Hence the result is true for m = 1 also.

We now show the induction step (k == &k + 1). Let f € L2*(S¥TY(T*M)) and write
f = fek + frr1 with f<p, € L2(S¥(T*M)). By Lemma 6, fi.1 decomposes into

frot1 = Xgr +wi—1 + b

where hyy 1 € Hz‘il(M), gL € eikOWOl’z(M) @ e_iWWO:lQ(M) and wg_1 € Hi_1. Using this we
rewrite f as

[ = f<k+Xgp +wp—1+ hpia
= (X +a)gk +wp—1 — agr + f<i +hit1-

!

Then we can use our induction hypothesis to decompose f € L2(S*(T*M)) as

k
f=(X+a)p+hg+Xihi+Y hj
j=1

Finally we put it back to f and get the following:

k
f:(X+(l)gk+(X+a)]§+h0+XJ_hJ_+Zhj+hk+1

j=1
k+1
= (X‘i‘a)p“l‘hO"_XJ_hJ_“l‘Zhj, where p := p + gi.
j=1
Theorem 2 is proved. [l

We move on to the proof of Theorem 1. The following Lemma was first proved in [2, Lemma
7.2] for the case k = 1, and we now generalize it to arbitrary k. Here and below, we denote by
O>(k4+1) an element of ®p2k+1 Ap, similarly for O<(g41).

Lemma 7. (a) For every ¢ € ker’n_, there exists 1 = ¢+ O (k41) solution of Xt —ay = 0.

(b) For every ¢ € ker ", , there exists 1 = ¢ + O<_(k41) solution of X1p —ap = 0.

9



Proof. Let w and w be solutions of Xw = Xw = a obtained from [22, Proposition 4.1] where
w is holomorphic and @ is antiholomorphic. Using these solutions we get holomorphic solution
W =1+ O of (X —a)w = 0 and antihomorphic solution e¥ =1+ O<; of (X — a)w = 0.

If ¢ € ker® 7_ then there exists a smooth solution v from [19, Lemma 5.6] of Xv = 0 such
that vy = ¢. Now n_vx = n—¢ = 0 implies that v = ZPk v;j is also satisfies X0 = 0. Finally
define ¢ = "0 to complete the proof of (a).

If ¢ € ker %1, then there exists a smooth solution v from [19, Lemma 5.6] of Xv = 0 such
that v_p = ¢. Now niv_p = ny¢ = 0 implies that v = Zj<_k v; is also satisfies X0 = 0.
Finally define 1) = e?% to complete the proof of (b). O

We are now ready to prove Theorem 1.

Proof of Theorem 1. In light of the decomposition Theorem 2, it is enough to show how to
reconstruct h from I, f = I,h.
We are going to show that hy for 2 < k < m can be reconstructed. As a first step we will
reconstruct h,,. Let us write
hm = b+ + b —

where hy, + € L?(ker™n_) and hp, - € L?*(ker ;). We will prove how to reconstruct A, +
from the knowledge of I,h and the proof for the reconstruction of h,, _ is similar. Since h,, 4 €
L?(ker™n_), it can be expressed as follows

[e.e]

b+ = Z<hm,+, ¢+m7j>SM ¢+m’j-

=0

We use Lemma 7.(a) to construct ™™ corresponding to each ¢+™7. Take the inner product
of the equation

(X +a)u=—(ho+ X hs+ Y _hy)
=1

with ™™ to get

(X +a)u, ™) gpr = —((ho + X1 hs + D hy), 0™ )gar. (9)
j=1

Upon using integrating by parts (5) and the fact that ulg, spr = Ioh, the left-hand side of (9)
becomes

/ Lah 376 S = (u, (=X + @)y ™) gy = / Loh 3"y o d3?
8L SM 8L SM

10



while by consideration of harmonic content, the right-hand side of (9) reduces to — (A, +, dT™7 ) gpr.
This is because the first term in the inner product is O<(,,) while the second is O ;). We can
then derive that h,, + can be reconstructed via

o0

I ( / Lh Mm?) ¢t
- Z 8, 8M 0+5M

J=0

Using similar analysis we can reconstruct h,, — from the knowledge of I,h and hence h,, is
reconstructed. Using the knowledge of h,, we also know I,(h — hy,). If we denote h=h- hom,
then again we can use the same procedure to compute ﬁm_l = hy,—1 from the knowledge of
Ia(ﬁ). Repeating this process (m — 4)- more times we can reconstruct hy,, hy,—1 down to hs.
Since hy for 2 < k < m have been reconstructed, it remains to reconstruct hg,h,h_1,hq

from I,[ho+ X hy +h_1+h], and this is done explicitly in [2, Sec. 7]. Theorem 1 is proved. O

As suggested by an anonymous referee, a second proof of Theorem 1 can be written, making
direct use of a holomorphic integrating factor for the attenuation function a. While not amenable
to inversion techniques, the proof is direct and we record it here.

Second proof of Theorem 1. Suppose I,f = 0. Then the function u solving Xu + au = —f on
SM with boundary condition u|g_gp; = 0 also vanishes on 94 SM, and the theorem is proved if
we can show that ui = 0 for all £k > m. With w a fiberwise holomorphic, smooth function such
that Xw = —a, the function e™"u satisfies X (e *u) = —e~"f and vanishes on dSM. Since
(7" f)k,— = 0 for all & > m, this implies, by e.g. [20, Prop. 4.2], that (e”"u)_ = 0 for all
k > m—1. In particular, since e¥ is fiberwise holomorphic, multiplying e~ u by e will preserve

this property, and we then obtain that u, _ = 0 for all £ > m — 1. Using an antiholomorphic
integrating factor together with [20, Prop. 4.1] will also yield uj 4 = 0 for all K > m — 1. Hence
the result. O

5 Moment transforms - proof of Theorem 3

Proof of Theorem 3. We prove this by induction. The case m = 0 is just the injectivity of
I, 0. Now suppose the statement holds for some m, let f an m + 1 tensor and consider the
reconstruction of f from I,,,[r*f] for 0 < k < m + 1. Following Theorem 2, we write f =
(X + a)v + g with v of degree m such that v|ssys = 0. Then Io,,f = Iqmg, and one may
reconstruct g from I,,,g by virtue of Theorem 1. Then for each 0 < k& < m, noticing the
identity

TR = MU X +a)o + 7R g = (X + o) (7P 0) + (b + D) ho + 7y

11



we arrive at the relation

Tom P41 = LlX + @) 0] 4+ Dot [740] + T[4
=0

In other words, the data

1

k‘——l—l <Ia,m[7—k+1f] - Ia,m[T]H—lg]) ) 0<k< m,

Imm_l[Tk’U] =
is known from the initial data, out of which we can reconstruct v using the induction property.
Theorem 3 is proved. [l

Remark 8. As building block to the proof above, one must be able to find a gauge representative
and reconstruct it from the usual longitudinal X-ray transform. We do this through Theorems 2
and 1. Another decomposition from the one in Theorem 2 is the solenoidal-potential one, where
the representative to be reconstructed is a solenoidal tensor field. If an efficient reconstruction
procedure can be derived for the solenoidal representative, then this provides another approach
to prove Theorem 8 and reconstruct tensor fields from their moment transforms.

6 Transverse ray transforms - proof of Theorem 4

6.1 On the injectivity of the transforms I,,[f(z)e’?]

The injectivity of the transforms I,[f(z)e?*®] was proved in [14, Theorem 3.2(i)] for simple
surfaces whenever the longitudinal transform is s-injective over m-tensors for some m > k with
m — k even. This fact alone only relies on topological restrictions on M, as is explained below.
The main tool is the splitting X = 7, + n_ into the two elliptic operators ny := X +¢X | such

that, over any space ), the problem
neu=0  (SM),  ulpsm =0,

only admits the trivial solution © = 0. We then state the following result, whose proof is identical
to [14, Theorem 3.2(i)]

Lemma 9. Let (M, g) simply connected, and suppose the geodesic ray transform is s-injective
over m-tensors. Then for any k < m with m — k even, the transform L?>(M) > f s I[e* f] is
mjective.

We now generalize the lemma above to a version for the attenuated ray transform. Since at-
tenuation mixes odd and even Fourier modes, the condition “m —k even” in the above statement
is no longer in order, and the statement becomes:

12



Lemma 10. Let (M,g) simply connected, and suppose the transform I, is s-injective over m-
tensors. Then for any k with |k| < m, the transform L>(M) > f v+ I[e*? f] is injective.

Proof. Let f be such that I,[e**? f] = 0 also assume k > 0 without loss of generality. We can
think of e*?f as the restriction to SM of the m-tensor field ™ f(z)(dz™* @ dz*), whose
attenuated ray transform vanishes. Then s-injectivity of I, implies the existence of an (m — 1)-

tensor v = E;n’:__l(m_l) vj such that (X 4+ a)v = —f and v;|ppr = 0 for j such that [j| < m — 1.

Now for any —m < j < m and j # k, we have
{(X +a)v}; =0.
More explicitly we will get the following:

N-v—_(m-1) =
N-V_(m—2) T AV_(m—1) =

N4V (m—1) + N-V_(m-3) + aV_(m—2) =0,
N4Vk—1 + N-Vgs1 +avg = —f

N+V(m—2) T WW(m—1) =0

N+Um—1 = 0.

Augmented with homogeneous boundary conditions for each vy, the first equation implies
V_(m-1) = 0, then the second v_(,,_2) = 0, down to the equation njvg_o + n-v + avg—1 = 0
which implies vy, = 0 (assuming vg_1 = vg_o = 0 at this point). Similarly, by backward sub-
stitution we also have that v,,—1 = vy—2 = -+ = vpy1 = 0. This implies v = 0 and therefore
f=0. O

6.2 Proof of Theorem 4

The proof of Theorem 4 is mainly based on symmetric tensor algebra. To fix ideas, recall that
given a 2-dimensional vector space (V,(-,-)) with basis {v1,v2}, the space S™V of symmetric
m-tensors is spanned by

{o(" " ®v5):0<q<m},

with o the symmetrization operator defined as follows:

o @ QUpy) = 'Z 1) @ Ur(2) @+ & Vp(m),

TECH
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where &,,, is the permutation group of order m. A natural inner product on S™V is given via
the permanent of the Gram matrix, namely,

<O’(U1 - & vm),a(ul (SRR um)>5mv = per ({aij}1§i7j§m) = Z alw(l) s amw(m),
7T€6m

where a;; := (u;, vj), see [3].

Proof of Theorem 4. Without loss of generality, we work on a global chart of isothermal coordi-
nates, where g = ¢?*(dz?+dy?), and where a unit tangent vector takes the form v = e~ (cos 00, +
sin#0,). A symmetric m-tensor f decomposes in the local basis T}, 4 1= o(dz™ 1 ® dz9) with
0 < g < m, in the form

F= fo@) g,  fg€ L(M).
q=0
In particular, we have
b (2:0) = 3 Fol@) (T g 0™ 7 @ (w7
q=0

Now with v expressed in isothermal coordinates, we have
(dz,v) = e e, <dz,vL> =eNie?,  (dz,v) = e e ¥, <d2, vl> = —je e .

In particular, we can see that for any vector of the form w = av + fv™,

- (()(): a0

Then, using the definition directly, and using the notation ¢ — ¢’ to denote the isomorphism

14



mapping v — ((1]) and v+ — (?), we arrive at the fact that

<Tm,q, VPR (vL)p> = (dz"" 1 ®dz% 0(v1 QU ® - @ Up)), where (m —p) vy’s are v

m—q m
:% Z H<dzav7r(k)> H (dZ, vr(j))

€Sy k=1 j:m—iﬁ-l

o~ gi(m—29)0 T / 4 1 !
_ e_m)\ez(m—2q)€ < <1> ® < 1> 70’(’[)3 R ® ?};n)>
7 —1
. m—q q m=p P
ematmae o (" (). () (9))
1 -t 0 1

— Ag]n)e—m)\ei(m—2q)€

)

where the matrix A™) € M,,,1(C) with elements

A = <a ((1) o ® (_12>q> : <(1)> o ® <(1)>p> , 0<pg<m, (10)

is a constant matrix. In particular, this yields the relation

b f(z,0) = 2’”: AI(,Z"L)e_mA(ﬂC)fq(m)ei(m—Qq)e7
q=0
and hence
Ll ] Ly[e~™ foe™)
Lomllm1f] | _ oy | L [ ¢ (m=2)0]
Iw,m[ém,mf] L, [e_mkfme—imﬁ]‘

Therefore, the theorem is proved if A™) is invertible, and we now explain how to invert A(™)
explicitly.
Since o is self-adjoint and idempotent, we may rewrite

= ({070 (7)) oz
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so A™) is a matrix of inner products between two bases of S™(C?) (of complex dimension m+1)
endowed with the permanent as inner product. Each is a basis because it’s an orthogonal system,
and moreover, we compute their norms by direct calculation

(07 ) (0 )= ()
(= @) (O @)= )

In particular, the matrix

_1 _1
B — diag <<T;‘> S o<p< m> A diag (2—’”/2 (7;) S 0<q< m)

is unitary as it amounts to the inner products of two orthonormal bases so (B(m))_1 = (B(m))*,
and this directly yields an inverse for A, given by

_1 _1
(AT 7! = diag (2"”/2 (7;) S 0<q< m) (B™)*diag ((Z) Co<p< m) :

of general term
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